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Abstract

This master’s thesis explores the enhancement of demand forecasting within the context
of time-series analysis, specifically focusing on integrating uncertainty estimation into the
Temporal Fusion Transformer (TFT) model through the implementation of Monte Carlo
(MC) dropout. Employing this novel approach, the thesis aims to adapt the TFT archi-
tecture to produce probability density functions alongside its predictions, thereby offering
a more nuanced understanding of forecast uncertainty. The study conducts a detailed case
study using a dataset from Picnic, an innovative app-based online grocery store. Empirical
results from the study indicate a promising direction for incorporating Monte Carlo (MC)
dropout into the forecasting process. The inclusion of MC dropout has shown a modest
yet significant improvement in forecast precision, evidenced by a 1.50% reduction in the
Weighted Absolute Percentage Error (WAPE) and a notable enhancement in the Weighted
Percentage Error (WPE) by 36.25%. These improvements highlight the value of integrat-
ing uncertainty into demand forecasting models. Moreover, the thesis presents predictive
distributions across various forecasting scenarios, demonstrating the MC dropout-enhanced
TFT model’s ability to produce distributions that reflect its overall performance accurately.
This approach not only advances beyond point predictions but also provides a comprehen-
sive evaluation of the forecast’s reliability and the inherent uncertainty of each outcome.
By generating and examining these distributions, the study offers insights into the model’s
robustness and a more refined understanding of the variability in forecasted outcomes. This
master’s thesis lays the groundwork for a significant shift in demand forecasting methodolo-
gies by integrating uncertainty estimation into the forecasting process.

Keywords: Uncertainty quantification; demand forecasting; probability density forecasting
JEL classification: C53, C55, D81, L81
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1 Introduction

Time-series forecasting has been a key area of academic research and application in domains such
as economics and finance [Cao et al., 2019, Nunnari and Nunnari, 2017], as well as meteorology
[Karevan and Suykens, 2020], medicine [Bui et al., 2018], energy [Alvarez et al., 2010], and supply
chain management [Mircetic et al., 2022]. Time-series forecasting involves the use of historical
data to forecast future events or trends. In recent decades, a variety of approaches have been
introduced by researchers to tackle the challenge of time-series forecasting: achieving accurate
predictions. These approaches broadly fall into three categories: traditional statistical models,
machine learning approaches, and deep learning.

An example of the first category is Autoregressive Moving Average Model (ARIMA) [Junior
et al., 2014]. Many statistical techniques, such as ARIMA, construct time series models based
on historical data, primarily capturing linear characteristics. These methods excel at short-term
or one-step-ahead predictions. In practical applications of time series forecasting, traditional
machine learning methods such as Support Vector Machine [Pai et al., 2010], Random Forest
[Dudek, 2015], and XGBoost [Lv et al., 2021] are commonly used. These methods have proven
their effectiveness in a range of prediction tasks. However, they have limitations in capturing
temporal relationships within data. This limitation arises from the assumption that data points
in the time dimension are equally relevant at every time step, which restricts the extraction
of meaningful temporal insights. Deep learning incorporates multiple layers to systematically
extract increasingly sophisticated features from raw input data. Deep learning has attracted
tremendous attention from researchers because its capacity to effectively handle data in the
time dimension, an aspect challenging for standard machine learning algorithms [Feng et al.,
2022]. Within the extensive range of deep learning methods designed for complex data analysis,
notable examples include the Long Short-Term Memory Neural Network (LSTM) [Sagheer and
Kotb, 2019] and the Transformer [Vaswani et al., 2017]. The Transformer model has been
shown to significantly outperform the LSTM in capturing extended temporal dependencies, a
key advantage in many analytical tasks [Feng et al., 2022].

The Transformer model, introduced by Vaswani et al. [2017], quickly became popular across
various domains for its effective handling of sequential data. At its core, the Transformer model
consists of an encoder to process historical data and a decoder for predicting future values,
employing an autoregressive approach. This design allows the model to pay selective attention to
historical data segments crucial for accurate future predictions, and thus, enhances its predictive
capabilities. In the realm of time series forecasting, the Transformer model has proven especially
beneficial for its adeptness at capturing extended temporal relationships.

One notable advancement in this area is the Temporal Fusion Transformer (TFT) [Lim et al.,
2021], which has garnered attention for its specialized approach to time series data. Unlike the
previous mentioned models, TFT is designed to adeptly manage diverse input types—static,
known future, and observed inputs—thereby optimizing prediction performance across a range
of scenarios. This adaptability addresses previous models’ limitations, such as their handling of
exogenous inputs or the assumption that all such inputs are known in advance. Furthermore,
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the TFT distinguishes itself through its inherent interpretability, a contrast to the "black-box"
nature of conventional deep learning models. By incorporating well-defined components that
construct detailed feature representations for different types of inputs, the TFT not only demon-
strates superior forecasting accuracy but also provides insights into the underlying decision-
making process, enhancing its utility for multi-horizon time series forecasting. By integrating
the Transformer’s strengths with the specific requirements of time series forecasting, the TFT
model represents a significant step forward.

The architecture of TFT comprises five key elements: gating mechanisms, variable selection net-
works, static covariate encoders, temporal processing modules, and prediction intervals. Each
of these components plays a crucial role in optimizing the model’s forecasting ability, allowing
for a nuanced understanding of time series data and contributing to the model’s overall inter-
pretability and effectiveness in predicting future events. The practical utility of the Temporal
Fusion Transformer (TFT) model is well-documented, having been confirmed through various
studies [Zhang et al., 2022, Huy et al., 2022, Wu et al., 2022]. The TFT model will serve as the
foundational model for analysis in this master’s thesis.

Uncertainty impacts the predictive capabilities of Deep Neural Networks (DNNs), hence also
of TFT model. Since numerous factors contribute to uncertainty, elimination of the complete
uncertainty within the predictions is impossible, particularly when handling real-world data.
In practice, training data typically represents a subset of all input data, leading to domain
misalignment between the DNN and the actual data domain. Nevertheless, achieving precise
representation of DNN prediction uncertainty remains difficult due to the inherent complexity
of accurately modeling multiple uncertainties, many of which are unidentified.

Within this context, two types of uncertainty have been identified: aleatoric and epistemic.
Aleatoric uncertainty, also known as data uncertainty, emerges from the natural randomness
or variability inherent to the phenomenon being observed. Conversely, epistemic uncertainty,
or model uncertainty, is rooted in incomplete knowledge or the absence of sufficient data. The
research focus on developing methods for estimating uncertainty in DNN predictions has gained
significant importance and attention.

To address uncertainty of deep learning context, there has been a significant shift in the lit-
erature from point forecasts to probabilistic forecasting [Huy et al., 2022]. Point forecasts are
deterministic in nature, so are the quantiles of the TFT model, and do not capture the underlying
uncertainty. Probabilistic forecasting can be categorized based on its approach to quantifying
the uncertainty of predictions. Where point forecasts only provide the values of the predicted
points, interval predictions predict a certain point and its confidence level with a certain prob-
ability. This thesis focuses on another type of probabilistic forecasting: probability density
forecasting. This methodology crafts a probability density function that encapsulates forecast-
ing outcomes and provides substantial insights, for example, by enabling the assessment of risk
and uncertainty in future events more precisely. Unlike conventional interval-based forecasts
that offer production intervals (PIs) at specific confidence levels, probability density forecast-
ing directly outputs continuous probability density functions, surpassing the fragmented nature
of PIs. In the domain of probabilistic forecasting, several methodologies have been recognized
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for their ability to quantify the uncertainty of neural network predictions, including the delta
method [Hwang and Ding, 1997, De Vleaux et al., 1998], Bayesian methods [Yang et al., 2013],
mean variance estimation [Khosravi et al., 2012], the bootstrap method [Wan et al., 2013], and
Gaussian processes [Yang et al., 2018]. This thesis, however, will concentrate on Bayesian Neural
Networks (BNNs), leveraging their capacity to incorporate uncertainty directly into the model
architecture, thus providing a sophisticated framework for probability density forecasting.

BNNs incorporate uncertainty into deep learning models by applying Bayesian principles. In-
stead of seeking a single point estimate for the network’s parameters, BNNs aim to determine
the posterior distribution of these parameters by giving a prior to the network’s parameters,
based on the initial assignment of prior distributions. This approach is called posterior inference
in classical Bayesian models. However, the inherent complexity and the absence of compatibility
in deep learning models often hinder exact posterior inference. Furthermore, the large amount
of parameters in modern neural networks challenges traditional approximate Bayesian inference
techniques due to scalability issues. In response to these challenges, recent advancements have
introduced several methods for approximate inference in BNNs, offering scalable solutions to ap-
proximate the posterior distribution of the network’s parameters in these complex models (see
Gal et al. [2016] for a comprehensive review on approximate inference techniques). Among these
methods, a significant subset employs variational inference to optimize the variational lower
bound. This subset includes approaches such as variational Bayes [Kingma and Welling, 2013],
probabilistic backpropagation [Hernández-Lobato and Adams, 2015], and ’Bayes by Backprop’
[Blundell et al., 2015]. Furthermore, there are algorithms that expand upon this framework
through the optimization of α-divergence, examples of which can be found in Hernandez-Lobato
et al. [2016] and Li and Gal [2017].

The previously mentioned algorithms require different training strategies for neural networks,
involving specific modifications to the loss function to address different optimization challenges
and complex alterations to the training methodology. Moreover, many of the existing inference
algorithms introduce additional parameters, sometimes nearly doubling the parameter count,
which poses scalability issues due to the already large parameter sets typical in neural network
models. Monte Carlo Dropout (MC dropout) [Gal and Ghahramani, 2016] emerges as a com-
pelling and practical approach, recognized for its simplicity in implementation and effectiveness.
This method considers dropout layers as Bernoulli-distributed random variables, framing train-
ing with dropout layers as approximating variational inference [Gal and Ghahramani, 2016, Gal
et al., 2017]. MC dropout enables the computation of predictive uncertainty by implementing
dropout not only during training but also at test time. Meaning that implementation efforts are
minimal once the model is trained with dropout layers. It is important to note that MC dropout
primarily addresses model uncertainty, enabling a more robust representation of the uncertainty
associated with the model’s parameters. The practical significance of MC dropout is evident,
as it has been validated across multiple works [Eaton-Rosen et al., 2018, Loquercio et al., 2020,
Rußwurm et al., 2020], including those with large-scale data.

Practically, these variational Bayesian methods often find themselves outperformed by the im-
pressive Deep Ensembles, as demonstrated in Lakshminarayanan et al. [2017]’s study. Deep
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Ensembles, a straightforward and non-Bayesian approach, involve the training of multiple deep
models with varying initializations and distinct data set arrangements. Ovadia et al. [2019]
supported this point, illustrating the consistent superiority of Deep Ensembles over Bayesian
neural networks trained using variational inference. However, this elevated performance comes
at a computational cost. Deep Ensembles, both during training and testing, exhibit linear scal-
ing in terms of memory and compute utilization as the number of ensemble elements increases.
Given the practical constraints of computational power and memory capacity, MC dropout is
the method employed in this master’s thesis in order to obtain probabilistic forecasts.

To summarize, this master thesis is fundamentally focused on uncertainty estimation within the
context of time-series analysis, particularly employing a Temporal Fusion Transformer (TFT)
model. In critical decision-making scenarios, understanding uncertainty is important. A TFT
model provides outputs in the form of quantiles, lacking the capability for probability density
forecasting. Consequently, this master’s thesis aims to modify the TFT architecture, enabling
it to produce probability density functions around its predictions. This modification not only
aims to provide a more nuanced and comprehensive view of uncertainty but also suggests that by
averaging over a range of probabilistic forecasts, it may improve overall prediction accuracy. This
modification thus seeks to enhance the TFT model, offering a more nuanced and comprehensive
understanding of the associated uncertainty. By providing probability density forecasts, the
master thesis aims to empower decision-makers with more insightful information for informed
and robust decision-making processes.

In this master thesis, a case study will be conducted. The dataset employed originates from
Picnic, an app-based online grocery store determined to revolutionize the online supermarket
industry. For retail companies article demand prediction is the core of supply chain decision mak-
ing. Article demand prediction fundamentally relies on time-series forecasting. As mentioned
before, estimating uncertainty plays an important role in facilitating safe decision-making, espe-
cially in the retail context where fluctuations in demand can significantly impact profitability and
operational efficiency. Enhanced forecast accuracy and a detailed understanding of uncertainty
can lead to more informed stock management decisions, minimizing the risk of overstocking or
stockouts, and thereby ensuring that customer demand is met efficiently without excess expen-
diture on unused inventory. If successful, the probability density forecasts generated by this
improved model will provide critical insights into forecast uncertainty, substantially advancing
the safety and reliability of decision-making processes within the retail industry. This advance-
ment could be a significant step forward in achieving the delicate balance between supply and
demand, ultimately contributing to the sustainability and profitability of retail operations.

The baseline of this master thesis is the TFT model with its general outputs, the quantiles.
To enhance the precision of uncertainty, MC dropout will be incorporated, hereafter called
MC dropout model, aiming to provide density function forecasts. This master thesis seeks to
investigate whether the integration of MC dropout into the TFT model can improve article
demand forecast accuracy and the precision of its uncertainty within the retail sector. To the
best of our knowledge, this is the first attempt at incorporating MC dropout with a TFT model
to enhance demand predictions in the retail sector. Such an approach promises to bridge a
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crucial gap in the literature and offer new perspectives in predictive analytics.

The contributions of this research are as follows:

• An improved Temporal Fusion Transformer approach for article demand forecasting that
enables the TFT model to construct a probability density function, so that it can be used
in safe decision-making.

• An extensive evaluation on a large real-world data set to demonstrate the effectiveness and
applicability of the proposed method.

The integration of MC dropouts into our forecasting model has led to significant improvements in
two key areas of article demand forecasting. Firstly, the adoption of MC dropout has sharpened
prediction accuracy, as demonstrated by a 1.50% reduction in Weighted Absolute Percentage
Error (WAPE) and a 36.25% improvement in Weighted Percentage Error (WPE). These results
highlight an improvement in the precision of our forecasts. Secondly, the ability of the model
to encapsulate uncertainty has been substantially enhanced, with the MC dropout model con-
sistently producing probability density functions that are well-aligned with observed outcomes.
This confirms the effectiveness of the MC dropout method in generating more reliable forecasts.
Overall, these findings affirm that the incorporation of MC dropouts into the forecasting process
not only improves accuracy but also provides a deeper and more actionable understanding of
uncertainty, offering considerable value to the field.

This research is structured as follows. At first, Section 2, details the dataset used and identifies
the primary variable of interest. Thereafter, Section 3, delves into the research methods em-
ployed, particularly highlighting the application of Monte Carlo dropout to the Temporal Fusion
Transformer model. Section 4 presents the empirical findings derived from these methods. After
this, we proceed to Section 5, where the key conclusions of the study are drawn. Lastly, Section 6
entails the discussion, which offers a reflective analysis on the implications and future directions
of the research.

2 Data

This section starts with a brief introduction to the company from which the data is obtained.
Thereafter the variable of interest will be explained in detail. Next, the features used in our model
are briefly discussed. Lastly, the filters from which the final dataset is obtained is discussed.

2.1 Introduction to Picnic Technologies B.V.

The dataset used in this master’s thesis originates from the Data WareHouse (DWH) of Picnic
Technologies B.V, hereafter referred to as Picnic. As an e-commerce grocery retailer, Picnic
manages a product inventory of approximately 10000 stock keeping units (SKU) categorized
across different hierarchical levels. For instance, products like "Konings Magere Franse kwark
1kg" are categorized into levels such as ’Diary & Eggs’ (1st level), ’Quark’ (2nd level), ’Low-fat’
(3rd level), and ’Quark naturel low-fat’ (4th level). Picnic’s supply chain contains distribution
centers (DCs), fulfilment centers (FCs), where customer orders are assembled and hubs, from
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where the orders are distributed to the customers. Operating across the Netherlands, Germany,
and France, Picnic guarantees next-day delivery if orders are placed before 22:00h, referred to
as the cutoff time. Given that customers can place orders until 22:00h and receive them the
next day, Picnic must accurately forecast demand to ensure optimal inventory management and
timely supplier orders. Picnic’s demand is forecasted using Article Delivery Rates (ADRs), the
variable of interest in this master’s thesis.

2.2 Article demand rate

ADRs are computed by dividing the number of customer units sold for a specific article by
the number of deliveries, providing an average count of units sold per delivery. These rates
are predicted per fulfillment center F, slot picking group SPG, article I, and delivery date D,
constituting the granularity of the dataset used in our analysis. The SPG represents the time slot
during which groceries are delivered, categorized as either ’morning’ or ’evening’. Each article
corresponds to a product identified by a unique Stock Keeping Unit (SKU), such as ’Coca-Cola
Regular 4 x 1.5L’.

Handling unavailability is crucial for predicting ADRs accurately. Unavailability occurs when
articles are out of stock, preventing customers from adding them to their baskets. Consequently,
the reported ADR in such instances does not reflect the actual demand. In reality, the ADR for
these articles would have been higher if customers could have placed orders for them. Therefore,
we use ’clean’ ADR values, representing the ADR if stock were unlimited, to mitigate the impact
of unavailability on forecasting accuracy. To estimate the lost sales due to unavailability, we
assess the quantity of units customers would have purchased if the article had been available,
in other words the potential customer demand for a specific article. Picnic logs instances where
customers attempt to add a product to their basket but encounter an unavailability message.
However, we cannot simply count these messages due to two reasons. Firstly, some customers
who initially encounter an unavailability message may ultimately purchase the product, as it
may become available again before their next delivery. Secondly, some customers may intend
to purchase multiple units of a product and receive the unavailability message only once. To
address the former scenario, we define unavailability as the count of customers who view an
unavailability message and do not purchase the article. For the latter case, we multiply the
number of unavailability events by the commonality, which reflects the average units per delivery
for a product. To conclude, clean ADR is computed as follows:

clean ADRD,F,S,I =

∑
d,f,s,i(units_soldd,f,s,i + unavailabilityd,f,s,i × commonality)∑

d,f,s deliveriesd,f,s
,

d ∈ D, f ∈ F, s ∈ S, i ∈ I.

2.3 Features

The model incorporates a combination of static and time-varying features, listed in Table 1, with
the time-varying features computed up to 28 days prior to the prediction date.Confirmed demand
refers to the known demand resulting from orders already placed at the time of prediction, while
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Confirmed deliveries indicates the number of deliveries for a FC and SPG corresponding to the
confirmed demand. Additionally, as elaborated in Section 2.2, ADR represents the clean article
delivery rate.

Table 1: Overview of the TFT features

Feature name Definition Type

FC ID Fulfilment centre ID Static
Slot picking group Part of day for customer delivery Static
Article category level 1 High-level category Static
Article category level 2 More granular category Static
Weather sensitive level 3 Indicates weather sensitivity Static

Confirmed ADR Confirmed demand, strong predictor Time-varying
Confirmed deliveries Portion of demand confirmed Time-varying
Confirmed rate Confirmed deliveries / last week Time-varying
Minutes until slot cutoff Minutes until order deadline Time-varying
avg_wind_speed Impact of weather on behavior Time-varying
Max temperature Predicted maximum temperature Time-varying
Min temperature Predicted minimum temperature Time-varying
Average cloud cover Impact of weather on behavior Time-varying
Vacation period Different vacation periods for FCs Time-varying
Special days Christmas, Saint Nicholas, Easter Time-varying
Weekday Capture weekly patterns Time-varying
Month Capture yearly patterns Time-varying
Promo mechanism Types of promo mechanisms Time-varying
promo is superdeal If promo is a superdeal Time-varying
promo adr confirmed Confirmed demand by promotions Time-varying
discount percentage Influence of discount on demand Time-varying
number of recipes Number of recipes the article has Time-varying
number of articles in promotion Descriptive for promo success Time-varying
number of art p cat lev 2 in pro-
motion

Capture cannibalism of promotions Time-varying

day of month Capture patterns like payday Time-varying
calendar week Capture yearly cycles of behavior Time-varying
ADR Article Delivery Rate Time-varying

2.4 Filters

The dataset provided by Picnic is extensive, requiring the application of various filters to reduce
its size for the purposes of this master’s thesis. Initially, we opted to focus solely on one
fulfillment center located in the Netherlands. This approach allowed us to incorporate a diverse
range of articles to enhance the representativeness of our model. However, even with this filter
in place, the dataset remained excessively large. Consequently, we further refined the dataset by
only considering articles with an even article ID. This random selection approach ensured that
our dataset remained representative. After filtering the data, we ensured that only informative
records are retained by discarding observations with null values for any of the variables listed
in Table 1. Subsequently, we conducted sanity checks to verify that ADR values fell within the
acceptable range, ensuring they were neither negative nor greater than one.
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3 Methodology

The methodology section focuses on integrating Monte Carlo (MC) dropouts into the Temporal
Fusion Transformer (TFT) model architecture, aiming to enhance model performance and pro-
vide uncertainty estimates. However, before delving into this specific method, it is important to
establish a foundational understanding of the TFT model. This involves the fundamental con-
cepts and exploring how the architecture incorporates uncertainty quantification. Consequently,
Section 3.1 provides a brief overview of the general architecture of a TFT model. Subsequently,
Section 3.2 discusses the principles of standard dropouts. Following this, Section 3.3 delves into
MC dropouts. In Section 3.4, the derivation of a predictive distribution is explained. Finally,
the practical implementation is outlined in Section 3.5.

3.1 General architecture TFT model

At the core of our method lies a TFT model, as described by Lim et al. [2021]. Using well-
established components, TFT constructs feature representations for different input types, in-
cluding static, known future, and observed inputs. This ensures high prediction performance
across various forecasting scenarios. TFT includes five major constituents, namely, gating mech-
anisms, variable selection networks, static covariate encoders, temporal processing, and predic-
tion intervals. Figure 1 shows an overview of the architecture of a TFT model.

Figure 1: Architecture TFT model as proposed in Lim et al. [2021]
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Important for this research is that TFT not only generates a single point prediction, but also
provides a prediction interval around this point to account for uncertainty. The general TFT
architecture with quantiles as uncertainty quantification serves as the baseline for the research,
hereafter referred to as baseline TFT model. This interval captures the model’s expectation
of the possible variation in the actual outcome. TFT generates quantiles by simultaneously
predicting various percentiles at each time step, using a linear transformation output by the
temporal fusion decoder. The training involves jointly minimizing quantile loss, and the resulting
quantile outputs are summed using the given formula:

L(Ω,W) =
∑
yt∈Ω

∑
q∈ϱ

Tmax∑
T=1

QL
(
yt, ŷ(q, t− T, T ), q

)
MTmax

QL (y, ŷ, q) = q (y − ŷ)+ + (1− q) (ŷ − y)+ ,

where Ω refers to the domain of the training data containing, comprising M samples, ϱ represents
the set of output quantiles, W corresponds to the weights of TFT, and (.)+ denotes max(0,.).
The specific characteristics of our quantile loss function will be clarified in Section 3.5.3.

3.2 Standard dropouts

With the significant evolution and expansion of deep learning architectures in recent years, new
challenges have emerged. The adoption of larger and more complex deep learning architectures
has heightened the risk of overfitting during training. To address these challenges, researchers
have introduced various regularization techniques, among which dropout stands out prominently.
Initially proposed by Hinton et al. [2012], dropout, in thesis referred to as standard dropout,
offers a solution to mitigate overfitting by randomly deactivating neurons in both input and
hidden layers within the neural network during training. During this process, all connections,
both forward and backward, associated with the excluded neuron are temporarily eliminated,
resulting in the derivation of a modified network architecture from the original network. The
nodes undergo exclusion based on a dropout probability denoted as pi for the i-th layer. Below,
we provide an illustration of dropout as a regularization technique is provided by Figure 2. The
principles of standard dropout are fundamental to those of MC dropouts.

(a) Without dropout (b) With dropout

Figure 2: Illustration of dropout in a standard neural network by Salehin and Kang [2023]
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3.3 Monte Carlo dropouts

MC dropouts can be used to approximates the principles of a Bayesian Neural Networks (BNNs)
[Gal and Ghahramani, 2016]. BNNs introduce uncertainty to deep learning models from a
Bayesian perspective. Before explaining MC dropouts it is thus important to understand the
fundamentals of BNNs.

3.3.1 Bayesian Neural Network

Let a neural network be denoted as fω(·), with f containing the network architecture, and ω

representing the model parameters. BNNs introduce a prior for the weight parameters, aiming
to fit the optimal posterior distribution. A commonly employed prior is the Gaussian prior:

ω ∼ N(0, I).

The probability distribution that characterizes the data generation is defined as p(y|fω(x)). In
the context of regression, for a certain noise level σ, this probability distribution is frequently
assumed to be:

y|ω ∼ N
(
fω(x), σ2

)
.

Bayesian inference, involving finding the posterior distribution over model parameters p(ω|X,Y )

given a set of N observations X = x1, ..., xN and Y = y1, ..., yN , is important for estimating
model uncertainty. Let x denote a new data point. The prediction distribution is obtained by
marginalizing out the posterior distribution:

p(y⋆|x⋆) =
∫
ω
p(y⋆|fω(x⋆))p(ω|X,Y )dω.

However, Bayesian inference is hard in deep learning models. In this paper, the idea of Gal
and Ghahramani [2016] is used which states that MC dropouts can be used as an approach to
approximate model uncertainty.

3.3.2 MC dropouts as Bayesian approximate

The principles of Gal and Ghahramani [2016] will be summarized here before showing how it is
used to obtain uncertainty estimation, for the exact proofs we refer to the appendix of the paper
itself. Gal and Ghahramani [2016] show that the dropout objective, in effect, minimises the
Kullback-Liebler divergence between an approximate distribution and the posterior of a deep
Gaussian process.

MC dropout leverages dropout as a regularization technique, explained in Section 3.2 to esti-
mate prediction uncertainty. The dropout objective function, designed for minimization and
incorporating L2 regularization, can be expressed as follows:
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Ldropout :=
1

N

N∑
i=1

E (yi, ŷi) + λ
L∑
i=1

(
∥Wi∥22 + ∥bi∥22

)
.

Where, the output of a neural network and the actual is denoted by ŷ and y respectively, and
L is the number of layers of the neural network. E(., .) denotes a loss function, in our case the
quantile loss. Wi denotes the weights matrices, and bi denotes the bias vectors.

While non-probabilistic NNs lack the capability to model distributions over functions, the deep
Gaussian process (GP) excels in this regard. In line with Gal and Ghahramani [2016], the
predictive probability of the deep GP model integrated w.r.t the finite rank covariance function
parameters ω given some precision parameter τ > 0 can be expresses as follows:

p(y | x,X,Y) =

∫
p(y | x,ω)p(ω | X,Y)dω

p(y | x,ω) = N
(
y; ŷ(x,ω), τ−1ID

)
ŷ
(
x,ω = {W1, . . . ,WL}

)
=

√
1

KL
WLσ

(
· · ·
√

1

K1
W2σ (W1x+m1) . . .

)
,

where σ(.) represents some element-wise non-linearity, Wi a stochastic matrix with dimensions
Ki×Ki−1 for each layer i, and ω = {W}Li=1. Moreover, vectors mi with dimensions Ki for each
layer in the Gaussian process are considered.

The posterior distribution p(ω|X,Y ) is challenging to compute directly. Hence, q(ω), a distri-
bution over matrices where columns are stochastically zeroed out, is employed to provide and
approximation for the posterior. Specifically, Gal and Ghahramani [2016] define q(ω) as:

Wi = Mi · diag
([

zi,j
]Ki

j=1

)
zi,j ∼ Bernoulli (pi) for i = 1, . . . , L, j = 1, . . . ,Ki−1,

given certain probabilities pi and matrices Mi as variational parameters. The binary variable
zi,j = 0 signifies that unit j in layer i− 1 is omitted as an input to layer i.

Gal and Ghahramani [2016] minimize the Kullback-Leibler (KL) divergence between the approx-
imate posterior q(ω) and the true posterior of the complete deep Gaussian process, p(ω|X,Y ).
The KL divergence is the primary minimization objective, formulated as:

−
∫

q(ω) log p(Y | X,ω)dω +KL(q(ω)∥p(ω)).

The first term of this objective can be further expressed as a sum:

−
N∑

n=1

∫
q(ω) log p

(
yn | xn,ω

)
dω.
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Each term in the sum is approximated using Monte Carlo integration with a single sample ω ∼
q(ω), providing an unbiased estimate log p

(
yn | xn,ω

)
dω. The second term is approximated

as
∑L

i=1

(
pil

2

2 ∥Mi∥22 +
l2

2 ∥mi∥22
)
, where l denotes prior length. Given model precision τ , the

result is scaled by 1
τN to obtain the objective:

LGP-MC ∝ 1

N

N∑
n=1

− log p
(
yn | xn, ω̂n

)
τ

+
L∑
i=1

(
pil

2

2τN
∥Mi∥22 +

l2

2τN
∥mi∥22

)
.

By defining E
(
yn, ŷ (xn, ω̂n)

)
= − log p

(
yn | xn, ω̂n

)
/τ , the objective mirrors the dropout

objective for an appropriate choice of the precision hyper-parameter τ and length scale l.

In essence, this realization demonstrates that dropout can be viewed as a Bayesian approxima-
tion, and consequently, uncertainty estimates for dropout neural networks can be derived.

3.3.3 Obtaining model uncertainty estimates

The approximate predictive distribution proposed by Gal and Ghahramani [2016] is expressed as:

q
(
y∗ | x∗) = ∫ p

(
y∗ | x∗,ω

)
q(ω)dω.

Here, ω = {Wi}Li=1 represent the set set of random variables in a model with L layers.

The predictive mean can be estimated by:

Eq(y∗|x∗)
(
y∗) ≈ 1

T

T∑
t=1

ŷ∗
(
x∗,Wt

1, . . . ,W
t
L

)
,

and it is referred to as MC dropout by Gal and Ghahramani [2016]. Practically, this is equivalent
to performing T stochastic forward passes through the network and averaging the results, which
in turn is equivalent to the concept of standard dropout during test time.

To summarize, the algorithm of Gal and Ghahramani [2016] involves computing the neural net-
work output with stochastic dropouts at each hidden layer repeated T times to yield ŷ⋆(1), ..., y⋆(T ),
which can be used to approximate model uncertainty. The mathematical representation of this
procedure can be summarized as follows:

q
(
y∗ | x∗) = ∫ p

(
y∗ | x∗,ω

)
q(ω)dω ≈ 1

T

∑
t

p
(
y∗ | x∗,ωt

)
, ωt ∼ q (ω) .

3.4 Predictive distribution

In the preceding section, we introduced our quantile forecasting approach within the TFT with
MC dropout framework, which iteratively generates predictions to account for model uncertainty.
This method computes quantiles repeatedly for a single ADR prediction concerning a specific
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article, FC, SPG, and prediction date. By doing so, it yields an array of potential outcomes
which, when averaged, form a robust ADR estimate.

This iterative quantile prediction process allows us to construct a comprehensive predictive
distribution for each ADR prediction. We combine the multiple quantile predictions associated
with a single FC, SPG, prediction date, and article instance to create an empirical distribution.
This aggregated collection of quantiles offers a discretized approximation of what would be a
continuous distribution in the theoretical setting. The resulting empirical distribution captures
a spectrum of possible outcomes and provides deeper insight into the predictive capabilities and
uncertainty inherent in the model.

To visualize this distribution, we employ a histogram where the quantiles are categorized into
bins, with the frequency of occurrences dictating the height of each bin. This histogram reveals
the concentration and variability of the predicted values, granting immediate perception of the
most probable outcomes as well as the range and variability of predictions.

We enhance the histogram with a Kernel Density Estimate (KDE), which overlays a smooth
curve to approximate the probability density function of the underlying distribution. The KDE
smooths the discrete nature of the histogram, providing a visual representation of the distri-
bution’s shape, central tendency, and dispersion. It allows us to discern the modes, assess the
skewness, and identify other distributional properties that characterize the predictive perfor-
mance of the model.

3.5 Implementation

After providing a concise overview of the TFT model components and clarifying the methodology
of MC dropouts, this section delves into the practical implementation. The implementation is
carried out using Python 3.10, alongside the PyTorch library1. The initiates with a description
of the essential data pre-processing steps. Subsequently, it outlines the hyperparameters used
and the procedures employed for their tuning. Next, it elaborates on the model training process
to attain the desired output. Lastly, it addresses the evaluation of the model’s output.

3.5.1 Pre-processing

To obtain unbiased estimates, the dataset, as explained in Section 2, is divided into three
distinct sets: a training, validation, and test set. Each of these sets contains multiple time series
data points, where each time series includes a 28-day lookback period and a 14-day forecast
horizon. Since we are dealing with time series data, it is crucial to split the datasets carefully
to prevent data leakage. Data leakage occurs when the model is trained on data points that
overlap with the forecasting period, leading to an overestimation of model performance [Kaufman
et al., 2012]. To address data leakage, the training dataset includes prediction dates from
March 19, 2023, to September 24, 2023. The validation set covers the period from October 8,
2023, to October 21, 2023, and finally, the test set comprises data from November 5, 2023, to
November 19, 2023. In total, we adopted an 8-month time window, spanning from March 19,

1https://pytorch-forecasting.readthedocs.io/en/stable/api/pytorch_forecasting.models.
temporal_fusion_transformer.TemporalFusionTransformer.html
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2023, to November 19, 2023, excluding December, January, and February due to their distinct
characteristics. This partitioning ensures that the model’s performance is assessed rigorously
and without any contamination from future data.

As described in Section 2, several filters were applied to the dataset. However, despite these
filters, issues with high computational time and memory constraints persisted during training. To
address these challenges, a sampling approach was implemented. During the sampling process,
a random subset of the dataset was created, consisting of a specified percentage of all possible
combinations of FC, SPG, and prediction date. When a particular combination of FC, SPG,
and prediction date was selected, all associated products were included in the random sample.
The impact of reducing the training dataset size was investigated. Different proportions of the
training data were sampled, including 1%, 2%, 5%, and 10%. The results revealed that training
time scaled linearly with dataset size. However, in terms of validation loss, there was minimal
improvement beyond a 5% sample size. Based on these findings, a 5% sample of the training set
was chosen as the optimal compromise between computational efficiency and model performance.
The validation and test sets are not sampled and contain the full range of observations available
within their respective time periods. This approach ensures maximal data utilization, allowing
for a thorough evaluation of the model’s performance across a wide array of scenarios without
any sampling bias.

3.5.2 Hyperparameters

The Temporal Fusion Transformer (TFT) model includes several hyperparameters that play a
crucial role in achieving accurate predictions. These hyperparameters require careful tuning to
optimize the model’s performance. In the table below, we present the key hyperparameters of
interest in this study, along with concise descriptions:

Table 2: TFT hyperparameter settings

Hyperparameter Definition

attention_head_size Number of attention heads
batch_size Number of time series processed before updating the model weights
dropout Dropout rate
hidden_continuous_size Hidden size used for processing continuous variables
hidden_size Size of the hidden layers
learning_rate Rate at which the model adjusts its weights during training
lstm_layers Number of LSTM layers
max_epochs Maximum number of training epochs before stopping
patience Number of checks with no improvement before training is stopped
num_samples1 Number of MC samples drawn from the model during inference
1 This is only a hyperparameter for the MC dropout model. It is fixed at 10 due to practical

constraints of computational power and memory capacity.

The hyperparameters of both the baseline TFT model and the MC dropout TFT model have
seperate tuning processes. This separation is necessary because these models have distinct
architectures. The tuning process involves two rounds of random searches, followed by a grid
search to identify the optimal hyperparameters. The results, in terms of validation loss, of
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the grid search of the baseline is shown in Figure 3. Due to a time limit of 24-hours run in
Google Colab Pro +, generating similar graphs for the TFT model with MC dropouts was not
possible. However, the same approach was applied to tune this model. The resulting optimal
hyperparameters are provided in Table 3 of the baseline model and the MC dropout model,
respectively. Despite the slight edge in reducing validation loss with a batch size of 1024, as
illustrated in Figure 3, we ultimately selected a batch size of 512 for our models. This decision
was influenced by the negligible difference in evaluation metrics (detailed in Section 3.5.4) when
compared to a batch size of 1024. Moreover, utilizing a larger batch size frequently led to time-
outs due to memory limitations. Therefore, we opted for batch size 512 to ensure a balance
between performance and computational feasibility. Default values, as defined by the PyTorch
package, are used for parameters not displayed.

(a) Batchsize = 512

(b) Batchsize = 1024

Figure 3: Grid search baseline model

17



Additionally, we include Picnic’s TFT model hyperparameters in the last column for reference.
A difference between our baseline hyperparameters and Picnic’s TFT model is observed, partic-
ularly in batch size and learning. This difference could be driven by variations in dataset size,
given that our study employs a smaller dataset. The difference in the dropout rate between our
baseline TFT model and the MC dropout model is logical. This deviation is primarily due to
the architectural distinction between the two models and the specific role of dropout in each.
While both models may perform optimally under similar conditions, the MC dropout model
incorporates dropout during the prediction phase, a feature absent in the baseline TFT model.
Consequently, the dropout rate needs to be adjusted to suit the unique requirements of each
model’s architecture. Therefore, the slight difference in dropout rates ensures that each model
is optimized for its specific design and functionality.

Table 3: Values of hyperparameter optimization

Hyperparameter Random Search Grid search Baseline MC dropout Picnic

max_epochs 1, 3, 5 3 3 3 3
attention_head_size 2, 4 2 2 2 2
batch_size 512, 1024 512, 1024 512 512 1024
dropout 0.05, 0.1, 0.2 0.05, 0.1, 0.2 0.1 0.2 0.1
hidden_continuous_size 16, 32 16, 32 16 16 16
hidden_size 32, 64, 128 32 32 32 32
learning_rate 0.005, 0.01, 0.02 0.005, 0.01 0.005 0.005 0.01
lstm_layers 2 2 2 2 2
patience 3 3 3 3 3

3.5.3 Training

In the model training process, we employ a loss function known as Quantile Loss (QL), defined
by the equation:

QLq =

N∑
i=1

wi ×
(
max(q × (Ai − Pi), (1− q)× (Pi −Ai))

)
.

Within the given equation, q signifies the quantile, Ai corresponds to the actual value, Pi repre-
sents the predicted value, wi denotes the weight assigned to the i-th observation, and N stands
for the total count of observations. Our model does not differentiate between overestimation
and underestimation. Picnic, in its order processing procedures, employs distinct methods to
establish safety margins.

Within our model, each observation receives a weight, wi, which is contingent upon two critical
factors: the forecast horizon and specific conditional factors. The forecast horizon refers to the
number of days into the future for which the forecast is generated. The specific conditional factors
are promotion related and those factors enhance the relevance of the forecasted observation.

To compute both the training and validation losses, each observation’s weight is applied to the
loss as per the quantile loss function outlined above.This strategic approach theoretically guides
the model’s focus, emphasizing short-term predictions with specific promotional characteristics.
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Table 4: Weighting of observations in two steps

(a) First step weights

Forecast horizon (days) Weight twi

1 10
2 8

3, 4, 5 6
6, 7 4

8, 9, 10 2
Else 1

(b) Second step weights

Case Weight wi

promo_dr_confirmed > 0 twi × 3
promo_mechanism != ’NOPROMO’ twi × 3
number_of_recipes > 0 twi × 3
Else twi

3.5.4 Evaluation

In evaluating both the baseline TFT model and the MC dropout TFT model, two key metrics
are employed: Weighted Absolute Percentage Error (WAPE) and Weighted Average Percentage
Error (WPE). These metrics are defined as follows:

WAPED,F,S,I,H =

∑
d,f,s,i,h

∣∣Ad,f,s,i − Pd,f,s,i,h

∣∣∑
d,f,s,i

∣∣Ad,f,s,i

∣∣ , d ∈ D, f ∈ F, s ∈ S, i ∈ I, h ∈ H

WPED,F,S,I,H =

∑
d,f,s,i,h

(
Ad,f,s,i − Pd,f,s,i,h

)∑
d,f,s,iAd,f,s,i

, d ∈ D, f ∈ F, s ∈ S, i ∈ I, h ∈ H

Here, A represents the actual value, and P is the predicted value at delivery date d, FC f, slot
picking group s, article i, and forecast horizon h. These metrics are highly flexible and can be
computed for specific subsets of predictions by customizing the included sets of delivery dates
D, FCs F, SPGs S, articles I, and forecast horizons H. WAPE is our primary evaluation metric,
providing an effective measure of overall forecast accuracy. In contrast, WPE offers valuable
insights into forecast bias, as it considers the direction of errors without taking their absolute
values. A positive WPE indicates overforecasting on average, while a negative WPE indicates
underforecasting on average. One notable advantage of WAPE and WPE over their unweighted
counterparts, like MAPE and MPE, is their ability to remain robust in the presence of relatively
large errors for products with low sales volumes. This makes them more robust and informative
in practical demand forecasting retail scenarios.

4 Results

This section delves into a comparative analysis of forecast accuracy, illustrating both the quan-
titative gains in prediction accuracy and the qualitative improvements in modeling uncertainty
achieved through the incorporation of MC dropout. The section starts with showing the ac-
curacy metrics detailed in 3.5.4, examining the performance of both the baseline TFT and the
MC dropout TFT model across various operational subsets to demonstrate the improvements
attributed to MC dropout. Furthermore, it underscores the ability of MC dropout to generate
predictive distributions. Prior to delving into predictive distributions, the general predictive
performance of the MC dropout model is discussed. Subsequently, it presents predictive distri-
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butions for various forecasting scenarios, showcasing the MC dropout TFT model’s ability to
produce predictive distributions that are consistent with expectations based on its overall predic-
tive performance. This demonstrates the model’s effectiveness in not only enhancing prediction
accuracy but also in accurately estimating uncertainty across different scenarios.

4.1 Comparative analysis of forecast accuracy

The total evaluation of forecast accuracy for this thesis’ models is summarized in Table 5. The
’Baseline’ column represents the performance metrics for the standard TFT model, while the
’MC dropout’ column reflects the results of the TFT model with MC dropouts implemented. It
can be seen that including MC dropout demonstrates a slight decrease in WAPE from 0.3335
to 0.3285 (-1.50%), suggesting a modest improvement in forecast accuracy. Similarly, the WPE
has shown an improvement, with a reduction in the absolute value from -0.1189 to -0.0758
(-36.25%). This indicates a potential decrease in forecast bias when incorporating MC dropout,
which is designed to account for model uncertainty. These results provide an initial indication
that incorporating uncertainty through MC dropout can positively affect the model’s predictive
performance, albeit marginally. It is observed that the implementation of MC dropout does not
lead to a deterioration in the error metrics used, and thus maintains the model’s integrity while
addressing uncertainty.

Total Baseline MC dropout

WAPE WPE WAPE WPE

All 0.3335 -0.1189 0.3285 -0.0758

Table 5: Total evaluation of forecast accuracy using Weighted Absolute Percentage Error (WAPE) and Weighted
Percentage Error (WPE).

In this research, the forecast accuracy is not only assessed on the whole dataset, but also across
various subsets, including article category level 1, article shelf life, delivery weekday, forecast
horizon, ordered ADR bucket, and SPG. Ordered ADR bucket reflects the sales velocity of the
article. This multifaceted evaluation approach allows for a nuanced analysis, revealing how
the baseline TFT model, and its Monte Carlo (MC) dropout enhanced counterpart perform
under diverse operational conditions. The format for presenting this data follows the structure
introduced in Table 5, as previously described.

Table 6 shows diverse changes in WAPE and WPE across different product categories when MC
dropout is applied. Some categories like ’Baby & kind ’ and ’Gezondheid ’ exhibit a significant
decrease in WAPE with MC dropout, suggesting that the uncertainty modeling could be par-
ticularly beneficial for these categories. The WPE values are generally less negative with MC
dropout across most categories, suggesting a reduction in overestimation of forecasts or a more
balanced prediction that accounts for uncertainty.

The performance metrics per article shelf life category, see Table 7, show that the ’Very short
(2 or fewer days)’ category benefits from a notable decrease in both WAPE and WPE with MC
dropout, which may indicate that the uncertainty modeling is effectively capturing the volatility
inherent in products with a shorter shelf life.
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Article Category Level 1 Baseline MC dropout

WAPE WPE WAPE WPE

Aardappelen & groente 0.1698 -0.0658 0.1737 0.0035
Baby & kind 0.7551 -0.1335 0.7372 -0.1225
Bakkerij 0.2888 -0.1390 0.2582 -0.0897
Bier & aperitieven 0.6720 -0.2352 0.6782 -0.0917
Diepvries 0.4300 -0.1371 0.4374 -0.0800
Dier 0.5190 -0.1954 0.5181 -0.1511
Drinken 0.3958 -0.1099 0.4062 -0.0474
Drogist 0.6492 -0.1066 0.6800 -0.0649
Fruit 0.2356 -0.1342 0.2041 -0.0505
Gezondheid 0.9890 -0.2017 0.8322 -0.4633
Huishouden 0.3532 -0.0440 0.3558 -0.0923
Kaas 0.3349 -0.0605 0.3291 -0.0951
Koek, snoep & snacks 0.4340 -0.1357 0.4336 -0.1795
Koffie & thee 0.4805 -0.1477 0.4663 -0.2114
Koken, tafelen & vrije tijd 0.7202 -0.4110 0.7470 -0.4124
Maaltijden & gemak 0.4628 -0.1589 0.4514 -0.1293
Ontbijt & zoet beleg 0.3387 -0.0852 0.3320 -0.1145
Pasta, rijst & internationaal 0.4087 -0.0805 0.4132 -0.0826
Vega & vegan 0.3846 -0.0533 0.3862 -0.0137
Vlees & vis 0.2947 -0.0972 0.2924 -0.1032
Vleeswaren, spreads & tapas 0.3636 -0.1335 0.3502 -0.1036
Voorraadkast 0.4661 -0.1386 0.4646 -0.1278
Wijn & bubbels 0.6451 -0.2372 0.6210 -0.2953
Zuivel & eieren 0.3012 -0.1410 0.2866 -0.1129

Table 6: Evaluation of forecast accuracy by article category level 1 using Weighted Absolute Percentage Error
(WAPE) and Weighted Percentage Error (WPE).

Article Shelf Life Baseline MC Dropout

WAPE WPE WAPE WPE

Very short (2 or fewer days) 0.3297 -0.1039 0.3023 -0.0397
Short (3 to 5 days) 0.2430 -0.0920 0.2369 -0.0448
Long (6 or more days) 0.3842 -0.1346 0.3806 -0.0946

Table 7: Evaluation of forecast accuracy by article shelf life using Weighted Absolute Percentage Error (WAPE)
and Weighted Percentage Error (WPE).
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The impact of MC dropout varies by day of the week, depicted in Table 8, with certain days
like ’Thursday ’ and ’Saturday ’ showing more pronounced improvements in both WAPE and
WPE than others. In Table 9, a comparative evaluation of the forecast accuracy over a 14-step
forecast horizon is presented. The MC dropout model generally performs better, as it has lower
WAPE and WPE values than the baseline model. The stabilization of errors with increasing
forecast horizon indicates that both models are robust and retain their predictive quality over
time. The improvements brought by MC dropout are especially noteworthy, as they demonstrate
the model’s capability to maintain precision and handle uncertainty effectively across varying
forecast lengths.

Delivery Weekday Baseline MC dropout

WAPE WPE WAPE WPE

Monday 0.3108 -0.1048 0.3022 -0.0954
Tuesday 0.3528 -0.1114 0.3528 -0.1108
Wednesday 0.3628 -0.1181 0.3640 -0.0844
Thursday 0.3733 -0.1275 0.3711 -0.0547
Friday 0.3169 -0.1402 0.3036 -0.0348
Saturday 0.3201 -0.1070 0.3192 -0.0478
Sunday 0.3052 -0.1224 0.2951 -0.1055

Table 8: Evaluation of forecast accuracy by delivery weekday using Weighted Absolute Percentage Error
(WAPE) and Weighted Percentage Error (WPE).

Forecast Horizon Baseline MC dropout

WAPE WPE WAPE WPE

1 0.1692 -0.0645 0.1409 -0.0144
2 0.2845 -0.0978 0.2737 -0.0504
3 0.3201 -0.1157 0.3111 -0.0763
4 0.3351 -0.1215 0.3277 -0.0848
5 0.3435 -0.1222 0.3367 -0.0783
6 0.3497 -0.1267 0.3443 -0.0794
7 0.3530 -0.1237 0.3510 -0.0849
8 0.3550 -0.1320 0.3560 -0.0864
9 0.3581 -0.1340 0.3575 -0.0870
10 0.3592 -0.1318 0.3585 -0.0857
11 0.3594 -0.1272 0.3593 -0.0836
12 0.3595 -0.1249 0.3598 -0.0844
13 0.3593 -0.1216 0.3595 -0.0831
14 0.3605 -0.1206 0.3590 -0.0818

Table 9: Evaluation of forecast accuracy by forecast horizon using Weighted Absolute Percentage Error (WAPE)
and Weighted Percentage Error (WPE).

The ADR bucket evaluation, displayed in Table 10, demonstrates improved accuracy over the
baseline, as indicated by the lower WAPE scores in all ADR buckets. While WPE scores also
reflect better performance for the MC dropout model in the initial categories, an anomaly is
observed in the ’Extreme fast mover’ bucket, where the MC dropout model’s WPE becomes
positive. This suggests that for items with high transaction frequencies, the model may be over-
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estimating demand to a certain extent. Both models struggle with the ’Extreme slow mover’
category, suggesting a common difficulty in forecasting items with very low transaction frequen-
cies.

Ordered ADR Bucket Baseline MC dropout

WAPE WPE WAPE WPE

1 - Extreme slow mover 0.8425 -0.1841 0.8101 -0.0677
2 - Slow mover 0.4234 -0.1123 0.4163 -0.0868
3 - Fast mover 0.2301 -0.1103 0.2229 -0.0799
4 - Extreme fast mover 0.1387 -0.1071 0.1202 0.0154
5 - ignore_token 0.5663 -0.2660 0.5305 -0.2316

Table 10: Evaluation of forecast accuracy by ordered ADR bucket using Weighted Absolute Percentage Error
(WAPE) and Weighted Percentage Error (WPE).

Lastly, in Table 11, the WAPE and WPE are evaluated across the two different SPGs. There
is a slight improvement in WAPE for both ’Morning ’ and ’Evening ’ SPGs with MC dropout,
indicating a consistent benefit across different operational time frames. The WPE improvements
for the SPG are quite uniform, suggesting that MC dropout provides a consistent reduction in
forecast bias irrespective of the time of day.

Slot Picking Group Baseline MC dropout

WAPE WPE WAPE WPE

Morning 0.3572 -0.1154 0.3523 -0.0758
Evening 0.3106 -0.1224 0.3054 -0.0759

Table 11: Evaluation of forecast accuracy by slot picking group using Weighted Absolute Percentage Error
(WAPE) and Weighted Percentage Error (WPE).

4.2 General predictive performance

In terms of predictive performance, both models exhibit similar trends, as outlined in Tables 5 to
11. Firstly, the ’Aardappelen & groente’ article category performs the best, while ’Gezondheid ’
shows the weakest performance. Additionally, articles with a ’Short ’ shelf life outperform those
with a ’Long ’ shelf life. When considering delivery weekdays, Monday and Sunday demonstrate
relatively better predictive performance compared to Wednesday and Thursday. Analyzing the
forecast horizon, we observe that predictive performance tends to stabilize with longer horizons,
with marginal changes in WAPE and WPE from horizon 10 onwards. Notably, the models
excel in predicting extreme fast movers compared to extreme slow movers, as evident from the
ordered ADR bucket analysis. Finally, the model exhibits a slight performance variation between
deliveries scheduled for the ’morning ’ and ’evening ’, with a slightly better performance observed
for the ’evening ’ slot.

4.3 Predictive distribution analysis

Following our examination of the predictive performance of both models, we aim to further
investigate the predictive capabilities of our MC dropout model. In this section, we present the
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probability density function of the ADR for a specific article, SPG, prediction date, and forecast
horizon. This article belongs to a category level 1, has a specific article shelf life, and falls within
a certain ordered ADR bucket. The predictive distribution, which includes the actual predic-
tions, is detailed in Appendix A. As demonstrated in Section 4.2, these characteristics influence
predictive performance. By creating predictive distributions for different forecast scenarios, we
aim to examine how the model’s predictions align with observed trends. These scenarios will
illustrate the impact of changes in individual characteristics while keeping others constant. To
this end, we compare the probability density functions using the Coefficient of Variation (CV),
a standardized measure of the dispersion of the probability distribution. The CV is calculated
as the ratio of the standard deviation (σ) to the mean (µ) of the distribution, expressed as
a percentage: CV = σ

µ × 100%. This metric allows us to quantitatively assess the spread of
predicted ADR values, offering insights into the precision and reliability of the model’s forecasts
under different conditions. Through generating and analyzing probability density functions, we
can evaluate not only the point predictions but also the associated uncertainty of each forecast.
This enables us to assess the robustness of our model’s predictions and gain insights into the
variability of forecasted outcomes.

In Figure 4, the probability density function of an article with a short shelf life is compared to
an article with a long shelf life keeping other characteristics constant. The article with a long
shelf life exhibit a higher Coefficient of Variation (CV) of 22.14%, signaling a greater relative
variability and consequently, less certainty in the model’s predictions for these products. On the
other hand, short shelf life items present a CV of 7.46%, indicating a more compact distribution
of predicted values in relation to their mean, and suggesting increased confidence in the model’s
forecasts for these items. This perspective is confirmed by the data in Table 7, which shows a
marginally greater WAPE for long shelf life items compared to short shelf life items.

(a) Article shelf life = short (b) Article shelf life = long

Figure 4: Comparison of ADR probability density functions for articles with short versus long shelf life, keeping
other characteristics constant.

In Figure 5, the probability density function of an article with a Monday as delivery weekday
is compared to an article with a Wednesday as delivery weekday keeping other characteristics
constant. The prediction for Wednesday exhibits a CV of 10.37%, indicating a modest spread
of predicted ADR values. This spread, as depicted in Figure 5b, shows that while there is
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some variability in the model’s forecasts, the actual ADR is well within the central region of
the probability density function, suggesting an overall reliable forecast for this weekday. In
comparison, the predictions for Monday demonstrate a lower CV of 9.67%, which is indicative
of a tighter clustering of forecasted ADRs around the actual value, as shown in Figure 5a. This
tighter probability density function signifies a higher degree of precision and less variability in
the model’s forecast for Monday, aligning with a lower WAPE and a more positive WPE for
Mondays in the MC dropout model, as detailed in Table 8.

(a) Delivery weekday = Monday (b) Delivery weekday = Wednesday

Figure 5: Comparison of ADR probability density functions for weekday delivery on Monday versus Wednesday,
keeping other characteristics constant.

As shown in Table 9, there is an increasing trend of uncertainty as the forecasting period extends
since the WAPE increases. In Figure 6 the probability density function of an article with a short
forecast horizon is compared to the same article with a long forecast horizon keeping other
characteristics constant. Indeed, an increased level of uncertainty with the extension of the
forecast period is observed. The CV for forecast horizon 1 is 10.74%, which, while indicative
of some degree of variability, is relatively low. This is visually supported by the histogram in
Figure 6a, where the predicted ADR probability density function is tightly clustered around
the actual ADR value, demonstrating a strong confidence in the short-term forecast accuracy.
In contrast, for forecast horizon 10, as depicted in Figure 6b, the CV slightly rises to 11.14%,
suggesting an incremental increase in forecast uncertainty. The histogram for forecast horizon 10
displays a wider dispersion of predicted values, implying a broader range of potential outcomes
and a higher degree of uncertainty. Despite this increase, the predictions for both horizons
remain in proximity to the actual ADR value, with the wider probability density function for
horizon 10 indicating the model’s appropriate accommodation for the increased uncertainty that
is typically characteristic of longer-term forecasting. These observations from the probability
density functions underline the model’s adeptness in yielding precise short-term forecasts and its
systematic accommodation for the heightened uncertainty in long-term predictions, as quantified
by the respective CVs.

In Figure 7, the probability density functionn of an extreme slow mover article is compared
to the same extreme fast mover article keeping other characteristics constant. The prediction
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(a) Forecast horizon = 1 (b) Forecast horizon = 10

Figure 6: Comparison of ADR probability density functions for short versus long forecast horizons, keeping
other characteristics constant.

accuracy of the ’extreme fast mover’ versus ’extreme slow mover’ categories reveals significant
contrasts in Table 10, which can also clearly be seen in 7. The ’extreme fast mover’ group,
which has a CV of 10.26%, demonstrates a relatively high degree of forecast confidence. This
is visually evidenced by the tight histogram in Figure 7b, where the predicted ADR closely
aligns with the actual ADR, suggesting a high level of model accuracy. Conversely, the ’extreme
slow mover’ category, with a notably higher CV of 19.60%, displays a wider spread of predicted
ADRs as seen in Figure 7a. This wider probability density function indicates a greater degree
of uncertainty and a reduced level of precision in the model’s forecasts for these items. The
distinction in predictive accuracy between the two categories is also reflected in the reported
WAPE and WPE metrics from Table 10, where ’extreme slow movers’ register higher errors,
reaffirming the trends observed in the predictive distributions.

(a) Ordered ADR bucket = extreme slow mover (b) Ordered ADR bucket = extreme fast mover

Figure 7: Comparison of ADR probability density functions for ADR bucket extreme slow mover versus extreme
fast mover, keeping other characteristics constant.

In Table 11, the probability density function of a morning SPG is compared to an evening
SPG keeping other characteristics constant. The evening SPG displays a distribution with
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a CV of 10.74%, which suggests a commendable level of precision in the model’s predictions
during these hours. This is visually represented in Figure 8a where the predicted ADRs are
narrowly concentrated within the probability density function, reflecting a tighter concentration
of forecasts around the actual ADR. In contrast, the morning SPG, with a CV of 11.14%,
shows a marginally broader spread of predicted ADRs as seen in Figure 8b. Despite the slight
increase in variability, the actual ADR is still proximate to the peak of the probability density
function, indicating that the model’s forecasts remain reliably accurate even with the increased
spread. Although the ’morning forecasts demonstrate a slightly higher degree of uncertainty
compared to the evening, both time slots exhibit probability density functions that center near
the actual ADR values, affirming the model’s adeptness in capturing the SPG that may influence
the forecast accuracy.

(a) SPG = evening (b) SPG = morning

Figure 8: Comparison of ADR probability density functions for SPG evening versus morning, keeping other
characteristics constant.

5 Conclusion

The core aim of this thesis, as detailed in Section 1, was to advance the TFT methodology
for the forecasting of article demand. This work sought to enable the TFT model to not only
predict demand but to also generate a predictive distribution that could serve as the foundation
for decision-making under uncertainty. Through the integration of Monte Carlo dropouts, this
research has not only quantitatively enhanced prediction accuracy but has also qualitatively
improved the model’s capacity to encapsulate uncertainty.

The empirical results signal a promising direction, with the inclusion of MC dropout leading to
a modest yet notable improvement in forecast precision, as evidenced by a decrease in WAPE
by 1.50%. Additionally, the improvement in WPE by 36.25% underscores the value of integrat-
ing uncertainty into the forecasting process. While the WAPE and WPE generally improved
across different subsets, there are certain categories that stood out due to their significant per-
formance enhancements. Particularly, categories such as ’Baby & kind’ and ’Gezondheid’ have
shown significant enhancements in forecast accuracy, suggesting that the uncertainty modeling
is especially advantageous for certain product types. The improvement is further accentuated
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in the ’Very short (2 or fewer days)’ category, where the model adeptly captures the volatility
associated with products with shorter shelf lives. While the enhanced model exhibits proficiency
across various forecast lengths, it continues to face challenges within the ’Extreme slow mover’
category, highlighting an area where both the standard and the MC dropout-enhanced TFT
models encounter limitations. This observation invites further investigation into the intricacies
of forecasting items with low transaction frequencies and opens up avenues for future research
to refine models for such challenging categories.

Moreover, the thesis presents predictive distributions across a spectrum of forecasting scenarios.
The MC dropout TFT model’s ability to yield distributions that align with its overall perfor-
mance further substantiates the efficacy of this approach. By generating and examining these
distributions, the research moves beyond point predictions to a more holistic evaluation of the
forecast’s reliability and the inherent uncertainty of each outcome. Consequently, this allows for
a deeper understanding of the model’s robustness and a nuanced perspective on the variability
of forecasted outcomes.

Given that predictions must be executed multiple times for MC dropout method, the runtime
for this method extends accordingly. This extended runtime is an important factor to consider
in the practical application of the MC dropout architecture. One potential solution to mitigate
this issue is to execute predictions in parallel, provided that the computational infrastructure
supports it. Such an approach addresses operational efficiency, further enhancing the model’s
applicability in real-world scenarios.

To conclude, this thesis contributes to the field of demand forecasting by demonstrating that the
careful modeling of uncertainty by incorporating MC dropouts can yield significant benefits. This
thesis establishes a foundation for more robust decision-making in supply chain and inventory
management, especially valuable in contexts where precise predictions are scarce yet critical for
operational efficiency.

6 Discussion

To set the stage for our comprehensive discussion, it’s essential to outline the methodology that
underpins this thesis. The core of our approach involved integrating MC dropout with the TFT
model, specifically tailored for the retail demand forecasting context. This integration aimed
to address two primary objectives: enhancing the predictive accuracy of demand forecasts and
improving the model’s ability to quantify and encapsulate uncertainty in its predictions.

The integration of MC dropout with the TFT for retail demand forecasting represents a signif-
icant advancement in the field, addressing the critical need for models that balance predictive
accuracy with the capability to quantify uncertainty. To the best of our knowledge, this thesis is
the first to incorporate MC dropout within the TFT model architecture in the context of retail,
illustrating its potential to enhance decision-making under uncertain conditions. However, the
journey towards refining this model and fully realizing its implications for retail and beyond is
accompanied by several challenges and areas ripe for further research.
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One of the primary limitations encountered in this study stems from the constraints on com-
putational resources, which necessitated a limited grid search for hyperparameter tuning. This
approach introduces a degree of uncertainty regarding the optimality of the chosen hyperpa-
rameters, potentially affecting the model’s performance and generalizability. Additionally, the
dataset’s scope was limited to a single FC and included only articles identified by even num-
bers, representing a fraction of the comprehensive data available from Picnic. These constraints
highlight the need for caution when extrapolating the study’s findings, as they may not fully
capture the model’s capabilities across a broader dataset.

Despite these limitations, our findings underscore the benefits of integrating MC dropout with
the TFT model, particularly in enhancing predictive accuracy and the model’s ability to en-
capsulate uncertainty. This not only improves forecast reliability but also provides a more solid
foundation for decision-making in uncertain environments. In light of these advantages, we
advocate for the adoption of this approach in retail demand forecasting, emphasizing the ex-
ploration of parallel computation techniques to counterbalance the increased runtime associated
with MC dropout. Such strategies aim to preserve the model’s operational efficiency without
compromising the benefits derived from enhanced uncertainty quantification.

The study also identifies potential paths for enhancing the TFT model’s performance further.
Currently, the model utilizes article category levels in a manner that reflects human intuition
rather than quantitative properties. By revisiting this strategy and potentially grouping articles
according to quantitative characteristics like historical sales figures, the model’s precision could
see considerable enhancement. Additionally, incorporating features like geographical location,
placement within the application, and insights from promotional emails sent to customers could
further refine the model’s effectiveness.

Looking ahead, the scope for future research is vast and varied. Exploring hybrid models,
adopting advanced techniques such as transfer learning, and extending the application of the
enhanced TFT model to other domains like energy or healthcare, could provide valuable insights
into its effectiveness. Moreover, improving model interpretability stands out as an essential
objective, particularly as the complexity added by MC dropouts complicates the understanding
of variable importance. Developing methods to better visualize variable impacts or quantify the
contribution of input features, even in the presence of stochasticity, could make the model more
accessible and useful to practitioners.

Finally, this thesis underscores the fundamental shift introduced by quantifying uncertainty in
forecasts. Providing a probabilistic understanding of future demand allows businesses to pre-
pare for a range of outcomes, bolstering their resilience against market volatility. However, the
challenge remains in translating these probabilistic forecasts into actionable strategies, empha-
sizing the need for effective communication of uncertainty principles to decision-makers. This
underscores the importance of bridging the gap between advanced forecasting techniques and
practical business applications, ensuring that the benefits of uncertainty quantification are fully
leveraged in the decision-making process.
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A Predictive distributions

In this Appendix, the predictive distributions corresponding to the probability density functions
detailed in Section 3.4 are provided for reference.

(a) Article shelf life = short (b) Article shelf life = long

Figure 9: Comparison of ADR predictive distributions for articles with short versus long shelf life, keeping other
characteristics constant.

(a) Delivery weekday = Monday (b) Article shelf life = long

Figure 10: Comparison of ADR predictive distributions compared for weekday delivery on Monday versus
Wednesday, keeping other characteristics constant

33



(a) Forecast horizon = 1 (b) Forecast horizon = 10

Figure 11: Comparison of ADR predictive distributions for short versus long forecast horizons, keeping other
characteristics constant.

(a) Ordered ADR bucket = extreme slow mover (b) Ordered ADR bucket = extreme fast mover

Figure 12: Comparison of ADR predictive distributions for ADR bucket extreme slow mover versus extreme
fast mover, keeping other characteristics constant.

(a) SPG = evening (b) SPG = morning

Figure 13: Comparison of ADR predictive distributions for SPG evening versus morning, keeping other char-
acteristics constant.
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