
Erasmus University Rotterdam

Erasmus School of Economics

Master Thesis Quantitative Finance

Reconstructing and Completing Single Equity IVS

Using Auto-Encoders

Lucas van Opstal (619219)

Supervisor: Dr. E. Vladimirov

Second assessor: Dr. M. Grith

Date final version: 5th February 2024

The content of this thesis is the sole responsibility of the author and does not reflect the view

of the supervisor, second assessor, Erasmus School of Economics or Erasmus University.

Abstract

This research explores the performance of auto-encoder models in reconstructing and
completing implied volatility surfaces for single equity options, with a focus on compar-
ing them to index options of the S&P 500. The study leverages grid-wise auto-encoder
models and investigates the added value of calibrating such models. Models are trained
on data from 2010 through 2018, and tested on the highly volatile years 2020 and 2021.
The analysis reveals that, in terms of Mean Squared Error, none of the single equity op-
tions outperforms the S&P 500 options in reconstructing surfaces. However, one of the
single equity options does outperform the index when completing the implied volatil-
ity surface. The research emphasizes the ability of auto-encoders to capture market
volatility dynamics, evidenced by similarities between latent values and the VIX index.
It is concluded that the general volatility level, slope, and term-structure are encoded
in some of the latent dimensions. Furthermore, the results demonstrate the practical
utility of these models for completing implied volatility surfaces, showcasing the impor-
tance of calibrating the latent vector in this process. Overall, this research adds to the
literature understanding the potential applications and dynamics of auto-encoders in
the context of implied volatility surfaces for single equity options.

i

Acknowledgments

This thesis concludes my academic journey spanning well over seven years. The programme
Quantitative Finance has given me the basis to deploy machine learning methods, and
mathematics in the world of finance and financial markets. The intersection of these three
fields were the basis of the subject of this thesis. Before this thesis I had never used or
modeled a Neural Network, which seemed a daunting task at first. I could not have written
this research without the extensive help of Dr. Evgenii Vladimirov, which has proposed
some very insightful suggestions that have helped the quality of the work tremendously. I
want to thank everyone who has helped me throughout these last five months in finalizing
this research.

ii

Contents

1 Introduction 1

2 Literature 4

3 Data 6

4 Methodology 8
4.1 Neural Networks . 8
4.2 The model . 9
4.3 Application of the model . 10
4.4 Model architecture and hyperparameter search 12
4.5 Model training and reconstructing . 13
4.6 Calibration . 14
4.7 Completing the IVS . 14

5 Results 16
5.1 General model outcome . 16
5.2 Model performance . 20
5.3 Exploring the latent dimensions . 23
5.4 Calibration results . 27

6 Discussion 32
6.1 Implications of the results . 32
6.2 Limitations . 33

7 Conclusion 35

A Additional Results 38

iii

1 Introduction

Options are complex financial instruments commonly used by financial institutions to hedge
their positions. These products are listed on financial markets and are characterized by three
main components: The underlying asset, the time to maturity (tenor), and the strike price.
To ensure the options are priced in a way that arbitrage is not possible, Black and Scholes
(1973) came up with their famous Black-Scholes Option pricing model. The only uncertain
variable in their model is the volatility, and hence the option price in the market implies
a volatility based on the BS model. Traders and market participants who are interested
in comparing options with di↵erent strikes and tenors use the implied volatilities of each
option to asses if they want to buy or sell this option. By plotting the implied volatility
of several options against the tenor and strike price, one can obtain the Implied Volatility
Surface (IVS).

The IVS is a commonly used metric for stock market participants when comparing options
with several tenors and strike prices. It is, therefore, vital for market participants to accu-
rately predict or infer the complete IVS when managing positions involving options. This
is especially the case when a market participant wants to understand the right price for an
option not listed in the market yet. In recent years, machine learning techniques, and in
particular neural networks, have taken flight in current research on predicting, interpolat-
ing, and extrapolating the IVS (Ackerer et al., 2020; Almeida et al., 2023; Bergeron et al.,
2022; Zhang et al., 2023).

The Artificial Neural Networks (ANN) were first introduced by McCulloch and Pitts (1943).
By representing the neurons in a brain through mathematical relationships, the researchers
have laid the basis for Neural Network (NN) machine learning applications in various fields.
As described in Almeida et al. (2023), some well-known parametric models (e.g., Black-
Scholes, Heston, Carr-Wu) incur prediction errors when predicting the IVS. Their research
uses a non-parametric approach by leveraging the power of feedforward neural networks.
They conclude that using non-parametric models to correct the pricing error of parametric
models, always outperform their respective original model across various S&P 500 index
options.

A special kind of NN is an auto-encoder, essentially a nonlinear alternative to Principal
Component Analysis (PCA) (Kramer, 1991). These auto-encoders have been used in an
asset pricing context in the research of Gu et al. (2021). Auto-encoders aim to approximate
the input variables through a particular neural network. The main di↵erence between a
standard feedforward neural network and auto-encoders is that the first tries to predict a
target vector y from input vector x. While auto-encoders aim to predict x from x.

1

Since Gu et al. (2021) have done their research in an asset pricing context, it is interesting
to look at research that has been done related to the IVS of options. Examples are Bergeron
et al. (2022) and, more recently , Zhang et al. (2023). In their papers, they apply varia-
tional auto-encoders (VAEs) to estimate (missing points on) the IVS. VAEs are a variation
on a standard auto-encoder and were first written about by Kingma and Welling (2013).
An interesting finding from Bergeron et al. (2022) is that VAEs performed quite well at
interpolating the volatility surfaces in environments with limited data. Their research and
the research of Zhang et al. (2023) consider that the predictions should be made so that
static arbitrage is not possible. Both papers did not look at the IVS of single equity options
but rather researched the IVS dynamics of forex exchange (FX) pairs and index options.

Other papers also showed that reconstructing the IVS is possible under no-arbitrage re-
strictions with the help of a NN. However, a fallacy of NNs is that the hidden layers are
challenging to interpret economically. Gong et al. (2022) propose the PCA VAE model
to represent descriptors into a latent space of three dimensions. Their model yields three
di↵erent latent dimensions within the VAE that have an economic interpretation and will,
therefore, aid in the decision-making of option traders. Another paper aims to add inter-
pretability to understanding implied volatility movements by adding the VIX as a feature to
test whether the behavior of the volatility surface in high volatility environments is di↵erent
from that in low volatility environments (Cao et al., 2020).

What all the papers mentioned earlier have in common is that they show the power of NNs,
specifically AEs and VAEs, in reconstructing or completing the IVS for certain types of
assets and derivatives. However, none of these papers have looked into the performance of
these models in the case of single equity options. Therefore, this thesis will focus on the
performance of auto-encoders in reconstructing and completing the IVS for single equity
options. This will be done by considering the interpretability of the proposed machine learn-
ing method. To do so, the methodology of Bergeron et al. (2022) will be closely followed to
asses the forecasting performance as well as the economic interpretation of the latent space
of the models.

This thesis aims to contribute in two ways. Firstly, by understanding how machine learn-
ing can be leveraged and assess its capabilities in reconstructing and completing the IVS
of single equity options. Secondly, this paper aims to add to the interpretability of auto-
encoders in reconstructing the IVS. All this will provide new insights into understanding
the dynamics of the IVS for single equity options. This has led to the following research
question:

2

How do auto-encoder models perform in completing the implied volatility surface of single
equity options?

To help answer this research question, the following sub-questions are proposed:

• What is the relative performance of a standard auto-encoder between an index option
and a single equity option?

• Does the auto-encoder yield economically interpretable features?

• Does a trade-o↵ exists between predictive performance and interpretability?

3

2 Literature

This section will elaborate on the most relevant financial mathematics and machine learning
literature.

Using machine learning to predict or understand asset pricing dynamics has taken flight in
the literature during the past few years. A distinction between two fields of interest can be
made in the literature. The first category seems to mainly focus on assessing the predictive
power of machine learning methods in the case of reconstructing or completing the implied
volatility surface. The second research category sheds more light on the interpretability of
these machine-learning models.

Ackerer et al. (2020) aims to answer how to interpolate and extrapolate the IVS in an
arbitrage-free way properly. They propose using an NN on top of the standard BS or the
SSVI model of Gatheral and Jacquier (2014). Combining a multi-layer NN significantly
improves the correct construction of the IVS regarding the root-mean-square error (RMSE)
and mean absolute percentage error (MAPE). As explained in the introduction, the VAEs
have been increasingly popular in the fields mentioned earlier in this thesis. Bergeron et al.
(2022) researched how VAEs can generate synthetic yet realistic volatility surfaces when the
VAE is trained on multiple assets. They show this by empirically testing its performance
on di↵erent foreign exchange rates. Hence, the authors do not predict the IVS but solely
interpolate the missing points on the observable IVS at a certain point in time.

The research of both Cao et al. (2020) and Zheng et al. (2021) aim to better understand im-
plied volatility movements. Although these papers try to give some form of interpretability
to the machine learning outcomes, this is still quite limited compared to research that con-
siders characteristics of the underlying assets or option contracts, which will be discussed in
the next paragraph. Zheng et al. (2021) use an NN, which they compare to the SVI or the
SSVI model as the benchmarks. The authors use a combination of single networks, which
predict the implied volatility separately, and a weighting network, which calculates so-called
’votings’ of the predicted implied volatilities of each single network and how important they
are towards the final volatility prediction. Their model (combining single networks and a
weighting network) outperforms the benchmarks and a standard vanilla NN (one hidden
layer). They note that incorporating no-arbitrage principles does not result in significant
underperformance due to the added restrictions. The authors state that it is important to
consider these principles since they are a way to incorporate prior financial knowledge.

Cao et al. (2020) developed an NN approach to understand implied volatility movements.
They construct a 3-feature neural network with features like the S&P 500 daily change,
time-to-maturity, and the practitioner Black-Scholes delta. With their target, the implied
volatility change. Later, they added the VIX index as a feature to understand the behavior
of the volatility surface in high-volatility environments and how it di↵ers from that in low-

4

volatility environments. They note that when volatilities are low, and the index return is
particularly high, there is a tendency for volatilities to increase. Furthermore, they see that
the model incorporating the VIX as a feature has a 62% higher gain than the three-feature
model.

In the literature, there exists research that focuses on what kind of characteristics can help
predict volatility surfaces or even returns of options themselves. Kelly et al. (2019) pro-
pose the instrumented PCA (IPCA) to allow for latent factors and time-varying loadings.
They do this by introducing observable characteristics of an asset that instrument for the
observable dynamic loadings. They explain their empirical findings in an asset pricing con-
text. Later, in the paper of Gu et al. (2020), it is argued that ML models that incorporate
dimension reduction and non-linearities can yield an increase of 27 percentage points in
the Sharpe ratio for asset investors. Their predictor set includes 94 characteristics for each
stock, interactions of each characteristic with eight aggregate time-series variables, and 74
dummy variables representing the industry sectors.

Bali et al. (2023) have conducted a comprehensive study of the predictability of option
returns with machine learning. They test linear, nonlinear, and ensemble models (L-En or
NL-En) of those methods to predict option returns. They use 273 variables, of which 80
are option-based characteristics (e.g., illiquidity and tenors) and 193 stock-based character-
istics (e.g., book-to-market ratio). Furthermore, they consider trading costs when forming
portfolios based on their models, such that their results have an economical and practical
merit. The authors found that the ensemble methods L-En and N-En outperform their cor-
responding single methods when predicting option returns. The N-En models are deemed
as the best ones found. Furthermore, they state that the option contract-based charac-
teristics are the most important predictors for future option returns. ”So knowing where
an option lies on the underlying’s IVS and where that IVS lies relative to the market is
essential when making option return forecasts.” The nonlinear methods that the researchers
used are tree-based methods and a simple feedforward NN. Hence, the research does not
examine the performance of (variational) auto-encoders.

5

3 Data

The raw data is obtained from OptionMetrics from the Wharton research database. The
database contains a vast array of mostly American-listed options, which are also generally
American style. Due to this fact, finding an option’s implied volatility is more complex
because the Black-Scholes formula can not be inverted for American-styled options. How-
ever, OptionMetrics uses a proprietary pricing algorithm based on the Cox-Ross-Rubinstein
(CRR) binomial tree model (Cox et al., 1979; OptionMerics, 2023). Therefore, the data
available on OptionMetrics can be used, after some data preprocessing, as an immediate
input for the models. For every stock and one index, data is obtained starting from 2010-
01-04 up until 2021-12-31. The training set contains all data until the end of 2018, covering
almost eight years of training data. The validation set is 2019 and will solely be used for
hypertuning. Finally, the test set is the COVID-19 pandemic year 2020 and 2021. The
reasoning is that it is interesting to infer if the models can perform in turbulent years when
they have not seen any data of these highly volatile years. The global financial crisis of
2008 is excluded, and the years 2020 and 2021 are used for testing.

Then, following the framework in Bergeron et al. (2022), I will work with a prespecified grid
of 40 points: eight times to maturity (one month, two months, three months, six months,
nine months, one year, one and a half years, and two years) and five di↵erent deltas (0.1,
0.25, 0.5, 0.75, and 0.9). OptionMetrics provides option contract data for all these points
and interpolates if this point does not exist on a certain day.

To ensure enough data is available for a specific option, only stocks listed on the S&P 500
are considered. These include stocks with high liquidity and volumes and imply higher liq-
uidity levels for their derivatives. The index tracking the S&P 500 (ticker: SPX) is included
as a benchmark. Then, three di↵erent stocks are chosen, part of several industries, like
tech, automotive, and oil. The stocks are Microsoft (ticker: MSFT), Tesla (ticker: TSLA),
and ExxonMobil (ticker: XOM).

6

Table 1 Descriptive statistics for the used tickers

Ticker
Statistic

Mean vol Std vol Min vol Max vol Mean volume Mean Open Interest

MSFT 0.2576 0.0638 0.1212 1.2829 120189 1484548
TSLA 0.5050 0.1435 0.1702 2.1429 149556 604026
XOM 0.2347 0.0995 0.0934 1.4132 42774 579183
SPX 0.1906 0.0730 0.0537 0.9275 381702 4750096

Note: Sample size running from 2010-01-04 through 2021-12-31. For TSLA, the IPO took place on 2010-06-

29, and the data starts on that date. The first four columns show statistics related to the volatility of all the

options for the specific ticker. For those four columns, each specific option with a di↵erent delta and tenor

has an implied volatility. The last two columns show the mean volume and open interest. The volume and

open interest on a specific day are calculated over all the options in the market for that specific ticker on a

specific day.

The stocks are all constituents of the S&P 500 index. Where, as of 22-01-2024, MSFT
constitutes 7.29% of the index, TSLA constitutes 1.46%, and XOM constitutes 0.97% of
the index. The reasoning behind choosing these specific stocks is that those are the biggest
constituents in the index within their industry. For example, the index’s first eight stocks
are all considered tech stocks of which MSFT is the largest. Table 1 shows that the stocks’
derivatives are more volatile throughout the dataset than the index SPX. The ticker TSLA
is an interesting addition to the mix since it shows high levels of volatility as well as an ex-
tremely high volatility of 214.29% for a specific day and option contract. The single equity
options generally show a high daily volume and open interest, where XOM is traded less
daily than the other single equity options.

7

4 Methodology

In this section the proposed methodology will be elaborated upon. First in section 4.1
the mathematics behind neural networks will be explained. Then, in section 4.2 the auto-
encoder model used in this thesis will be introduced, in combination with the loss function
used during training. Then, in section 4.3 the application of the model will be explained.
Section 4.4 will delve deeper in the model architecture and hypertuning. The following
section 4.5 briefly explains how the models will be trained and the machine learning work
flow. Section 4.6 will explain how the models can be calibrated in a practical way. Finally,
section 4.7 explains how the IVS will be reconstructed and completed and how the models
performance is assessed.

4.1 Neural Networks

This section will briefly introduce how a neural network functions and how it can learn
nonlinear relations based on the input it is given. This study uses a feed-forward neural
network as the basis for an auto-encoder. The network takes as input the implied volatil-
ities of 40 di↵erent option contracts. That is, for 40 di↵erent combinations of deltas and
maturities. These are stored in a vector called xi for a specific ticker i. To keep notation
consistent for every layer, it is customary to refer to the values in the nodes of layer l as z(l),
and hence, z(0) = xi. The values from one layer undergo a nonlinear transformation to find
the values of the next layer. This transformation is done by multiplying the previous layer
with a weight matrix and adding a bias. Then, over this formula, an activation function is
applied to end up with the values of the next layer. This yields:

z(l) = �(W (l�1)z(l�1) + b(l�1)), for l = 1, . . . , L, (1)

where � is the activation function of choice, W is the weight matrix, b is the bias vector,
and L is the number of hidden layers. The activation function is the practitioner’s choice
and depends on the use case. It can also be considered a hyperparameter. Later, in section
4.4, it will be determined that the Hyperbolic Tangent activation function (Tanh) yields the
best performance and is therefore used in all the network layers. Tanh is defined as follows:

Tanh(x) =
ex � e�x

ex + e�x
. (2)

The activation function is plotted in Figure 1.

8

Figure 1 Hyperbolic Tangent activation function used within layers of the system

The basis for the auto-encoder that will be used is a combination of two standard feed-
forward neural networks. The nodes get activated by equation 1 with the Tanh as the
activation function. The number of layers and each layer’s size is called the model’s archi-
tecture. This architecture is a hyperparameter and will be discussed in section 4.4. For
this study, the only architectures considered used the geometric pyramid rule of Masters
(1993). The rule states that the number of hidden units will halve when adding a new
layer. The only exception to this rule is the size of the latent vector since this will also be
a hyperparameter and will have a varying size between one and four.

4.2 The model

An auto-encoder is a particular type of neural network in which the input is encoded by
an encoder to a lower-dimensional vector. The input for the used auto-encoder has a total
of 40 points. The implied volatility surface of 40 points gets flattened into a vector of size
40, which will serve as the input. These 40 points will be shrunk to a smaller size in the
next layer(s). From now on, the auto-encoder shrinks the 40-dimensional input to a latent
layer, referred to as z. Then, the latent layer will be expanded back to a 40-dimensional
output, which can be compared to the input. This is what the decoder is used for. The ar-
chitecture of the decoder is the mirror image of the encoder. The architecture of a standard
auto-encoder can be seen in Figure 2. In the figure, a five-dimensional input gets shrunk to
a two-dimensional latent layer called z. In this case, the top node in z would be referred to
as z1 and the bottom node as z2. Note that in this picture, the geometric pyramid rule is
not used. The two z-values will be fed to the decoder D(z), which will construct, through
weights and biases, an output that is again five-dimensional.

9

Figure 2 The architecture of a standard auto-encoder (Bergeron et al., 2022)

The parameters of the weights and biases of an auto-encoder are chosen so that the di↵erence
between the input and the output is minimized. This is called the reconstruction error (RE)
and is defined as:

RE =
1

M

MX

i=1

(Xi � Yi)
2, (3)

where M is the dimensionality for the input and output, Xi the ith input value, and Yi is the
ith output value from the decoder D(z). The network training entails optimizing weights
and biases to minimize equation 3. This optimization process is facilitated by an iterative
algorithm called gradient descent. The algorithm systematically updates the weights and
biases by moving in the direction that minimizes the reconstruction error. By moving in the
direction for which the gradients are negative, the algorithm aims to enhance the model’s
ability to reconstruct the input data accurately.

In addition to gradient descent, the choice of the activation function � from equation 1
plays an important role in the network. The activation functions allow the neural network
to introduce non-linearities to the model, making it able to capture more complex patterns,
which is more di�cult for a linear method like PCA. An auto-encoder and PCA are related
since they are both, in general, unsupervised dimensionality reduction methods. The main
di↵erence, however, is that an auto-encoder can capture nonlinear relationships due to the
dynamics of a neural network that it leverages.

4.3 Application of the model

Now that the initial idea of the auto-encoder model has been sketched, it is important to
discuss how the model will be applied in the context of this thesis. To do so, it is important
to distinguish between two terms used throughout the paper’s next sections. These are:
reconstructing and completing the implied volatility surface. The first term, reconstructing,
refers to using the whole auto-encoder model to reconstruct an output based on the input.

10

For this research, this means that 40 points are given to the encoder as an input, and the
output will be an implied volatility surface also consisting of 40 points. The input and the
output can be compared to see how well the auto-encoder reconstructs the volatility surface.

However, from a trader’s point of view, solely reconstructing does not yield any practical
uses of the auto-encoder. As described in Bergeron et al. (2022), it might be the case that
on a given trading day, only a few points on the implied volatility surface can be observed.
For a trader or market maker, it might be interesting to understand the implied volatilities
of options that are not observed in the market yet. Here comes the term completing the
volatility surface in play. For a trader, it is interesting to see how an auto-encoder can
help complete the implied volatility surface based on only a few observed real-time implied
volatilities. How this can be done precisely will be discussed in section 4.6 on calibration.

In Figure 3, the encoding architecture of the auto-encoder is illustrated.

Figure 3 Architecture of the encoder of a standard auto-encoder. The latent layer will
vary in size and is considered to be a hyperparameter (Bergeron et al., 2022)

In this case, the volatilities of the 40 di↵erent contracts (i.e., di↵erent delta and maturities)
are fed to the encoder as a 40-dimensional vector. The encoder shrinks these 40 values to
a latent vector for which the size is a hyperparameter. After that, the latent layer is used
as an input to the decoder. This is called the grid-wise approach for auto-encoders. The
decoder structure for the model is given in Figure 4.

The hidden latent layer z gets expanded back to a whole surface throughout the network’s
architecture. This vector can be converted back to an implied volatility surface, and that
can be compared to the input. Another way to construct the auto-encoder is called the
point-wise approach. In Bayer et al. (2019), the advantages of a point-wise approach are
compared to that of a grid-wise approach. In the former approach, the latent vector gets
extended by the delta values and tenor values of a specific option contract. Then, through-
out the network, this latent layer gets expanded to the second-last layer, which collapses
back down to a single volatility forecast. Figure 5 gives the architecture of the decoder of
a point-wise architecture.

11

Figure 4 Grid-wise architecture of the decoder. The output is a 40-dimensional vector
corresponding to the volatility surface (Bergeron et al., 2022)

Figure 5 Point-wise architecture of the decoder. The output is a single point vector corre-
sponding to the volatility of one specific option (Bergeron et al., 2022)

For this thesis, only the grid-wise approach will be considered. This is due to time con-
straints and the computational complexity when using a point-wise architecture. For more
extensive research on completing the implied volatility surfaces using a point-wise approach,
please see Bergeron et al. (2022).

4.4 Model architecture and hyperparameter search

When designing the architecture of an auto-encoder, the practitioner has to deal with many
choices regarding hyperparameters. The most straightforward ones are the width and depth
of the network. How many hidden layers do the encoder and decoder have, and how many
nodes will each layer have? The first choice made regarding the network’s architecture is
that it should be symmetrical. This means that the encoder and decoder have the same
amount of layers and are each exact mirror image, just as in Figure 2. A hyperparameter
grid-search approach is used to search over a prespecified grid of network architectures.
This grid search is done over a validation data set from 2019-01-03 through 2019-12-30.
The best-performing architecture was one where the encoder and decoder (latent layer thus
excluded) consisted of three layers. In which the input of 40 went to 32, which went to 16,

12

which went to 8. Then, these eight nodes were shrunk to the latent size and finally expanded
back to 32 nodes in the last hidden layer of the decoder. These 32 nodes were used to yield
an output of 40 specific points, as shown in Figure 4. The other parameters needed to
be hypertuned are the number of epochs used to train the network, the learning rate, and
the weight decay. The model’s performance did not improve much after four epochs and
performed the best with a learning rate of 0.01 and a weight decay of 0.001. Finally, the Tanh
activation function was chosen between each of the hidden layers. During training, it was
found that the model was subject to vanishing gradients, resulting in inconsistent output.
Therefore, batch normalization is applied during training between each layer. Later, batch
normalization is not applied during calibration to ensure the output is consistent. This
yields the following hyperparameters that were used during training, depicted in Table 2.

Table 2 Hyperparameter settings used for training the model

Architecture Epochs Learning Rate Weight Decay Activation function

[40, 32, 16, 8, z, 8, 16, 32, 40] 4 0.01 0.001 Tanh

4.5 Model training and reconstructing

The models are trained for each ticker separately on data from 2010-01-04 through 2018-
12-30. With the given hyperparameters as inputs, a trained network is created for four
di↵erent latent sizes (i.e., the dimensionality of z). The latent dimension takes on integers
between 1 and 4. Using the grid-wise approach, a grid of 40 di↵erent points is being output
by the decoder. These 40 points together form a new reconstructed surface. Then, by using
equation 3, the actual surface gets compared to the reconstructed surface, and a loss will
be calculated. The optimizer used in regards to the loss function is the ADAM optimizer
proposed by Kingma and Ba (2014). For computational reasons, a batch size of 8 is chosen,
resulting in shorter training time. After four epochs, training is stopped, and the model
with its weights and biases is saved for calibration. This results in four models per ticker,
each with the same architecture, except for the latent dimension.

With this trained network, the model can be loaded and put to the test to reconstruct
volatility surfaces. By feeding each test set sample to the trained model, the model will
encode the 40 points given to the appropriate latent size. Then, it will decode these latent
values back to a grid of 40 points, yielding a reconstructed surface. By comparing this re-
constructed surface with the actual input, the mean-squared error (MSE) can be calculated
and compared across the several models. Since we are dealing mostly with values lower than
one, the MSEs will be relatively small. To make sure that the performance of the models
is statistically di↵erent from each other, the Diebold-Mariano (DM) test statistic is used to
compare the model’s performance (Diebold & Mariano, 2002).

13

The DM test between two models is constructed as follows

DMA,B =
d̄AB

�̂d̄AB

d�! N(0, 1), (4)

where d̄AB is the sample mean of the squared loss di↵erential between the error surface of
model A and model B, and �̂d̄AB

is the standard error of the squared loss di↵erential of
the error surface of model A and model B. An error surface of one specific date is just the
surface obtained when the loss di↵erential between the ground truth on a specific day and
the surface output of a model on that same day are being squared.

4.6 Calibration

Once the model is trained, it may be calibrated to ensure that it accurately captures the
dynamics of the IVS. In this context, model calibration involves keeping the weights and
biases fixed and finding the latent variables (i.e., the inputs for the decoder), which maximize
the fit to market data. Essentially, the encoder E(x) can be ’thrown’ away, and only the
latent dimension z and the decoder D(z) should be considered during calibration. So, a
trader would only twist and tweak the values in the latent vector z such that the decoded
surface will fit the available market data. A more visual explanation of this calibration step
will be given in the next section 4.7. In practice, the most used calibration techniques are
gradient-based optimizers. These include the popular BFGS (Nocedal & Wright, 1999) or
L-BFGS (Zhu et al., 1997). However, due to the simplicity of the optimization, the Nelder-
Mead optimization Nelder and Mead (1965) was leveraged. During calibration, optimization
will happen over the z variable. This results in the following optimization equation,

z⇤ = argmin
z

1

M

MX

i=1

(Xi �D(�i, Ti, z))
2, (5)

where D(·) is referring to the decoder of the network.

4.7 Completing the IVS

To understand how the models will perform, the performance is tested by randomly sampling
points from the ’observed’ 40 points on a given day. What will happen next is that the
weights and biases of the whole trained network will be fixed. Then, by solving equation 5,
the latent encodings that generate the best fit for the surface at those randomly sampled
locations are chosen. In other words, an optimization search will be conducted, in which
the latent variables in the vector z get tweaked so that the decoder will generate the best
fit of the IVS on the randomly chosen ’known’ points. This is visualized in Figure 6. The
figure shows the first three steps in optimizing the three-dimensional vector z in the bottom
left. Each blue dot in the 3-D graph of the latent space is another step in the optimization
procedure of solving equations 5 starting from the origin point (0, 0, 0). Since the weights
and biases in the decoder D(z) are fixed after training, the specific choice of z corresponds

14

with a decoded volatility surface, depicted in the bottom middle. The ten black dots are the
randomly sampled points. The optimization of the z vector is finished after 100 steps, and
the model will be fixed. This means all the weights and biases within the trained network
are fixed, including the found z values. Eventually, these inferred latent values in z will be
used to complete the missing parts of the volatility surface, which is depicted in the right
part of Figure 6.

Figure 6 Completing the IVS, adapted from a presentation of Bergeron (2021)

15

5 Results

In this section, the most important findings will be discussed. First, in section 5.1, several
plots of the reconstructed implied volatility surfaces will be shown and compared. Then, in
section 5.2, the performance of the autoencoder for each ticker will be discussed. Next, in
section 5.3, the behavior of the latent dimension will be explored. Some interesting things
can be noted by comparing the dynamics of the latent dimension to the dynamics of the
VIX. Finally, in section 5.4, the results of the calibration exercise and the completion of the
implied volatility surface will be discussed.

5.1 General model outcome

This section commences by showing a visualization of the auto-encoder’s output. Due to
the structure of an auto-encoder, it is interesting to compare the implied volatility surface
the model gives as an output to the implied volatility surface the model has gotten as an
input. Since each model is trained for a specific ticker, and per ticker four di↵erent latent
sizes were used, this yields a total of 5 · 4 = 20 models. Since the test set contains the years
2020 through 2021, it is of interest to see how capable the auto-encoders are in reconstruct-
ing implied volatility surfaces during normal trading days (i.e., before the COVID-19 crisis
occurred) versus the reconstruction capabilities of the auto-encoders during high volatility
trading days (i.e., mid-March 2020).

In Figure 7, twelve implied volatility surfaces are depicted in a heat plot. Higher volatility
values are shaded red, while lower volatility values are shaded blue. In the left column, the
reconstructed implied volatility surface is depicted for a certain ticker on a specific date. In
Figure 7, a normal trading day at the beginning of the data set is chosen. The notion of
’normal’ comes from the fact that the impact of the COVID-19 crisis did not have a visible
impact on the volatility in the financial markets. The actual observed implied volatility
surface for that specific day is given in the middle column. This implied volatility surface
is also the auto-encoder input, eventually leading to the reconstructed surface found left to
it. Bear in mind that the z-axis is scaled di↵erently across the figures. The reason for not
using a fixed scale is that it makes it easier to spot the curvature in the surfaces. If the
scale of the z-axis grows, some surfaces with a smaller range will look more flat and less
curved. The squared error di↵erential between the surfaces is given in the rightmost column.
The reason for using a squared error measure is the fact that the di↵erential between the
reconstructed surface and the actual surface take values that are both positive and negative.

An initial visual inspection of the di↵erences between the reconstructed implied volatility
surface and the actual implied volatility surface shows that options with a longer time to
maturity especially have a smaller reconstruction error. This can be seen by looking at the
slices for longer tenors. When moving along this axis, it can be noted that the model has
di�culty reconstructing options with a shorter time to maturity. This is especially true for
the ticker MSFT and TSLA. What can be noted about these two tickers on this specific day

16

is that the volatility has high levels in general, especially the derivatives related to Tesla
stocks. Furthermore, it can be seen that XOM shows the worst reconstruction capabilities
for options with a high delta. The reconstructed implied volatility surface for the ticker
SPX seems to be visually similar to the actual implied volatility surface of the SPX options
on 2020-01-16. While the squared error di↵erential is relatively tiny, option contracts with
a low delta seem to perform the worst on this specific day.

Figure 7 Forecasted, reconstructed and error surfaces on 2020-01-16, ’normal trading day’
Note: The left column depicts the reconstructed IVS when the auto-encoder inputs the actual IVS. The

auto-encoder used has a latent dimension of four. The middle column shows the actual values. The right

column shows the squared error di↵erential between the two surfaces. Note that the z-axis may di↵er between

columns

17

Next, in Figure 8, a similar collection of implied volatility and error surfaces are plot-
ted. This time, however, a di↵erent date has been chosen. More specifically, the 20th of
March 2020, which is characterized by high volatility. These high levels of volatility can be
attributed to the impact of the COVID-19 crisis unfolding in the markets, and investors’
uncertainty was reflected in the options. When comparing each of the tickers’ reconstructed
output with its actual output, it can be seen that the reconstructed volatility levels are far
o↵ than those of the actual levels. Where some options for XOM found volatility lev-
els reaching around 100%, the auto-encoder found only values ranging between 30% and
60%. Furthermore, a visual inspection of all the reconstructed surfaces indicates that the
auto-encoder has di�culty getting the general volatility levels right. Especially options near
expiry performed the worst, as inferred from the error surfaces. Note that the auto-encoders
were trained on data that contained no extreme trading days like the global financial crisis
or the COVID-19 crisis.

18

Figure 8 Forecasted, reconstructed and error surfaces on 2020-03-20, ’hectic trading day’
Note: The left column depicts the reconstructed IVS when the auto-encoder inputs the actual IVS. The

auto-encoder used has a latent dimension of four. The middle column shows the actual values. The right

column shows the squared error di↵erential between the two surfaces. Note that the z-axis may di↵er between

columns

19

5.2 Model performance

After the preceding rudimentary visual inspection of the model’s output, it is interesting to
discuss the average reconstruction loss the auto-encoder yields over the whole test sample.
As a reminder, the test sample runs from 2020-01-02 through 2021-12-31 for all the tickers.
As the methodology describes, every ticker is trained on its historical data. Furthermore,
for every ticker, a total of four di↵erent models are trained and used, which di↵er in the
dimension of the latent vector z. Table 3 gives the MSEs for the di↵erent models. What can
be noted from the table is the fact that for equity tickers (i.e., MSFT, TSLA and XOM),
the models do not show a preference for a specific latent size. Surprisingly, the model with
a latent size of three performs best for MSFT while it performs the worst for the ticker
TSLA. The asterisk symbol is denoted when a model statistically di↵ers from the other
models for a specific ticker at the 1%

Table 3 MSE loss of the AE for each ticker and di↵erent latent dimensions

Latent size
Ticker

MSFT TSLA XOM SPX

1 0.00493* 0.06561* 0.03021* 0.01675*
2 0.00389* 0.04775* 0.03093* 0.00300*
3 0.00343* 0.09300* 0.01941* 0.00167*
4 0.00382* 0.07120* 0.01622* 0.00334*

Note: The MSE loss for fully reconstructing the IVS for four di↵erent latent dimension models. An * denotes

that the performance is statistically di↵erent from the other three models with di↵erent latent size for the

same ticker as per the Diebold Mariano test.

The preceding Table 3 shows the MSE when the fully reconstructed IVS is compared to the
real observed IVS. All 40 points on the grid are reconstructed and compared to the values
for those 40 specific tenors and deltas. However, it is interesting to observe the model’s
performance for specific subsets of the 40 points. Especially options with a short time to
maturity and at the money are expected to have a higher implied volatility. This notion
would mean that the reconstruction error around these options would be higher since the
auto-encoder would have di�culty correctly reconstructing higher volatility points. The
MSE losses for specific slices of the volatility surface for each ticker are given in the Tables
4 through 7. Six di↵erent slices are made: three to isolate certain options with specific
tenors and three that isolate in-the-money, at-the-money, or out-of-the-money options. The
tenors are divided into short time to maturity (i.e., 1 or 2 months), medium time to ma-
turity (i.e., longer than three months but less than one year), and finally, options that will
expire between 18 months or 24 months from now.

20

Table 4 MSE loss of the AE for MSFT for di↵erent subset slices and latent dimensions

Latent size
Slice

(1/2 M) (3/6/9/12 M) (18/24 M) (10/25 delta) (50 delta) (75/90 delta)

1 0.0090 0.0043 0.0021 0.0037 0.0047 0.0063

2 0.0081 0.0031 0.0008 0.0014 0.0022 0.0070

3 0.0077 0.0025 0.0009 0.0022 0.0029 0.0050
4 0.0072 0.0033 0.0015 0.0021 0.0029 0.0060

Note: The MSE loss for ticker MSFT for di↵erent deltas and tenors. Months are abbreviated to M.

In Table 4, it can be seen that across all the six slices, no specific latent size consistently out-
performs the others for the ticker MSFT. Considering the slices that isolate specific tenors,
it can be seen that the MSE drops for options with a longer time to expiry. The increase
in performance when reconstructing a shorter time to maturity (1 or 2 months) versus a
longer time to maturity (18 or 24 months) equals about 84% on average for all four latent
sizes. When considering the MSE loss for IVS slices that isolate specific delta’s, it can be
seen that the loss increases when the delta also increases. This is true across all four used
MSFT models. For the model with latent size two, it can be seen that the di↵erence in
MSE loss between at-the-money options and out-of-the-money options is lower than when
the same at-the-money options are compared to in-the-money options.

Table 5 MSE loss of the AE for TSLA for di↵erent subset slices and latent dimensions

Latent size
Slice

(1/2 M) (3/6/9/12 M) (18/24 M) (10/25 delta) (50 delta) (75/90 delta)

1 0.0729 0.0642 0.0611 0.0812 0.0620 0.0518
2 0.0730 0.0432 0.0316 0.0437 0.0351 0.0582

3 0.1246 0.0880 0.0713 0.1038 0.0824 0.0875

4 0.0782 0.0714 0.0638 0.0861 0.0648 0.0595

Note: The MSE loss for ticker TSLA for di↵erent deltas and tenors. Months are abbreviated to M.

Table 5 depicts the MSE loss for the ticker TSLA for the di↵erent subset slices. As for the
full grid, the model with latent size two performs the best compared to the other models
for four of the six slices. From the table, it can be inferred that of all the tenor slices,
the ones that are far from expiry perform the best. For the best-performing model with
a latent size of two, the reconstruction of high-tenor options has a 23% lower MSE than
the reconstructed options that expire within one or two months. No clear pattern can be
inferred concerning the delta slices TSLA. The model with a latent size of two performs
best in predicting at-the-money options compared to the other delta slices.

21

Table 6 MSE loss of the AE for XOM for di↵erent subset slices and latent dimensions

Latent size
Slice

(1/2 M) (3/6/9/12 M) (18/24 M) (10/25 delta) (50 delta) (75/90 delta)

1 0.0362 0.0278 0.0290 0.0301 0.0313 0.0297

2 0.0367 0.0290 0.0290 0.0307 0.0317 0.0308

3 0.0239 0.0178 0.0182 0.0190 0.0199 0.0195

4 0.0217 0.0146 0.0141 0.0144 0.0158 0.0183

Note: The MSE loss for ticker XOM for di↵erent deltas and tenors. Months are abbreviated to M.

For the ticker XOM, an auto-encoder with a latent dimension of four performs best across
all six slices. The results are shown in Table 6. This model also performed best when con-
sidering the whole grid. All the models with di↵erent latent sizes show that XOM options
that are close to expiry are more di�cult to reconstruct. Furthermore, the model with a
latent size of four performed best in reconstructing out-of-the-money options.

Lastly, the MSE loss for the six di↵erent slices for the index tracker SPX are given in Table
7. As before, the model with the latent size that performs the best for the whole grid also
shows the best performance for each separate subset slice. The index tracker SPX performs
better for options with high tenors. This was also the case for MSFT. What is interesting
to note for the S&P 500 tracker is that the auto-encoder for three out of the four models
showed better performance for low delta options than high delta options. This relation is
reversed when the latent size of one is considered.

Table 7 MSE loss of the AE for SPX for di↵erent subset slices and latent dimensions

Latent size
Slice

(1/2 M) (3/6/9/12 M) (18/24 M) (10/25 delta) (50 delta) (75/90 delta)

1 0.0176 0.0155 0.0180 0.0233 0.0182 0.0092

2 0.0047 0.0027 0.0018 0.0009 0.0023 0.0054

3 0.0024 0.0013 0.0014 0.0006 0.0012 0.0027
4 0.0051 0.0031 0.0020 0.0008 0.0022 0.0064

Note: The MSE loss for ticker SPX for di↵erent deltas and tenors. Months are abbreviated to M.

22

5.3 Exploring the latent dimensions

This section will explore the behavior of the latent dimension and its impact on the output,
as well as the relation to the generation of implied volatility surfaces.

In this section, the VIX plays a central role. For this reason, the historical graph for the
VIX is shown in Figure 9. The graph shows the value of the VIX from 2020-01-04 through
2021-12-31, which is the same as the test-sample time frame. From the figure, it can be
seen that March 2020 was a highly volatile month. Apart from this spike in the VIX, four
other noteworthy spikes are around 2020-06, 2020-10, 2021-02, and 2021-12. These months
are characterized by high volatility in the financial markets due to investors’ uncertainty
concerning the COVID-19 crisis.

Figure 9 Historical VIX graph from 2020-01-04 through 2021-12-31
Note: The shaded areas correspond to periods of time where the VIX showed a notable spike. The shaded

areas correspond to the following range of dates: 2020-03-01 through 2020-03-30, 2020-06-05 through 2020-

06-25, 2020-10-25 through 2020-11-05, 2021-01-15 through 2021-02-10, 2021-11-25 through 2021-12-25.

In Figure 10, four di↵erent time series plots for the four di↵erent auto-encoder SPX models
are shown in combination with the VIX in purple. It shows the general dynamics of the
z-values encoded during out-of-sample testing. What can be deduced from the four subplots
is that in all cases, the weights in the latent vector tend to spike upwards or downwards
in the grey boxes. In some cases, the latent values could be multiplied by -1 to obtain a
figure similar to the VIX. Therefore, the dynamics of the latent dimension for the SPX
options show a strong resemblance with the VIX dynamics. Similar plots for the single
equity options are found in Appendix A.

23

(a) SPX model with latent size 1 (b) SPX model with latent size 2

(c) SPX model with latent size 3 (d) SPX model with latent size 4

Figure 10 Time series plot of the latent vector and the VIX for SPX
Note: The shaded areas correspond to periods of time where the VIX showed a notable spike. The shaded

areas correspond to the following range of dates: 2020-03-01 through 2020-03-30, 2020-06-05 through 2020-

06-25, 2020-10-25 through 2020-11-05, 2021-01-15 through 2021-02-10, and 2021-11-25 through 2021-12-25.

To further understand how the latent dimension influences the reconstructed surfaces, an
extra analysis is performed. For this analysis, the model with a latent size of three is
considered for the SPX ticker since that was the best-performing model for the index
options. Some notions about the influence of the latent dimensions can be made by fixing
two of three dimensions at a specific value and changing the third value. The reconstructed
surfaces can be found in Figure 11.

24

Figure 11 Nine surfaces while changing one of the three latent variables for SPX

In every row of the figure, three volatility surfaces are plotted. In each row, two latent vari-
ables are fixed at 0.0 while the others range between �5.0 and 5.0. The first row indicates
that the first latent dimension impacts the general volatility levels since decreasing the value
for z1 results in a higher volatility surface. Furthermore, it can be seen that as z1 decreases,
the-term structure is also changing. For negative values of z1, we see higher volatility for
options close to maturity, whereas, for a high value of z1, the volatility is skewed upwards
for options far from expiry. This indicates that z1 has an e↵ect on the term-structure.

25

In the second row of Figure 11, the general level of volatility remains at similar levels when
the z2 variable is changing. However, what can be seen is that the slope gets heavily influ-
enced when z2 increases or decreases. Even more so than the changes seen when controlling
for z1.

The last latent variable for a three-dimensional latent auto-encoder can be seen in the
bottom row of Figure 11. Here, a decreasing third latent dimension corresponds with a
decrease in the general volatility level. The shape and skewness of the surface remain rel-
atively similar across the three surfaces. It is interesting to note that for the ticker SPX,
the case that z1 and z3 have an opposite impact on the direction in which the surface moves.

Due to the fact that the three latent variables seem to contain di↵erent information about
the implied volatility surface it is of interest to discuss a time-series plot of the three latent
variables and three non-parametric measures of the level, slope and term-structure. These
measures are obtained as follows:

Mlevelt = IV(50,30)t (6)

Mslopet = IV(10,30)t � IV(90,30)t (7)

Mtermt = IV(50,30)t � IV(50,730)t , (8)

where in equations 6 through 8 the variable IV�,T refers to the implied volatility of an option
with a delta equal to � and days to maturity equal to T .

The time-series plot of the six variables can be seen in Figure 12. From the figure it can be
seen that the level and term-structure show similar behavior, but in di↵erent magnitudes.
Recall that the z1 variable moved in opposite direction as the general volatility level and
the term-structure measure Mtermt from equation 8. This behavior can also be seen in the
time-series plot of Figure 12. The values for z2 move in the same direction, but at a lower
magnitude, as the slope time-series. This coincides with the dynamics seen in the nine
surface plots of Figure 11. This strengthens the argument that the dynamics of the slope
of the implied volatility surface are encoded in the latent variable z2. Finally, the values of
z3 show similar behavior as the level measure. The spikes seen in the in z3 also coincide
with spikes seen in the time-series of the level measure.

26

Figure 12 Time series plot of the latent vector and three implied volatility measures for
SPX
Note: The shaded areas correspond to periods of time where the VIX showed a notable spike. The shaded

areas correspond to the following range of dates: 2020-03-01 through 2020-03-30, 2020-06-05 through 2020-

06-25, 2020-10-25 through 2020-11-05, 2021-01-15 through 2021-02-10, and 2021-11-25 through 2021-12-25.

5.4 Calibration results

The results for the calibration procedure described in section 4.6 will be discussed in this
section. For each ticker, the MSE loss is given when the model has the opportunity to
calibrate its latent vector based on an assumed number of subset points. Recall that these
points were always randomly subsampled. Table 8 shows the results for MSFT. For refer-
ence, the MSE loss for the uncalibrated model from Table 3 is added in the second-to-last
column. As was the case for the uncalibrated model, the auto-encoder with a latent size
of three shows the best performance. It is noteworthy that in all cases, the models cal-
ibrated on just a subsample of five points performed better than those not calibrated at
all. Furthermore, a clear advantage for increasing the subset size can be seen in the figure
since the MSE values decrease when the subset size increases. The last column shows the
% performance increase between the uncalibrated model and the calibrated model. In case
of the best-performing model of a latent size of three, an increase of almost 76% can be
attained by solely calibrating the latent vector.

27

Table 8 MSE loss for calibrating MSFT for di↵erent subset sizes and latent dimensions

Latent
Number of points used for calibration

5 10 20 30 40 avg. cal. uncal. perf.

1 0.00426 0.00401 0.00393 0.00389 0.00387 0.00399 0.00493 19.0%
2 0.00141 0.00088 0.00077 0.00074 0.00075 0.00091 0.00389 76.6%
3 0.00148 0.00076 0.00059 0.00051 0.00050 0.00083 0.00343 75.7%
4 0.00166 0.00124 0.00126 0.00101 0.00107 0.00125 0.00382 67.3%

Note: The MSE loss for ticker MSFT when the model is calibrated. The first five columns depicts the loss

when a specific model with latent size is calibrated on a (sub)set of visible points. The average calibration

MSE for a certain latent size is given under avg. cal. and the uncal. column shows when calibration does

not happen, and the full surface gets fed to the encoder and gets decoded. Finally the perf column shows the

increase in performance between calibrating and not calibrating.

The results for calibrating the TSLA model are given in Table 9. For this ticker, it is
also the case that calibrating the model based on some randomly observed options in the
market performs better than not being able to calibrate. This is true for all the latent
sizes. For TSLA, the uncalibrated model performed best when it had a latent size of
two. This is also true for the calibrated models, where a latent size of two outperforms
the other models. Increasing the number of points used for calibration also increases the
reconstruction performance. The average performance increase attained by calibrating the
latent vector of two is 74.2%.

Table 9 MSE loss for calibrating TSLA for di↵erent subset sizes and latent dimensions

Latent
Number of points used for calibration

5 10 20 30 40 avg. cal. uncal. perf. %

1 0.06021 0.05816 0.05627 0.05563 0.05431 0.05692 0.06561 13.3%
2 0.01354 0.01246 0.01198 0.01186 0.01181 0.01233 0.04775 74.2%
3 0.02181 0.01944 0.01886 0.01892 0.01855 0.01952 0.09300 79.0%
4 0.02750 0.02537 0.02180 0.02142 0.02000 0.02322 0.07120 67.4%

Note: The MSE loss for ticker MSFT when the model is calibrated. The first five columns depicts the loss

when a specific model with latent size is calibrated on a (sub)set of visible points. The average calibration

MSE for a certain latent size is given under avg. cal. and the uncal. column shows when calibration does

not happen, and the full surface gets fed to the encoder and gets decoded. Finally the perf column shows the

increase in performance between calibrating and not calibrating.

Next, in Table 10 the MSE losses for the ticker XOM are given. For this particular ticker,
the calibrated models also yield a lower MSE when compared to the uncalibrated models.
This is even the case for the models only calibrated on five points. Also, for this ticker, the
best-performing calibrated model is the same as the one that was not calibrated, namely
the model with a four-dimensional latent size. The auto-encoder calibrated on the full 40
points showed the best performance, 0.00256, regarding MSE loss. The average calibration
MSE loss is 0.00389, which is a 76.0% performance increase compared to the uncalibrated
model.

28

Table 10 MSE loss for calibrating XOM for di↵erent subset sizes and latent dimensions

Latent
Number of points used for calibration

5 10 20 30 40 avg. cal. uncal. perf. %

1 0.02577 0.02437 0.02336 0.02279 0.02266 0.02379 0.03021 21.3%
2 0.00685 0.00659 0.00430 0.00464 0.00277 0.00503 0.03093 83.7%
3 0.00654 0.00434 0.00345 0.00363 0.00375 0.00434 0.01941 77.6%
4 0.00565 0.00415 0.00342 0.00366 0.00256 0.00389 0.01622 76.0%

Note: The MSE loss for ticker MSFT when the model is calibrated. The first five columns depicts the loss

when a specific model with latent size is calibrated on a (sub)set of visible points. The average calibration

MSE for a certain latent size is given under avg. cal. and the uncal. column shows when calibration does

not happen, and the full surface gets fed to the encoder and gets decoded. Finally the perf column shows the

increase in performance between calibrating and not calibrating.

The results after calibration for the index ticker SPX can be seen in Table 11. The model
with the lowest MSE had a latent size of three and a subset of 40 points available to
calibrate. It can be seen that each of the calibrated models performs better than the
uncalibrated ones, with one exception. The model with a latent size of three that only had
five points to calibrate performed worse than the uncalibrated model. It is noteworthy that
calibrating the best performing model of a latent size of three only yields a 7.4% increase
in MSE terms. For the single equity options this is more than 10 times larger.

Table 11 MSE loss for calibrating SPX for di↵erent subset sizes and latent dimensions

Latent
Number of points used for calibration

5 10 20 30 40 avg. cal. uncal. perf. %

1 0.00206 0.00188 0.00182 0.00178 0.00177 0.00186 0.01675 88.8%
2 0.00168 0.00141 0.00126 0.00115 0.00110 0.00132 0.00300 55.9%
3 0.00209 0.00162 0.00129 0.00115 0.00108 0.00155 0.00167 7.4%
4 0.00209 0.00159 0.00130 0.00129 0.00133 0.00119 0.00334 64.4%

Note: The MSE loss for ticker MSFT when the model is calibrated. The first five columns depicts the loss

when a specific model with latent size is calibrated on a (sub)set of visible points. The average calibration

MSE for a certain latent size is given under avg. cal. and the uncal. column shows when calibration does

not happen, and the full surface gets fed to the encoder and gets decoded. Finally the perf column shows the

increase in performance between calibrating and not calibrating.

Finally, the z-values found during calibration of the SPX model with a latent size of three
are given in Figure 13. The dark lines show the dynamics of the calibrated z-values for
the model when it is able to calibrate on 40 points. This is the best performing model
overall in MSE terms. Note that the y-axes are scaled di↵erently due to the fact that the
calibrated z-values show huge spikes, especially during March 2020. From the figure it can
be seen that the found z-values during calibration di↵er quite in magnitude during the first
highly volatile period of March 2020. During that period the variable z1 reached values
higher than -50 for the calibrated version, while for the uncalibrated model this value was
around -5. However, the general behavior of the calibrated z-values seem to coincide with

29

the dynamics seen in the uncalibrated values. The main di↵erence is the magnitude of the
of the movements.

Figure 13 Time series plot of calibrated and uncalibrated z-values for SPX
Note: The darker colored lines correspond to the found z-values when the model was calibrated on 40 points.

Due to the di↵erence in magnitude both the y-axes have di↵erent scalings. The shaded areas correspond to

periods of time where the VIX showed a notable spike. The shaded areas correspond to the following range

of dates: 2020-03-01 through 2020-03-30, 2020-06-05 through 2020-06-25, 2020-10-25 through 2020-11-05,

2021-01-15 through 2021-02-10, and 2021-11-25 through 2021-12-25.

For clarity a similar plot is made but only for the 2021, where the spikes in volatility were
smaller compared to 2020. These are depicted in Figure 14. The figure shows that the
calibrated values remain to show higher spikes than the uncalibrated values. Take as an
example the black line for the calibrated z3 and the green line for the uncalibrated z3. The
black line shows some notable high spikes when the green line stays relatively flat. This
is especially visible around 2021-09. Furthermore, it is noteworthy that the calibrated z1
value in navy color moves in the opposite direction as the uncalibrated z1 value in blue
during the peak in the first grey shaded box. Therefore, a certain trade-o↵ between higher
performance and interpretability can be noted.

30

Figure 14 Time series plot of calibrated and uncalibrated z-values for SPX in 2021
Note: The darker colored lines correspond to the found z-values when the model was calibrated on 40 points.

The shaded areas correspond to periods of time where the VIX showed a notable spike. The shaded areas

correspond to the following range of dates: 2021-01-15 through 2021-02-10, and 2021-11-25 through 2021-

12-25.

31

6 Discussion

This section discusses and interprets the results from the previous section in depth. The
results’ significance and practical implications will be discussed in the first subsection 6.1.
Then, in section 6.2, some limitations of the thesis and model will be discussed.

6.1 Implications of the results

One of the subquestions is related to whether a standard auto-encoder performs better for
single equity options or an index tracker like the SPX. The results show that none of the
single equity options outperforms the SPX in reconstructing volatility surfaces. The best-
performing model for the index yields a loss of 0.00167, while for MSFT this is 0.00343.
The option contracts for Tesla and Exxon Mobil perform in the best-case scenarios 96% and
90% worse than the S&P 500 index options. A possible explanation for the fact that MSFT
shows close performance to the SPX is the fact that Microsoft constitutes about 7.29% of
the index. The combined three single equity options make up about 9.72%. Furthermore,
the general volatility levels of the index are on average lower than that of the single equity
options during the training and testing period, which further explains the lower MSE for
SPX. However, when the models are calibrated, the ticker MSFT is able to outperform the
SPX ticker, where the former obtains an MSE of 0.00050 and the latter an MSE of 0.00108.
Furthermore, the performance increase due to calibration is almost ten times better for
Microsoft options than it is for S&P 500 options. For TSLA and XOM the performance
increase due to calibration is on average 74.2% and 76.0% respectively. This shows that for
single equity options calibrating the latent vector has a larger e↵ect than calibrating the
latent vector for index options.

When considering auto-encoders in a general sense and their capabilities in reconstructing
implied volatility surfaces, there does not exist a clear preference for the size of the latent
dimension. For the ticker XOM, the auto-encoder prefers a latent vector consisting of four
values. While for MSFT and TSLA, they perform better with a latent size of three and
two, respectively. When slices of the implied volatility surface are considered, one general
dynamic could be seen across the four tickers. This is the fact that implied volatilities
for options with a longer time to maturity are better reconstructed than options that are
close to maturity. This underlines the fact that for the four tickers, the term structure is
upward-sloping, indicating that traders expect the underlying to become more volatile over
time. Furthermore, for three out of the four tickers, it is the case that options with a higher
delta are better reconstructed than options out of the money or at the money. Only TSLA
shows behavior in which no clear pattern could be recognized when the delta slices are
considered. The fact that TSLA showed unstable results might be related to the extreme
high volatilities the stock was subject to during 2020.

To better understand the auto-encoder’s latent dimension, the time-series plot of the z-
values were discussed for SPX. The found z-values during reconstruction show similarities

32

with the VIX index. When the VIX shows high spikes during volatile times, the latent
z-values show similar spikes either upward or downward. This means that the models could
capture the complexity of market volatility that manifests in the VIX. The model with a
latent size of three performs best for the SPX and als captures similar dynamics as the VIX.
Furthermore, it can be concluded that the three latent values contain information about
the implied volatility surface. Where the level, slope and term-structure are all encoded in
one of these three variables, or a combination of them. The time-series plot of these three
implied volatility measures also show a strong resemblance with the dynamics of the latent
variables throughout the testing period.

The practical implications of the models come into play when considering the model’s abil-
ity to complete implied volatility surfaces rather than reconstruct them. It is interesting for
a practitioner or trader to see how a trained model performs when only a subset of a specific
volatility surface is present. By only considering the latent vector in combination with the
decoder, a trader can tweak the values in the latent vector such that the surface decoded
from these values best fits the observed points in the market. The results show that with
even as few as five observed points, the models can complete the rest of the surface with a
lower reconstruction error compared to the case where the model is not calibrated. In all
cases, the calibration of the latent vector and decoding of those values preforms better than
feeding the actual, implied volatility surface to the encoder and then obtaining a surface.
This fact underlines the importance of the latent vector and the ability of the decoder to
obtain well-formed surfaces. Furthermore, the calibration yielded at least a 75% perfor-
mance increase compared to not calibrating for all the single equity tickers. In contrast,
this performance increase is only 7.4% for the index options.

6.2 Limitations

One of the implications of this study is that during training, the COVID-19 crisis is left out
on purpose. This choice is made to understand what the performance of the auto-encoder
would be during highly volatile years. However, from a trader’s point of view, it would
make sense to use an expanding window and retrain the model daily. This way, when the
COVID-19 crisis was unfolding, the auto-encoder could learn some of the dynamics of the
implied volatility surfaces during extremely volatile days. This would decrease the proba-
bility that the auto-encoder collapses when it sees extreme implied volatility surfaces, which
it finds di�cult to reconstruct properly.

The models used to generate the results are only trained on the data of the specific ticker.
This means that each auto-encoder has never seen data from other equity options or the
index tracker. To be able to better understand if auto-encoders are viable options for sin-
gle equity options in general, it is wise to see what the performance would be when an
auto-encoder is trained on multiple di↵erent equity options. However, the fact that each
equity option preferred a di↵erent latent size might indicate that it is hard to generalize the

33

implied volatility surfaces of equity options that operate in di↵erent industries.

Finally, during calibration, a random subsample is chosen to calibrate on. For example,
in the case of calibrating on five points, these five points could be scattered to the edges
of the implied volatility surface, resulting in very di↵erent deltas and tenors. It would be
more realistic not to subsample these points randomly but to choose five points that are
relatively close to one another. This is relevant since, in the real world, it is more likely that
options that expire two years from now with a high delta are not visible, and that options
that are at-the-money and close to expiry are visible. This way, the calibration exercise
would mimic real-world scenarios better.

34

7 Conclusion

This section will bring the thesis to a close. The thesis’s purpose and main research question
will be discussed and reflected upon. The most important findings will be reiterated, and
the section will conclude with some final recommendations.

To reiterate, the main research question of this thesis is as follows:

How do auto-encoder models perform in completing the implied volatility surface of single
equity options?

To answer this question, several subquestions are proposed related to the relative per-
formance between index and equity options and the trade-o↵ between performance and
interpretability. It is concluded that the index option outperformed all the single equity
options during reconstruction. However, calibrating the volatility surfaces and then com-
pleting results in a performance increase. This increase in performance is at least ten times
higher for single equity options than it is for the index options. This show that the auto-
encoders have the potential to be used practically for traders who can calibrate their models.

Furthermore, auto-encoders could capture the dynamics of market volatility. The best-
performing model for the SPX showed similar behavior as the VIX. Each of the separate
z-values in the latent vector is responsible for di↵erent behavior in the implied volatility
surface of the ticker SPX. This adds to the interpretability of the latent dimension in this
specific auto-encoder. This can help practitioners understand what kind of volatility sur-
faces will be generated when moving or calibrating the latent space.

To conclude, this research lays an initial basis for understanding the implications and dy-
namics behind auto-encoders for reconstructing and completing implied volatility surfaces
for single equity options in particular. It is shown that for a small selection of well-known
single equity options, no outperformance compared to index options could be realized when
implied volatility surfaces were reconstructed. However, the added value of calibration has
become clear for the three single equity options. This thesis shows the potential upside for
traders to calibrate the latent size for single equity options. Some directions for further
research would be to use an expanding window and retrain the models each time a new
sample becomes available to train on. Furthermore, in past research, the potential of varia-
tional auto-encoders has been shown for forex options but not yet for single equity options.
These considerations could help researchers and traders better understand the dynamics of
implied volatility surfaces and how these can be completed or reconstructed when available
data is sparse.

35

References

Ackerer, D., Tagasovska, N., & Vatter, T. (2020). Deep smoothing of the implied volatility
surface. Advances in Neural Information Processing Systems, 33, 11552–11563.

Almeida, C., Fan, J., Freire, G., & Tang, F. (2023). Can a machine correct option pricing
models? Journal of Business & Economic Statistics, 41 (3), 995–1009.

Bali, T. G., Beckmeyer, H., Moerke, M., & Weigert, F. (2023). Option return predictability
with machine learning and big data. The Review of Financial Studies, 36 (9), 3548–
3602.

Bayer, C., Horvath, B., Muguruza, A., Stemper, B., & Tomas, M. (2019). On deep calibra-
tion of (rough) stochastic volatility models. arXiv preprint arXiv:1908.08806.

Bergeron, M. (2021). Maxime bergeron - completing partial implied vol surfaces with varia-
tional autoencoders [Online Lecture], Quants Hub & BTRM.

Bergeron, M., Fung, N., Hull, J., Poulos, Z., & Veneris, A. (2022). Variational autoencoders:
A hands-o↵ approach to volatility. The Journal of Financial Data Science.

Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of
political economy, 81 (3), 637–654.

Cao, J., Chen, J., & Hull, J. (2020). A neural network approach to understanding implied
volatility movements. Quantitative Finance, 20 (9), 1405–1413.

Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach.
Journal of financial Economics, 7 (3), 229–263.

Diebold, F. X., & Mariano, R. S. (2002). Comparing predictive accuracy. Journal of Busi-
ness & economic statistics, 20 (1), 134–144.

Gatheral, J., & Jacquier, A. (2014). Arbitrage-free svi volatility surfaces. Quantitative Fi-
nance, 14 (1), 59–71.

Gong, Z., Frys, W., Tiranti, R., Ventre, C., O’Hara, J., & Bai, Y. (2022). A new en-
coding of implied volatility surfaces for their synthetic generation. arXiv preprint
arXiv:2211.12892.

Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. The
Review of Financial Studies, 33 (5), 2223–2273.

Gu, S., Kelly, B., & Xiu, D. (2021). Autoencoder asset pricing models. Journal of Econo-
metrics, 222 (1), 429–450.

Kelly, B. T., Pruitt, S., & Su, Y. (2019). Characteristics are covariances: A unified model
of risk and return. Journal of Financial Economics, 134 (3), 501–524.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Kramer, M. A. (1991). Nonlinear principal component analysis using autoassociative neural
networks. AIChE journal, 37 (2), 233–243.

Masters, T. (1993). Practical neural network recipes in c++. Morgan Kaufmann.

36

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5, 115–133.

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The com-
puter journal, 7 (4), 308–313.

Nocedal, J., & Wright, S. J. (1999). Numerical optimization. Springer.
OptionMerics. (2023). Ivydb file and data reference manual. Version 5.4. OptionMetrics.
Zhang, W., Li, L., & Zhang, G. (2023). A two-step framework for arbitrage-free prediction

of the implied volatility surface. Quantitative Finance, 23 (1), 21–34.
Zheng, Y., Yang, Y., & Chen, B. (2021). Incorporating prior financial domain knowledge

into neural networks for implied volatility surface prediction. Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 3968–3975.

Zhu, C., Byrd, R. H., Lu, P., & Nocedal, J. (1997). Algorithm 778: L-bfgs-b: Fortran subrou-
tines for large-scale bound-constrained optimization. ACM Transactions on mathe-
matical software (TOMS), 23 (4), 550–560.

37

A Additional Results

In this section additional graphs and results which are referenced in the main text will be
shown.

(a) MSFT model with latent size 1 (b) MSFT model with latent size 2

(c) MSFT model with latent size 3 (d) MSFT model with latent size 4

Figure 15 Time series plot of the latent vector and the VIX for MSFT
Note: The shaded areas correspond to periods of time where the VIX showed a notable spike. The shaded

areas correspond to the following range of dates: 2020-03-01 through 2020-03-30, 2020-06-05 through 2020-

06-25, 2020-10-25 through 2020-11-05, 2021-01-15 through 2021-02-10, and 2021-11-25 through 2021-12-25.

38

(a) TSLA model with latent size 1 (b) TSLA model with latent size 2

(c) TSLA model with latent size 3 (d) TSLA model with latent size 4

Figure 16 Time series plot of the latent vector and the VIX for TSLA
Note: The shaded areas correspond to periods of time where the VIX showed a notable spike. The shaded

areas correspond to the following range of dates: 2020-03-01 through 2020-03-30, 2020-06-05 through 2020-

06-25, 2020-10-25 through 2020-11-05, 2021-01-15 through 2021-02-10, and 2021-11-25 through 2021-12-25.

39

(a) XOM model with latent size 1 (b) XOM model with latent size 2

(c) XOM model with latent size 3 (d) XOM model with latent size 4

Figure 17 Time series plot of the latent vector and the VIX for XOM
Note: The shaded areas correspond to periods of time where the VIX showed a notable spike. The shaded

areas correspond to the following range of dates: 2020-03-01 through 2020-03-30, 2020-06-05 through 2020-

06-25, 2020-10-25 through 2020-11-05, 2021-01-15 through 2021-02-10, and 2021-11-25 through 2021-12-25.

40

Figure 18 Time series plot of the latent vector and three implied volatility measures for
MSFT
Note: The shaded areas correspond to periods of time where the VIX showed a notable spike. The shaded

areas correspond to the following range of dates: 2020-03-01 through 2020-03-30, 2020-06-05 through 2020-

06-25, 2020-10-25 through 2020-11-05, 2021-01-15 through 2021-02-10, and 2021-11-25 through 2021-12-25.

Figure 19 Time series plot of the latent vector and three implied volatility measures for
TSLA
Note: The shaded areas correspond to periods of time where the VIX showed a notable spike. The shaded

areas correspond to the following range of dates: 2020-03-01 through 2020-03-30, 2020-06-05 through 2020-

06-25, 2020-10-25 through 2020-11-05, 2021-01-15 through 2021-02-10, and 2021-11-25 through 2021-12-25.

41

Figure 20 Time series plot of the latent vector and three implied volatility measures for
XOM
Note: The shaded areas correspond to periods of time where the VIX showed a notable spike. The shaded

areas correspond to the following range of dates: 2020-03-01 through 2020-03-30, 2020-06-05 through 2020-

06-25, 2020-10-25 through 2020-11-05, 2021-01-15 through 2021-02-10, and 2021-11-25 through 2021-12-25.

42

	Introduction
	Literature
	Data
	Methodology
	Neural Networks
	The model
	Application of the model
	Model architecture and hyperparameter search
	Model training and reconstructing
	Calibration
	Completing the IVS

	Results
	General model outcome
	Model performance
	Exploring the latent dimensions
	Calibration results

	Discussion
	Implications of the results
	Limitations

	Conclusion
	Additional Results

