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Abstract

With the surge in online advertising, the abundance of advertisements has made the consumer jour-

ney more complex. Determining the impact of different channels on conversions has become a significant

challenge. Multi-touch attribution (MTA) addresses this by assigning conversion credits to channels

based on their influence on user conversions. Recurrent Neural Networks and Shapley Values have been

commonly used to calculate these credits. However, Shapley Values are computationally expensive and

may not capture causality effectively. This research paper aims to explore alternative methods, such as

the Incremental Value Heuristic (IVH) and the Simplified Shapley Value method, to obtain causal con-

version credits with clearer interpretations. These methods will be compared with the conversion credits

generated by an attention mechanism in a neural network. Using the Criteo data set, consisting of more

than 16 million impressions and 45 thousand conversions recorded over 30 days, the study investigates

the feasibility of IVH and the Simplified Shapley Value method in capturing causal conversion credits.

The findings illuminate the suitability of IVH and Simplified Shapley Values to obtain meaningful and

interpretable conversion credits, offering advertisers and online ad exchanges valuable insights for effec-

tive campaign design and marketing budget optimisation. The main finding is that the model discussed

in this paper provides more accurate and better calibrated conversions predictions.
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1 Introduction

Online shopping and advertising are becoming increasingly important. According to Leong, Hew,

Ooi, and Dwivedi (2020), the money spent on online advertising worldwide was approximately USD

240 billion in 2018 and is expected to grow at an annual rate of 37% to 40% from 2019 to 2025.

With the rise of online advertising, the consumer journey has become progressively more complex.

Each day, consumers are exposed to a multitude of advertisements through various online channels,

for example, social networks, search engines, emails, and websites. Mapping the journey that a

consumer takes through these various channels is of great importance to online advertisers when

deciding their pricing strategy or guiding their budget allocation. However, it remains a challenge

to identify which advertisements are most crucial in creating a conversion.

The issue of Multi-touch Attribution (MTA) pertains to the process of determining the value of

each customer touchpoint leading up to a conversion. It is about identifying which advertisements

and channels play a significant role in influencing a consumer’s decision to make a purchase (Du,

Zhong, Nair, Cui, & Shou, 2019; Yang, Dyer, & Wang, 2020; Kumar et al., 2020). A touchpoint

in this context refers to any interaction a consumer has with a brand, product, or service. The

allocation of the correct conversion credit to each touchpoint is important for numerous reasons.

Firstly, it can be used as input for a campaign design. Second, conversion credits can be used to

create an optimal allocation of the marketing budget. Lastly, it can provide information on why a

campaign worked or did not work (Du et al., 2019).

Various conversion attribution methodologies have been used throughout the years. The de-

fault methodology in the industry used to be the “last touch attribution” (LTA) model, which is a

heuristic-based model that assigns all conversion credits to the touchpoint which a consumer has

last interacted with after a conversion (Dalessandro, Perlich, Stitelman, & Provost, 2012). Other

heuristic-based methods include “linear touch attribution,” where conversion credits are distributed

equally across each touchpoint with which a consumer has interacted with, or “first-touch attribu-

tion,” where all conversion credits are assigned to the first channel after conversion. However, these

oversimplifications ignore the complexity and multifaceted nature of consumer behaviour, which

can lead to inaccurate credit assignment.

After the heuristic-based models, data-driven models started to emerge. In this paper, data-

driven methods are defined as approaches that leverage data to address the issue of MTA, excluding

the use of Neural Networks. An example is the Logistic Regression (LR) proposed by Shao and Li
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(2011). Other examples include the Simple Probabilistic (SP), Additive Hazard (AH), and Addi-

tional Multi-touch Attribution (AMTA) models outlined in Dalessandro et al. (2012), Y. Zhang,

Wei, and Ren (2014), and Ji and Wang (2017), respectively. More recently, neural networks have

emerged as a growing solution to address the issue of MTA (Ren et al., 2018; Arava, Dong, Yan,

Pani, et al., 2018; Du et al., 2019; Kumar et al., 2020; Yao, Gong, Zhang, Chen, & Bi, 2022). These

approaches, as shown in Yao et al. (2022), exhibit significant superiority over non-machine learning

methods to predict user conversion. However, they rely on sequential modelling techniques that

contribute to long training times. Additionally, these approaches often employ models with multi-

ple layers, which pose challenges in interpreting the model due to its complexity. It is also unclear

whether these models capture causal effects instead of mere correlation.

To address the problem of poor interpretability, many methods use Shapley Values (Shapley

et al., 1953) to allocate conversion credits (Du et al., 2019, Yao et al., 2022). Shapley Values

have been criticised for being computationally expensive (Verdinelli & Wasserman, 2023), but novel

methods have been suggested to make the computation more feasible, such as the Simplified Shapley

Value Method outlined in Zhao, Mahboobi, and Bagheri (2018). Shapley Values were introduced in

cooperative game theory to assess the marginal contribution of each individual player in a game.

It can be summarised as the expected value of the marginal contribution over all permutations of

players. In MTA, Shapley Values can be used to obtain allocation credits by treating each marketing

channel as a player in a game.

To address the issue of causality, Yao et al. (2022) conduct a simulation study to examine the

performance of their method in confounding scenarios. The method aims to mitigate confounding

bias from both static and dynamic perspectives. However, this paper uses the accuracy of the

conversion prediction as a proxy to assess the effectiveness of the method in mitigating confounding

bias, but it is not clear how the higher prediction accuracy is translated into causal conversion

credits. The research paper does not compare the “true” allocation of conversion credits with the

one generated by their method.

The aim of this research is to use a neural network to develop an attribution model that, under

certain assumptions, is causally interpretable. To achieve this goal, the following research question

is introduced:

How can a Neural Network be employed to derive causally interpretable conversion credits within

the framework of Multi-Touch Attribution?
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This study evaluates the effectiveness of the Dual-Attention Recurrent Neural Network (DARNN)

model, as described in Ren et al. (2018). First, the model is modified to include multiple recurrent

layers, with the aim of investigating whether this enhances the accuracy of conversion predictions.

This is explained in more detail in Section 2.1. Second, Simplified Shapley Values are used in

conjunction with the DARNN model to determine whether the model produces causal attribution

scores. The DARNN model is chosen for evaluation for several reasons. First, it generates both

conversion and click predictions, both of which can be used to assign attribution scores. Second,

this method significantly exceeds the models that do not utilise a neural network mentioned above

in terms of conversion prediction accuracy.

The dataset, referenced as Diemert Eustache, Galland, and Lefortier (2017), is provided by

Criteo, a company specialising in online advertising research. This data set encompasses 30 days of

live traffic data, including impressions shown to users and whether a displayed banner led to a click

and/or conversion.

In summary, this paper unveils significant findings. The model discussed in this paper not only

yields better accuracy and better calibrated conversion predictions relative to the DARNN model,

but also offers valuable insights by ranking the most influential channels through the use of the

attribution measures discussed above.

The structure of this paper is as follows. First, Section 2 offers a review of the related literature.

Section 3 provides a complete description of the data set. The methodology used to derive con-

version predictions, click predictions, and attribution scores is discussed in Section 4. The results

obtained from the methods outlined in the methodology are presented in Section 5. Lastly, Section

6 summarises the results and findings and suggests directions for further research.

2 Related Work

The Related Work section is divided into three parts. First, in Section 2.1, the literature which uses

recurrent neural networks in the context of MTA will be discussed. Then, in Section 2.2, various

attribution measures that have been used in the literature to allocate conversion credits will be

discussed.
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2.1 Sequential Modelling using RNN in MTA

Recurrent Neural Networks (RNNs) have a long history, with one of the first use cases dating back

to 1982 (Hopfield, 1982). Since then, RNNs have found successful applications in various fields.

For example, RNNs have been used for tasks such as handwriting recognition (Graves et al., 2008),

Machine Translation (Sutskever, Vinyals, & Le, 2014), and recognition of medical diagnoses (Lipton,

Kale, Elkan, & Wetzel, 2015). A comprehensive and in-depth overview of RNNs and their diverse

applications can be found in Lipton, Berkowitz, and Elkan (2015). The use of RNNs have also been

extensively used within the MTA framework (Du et al., 2019; Kumar et al., 2020; Ren et al., 2018;

Yao et al., 2022).

The rationale behind employing RNNs lies in their ability to capture dependencies between se-

quences, a characteristic that is expected to be present in the context of MTA. For example, consider

a customer who is exposed to multiple ads or touchpoints over a period of time. Using an RNN,

the model can incorporate the order and timing of these touchpoints and learn the dependencies

between them. This enables the model to better understand the impact of each touchpoint on the

final conversion and to attribute appropriate credit to each marketing channel or advertisement.

The first paper to leverage an RNN for sequential user modelling in the context of MTA is Ren

et al. (2018). The DARNN model proposed in the paper uses a long-short-term memory (LSTM)-

RNN1, which is a type of RNN that can capture long-term dependencies.

Figure 1 shows the architecture of the DARNN model. The model uses an encoder to model

impression-level user behaviour, followed by a decoder for click-level sequential prediction. Section

4.1.3 discusses in more detail the workings of an encoder-decoder architecture and explains the

intuition behind the use of the structure in the context of MTA. One drawback of the DARNN

model could be that it only uses one recurrent layer, potentially missing out on discovering intricate

temporal relationships and capturing more nuanced patterns in the data.

1There is a discrepancy between the code provided by Ren et al. (2018) and the paper. Although the paper

recommends using an LSTM-RNN, the code uses a GRU-RNN. To increase computational efficiency, a GRU-RNN is

employed as described in further detail in Section 4.1.2.
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Figure 1: DARNN Architecture. Source: Ren et al. (2018)

Arava et al. (2018) propose the Deep Neural Net With Attention multi-touch attribution (DNAMTA)

model, which uses a Time Decay Attention Layer to account for differences in time gaps between

touchpoints. The paper also introduces a Fusion model (Fusion DNAMTA) built on top of the

DNAMTA model with the Time Decay attention layer. The Fusion DNAMTA is equipped to han-

dle user characteristics such as age, sex, and other static user information to mitigate confounding

from a static perspective. Similarly to Ren et al. (2018), the model uses an RNN with a single layer.

Furthermore, the model is not suitable for the Criteo data set, since it does not disclose information

on the specific features that cover the user characteristics.

Du et al. (2019) utilise a bi-directional RNN to capture dependencies between sequences. A

bi-directional RNN is a Neural Network that allows for backward recurrence. Their rationale for

using a neural network with backward recurrence is that future ad impressions at time t+ 1, . . . , T

can help predict conversion at time t. However, the sequence and features of future advertising im-

pressions may not always be known at time t. For this reason, an RNN with only forward recurrence

will be considered.

By stacking multiple recurrent layers, a Deep Recurrent Neural Network can be constructed,

as shown in Figure 2. Deep RNNs offer the advantage of capturing complex relationships between
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input and output at each time step.

Figure 2: Graph of a Deep RNN. Source: A. Zhang et al. (2021)

Each layer of the network, denoted as H
(l)
t , where l = 1, . . . , L and t = 1, . . . , τ , represents a

hidden state. In this paper, the term Deep RNN specifically refers to recurrent neural networks

where there is a recurrence between all cells in every layer of the neural network, as shown in Figure

2. This architecture is commonly referred to as stacked RNN in the literature. Deep RNNs have

demonstrated successful applications in various domains. For example, in neural machine translation

tasks, Dabre and Fujita (2021) achieved superior performance by employing stacked RNNs compared

to single-layer vanilla models. Furthermore, Graves, Mohamed, and Hinton (2013) uses a deep RNN

for speech recognition and achieved state-of-the-art results in that field. Similarly, in character-

level language modelling, Hermans and Schrauwen (2013) used deep RNN and achieved remarkable

performance results, exceeding other types of recurrent neural networks.

In the domain of MTA, a deep RNN has been applied in the work by Yang et al. (2020). The

research introduces the DeepMTA model, which uses stacked layers of phased LSTM (Neil, Pfeiffer,

& Liu, 2016). However, the model does not employ an encoder-decoder structure to address the

data-sparsity issue discussed earlier. Furthermore, the model does not incorporate an attention

mechanism to highlight the significance of impressions and/or clicks.

To further investigate the application of Deep Recurrent Neural Networks within the MTA

framework, this paper investigates whether the inclusion of multiple stacked recurrent layers in the

DARNN model enhances the accuracy of conversion prediction. It is worth mentioning that several

papers regarding MTA have employed multi-layered RNNs in their studies. However, in these papers
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(Arava et al., 2018; Kumar et al., 2020; Yao et al., 2022), the deeper layers of the neural networks

do not use recurrence.

2.2 Attribution Measures

Within the fields of statistics and machine learning, there has been a growing interest in the concept

of explainability (Verdinelli & Wasserman, 2023). Understanding and interpreting the output of

a prediction model in MTA is useful because it helps identify which marketing touchpoints are

most influential, allowing advertisers and ad exchanges to focus resources on effective channels and

improve decision-making. It also builds trust by providing transparency and data-driven insights to

stakeholders.

Attribution measures are a significant aspect that aim to measure the importance of a channel

within the underlying Data Generating Process (DGP). It involves quantifying the degree to which

displaying a particular impression has influenced the probability of conversion for a specific user.

Such measurements play a crucial role in the allocation of conversion credits.

The use of Shapely values to allocate conversion credits is fairly common in online advertising

(Dalessandro et al., 2012; Du et al., 2019; Yao et al., 2022). The concept of Shapley values originates

from cooperative game theory (Shapley et al., 1953), where it was initially used to assess the

individual marginal contribution of players in a game. In the context of MTA, conversion credits

are allocated using Shapley values by treating each marketing channel as a player within a game.

This game represents different marketing strategies or campaign designs.

Another commonly used method for attribution of importance to channels in online advertising

is the Incremental Value Heuristic (IVH) (Singal, Besbes, Desir, Goyal, & Iyengar, 2019). IVH can

be defined as the change in the conversion probability of a customer when an ad is withheld from

their path. Arava et al. (2018) have also used IVH, referring to it as incremental scores. IVH offers

several benefits, including its tractability for calculation and clear interpretation. However, it has

some drawbacks. Singal et al. (2019) argue that IVH can lead to incorrect allocation. The extent to

which this could occur is further researched in this paper.

To further investigate the use of Simplified Shapley Values and IVH in MTA as conversion credit

allocation measures, an investigation is conducted to determine whether Simplified Shapley Values

and IVH can be used in conjunction with the DARNN model to acquire attribution credits that are

interpretable. To examine the causal nature of the conversion credits obtained from the attribution

measures, conversion journeys will be simulated. An assessment is made to investigate whether these
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attribution measures provide causal estimates under certain assumptions. Furthermore, this paper

also highlights the biases and their consequences for these measures if these assumptions are not

valid.

3 Data

The data Diemert Eustache et al. (2017) used for this research are supplied by Criteo. Criteo is an

online advertising research company. The authors have made this data set publicly available for the

purpose of attribution modelling in real-time auction-based advertising (Eustache, Julien, Galland,

& Lefortier, 2017).

The data set consists of live traffic data for 30 days. It comprises over 16 million impressions

and 45 thousand conversions from approximately 700 campaigns. In this data set, impressions may

correspond to click actions, and each touchpoint in the user action sequence is labelled to indicate

whether a click has occurred. Additionally, if the sequence of touchpoints results in a conversion

event, the corresponding conversion ID is provided. For each display, nine contextual features asso-

ciated with the display are also provided. These are used to learn the click-and-conversion model.

These nine contextual features are categorical. The meanings of these features are not disclosed by

Criteo. The timestamp of each impression is also given. The data set also includes additional infor-

mation, among others, such as the price Criteo paid for the display (cost) and the cost-per-order

(cpo) to represent the expenses associated with each order when the conversion is attributed to

Criteo. However, these variables will not be used for this research.

To make the data ready for use, pre-processing and cleaning must be performed. The same ap-

proach will be followed as described in Ren et al. (2018). Since conversion is a rare event, researchers

perform downsampling. The sampling rules and sequence preparation rules are as follows: If a user

has multiple conversion events, the action sequence is split according to the conversion time to

ensure that each sequence has at most one conversion. Sequences with a minimum length of three

and a maximum length of 20 are extracted with a sequence duration of 14 days. All sequences that

lead to a conversion have been retained and uniformly sampled to be twenty times smaller than the

number of nonconverted sequences. Figure 3 shows the distribution of the sequence lengths.
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Figure 3: Sequence length distribution and Conversion distribution against the sequence length. Source:

Ren et al. (2018)

The left plot in Figure 3 shows the distribution of the sequence lengths and the length of

sequences which lead to a conversion on a logarithmic scale. From this plot it follows that longer

sequences are much more rare than shorter ones. Also, the number of nonconverted sequence lengths

and converted sequence lengths seem to be highly correlated. The plot on the right shows the density

of the conversion rate with respect to the conversion length. From this plot it follows that a longer

behaviour sequence does not necessarily mean that the probability of conversion is higher and that

not all the touchpoints have an additive positive influence. Some touchpoints might have negative

effects.

4 Methodology

The methodology consists of three sections. Section 4.1 explains the key components used for

Sequence-to-Sequence modelling. Section 4.2 delves into the model used to estimate conversion

and clicks. Section 4.3 outlines the training procedure and evaluation metrics. Lastly, Section 4.4

discusses the attribution measures employed to obtain conversion credits.

4.1 Key Components for Sequence-to-Sequence Modeling

4.1.1 Embedding Layer

Frequently, categorical variables are represented as one-hot or dummy vectors. This means that each

category within the variable is transformed into a binary vector where the position representing that

category is marked as 1 and all other positions are marked as 0 (Johannemann, Hadad, Athey, &
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Wager, 2019). The problem with this approach is that the binary vector can become extremely large.

In the context of natural language processing, the size of a vector would be the size of the number

of unique words (vocabulary size). Another disadvantage of using this approach is that each word

is equally distant from each other, similar words. In the context of text classification or sentiment

analysis, it could be beneficial for a model to understand that words like ‘good’ and ‘great’ are often

used in similar contexts.

Embedding layers circumvent these issues by transforming categorical data, e.g. user IDs, and

words, into a dense continuous vector of a fixed size. An embedding layer reduces the dimensionality

of the input data by representing each word as a much smaller continuous vector. This makes the

computational problem much more manageable. Furthermore, the continuous vectors produced by

an embedding layer can capture semantic relationships between words or items that could improve

the accuracy of the prediction.

Within the context of MTA, an embedding could thus capture the relationships between the

categorical features related to the touchpoints, such as the channel. An important point to note is

that the embedding layer does not start with any understanding of the relationships between the

items it is embedding. Instead, it learns these relationships from the training data during the neural

network training process. The weights in the embedding layer are learnt through backpropagation,

just as the weights in any other layer of the network.

4.1.2 Gated Recurrent Unit (GRU)

When RNNs were first introduced, the challenges associated with learning long-term dependencies,

mainly due to issues such as vanishing and exploding gradients, became evident. To address these

issues, Hochreiter and Schmidhuber (1997) introduced the Long Short-Term Memory (LSTM) RNN.

The term LSTM comes from a unique idea. In regular recurrent neural networks, there is long-

term memory through slowly changing weights that encode general knowledge. There is also short-

term memory through temporary activations passing between nodes. The LSTM model adds an

intermediate storage called a memory cell, made up of simpler nodes in a specific pattern. The

gated recurrent unit (GRU), introduced by Cho, Van Merriënboer, Bahdanau, and Bengio (2014),

presents a simplified version of the LSTM memory cell. It typically delivers similar performance,

but with the added benefit of faster computation, as noted by Chung, Gulcehre, Cho, and Bengio

(2014).

A GRU cell has two main components: a Reset Gate and an Update Gate. Figure 4 shows the
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architecture of a GRU cell.

Figure 4: Architecture of a GRU cell. Source: Yu et al. (2019)

Based on Figure 4, the GRU cell can be mathematically expressed as follows

rt = σ (Wrhht−1 +Wrxxt + br) , (1)

zt = σ (Wzhht−1 +Wzxxt + bz) , (2)

h̃t = tanh
(
Wh̃h(rt ⊙ ht−1) +Wh̃xxt + bh̃

)
, (3)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t, (4)

where W.. are weight matrices and b. are bias vectors. The operator ⊙ denotes the Hadamard

product, which is the element-wise product of two matrices. Lastly, xt and ht denote the data and

the hidden state, respectively, at time t.

Equations (1) and (2) show the reset gate and the update gate, respectively. zt incorporates

the effect of the update gate, by determining how much the new hidden state ht matches with the

old hidden state ht−1. This becomes more clear in equation (4). When zt is close to 0, the new

hidden state will be close to ht−1. On the contrary, whenever zt is close to 1, the new hidden state

approaches the candidate hidden state h̃t. The candidate hidden state, h̃t shown in equation (3), is

constructed by determining how much of the old hidden state is “reset”. It does this by taking the

Hadamard product between rt and ht−1. If rt is 1, the full previous hidden state, ht−1 is used in

the candidate hidden state. In contrast, if rt is 0 only the input at time t (xt) will be used in the

hidden candidate state at time t.

A sigmoid activation function (σ) is used to ensure rt and zt are always between 0 and 1. The
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sigmoid activation function essentially maps all real numbers to (0, 1) shown in Figure 5a. The

hyperbolic tangent activation function (tanh) is also used in equation (3) (to calculate the hidden

candidate state). It maps all the real numbers to (−1, 1) which can be seen in Figure 5b. This

means that the hidden state (ht) and the candidate hidden state (h̃t) are always in between (−1, 1)

at every time step.

(a) Sigmoid activation function: f(x) = 1
1+e−x (b) Tanh activation function: f(x) = ex−e−x

ex+e−x

Figure 5: Activation functions

4.1.3 Encoder-Decoder structure

In sequence-to-sequence modelling, an encoder-decoder structure is used to handle input and output

sequences that are unaligned and/or are of varying length. An example where encoders-decoders are

commonly used is machine translation tasks. When translating a sentence (which can be regarded

as a sequence of words) from one language to another, we should allow for the length of the output

sequence to differ from the length of the input; e.g. “We are studying” translated to French is “Nous

étudions”.

However, in the context of this paper, the encoder-decoder structure serves another purpose.

According to Ren et al. (2018), the rationale behind employing an encoder-decoder structure is to

alleviate the data-sparsity problem. In the case of ad delivery, the sequence of user actions typically

follows a pattern, “impression-click-conversion”. However, clicks are less frequent than impressions,

and conversions are even rarer than clicks. This leads to a scarcity of click and conversion data

compared to impression data. Therefore, an encoder is employed to obtain a shared representation

of the user behaviour features, which can then be used to predict clicks. The signal of the click

behaviour is then utilised to improve the estimation capacity for the conversion behaviour.

Figure 6 shows an example of a encoder-decoder structure. First, the input sequence is passed

to the encoder. The final hidden state of the encoder is used as a summary of the input sequence.
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This hidden state is then passed to the decoder to obtain the output sequence. It does this by using

the final hidden state as the initial state and generates an output sequence step by step. At each

step, it predicts the next element in the sequence based on the previously generated elements and

the final hidden state of the encoder.

Figure 6: A visual representation of an encoder-decoder. Source: A. Zhang et al. (2021)

4.1.4 Attention Mechanisms

Attention mechanisms were first introduced by Bahdanau, Cho, and Bengio (2014). They refer to

a set of techniques that allow the model to focus on certain parts of the input. In a classic encoder-

decoder model, the input is compressed into a context vector, which is of fixed length. However,

attention suggests that the decoder should be able to focus on various parts of the input at each

step of decoding instead of relying on a single representation. This allows for more flexible and

contextually informed decoding, which improves performance and understanding. The attention

mechanism in this paper works by taking a weighted sum of the hidden states in the encoder

and decoder, where the weights represent the attribution given to each state in a sequence, which

can be seen in Figure 7. This way of calculating attention is called additive attention. Various

attention mechanisms exist, including (scaled) dot-product attention, content-based, and location-

based mechanisms; each has a unique method for computing attention scores. However, this paper

will not go into the details of these alternatives.

4.1.5 Auxiliary Components

This section briefly discusses additional techniques employed in the DARNN(+) model that do not

require detailed elaboration, but are mentioned for completeness. These include dropout, gradient

clipping, batch processing, padding, and regularisation. Dropout, gradient clipping, and regularisa-

tion are techniques used to prevent the neural network from overfitting the training data.

Dropout is introduced by Srivastava (2013). It works by randomly dropping out nodes in the

neural network. This introduces a bias in the model weights during training, which can enhance

performance on the test data. In sequence modelling using RNNs, dropout is applied not only to

the input data, but also to the hidden states between the RNN cells at each time step, commonly
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referred to as recurrent dropout.

Gradient clipping is a technique that clips the gradients to a specific range, creating a bias in

the gradients and consequently in the model weights during training. In addition to preventing

overfitting, it is also commonly used to ensure that gradients do not vanish or explode during

backpropagation (Pascanu, Mikolov, & Bengio, 2013).

Padding, described in Dwarampudi and Reddy (2019) as Pre-Padding, refers to a sequence

modelling technique to ensure uniformity of the input data. Within the context of MTA, journeys

have different lengths. Some journeys include only one touchpoint whereas others include dozens.

To make sure the neural network can process the data, zeros are added to shorter sequences so that

all sequences have the same length.

Batch processing in the context of machine learning involves dividing a data set into smaller

subsets or batches, allowing a model to process multiple data samples simultaneously during train-

ing, leading to improved computational efficiency and faster convergence (Devarakonda, Naumov,

& Garland, 2017).

Lastly, regularisation is another approach to reduce overfitting by shrinking the model weights

to zero (Van Laarhoven, 2017). In this paper, l2-regularisation is used.

4.2 DARNN+

4.2.1 Notation

For notation, a similar approach will be used as outlined in Ren et al. (2018), which assumes the

existence of n users indexed by i ∈ {1, . . . , n}. Each user is denoted as ui. A user can have multiple

interactions with the ad content of an advertiser. Therefore, the sequence of touchpoints to which

a user has been exposed is denoted as {ui, {qij}mi
j=1, yi, Ti}. Here, ui represents the user, {qij}mi

j=1

represents the set of mi browsing activities a user has with the advertisements of an advertiser,

yi is an indicator of whether the user converts and Ti represents the conversion time if it occurs

(otherwise null). Each touchpoint, denoted as qij , contains a categorical vector of characteristics

xij and a binary click indicator zij . The click indicator zij is equal to 1 if the impression is a click

impression and 0 otherwise. The feature vector xij contains information on the content of the ad. It

also contains the channel ID feature, denoted as cij , which is the channel over which this touchpoint

is delivered and tij which is the time at which the interaction occurred. cij is a categorical variable.
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4.2.2 Architecture

The DARNNmodel consists of three parts: the encoder for impression-level behaviour modelling, the

decoder for click-level behaviour modelling, and the dual attention mechanism to jointly model click

and impression behaviour to obtain the final conversion estimation. Figure 1 shows the architecture

of the Neural Network.

The model works by first feeding the user sequence to the encoder, which contains all the

touchpoints in that sequence. Considering that the side information feature vector consists primarily

of categorical variables, an embedding layer is employed to convert the sparse input features into

dense representation vectors. A GRU as described in Section 4.1.2 is then used to obtain a latent

representation of the input as shown in equation (5)

hij = fe(xij ,hij−1), (5)

where hij denotes the hidden vector at each time step j.

To model clicks, the DARNN model uses the decoder to decompose the joint click probability

into ordered conditionals as

p(zi) =

mi∏
j=1

p
(
zij = 1 |

{
zi1, . . . , zij−1

}
,xi

)
, (6)

where zi = (zi1, . . . , zimi) and xi = (xi1, . . . , ximi). Then the conditional probability of a click is

modelled as

ẑij = p
(
zij = 1 |

{
zi1, . . . , zij−1

}
,xi

)
= g

(
zij−1, sij

)
, (7)

where g is a multi-layer fully connected perceptron with sigmoid activation function. The sigmoid

activation function ensures that the output is between 0 and 1 and can therefore be interpreted as

a probability. Furthermore, sij is a hidden vector specific to the jth touchpoint, containing relevant

information on the probability that that touchpoint is clicked. It is computed as

sij = fd
(
sij−1, zij−1,himi

)
, (8)

where fd is a RNN of which the forward functions are given by equation (9). In addition to equation

(5), the last hidden state, himi , is used from the encoder. Because the decoder uses not only past

hidden state and past click data, but also the last hidden state from the encoder, the forward
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functions differ from equations (1) to (4). The forward functions are given by

rij = σ
(
Wrssij−1 +Wrzzij +Wrhhimi

)
,

lij = σ
(
Wlssij−1 +Wlzzij +Wlhhimi

)
,

s̃ij = tanh
(
Ws̃s(rij ⊙ sij−1) +Ws̃xzij +Ws̃hhimi

)
,

sij = (1− lij)⊙ sij−1 + lij ⊙ s̃ij .

(9)

Note that the notation zij is used to denote the clicks at time j, therefore zj is replaced with lij in

equation (2). The loss for the click probabilities is then calculated using equation (10)

Lc =
n∑

i=1

mi∑
j=1

−zij log ẑij −
(
1− zij

)
log

(
1− ẑij

)
+ θ

∑
|w|, (10)

where θ is the l2-regularisation parameter for the loss function and w denotes a weight in the model.∑
|w| sums over all trainable weights in the neural network. Finally, the conversion probability is

calculated as follows

ci2v = Ai2v
(
hi1, . . . ,hij , . . . ,himi

)
, (11)

cc2v = Ac2v
(
si1, . . . , sij , . . . , simi

)
, (12)

ŷi = p(yi = 1 | xi, zi) = r
(
ximi , c

i2v, cc2v
)
, (13)

where ci2v refers to the context vectors that represent the input user behaviour vectors, which cap-

ture the patterns of user impressions. cc2v represents the context vector obtained by modelling click

patterns for estimating conversions. r contains a weighting function that balances the attribution

between impressions and clicks, which is a fully connected multilayer neural network for the pre-

diction of the final conversion. ximi is the vector of characteristics of the last touchpoint user ui

is exposed to, after being fed to an embedding layer. The impression-to-conversion attention ci2v

and the click-to-conversion attention cc2v is calculated according to equation (14), which is a linear

combination of the hidden states of the encoder and decoder and the attention weights a

ci2v =

mi∑
j=1

aimp2v
ij hij ,

cc2v =

mi∑
j=1

aclk2vij sij ,

(14)

The attention weights are calculated through equation (15) which is the softmax operator,

aij =
exp

(
eij

)∑mi
k=1 exp (eik)

, (15)
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where

eij = E
(
hij ,ximi

)
, (16)

is an energy model that evaluates the importance or credit of each touch point leading to a final

conversion. The energy function E is a multilayer nonlinear deep neural network with the activation

function tanh. Figure 7 illustrates the attention mechanism.

Figure 7: Attention mechanism. Source: Ren et al. (2018)

The final conversion estimations are calculated through equations (17) and (18) as

ŷi = r
(
ximi , c

i2v, cc2v
)
= rconv

(
(1− λ) · ci2v + λ · cc2v

)
, (17)

where

λ =
exp

[
fλ

(
ximi , c

c2v
)]

exp
[
fλ

(
ximi , c

i2v
)]

+ exp
[
fλ

(
ximi , c

c2v
)] . (18)

In this context, λ represents the significance or importance of click-level attention compared to

impression-level attention. The function fλ, which is a multilayer perceptron, aims to learn and

determine the weight or contribution of these two attention results in estimating the final conversion.

The weights in the neural network are learnt by minimising the loss function in equation (19)

Lv =
n∑

i=1

−yi log ŷi − (1− yi) log (1− ŷi) + θ
∑

|w|. (19)
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The DARNN+ model differs from the original DARNN model by adding additional recurrent

layers, making it a deep recurrent neural network. As previously mentioned, adding more layers

could allow the model to capture more intricate relationships. Instead of hij and sij , h
(l)
ij and s

(l)
ij

will be used, where l denotes the depth of the model, i.e. the number of stacked recurrent layers.

That means that for l = 1 the DARNN+ and the DARNN models are equivalent. Figure 8 gives a

visual representation of the DARNN+ model(s).

Figure 8: Architecture of the DARNN+ model(s)

4.3 Evaluation & Training Procedure

In this section, the evaluation metrics and the training procedure for the DARNN(+) model are

discussed.

4.3.1 AUC Scores

AUC scores are used to assess the model’s performance in conversion and click prediction. The

AUC, representing the area under the ROC curve, gauges the model’s ability to distinguish between

conversions and nonconversions (Huang & Ling, 2005). A higher AUC score, closer to 1.0, indicates

superior discrimination. A model that performs no better than random guessing would yield an

AUC score of 0.5. These scores are calculated for each epoch during both training and testing.
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4.3.2 Total Loss

The performance of the model is also evaluated by adding click loss and conversion loss shown in

equations (10) and (19) respectively. The training loss incorporates l2-regularization, while the test

loss omits this term. This ensures consistency with the model’s application, where regularisation is

not applied during testing. Similarly to AUC scores, losses are computed for each epoch for both

training and test data sets.

4.3.3 Calibration Plots

Calibration plots provide an additional means of evaluating the model. They represent the fraction

of conversions compared to the mean predicted probabilities. Well-calibrated probabilities align the

predictions with the actual data, enhancing the reliability of the probability estimates (Vuk & Curk,

2006). Proper calibration is crucial for accurate attribution measurements described in Section 4.4.

4.3.4 Training Procedure

Following the approach in Ren et al. (2018), the model initiates training by minimising the click

loss function as shown in equation (10). Click and conversion AUC scores are calculated for both

train and test data during each epoch. The model transitions to joint minimisation of click and

conversion loss functions when the click AUC scores rise for three consecutive epochs. This is done

by minimising the loss functions as shown in equations (10) and (19) simultaneously. Training

ends when conversion AUC scores on test data decrease for three consecutive epochs, indicating

convergence.

4.4 Conversion Credit Acquisition

Before delving into various credit allocation methods, it is crucial to define attribution. Following

the approach in Dalessandro et al. (2012), attribution is defined as the marginal value created by

an ad served to the customer ui at time j as shown in equation (20)

Ψij = E
[
yi |

∥∥qij

∥∥ > 0,qij

]
− E

[
yi |

∥∥qij

∥∥ = 0,qij

]
, (20)

where
∥∥qij

∥∥ > 0 indicates that an ad has been served to customer ui at time j,
∥∥qij

∥∥ = 0 indicates

that an ad is not being served at time j, and qij is a vector of customer attributes and contains

contextual features related to the advertisement as mentioned in Section 4.2.2. The assumption is

19



made that yi has a causal dependency on qij , that is, all confounders of yi are included in qij . Then

the total conversion contribution for customer ui can be defined as follows:

Ψi =

mi∑
j=1

Ψij ∗ I
(∥∥qij

∥∥ > 0
)
. (21)

Here the assumption is made that the conversion contribution is additive. To then obtain the total

marginal contribution of a channel, Ψi is decomposed as follows

Vc =
∑
i∈N

mi∑
j=1

Ψij ∗ I
(∥∥qij

∥∥ > 0
)
∗ I(cij = c), (22)

where N is the set of journeys/users that lead to a conversion, and Vc are the conversion credits for

channel c ∈ C, where C is the set of all channels.

4.4.1 Incremental Value Heuristic (IVH)

Following the approach in Arava et al. (2018), the Incremental Value Heuristic calculates the

attribution of channel c by comparing the conversion probability before and after removing the

touchpoints(s) of the customer’s ad journey that were delivered through this channel. IVH can be

formulated as follows

V̂c,ivh =
∑
i∈N

(Ê(yi = 1|ad journeyi with channel c)− Ê(yi = 1|ad journeyi excluding channel c))

=
∑
i∈N

(P̂ (yi = 1|ad journeyi with channel c)− P̂ (yi = 1|ad journeyi excluding channel c)).

(23)

The Incremental Value Heuristic can be interpreted as the accumulated marginal conversion

probability after excluding a channel. It can be negative if the conversion probability is higher when

a channel is left out. This means that this attribution measure can capture the negative effects of

touch points if these are present.

Under the assumption that all confounding variables are taken into account, that is, the inclusion

of channel c captures the partial effect on the probability of conversion, IVH is a causal attribution

measure. However, this assumption is unlikely.

4.4.2 Simplified Shapley Value Method

The Simplified Shapley Value Method proposed by Zhao et al. (2018) can be described as follows

V̂c,shap =
∑

S⊆C\{c}

1

|S|+ 1
R
(
S ∪ {c}

)
, (24)
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where C is the set of all channels, S is a subset of C excluding channel c, and the function R is

a revenue function that can be thought of as the utility or revenue obtained from a user visiting

channels S ∪{c}. In the case of the DARNN model, revenue is defined as the conversion probability

of a user visiting a set of channels that lead to a conversion. Hence, equation (24) can be rewritten

as

V̂c,shap =
∑
i∈N

∑
S⊆C\{c}

1

|S|+ 1
P̂ (yi = 1|ad journeyi with channels S ∪ {c}). (25)

Attribution for channel c through the Simplified Shapley Value Method can simply be described as

a weighted sum of the conversion probabilities of journeys that lead to a conversion and contain

channel c. This greatly improves the computational efficiency of the original Shapley Value method,

because for each channel it only assesses each coalition at most once. It does not involve calculating

the counterfactual scenario R(S), which increases computational efficiency. The Simplified Shapley

Value Method is also not able to capture negative effects, because the attribution in equation (25)

is always positive by construction.

4.4.3 Attribution through Attention Scores

Adopting the approach in Ren et al. (2018), equations (15) and (18), the attribution for channel c

through attention scores can be calculated as

V̂c,att =
∑
i∈N

mi∑
j=1

(
(1− λ) · aimp2v

ij + λ · aclk2vij · I
(
cij = c

))
. (26)

Here, λ is a mixing parameter learnt through backpropagation, determining the weight assigned to

the impression attention weights (aimp2v) and the click attention weights (aclk2v). This attribution

measure represents the total weights assigned to a channel during backpropagation by the attention

mechanism described in Section 4.2.2. Since the weights are unitless, their interpretation is unclear.

This attribution measure cannot also capture negative effects because the weights aimp2v and aclk2v

are always positive by construction. This can be seen in equation (15).

4.4.4 Fractional Scores

All the aforementioned attribution measures have different interpretations and/or units. To allow

a direct comparison, Fractional Scores are calculated using the approach outlined in Arava et al.

(2018)
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Fractional Scorec,b =
|V̂c,b|∑
c∈C |V̂c,b|

for b ∈ {ivh, shap, att}, (27)

where
∑

c∈C |V̂c,b| represents the total conversion credits using attribution measure b. The Fractional

Score indicates the proportion of total conversion credits assigned to channel c using method b, with

absolute values considered for potential negative effects when using IVH.

5 Results

This section discusses the performance and findings of the DARNN(+) model(s) on the Criteo Data

Set and the Simulated Data Set. The models for the Criteo data set are trained until convergence

on Google Colab® using a NVIDIA V100 GPU. The models for the Simulated Data Set are trained

on a MacBook Air (2019) equipped with an M1 chip. Models are trained using the hyperparameters

shown in Table 1.

Table 1: Hyperparameter settings.

(a) Criteo Data Set

Learning Rate Click Learning Rate Embedding Hidden Units Dropout

l = 1 1e−6 1e−7 256 512 0.5

l = 2 1e−5 1e−6 256 512 1−
√
0.5

l = 3 1e−5 1e−6 256 512 1− 3
√
0.5

(b) Simulated Data

Learning Rate Click Learning Rate Embedding Hidden Units Dropout

l = 1 1e−6 1e−7 16 256 0.5

l = 2 1e−5 1e−6 16 256 1−
√
0.5

l = 3 1e−5 1e−6 16 256 1− 3
√
0.5

Adopting the methodology outlined in Ren et al. (2018), the gradients are clipped between 0 and

5 for the neural network. The chosen configuration includes a batch size of 256, and a regularisation

parameter (λ) of 1e−6. The models are trained using the Adam optimiser (Kingma & Ba, 2014).
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5.1 Criteo Data Set

5.1.1 Model Performance

To investigate the performance of the DARNN(+) model(s) Figure 9 is used, which illustrates the

performance of the models for different depths (l). It can be seen that the DARNN+ model for

l = 2 and l = 3 outperforms both the DARNN model on both the conversion AUC and the loss

metric. Also note that for the loss metric, the train loss curve is above the test loss curve for the

DARNN+ models. This is because the stacking of recurrent layers causes the model to have more

weights which inflates the regularisation term in equation (19). A summary of the results are given

in Table 2.

Table 2: Performance Metrics of the DARNN(+) model(s) after convergence. Flag indicates the epoch when

the model starts optimising clicks and conversions jointly. The last column shows the number of epochs for

the model to converge (Sect. 4.3.4). Train & Test losses are calculated using equations (10) and (19).

Test Conversion AUC Test Click AUC Train Loss Test Loss Flag Number of Epochs

l = 1 0.954 0.893 0.426 1.159 10 34

l = 2 0.973 0.498 1.097 0.827 8 28

l = 3 0.973 0.498 1.101 0.829 6 17

It follows that adding recurrent layers results in better performance in predicting conversions.

This indicates that touchpoints have higher order interactions which cannot be captured by only

using one recurrent layer. Models with extra recurrent layers perform worse when predicting clicks.

Likely, because for the click-level prediction higher-order interactions are absent, and thus adding

extra recurrent layers results in the model not being able to adequately predict clicks.
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Figure 9: Test AUC scores and loss as described in Section 4.3 plotted against the number of epochs. The

red line represents the epoch when the model starts minimising click and conversion loss jointly.
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5.1.2 Calibration Plot

Figure 10 is used to investigate whether the predicted conversion probabilities are properly cali-

brated. Adding extra recurrent layers does indeed result in better calibrated conversion probabilities.

This is crucial as the conversion probabilities are used to calculate the attribution measures outlined

in Section 4.4.

l = 1 l = 2 l = 3

Figure 10: Calibration plots of the conversion probabilities on the test data for different depths (l) of the

neural network as described in Section 4.3.

5.1.3 Attribution

Figure 11 illuminates the fractional scores for the attribution measures. In total, there are 599

channels that are part of a journey that leads to conversion. The remaining channels have not

been assigned any conversion credits. Both the Simplified Shapley Value Method and the Attention

Mechanism agree on the top five channels that are most conducive to a conversion for all depths

(l). These channels are chosen for comparison.

The fractional scores assigned to each channel do not change for the different levels of depth of

the Attention Mechanism. This is because the Attention Mechanism does not rely on conversion

probabilities to calculate the fractional scores and thus is not heavily disturbed by the different

conversion probabilities for each depth. For l = 2 and l = 3 the fractional scores are the same.

IVH does not agree with the Simplified Shapley Value Method and the Attention Mechanism on

the five main channels. IVH also assigns negative conversion credits for l > 1 to channels that are

considered relevant by the other attribution measures, and therefore IVH is not a suitable measure.

This is likely due to confounding, which causes biased fractional scores. This becomes clear for

l = 3. The magnitude of fractional scores and the order in which the channels are deemed relevant

in contributing to a conversion are different from the other attribution measures.
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The Simplified Shapley Value Method differs in the assignment of the fractional scores for each

depth. However, there is a correspondence in the order in which the channels are regarded as

important. Channels 15154511, 15398570, and 28351001 are always the third, fourth, and fifth most

important channels, respectively. Channels 10341182 and 32368244 are the first and second most

important channels for l = 1 and l = 3, but the opposite is true for l = 2. Nevertheless, as mentioned

before, the group of these five channels is always in the top five regardless of the depth.

In contrast, having poorly calibrated conversion probabilities thus does not have a strong impact

on the relative attribution. This can be explained by looking at equation (25). Even if the conversion

predictions for channel c do not resemble the true conversion probabilities, the frequency at which

channel c appears in a journey leading to a conversion potentially compensates for the bias in the

conversion predictions. For example, the most important channel is expected to have high conversion

predictions. If that is not the case, it could still be assigned the most conversion credits because

it is more frequent in journeys that lead to a conversion relative to other channels. Therefore, the

ranking of channels based on the given attribution could still be correct.

Figure 11: Comparison of Attribution Measures described in Sections 4.4.1 - 4.4.3, using fractional scores

described in Section 4.4.4. The channel names are numbers and have no interpretation.
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5.2 Simulated Data Set

The same approach described in Shender et al. (2020) is used to simulate users/journeys containing

sequences of touchpoints with different browsing activities. The method in Shender et al. (2020) is

adjusted to allow for click-activities.

Let N be the number of journeys/users and C = {1, 2, 3} be the set of channels/ad types. Let

m be a vector of length N of independent draws from a Poisson distribution with λads = 2. mi is

the number of touch points per user. Clip m so that all events are clipped between 1 and 3. This

means that each user is exposed to at least 1 ad and at most 3 ads. Therefore, mi ∈ {1, 2, 3} for

i = 1, . . . , N . For each i = 1, . . . , N draw mi times:

• t from a continuous uniform distribution on a 30-day window i.e. [0, 30],

• uclick from a continuous uniform distribution on [0, 1.0]

• uchannel to decide the ad type, which is drawn from a continuous uniform distribution on

[0, 1.0]

zij =


0 if uclick ∈ [0, 0.5]

1 if uclick ∈ (0.5, 1]

cij =


1 if uchannel ∈ [0, 0.33]

2 if uchannel ∈ (0.33, 0.66]

3 if uchannel ∈ (0.66, 1.0],

where zij dictates whether the touch point is click or non-click, and cij ∈ C denotes the channel

type of the touch point for i = 1, . . . , N and j = 1, . . . ,mi. Then each touch point can be denoted

as qij = (tij , zij , cij).

For each journey/user draw αui ∼ Uniform(0, 0.025) Then similar to the approaches in Shender

et al. (2020) and Yao et al. (2022), the log intensity function for each journey/user can be defined

as

log
(
λi(t)

)
= αui +

3∑
c=1

3∑
k=1

[
γck1I{exactly k type c ads between 0 < t− ti ≤ 1

}
+γck2I{exactly k type c ads between 1 < t− ti ≤ 2

}
+γck3I{exactly k type c ads between 2 < t− ti ≤ 30

}]
+

3∑
c=1

3∑
k=1

[δckI{exactly k type c clickable-ads}].

(28)
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Then the user conversion behaviour in MTA can be viewed as arrivals in an inhomogeneous Poisson

counting process with time-varying intensity function λ(t). This process can be described as

Yi(t)− Yi(s) ∼ Poisson(

∫ t

s
λi(t)dt).

As each journey can contain at most 1 conversion, variable transformation is applied, i.e.,

Xi =


1 if Yi(t)− Yi(s) > 0

0 otherwise.

The probability that a conversion occurs in the [0, 30] window can be formulated as P (Xi = 1) =

P (Yi(30)− Yi(0) > 0) = 1− P (Yi(30)− Yi(0) = 0) = 1− e−Λi , where Λi =
∫ 30
0 λi(t)dt.

The simulated data involves generating 1,000,000 user sequences (N = 1,000,000). The parame-

ters for the logarithmic intensity function in equation (28) are shown in Table 3 and Table 4.

Table 3: The gamma parameters (exp(γckp), where p

is the period) in equation (28).

k = 1 k = 2 k = 3

c = 1

0 < t− ti ≤ 1 1.0 1.0 1.0

1 < t− ti ≤ 2 0.75 0.752 0.753

2 < t− ti ≤ 30 0.6 0.62 0.63

c = 2

0 < t− ti ≤ 1 0.75 0.752 0.753

1 < t− ti ≤ 2 0.6 0.62 0.63

2 < t− ti ≤ 30 0.55 0.552 0.553

c = 3

0 < t− ti ≤ 1 1.5 1.52 1.53

1 < t− ti ≤ 2 1.25 1.252 1.253

2 < t− ti ≤ 30 1.0 1.0 1.0

Table 4: The delta parameters

(exp(δck)) in equation (28).

k = 1 k = 2 k = 3

c = 1 1.8 1.82 1.83

c = 1 1.44 1.442 1.443

c = 3 2.4 2.42 2.43

This results in a conversion rate of 0.3862. This means that 38.62% of the journeys lead to a

conversion. The majority of the true conversion probabilities are between 0.3 and 0.4 and resemble

the fraction of true conversions in the simulated data, which can be seen in Figure 12, which shows

a histogram of the true conversion probabilities.
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Figure 12: Histogram of the true conversion probabilities on the simulated data.

From the true conversion probabilities, the true conversion credits and fractional scores can be

derived using the approaches in Section 4.4. These are shown in Figure 13. From this figure, the

conversion credits assigned to each channel become clear. Channel 2 has negative attribution for

the purpose of testing whether IVH can detect negative effects. Furthermore, channel 3 receives the

most attribution after channel 1. From this figure it also becomes clear that a channel with high

fractional scores is not necessarily desirable, as a channel with a high fractional score can potentially

have negative conversion credits. True conversion credits and fractional scores are compared with

the attribution given by the DARNN(+) model(s).

Figure 13: Barplots of the true attribution and fractional scores calculated using the methodology outlined

in Section 4.4 on the full data set.
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Before the simulated data is split into a train and test set, the tij of each touchpoint are scaled

to ensure consitency with the Criteo data set. For each journey the tij are scaled using equation

(29)

t̃ij =
tij −min(ti)

30−min(ti)
, (29)

where ti are all the time occurrences of all the touchpoints of user ui. Scaling ensures that the first

touchpoint in a sequence is always at time zero and that tij cannot exceed one. Finally, similar to

the approach in Ren et al. (2018) for the Criteo data set, the simulated data is divided into a train

and test set using a 80%/20% split. The data is simulated using Matlab R2020b.

5.2.1 Model Performance

Similarly to Section 5.1.1, Figure 14 is used to evaluate the performance of the DARNN(+) model(s)

on the simulated data. The main findings are displayed in Table 5. The DARNN(+) model(s)

perform worse on the simulated data than the Criteo data. An explanation could be that the models

are not equipped to work with the assumptions relevant to the DGP, namely that conversions follow

an inhomogenous Poisson process with time-varying intensity. Another explanation could be that a

relatively small number of features are used to make predictions, namely time, click, and channel.

Potentially, these features alone do not have enough explanatory power to make accurate predictions.

The DARNN model (l = 1) performs best on the click AUC metric; however, the DARNN+

models perform slightly better on the conversion AUC metric. It is expected that the DARNN

model performs relatively well because higher-order interactions between (un)observable variables

are absent in the DPG; hence, there is no need for extra recurrent layers. Overall, this is in line

with the results in Table 5.

Table 5: Performance Metrics of the DARNN(+) model(s) after convergence on the simulated data. Flag

indicates the epoch when the model starts optimising clicks and conversions jointly. The last column shows the

number of epochs for the model to converge (Sect. 4.3.4). Train & Test losses are calculated using equations

(10) and (19).

Test Conversion AUC Test Click AUC Train Loss Test Loss Flag Number of Epochs

l = 1 0.615 0.850 0.821 1.081 10 23

l = 2 0.622 0.499 1.352 1.342 10 76

l = 3 0.622 0.499 1.348 1.339 5 61
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Figure 14: Test AUC scores and loss as described in Section 4.3 plotted against the number of epochs. Red

line represents epoch when the model starts minimising click and conversion loss jointly.
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5.2.2 Calibration Plot

Similar to the Criteo data set, the addition of extra recurrent layers results in better calibrated con-

version probabilities. From Figure 15 it becomes evident that the models do not predict conversion

probabilities lower than 0.3 and higher than 0.6 for l = 1 and l = 2. This could be the result of the

model not being able to capture the DGP as described in Section 5.2.1. This also explains why the

conversion probabilities are not as well calibrated as the conversion probabilities on the Criteo data

set.

l = 1 l = 2 l = 3

Figure 15: Calibration plots of the conversion probabilities on the simulated test data for different depths

(l) of the neural network as described in Section 4.3.

5.2.3 Attribution

Figure 16 is used to investigate the causality of conversion credits acquired by the attribution

measures described in Section 4.4. Similarly to the results in Section 5.1.3, the conversion credits

acquired through the attention mechanism are not affected by the depth of the model. However,

for IVH and the Simplified Shapley Value method, this is not the case. None of the attribution

measures is able to detect the negative effects of the second channel. For IVH this is likely due to

the model not being able to adequately capture the DGP. Also, the Attention Mechanism gives more

conversion credits than the true attribution, whereas IVH gives a lot less. The Simplified Shapley

Value method however is in between the Attention Mechanism method and IVH in terms of the

total amount of conversion credits which are allocated.

32



Figure 16: Conversion Credits on the test simulated data following the approach in Section 4.4. The legend

does not apply for the TRUE conversion credits.

Figure 17 is used to investigate the relative attribution assigned by the attribution measures by

means of fractional scores described in Section 4.4.4. From Figure 17 it follows that none of the

attribution measures are correct in terms of the true fractional scores, but are correct in the order

in which each channel is deemed important.
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Figure 17: Fractional scores on the test simulated data following the approach in Section 4.4. The legend

does not apply for the TRUE fractional scores.
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6 Conclusion

This paper aims to investigate the following research question: “How can a Neural Network be

employed to derive causally interpretable conversion credits within the framework of Multi-Touch

Attribution?” The main findings indicate that the addition of stacked recurrent layers within a

Dual-Attention mechanism improves the AUC on conversion predictions and results in better cali-

brated conversion probabilities. To address the issue of interpretability, attribution and attribution

measures are defined directly as functions of conversion probabilities. The issue of causality remains

evasive. The attribution measures outlined in this paper are not able to give the correct causal

estimates when the model is not able to capture the DGP; however, they are able to provide a

ranking of the channels which are most effective. Furthermore, the assessment of whether or not an

attribution measure provides a causal estimate is heavily influenced by the definition of attribution,

which has to be taken into consideration.

The practical and theoretical implications are as follows: marketeers and businesses can predict

user conversions with relatively high accuracy, using the model described in this paper. If its attri-

bution definition is based on the conversion probability of users, then using the model in this paper

can provide better attribution estimates. Furthermore, if the emphasis is on the ranking of channels

and not necessarily correct causal estimates, then the attribution measures discussed in this paper

can also be insightful. The conversion credits obtained from the attribution measures can then be

used by marketers to make informed decisions about their budget allocation.

Further research can investigate the use of different depths for the encoder and decoder within the

Dual-Attention Mechanism. By doing this the model becomes more flexible and hence conversions

and click predictions can be optimised and tuned separately. Additionally, further research can

examine the use of an attribution measure that takes into account the ordering of touchpoints

within a journey. Now, the assumption is made that the order in which touchpoints appear does

not affect attribution, which does not necessarily have to be true. Lastly, the use of different proper

scoring rules such as the Brier Score could also be investigated. Such scoring rules can be used as a

loss function in this model and can also be used to assess the accuracy of the conversion and click

predictions.
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