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Abstract

This research compares the performance of two new random forest tail risk estimators for finan-
cial market risk applications. These are the Extremal Random Forests method (ERF) proposed by
Gnecco et al. (2022) and a method proposed by Ahmed (2022). Both methods leverage the prin-
ciples of Extreme Value Theory; however, they use different techniques to extrapolate to the tail
ends of a distribution. The comparison is based on three distinct simulation studies and a practical
application to the Standard & Poor’s 500 Index. Our findings indicate that the ERF method form
Gnecco et al. (2022) is best suited for financial market applications. Nevertheless, the method from
Ahmed (2022) showed promising results when combined with an eGarch-filter.

Keywords: Random Forests; Extreme Value Theory; Extremal Random Forests; Generalized
Random Forests; Financial Market Risk; Value-at-Risk.
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1 Introduction

1.1 Background: Financial Risk Management and combining Random Forests
with Extreme Value Theory

In the domain of financial risk management, particular emphasis is placed on the occurrence of
extreme losses situated in the tails of return distributions. These events can pose a significant
threat to the long-term stability of financial institutions, such as banks and insurance companies.
Therefore the accuracy of risk predictions is of high importance for both financial institutions and
regulators.1 It enables them to align their risk appetite with the actual risks associated with their
operations. To this end, regulators and financial institutions need methods to accurately estimate
the likelihood of extreme events whilst identifying the underlying risk factors contributing to these
events. Two new promising methods were developed in recent literature: the method by Ahmed
(2022) and the Extremal Random Forest (ERF) method by Gnecco et al. (2022). Both methods
leverage the idea of combining random forests (RF) with extreme value theory (EVT).2 Firstly, the
inclusion of random forests means that the methods will be relatively flexible and able to cope with
large predictor spaces allowing us to identify the risk drivers. Secondly, the inclusion of EVT allows
the methods to extrapolate to extreme events beyond the available data range. Furthermore, the
combination of the properties of EVT and random forests enables the incorporation of covariates
through the estimation of the distribution parameters. Although both methods leverage the idea of
combining random forests with EVT, there are some significant differences between the methods.
The main difference lies in the way they extrapolate toward extreme events (i.e. extreme quantiles,
denoted by high quantile levels τ ≈ 1) beyond the available data range. That is, Ahmed (2022)
belongs to the class of methods that extrapolate from a given intermediate value (denoted by
u) to a higher quantile estimate, which is similar to the methods proposed by Gilli and Këllezi
(2006), Chavez-Demoulin et al. (2016), and Echaust and Just (2020). On the other hand, the
ERF method developed by Gnecco et al. (2022) belongs to the class of methods that extrapolate
from a given intermediate quantile level (denoted by τ0) to a higher quantile estimate, so that the
method can be categorized along with other quantile level extrapolation methods such as the ones
from Chernozhukov (2005), Wang and Li (2013), and Velthoen et al. (2021). For instance, if we
were interested in the quantile level τ = 0.99, the ERF method from Gnecco et al. (2022) would

1We have to note here that it has historically been debated whether the use of advanced risk methods has actually
made our financial markets and institutions riskier instead of more controlled. See for example Taleb (2007) or The
Economist (1999). However, this discussion is beyond the scope of this paper.

2EVT is a branch of statistics that focuses specifically on analyzing the distribution of extreme events, rather
than the overall distribution of the data. It finds applications in various disciplines, including hydrology (de Haan &
Ferreira, 2006), insurance, and finance (Embrechts et al., 2013), where estimating the probability of extreme events
is crucial.
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extrapolate to this quantile from an intermediate lower quantile level (e.g. τ0 = 0.8). In contrast,
the method from Ahmed (2022) would extrapolate from an intermediate threshold given by a certain
value (e.g. u = 20). Consequently, this paper aims to address the question which of the two new

random forest tail risk estimation methods is best suited for financial market risk prediction?

To assess this question, we can build upon the extensive comparative financial market analysis
literature of, among others, Gencay and Selçuk (2004), Campbell (2005), Berkowitz et al. (2011),
Abad et al. (2014), and Berger and Moys (2021). However, most of these papers primarily focus on
backtesting the accuracy of predictions. An interesting alternative are the nine properties of good
explanations developed by Robnik-Šikonja and Bohanec (2018). Nevertheless, these nine properties
were not specifically developed for financial risk methods, nor do they offer a clear indication of
how to measure adherence to these properties. Therefore, we combine the extensive literature on
backtesting with a subset of the properties of good explanations as described by Robnik-Šikonja
and Bohanec (2018).

In our research, the assessment of these properties will be conducted along three distinct sim-
ulation studies and an application using real financial market data. To ensure a fair and robust
comparison, the first two simulations will be emulations of the ones developed by Ahmed (2022)
and Gnecco et al. (2022). These simulations should establish a benchmark of the methods’ perfor-
mance on their “home turf.” Subsequently, we will conduct a simulation study specifically designed
to emulate financial market data. Furthermore, we will compare the performance of the methods
for the widely recognized S&P500 index. This multi-faceted comparison should provide insights
into the methods’ effectiveness and applicability in financial risk management.

1.2 Tail Risk Modelling

Tail risk modelling involves estimating extreme quantiles (i.e. τ ≈ 1) of a response variable Y ∈ R

based on a set of covariates X ∈ Rp. In this paper, our objective is to estimate the conditional
Value-at-Risk (VaR) of financial losses Y for high quantile levels τ , denoted as V aRx(τ) with τ ≈ 1.
Essentially, this is the same as a quantile estimation, as the VaR is by definition a quantile. However,
estimating high quantile levels often poses challenges due to the limited availability of observations
in the tail ends of the data range. (Taleb, 2007) illustrated this problem with the following example:
“Before the discovery of Australia, people in the Old World were convinced that all swans were white,

an unassailable belief as it seemed completely confirmed by empirical evidence.” Similarly, traditional
empirical estimators, such as the Historical Simulation method and the RiskMetrics approach, face
limitations in properly incorporating the probability of losses exceeding the previously observed
data range (Abad et al., 2014). Consequently, using these types of methods would lead to large
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biases (Gnecco et al. (2022)). Moreover, the lack of observations prevents us from making use of a
large number of covariates. The predictor space required to train the model exceeds the coverage
provided by the available data, and the relationship between the covariates and the parameters that
describe the tail regions of the distribution are often highly nonlinear. As a result, standard quantile
regression models, like the one developed by Koenker and Bassett (1978), struggle to capture the
behavior of the tail under various predictor configurations, again leading to significant bias.

To overcome the challenge of extending loss estimation beyond the bounds of available data, risk
managers have the option to employ asymptotically motivated approximation methods derived from
extreme value theory (EVT). Some examples of EVT extrapolation methods are the aforementioned
quantile level extrapolation methods from Chernozhukov (2005), Wang and Li (2013), Velthoen et
al. (2021), and now Gnecco et al. (2022), or the intermediate value extrapolation methods from
Gilli and Këllezi (2006), Chavez-Demoulin et al. (2016), Echaust and Just (2020), and now Ahmed
(2022).

Furthermore, to make full use of the available covariates, we need methods capable of handling
complex and large predictor spaces with limited training data. Over the years, several approaches
have been developed to address high-dimensional predictor spaces. For example, Farkas et al. (2021)
use regression trees to adapt to larger predictor dimensions. Similar to Gnecco et al. (2022) and
Ahmed (2022), Meinshausen and Ridgeway (2006), Athey, Tibshirani, and Wager (2019), and Staudt
and Wagner (2021) use random forests to be able to handle this issue. Additionally, the GBEX
method proposed by Velthoen et al. (2021) uses gradient boosting, which also showed promising
results.

Among these approaches, the forest-based methods stand out due to their ability to perform
well with a relatively small amount of observations for tuning, while also having well-understood
statistical properties (Athey et al., 2019). Moreover, using a forest-based method also addresses
the nonlinear relation between the covariates and the parameters describing the tail ends of the
distribution.

As both methods of interest combine the benefits of EVT and random forests, this paper con-
tributes to the rich literature of tail risk forecasting by conducting a comprehensive and all-round
comparison between two promising tail risk estimation methods: the ERF method proposed by
Gnecco et al. (2022) and the method introduced by Ahmed (2022). To the best of our knowl-
edge, no prior comparison has been made between these two methods, thus further advancing our
understanding of their capabilities and limitations.
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1.3 Research Outline

This research sets up a comprehensive comparison between the ERF method (Gnecco et al., 2022)
and the method from Ahmed (2022) through multiple simulation studies and an application on
real financial market data. Primarily we found that that the ERF methodology is best suited for
financial market risk prediction. However, the method from Ahmed (2022) exhibited promising
results when combined with an eGarch(1,1) filtering technique.

The remainder of this paper is structured as follows: Section 2 provides a description of the
methods employed in this research. In particular, this section focuses on the explanation of the
methods proposed by Ahmed (2022) and Gnecco et al. (2022). Thereafter, Section 3 presents an
examination of the three simulation studies conducted in this study. Additionally, in this section,
we compare the performance of the methods using the simulated data. Moving forward, Section 4
clarifies the utilized stock market data and offers insights into the used data pre-processing tech-
niques. Lastly, in Section 5 we present our conclusion based on the findings obtained in the previous
sections. Furthermore, this section provides suggestions for further research, thereby contributing
to the ongoing discourse in the field.

2 Methodology

As discussed in the Introduction, two models have been introduced that combine the advantages
of extreme value theory and random forests for estimating extreme quantiles. This section aims
to clarify the main variable of interest we are modelling, give some background on Extreme Value
Theory, explain the underlying procedure of the methods, and describe the methods used for the
comparative analysis.

2.1 VaRiable of Interest

First, we start by defining the dependent variable we are trying to model. As alluded to in the
Introduction, we are interested in estimating the greatest possible daily outcome of the financial
(log) loss returns Y ∈ R at confidence levels close to one (i.e. quantile level τ ≈ 1), conditional on
certain informative covariates X ∈ Rp. This is by definition the Value-at-Risk (VaR) conditional on
X at high confidence levels, denoted by V aRX(τ). VaR is a commonly used risk metric in financial
applications and can be understood more simply as a quantile of the loss distribution (Berger &
Moys, 2021). This means that the idea behind our variable of interest is given by ”the highest
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potential loss that is not surpassed with a specified probability”. Formally, we use:

V aRX(τ) = inf{y ∈ R : P(Y > y|X = x) ≤ 1− τ} = inf{y ∈ R : FY (y, x) ≥ τ}. (2.1)

In other words, the VaR of a financial market portfolio at confidence level τ (τ ∈ (0, 1)), is the
minimum value y for which the probability of the loss Y surpassing y conditional on X = x is no
larger than 1− τ .

2.2 Extreme Value Theory

Within EVT there are two primary approaches for selecting empirical data points to analyze the
distribution of extreme events (Ahmed, 2022): the Block Maxima (BM) approach and the Peak
Over Threshold (POT) approach. The former divides the data into uniformly sized blocks and uses
the maximum value within each block, while the latter uses all observations that exceed a certain
threshold. Both (Gnecco et al., 2022) and (Ahmed, 2022) use the more modern POT approach as
it is considered more efficient (McNeil et al., 2015). Consequently, we will only consider the POT
approach in this paper.

The fundamental concept of the POT method is to characterize the distribution of exceedances
beyond a certain threshold. That is, if we again use the financial (log) loss returns Y and assume
it has distribution function F . The POT method would use a threshold u to define the excess
distribution function of the threshold exceedances Z = Y − u:

Fu(z) = P(Y − u ≤ z|Y > u) = F (z + u)− F (u)
1− F (u) , 0 ≤ z ≤ yF − u, (2.2)

with yF ≤ ∞ as the right endpoint of the distribution function F .
The POT method then uses the Pickands-Balkema-De Haan theorem (Balkema & De Haan,

1974) which states that, under the mild assumption that the loss distribution is in the maximum
domain of attraction of some extreme value distribution (which most continuous distributions in
statistics are (McNeil et al., 2015)), Fu(z) can be modelled by a Generalized Pareto Distribution
(GPD) G(z; (σ, ξ)). The distribution function of the GPD for the heavy-tailed case is given by:

G(z; θ) = 1−
(

1 + ξ

σ
z

)−1/ξ

+
, z > 0, (2.3)

where θ = (σ, ξ) ∈ (0,∞)×R contains the scale and shape parameter, respectively. When ξ = 0 the
distribution is light-tailed and when ξ < 0 the distribution is constrained by a finite upper endpoint
(Gnecco et al., 2022).
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The GPD distribution is used in conjunction with Bayes’ theorem, where Bayes’ theorem is
employed to obtain the probability P(Y > y) that the loss Y exceeds a high threshold y (given
y > u). This combination is used to obtain an approximate of a quantile τ → 1 of loss Y :

Q(τ) ≈ Q(τ0) + σ

ξ

[( 1− τ

1− τ0

)−ξ

− 1
]

, (2.4)

where P(Y > y) = 1 − τ , P(Y > u) = 1 − τ0, and Q(τ0) := F −1
Y (τ0) denotes the intermediate

quantile at level τ0 < τ .
In practice, this means that we have to estimate the scale σ and shape ξ parameters from the

empirical data to extrapolate to extreme events.

2.3 Extremal Random Forest - (Gnecco et al., 2022)

The Extremal Random Forest (ERF) method was introduced by Gnecco et al. (2022). As mentioned
in the Introduction, this method combines the extrapolation techniques from extreme value theory
and the flexibility of random forests for extreme quantile estimation. This section gives a detailed
description of the method and explains the way in which it uses the weights from a quantile random
forest to calculate the parameters of interest in EVT extrapolation conditional on a set of predictors.

2.3.1 Extreme Quantile Extrapolation

The method uses EVT to extrapolate the VaR conditional on covariates X = x with probability
levels close to one, by using an altered version of equation (2.4) from Balkema and De Haan (1974)
and Pickands III (1975). This altered equation is again based on the GPD, which, under the mild
regularity assumption on the tail of Y |X = x that the distribution function should be continuous and
in the domain of attraction of an extreme value distribution, can be used to make approximations
of values beyond a certain threshold (Gnecco et al., 2022):

V aRx(τ) ≈ V aRx(τ0) + σ(x)
ξ(x)

[( 1− τ

1− τ0

)−ξ(x)
− 1

]
, (2.5)

where V aRx(τ0) is an intermediate quantile with τ0 < τ , that can be accurately estimated by
classical quantile regression methods, σ(x) denotes the conditional scale (with σ(x) ∈ (0,∞) × R)
of the GPD, and ξ(x) the conditional shape (with ξ(x) ∈ (0,∞)× R) parameter of the GPD.

To make full use of the advantages of EVT, the intermediate quantile τ0 should be chosen
carefully. It should be high enough to ensure the accuracy of the approximation in equation (2.5)
and, at the same time, sufficiently low to allow accurate estimation of V aRx(τ0) through classical
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quantile regression methods.
After choosing τ0, the ERF algorithm estimates V̂ aRx(τ0) with the Generalized Random Forest

(GRF) with a quantile loss from Athey et al. (2019) (see Section 2.3.3) as its quantile regression
method (although one could theoretically choose any method). This outcome is then used to
calculate the exceedances Zi = (Yi − V̂ aRx(τ0))+, i = 1, ..., n with n denoting the number of
observations. Zi is used in the next part when we estimate the GPD parameter vector θ(x) =
(σ(x), ξ(x)).

2.3.2 Scale and Shape Parameter Estimation

After estimating V̂ aRx(τ0), the only missing elements from equation (2.5) are the scale and shape
parameters σ(x) and ξ(x). When using EVT, θ(x) can be estimated by Maximum Likelihood (ML),
where the negative log-likelihood contribution of the ith exceedance (i.e. Zi) is calculated via the
following equation:

ℓθ(Zi) = log σ +
(

1 + 1
ξ

)
log
(

1 + ξ

σ
Zi

)
, θ ∈ (0,∞)× R, (2.6)

if Zi > 0, and zero otherwise.
Similarly, the ERF algorithm also uses this equation (see Algorithm 1). However, as we are

interested in the parameters conditional on X = x, the method incorporates the similarity weights
wn(x, Xi) from a GRF (Athey et al., 2019) (see Section 2.3.3) in order to find θ̂(x). It does so via
the following weighted negative log-likelihood equation:

Ln(θ; x) =
n∑

i=1
wn(x, Xi)ℓθ(Zi)1{Zi > 0}, x ∈ X ⊂ Rp, (2.7)

with X compact, and ℓθ(Zi) as in equation (2.6).
Gnecco et al. (2022) point out that the parameter space θ(X ) = {ϑ ∈ (0,∞) × R : ϑ =

θ(x) for some x ∈ X} is unknown in practice, and that there is no guarantee for a global optimum.
Therefore Gnecco et al. (2022) follow Bücher and Segers (2017) by defining:

θ̂(x) = arg min
θ∈Θ

Ln(θ; x), (2.8)

with an arbitrarily large compact set Θ ⊂ (0,∞)× (0,∞) such that θ(X ) ⊂ Int Θ and Ln(θ; x) as
in equation (2.7).

If multiple minima are found, the algorithm follows the lexicographic order. This means it will
first sort the minimizers from small to large via the scale parameter, and sort the minimizers with
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equal scale parameters from small to large via the shape parameter, after which it uses the first
minimizer as θ̂(x).

As Gnecco et al. (2022) correctly point out, the estimation of the shape parameter ξ is both
crucial for the quality of the output and remarkably challenging. To this end, multiple penalization
methods were built in order to reduce the variance of the ξ estimator at the cost of increased bias.
In particular, Gnecco et al. (2022) want to penalize the variation of ξ(x) over the entire predictor
space X . That is, they reduce ξ̂(x) towards a constant shape parameter ξ0. We will follow Gnecco
et al. (2022) in their configuration of ξ0 = ξ̂ attained by minimizing equation (2.7) with similarity
weights set to wn(x, y) = 1 for all x, y ∈ X . In doing so they change equation (2.8) by adding a
penalization parameter λ as follows:

θ̂(x) = arg min
θ∈Θ

1
(1− τ0)Ln(θ; x) + λ(ξ − ξ0)2, (2.9)

with penalization parameter λ ≥ 0. This penalization scheme can be interpreted as follows: when
λ is large, the model will become simpler as it disallows large variations in the shape parameter,
and when λ is small the model becomes more complex with little penalization on a varying shape
parameter ξ across the predictor space X .

2.3.3 Similarity Weights

To estimate high quantile levels of a distribution conditional on a set of covariates X = x, we would
normally need training observations around X = x. By contrast, for tail risk modelling we need
to extract information from the training observations where Xi ̸= x. Logically, one can learn more
from the training observations that have covariates close to x than the ones that have covariates
that are further distanced from x in the predictor space. Hence, we would like to assign ‘similarity
weights’ to our training observations relative to a new instance X = x. To this end, we need a
similarity weight function wn(x, Xi) that estimates the relevance of each training observation Xi

to the estimation of V aRx(τ). The classical quantile regression estimator can then use this weight
function through:

V̂ aRx(τ) = arg min
q∈R

n∑
i=1

wn(x, Xi)ρτ (Yi − q), (2.10)

with ρτ (c) = c(τ − 1{c < 0}), c ∈ R as the quantile loss function (Koenker & Bassett, 1978).
The GRF method (Athey et al., 2019) builds on the work from Meinshausen and Ridgeway

(2006), who use estimator (2.10) with a weight function wn(x, Xi) obtained from a random forest
regression. That is, they build a forest containing B trees with the training observations, and for
each tree b ∈ {1, ..., B} they drop all the training observations Xi and the new instance x down
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the tree and define Lb(x) as the set of training observations that end in the same ‘leaf’ as x. The
weight given to the ith training observation Xi is then:

wn(x, Xi) = 1
B

B∑
b=1

1{Xi ∈ Lb(x)}
|Lb(x)| , (2.11)

where the sum of the weights of all training observations is equal to one.
The same process is used in the GRF method by Athey et al. (2019), however they use a

different splitting scheme when constructing the forest. That is, Meinshausen and Ridgeway (2006)
use the standard CART regression splits introduced by Gordon et al. (1984) which means the trees
are grown by minimizing the mean squared error loss, causing the weight function to favour those
observations where E[Y |X = Xi] ≈ E[Y |X = x] instead of focusing on the entire conditional
distribution. Instead, Athey et al. (2019) use a splitting scheme based on minimizing the quantile
loss function. This leads to similarity weights that better capture the heterogeneity in the relation
between Y and X. Gnecco et al. (2022) fit a GRF on the training data to obtain the similarity
weight function wn(., .), which is used in equation (2.7).

Furthermore, Gnecco et al. (2022) also use the GRF method to estimate V̂ aRx(τ0), where the
weight function is used as in equation (2.10). As stated in Section 2.3.1, the latter can also be
done using a different quantile regression method, however, as the GRF requires little tuning and
is a proper method for the high-dimensional setup, Gnecco et al. (2022) use this method for the
intermediate VaR estimate.

After fitting the GRF method on the training data, we obtain the similarity weight function
used in equation (2.8) and can estimate the intermediate quantile V̂ aRx(τ0). This means we have
all the necessary ingredients to estimate V̂ aRx(τ) as in equation (2.5).

2.3.4 ERF Algorithm

All the previous steps are used to get to the ERF algorithm. Described in Algorithm 1, the
procedure consists of two main steps, called ‘ERF-Fit’ and ‘ERF-Predict’. Firstly, ERF-Fit is used
to estimate both the similarity weights as described in Section 2.3.3 and the intermediate V̂ aRx(τ0)
as described in Section 2.3.1. Afterward, ERF-Predict uses the output from ERF-Fit to calculate
the exceedances Zi as described in Section 2.3.1, which in turn is used to estimate the conditional
scale and shape parameters θ̂(x) = (σ̂(x), ξ̂(x)) as described in Section 2.3.2. Having estimated
V̂ aRx(τ0) and θ̂(x) = (σ̂(x), ξ̂(x)), the algorithm then returns V̂ aRx(τ) as described by equation
(2.5).
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Algorithm 1 Extremal Random Forest (ERF)
Require: Training data D = {(Xi, Yi)}ni=1, predictor value x ∈ Rp, intermediate and extreme

quantile levels τ0 and τ (with τ0 < τ), and the vector of hyperparameters α.
1: procedure ERF-Fit(D, τ0, α)
2: wn(·, ·)← GRF(D, α)
3: V̂ aR.(τ0)← QuantileRegresssion(D)
4: output erf ← [D, wn(·, ·), V̂ aR.(τ0)]
1: procedure ERF-Predict(erf, x, τ)
2: Zi ← (Yi − V̂ aRXi(τ0))+, with i = 1, ..., n
3: θ̂(x)← arg minθ

1
(1−τ0)Ln(θ; x) + λ(ξ − ξ0)2 as in (2.9)

4: output V̂ aRx(τ) as in (2.5)

2.3.5 Hyperparameter Tuning

To tune the hyperparameters of the random forest, we will apply the cross-validation scheme used
by Gnecco et al. (2022). In their research, they make use of the negative log-likelihood contribution
(or deviance) from the GPD (as shown in equation (2.6)) as the relevant metric for cross-validation.
They do not use the quantile loss, as this is not a reliable metric for large τ values. Then, the
scheme entails a random division of the training data into M equally sized subsets N1, ..., NM , on
which the sequence of J hyperparameter configurations α1, .., αJ will be fitted through the ERF-Fit
procedure of Algorithm 1 on training data (Xi, Yi), i /∈ Nm for all M folds. Following the ERF-Fit
procedure of Algorithm 1, we use these erf-objects to estimate the parameter vector θ̂(Xi; αj) on the
validation data (Xi, Yi), i ∈ Nm for all M folds. This is then used to calculate the cross-validation
error for each αj configuration by:

CV (αj) =
M∑

m=1

∑
i∈Nm

ℓθ̂(Xi;αj)(Zi)1{Zi > 0}, (2.12)

with θ 7→ ℓθ(z) representing the deviance of the GPD as described in Section 2.3.2, and with
exceedances Zi as defined in Section 2.3.1. The optimal hyperparameter configuration α∗ is chosen
as the configuration that minimizes equation (2.12).

In order to make the scheme computationally feasible, Gnecco et al. (2022) start by fitting the
intermediate quantile function x 7→ V̂ aRx(τ0) on the entire training data set. This is followed by
the estimation of the similarity weight function (x, y) 7→ wn(x, y) through relatively small forests of
50 trees.

Gnecco et al. (2022) mainly focuses on tuning the minimum node size (denoted by κ ∈ N),
and the penalization parameter λ (with λ as in Section 2.3.2). We follow them by setting all
other parameters to a default setting, whilst tuning the κ and λ parameters according to the
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aforementioned cross-validation scheme.

2.3.6 Changes to ERF Algorithm

As mentioned in the Introduction, we intend to compare the feasibility of the methods for financial
market risk modelling. In general, it is accepted that financial market data is heavy-tailed, see for
example the research from Mandelbrot (1963) or the discussion paper of Bradley and Taqqu (2003).
However, the ERF algorithm as described in this section makes use of the GPD, which not only
accommodates heavy-tailed data (when ξ > 0) but also light-tailed data (when ξ = 0) and data
with finite upper-end points (when ξ < 0) (Gnecco et al., 2022). Consequently, the algorithm does
not specifically target heavy-tailed and thus financial market data in the same way the method from
Ahmed (2022) does. Therefore, in order to make a fair comparison, we will make some adjustments
to the ERF method to accommodate for the heavy-tailed characteristics of financial market data.

To target heavy-tailed data, we assume that ξ > 0. Then the exceedances Y > V aRx(τ0) belong
to the maximum domain of attraction (MDA) of the Fréchet distribution. Following McNeil et al.
(2015), this means that the distribution is approximately Pareto and hence we can use the inverse
of the standard form Hill tail estimator (also known as the Weissman estimator (Weissman, 1978))
given by equation (5.24) on page 160 of (McNeil et al., 2015), given by:

V̂ aRx(τ) = V̂ aRx(τ0)
(1− τ0

1− τ

)ξ̂(x)
. (2.13)

In addition, given that we are dealing with a special case of the GPD, we can follow Theorem 1
from Gnecco et al. (2022) and set the scale parameter to σ(x) = ξ(x)V aRx(τ0). Consequently, we
can find the equation for the negative log-likelihood contribution of the ith exceedance in:

ℓξ(Zi) = log(ξ) + (1 + 1
ξ

)log
(

1 + Zi

V̂ aRx(τ0)

)
, ξ ∈ (0,∞)× R, (2.14)

if Zi > 0, and zero otherwise.
Neglecting the penalty parameter λ for a moment, it is clear that there is an explicit solution

to these first-order conditions and so there is no need for optimization as in equation (2.8). To this
end, Gnecco et al. (2022) define the random forest Hill estimator given by:

ξ̂H(x) = n

k

n∑
i=1

wn(x, Xi)1{Zi > 0}log
(

1 + Zi

V̂ aRx(τ0)

)
, (2.15)

with k = n(1− τ0).
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Nevertheless, it is different when we use the penalization parameter λ, as there is no singular so-
lution and solving explicitly may lead to complex solutions. Therefore, when using the penalization
parameter, we estimate ˆξ(x) by plugging equation (2.14) into equation (2.7).

Beyond the mentioned alterations, all other aspects remain unchanged when we apply these
ERF configurations tailored to the heavy-tailed Pareto distribution.

2.4 Conditional Value-at-Risk using Random Forest - (Ahmed, 2022)

The tail risk model proposed by Ahmed (2022) is based on similar principles as the Extremal
Random Forest model from Gnecco et al. (2022) (i.e. combining EVT and random forests). However,
there are some key differences which we will explain in this sub-chapter.

2.4.1 Differences compared to ERF Algorithm

One of the differences in the methodologies is that Ahmed (2022) specifically focuses on data with
a heavy-tailed distribution function F that belongs to the maximum domain of attraction (MDA)
of an extreme value distribution Hξ. Having a heavy-tailed distribution in the MDA of Hξ means
that the shape parameter (also called the extreme value index) should be positive (ξ > 0).

This assumption allows the use of Theorem 1.2.1 from de Haan and Ferreira (2006) which states
that the assumption on distribution function F of ξ > 0 and F ∈MDA(Hξ) is true if and only if:

lim
t→∞

P(Y > ty|Y > t) = y−1/ξ. (2.16)

Another distinction is that Ahmed (2022) choose to extrapolate from a fixed-value threshold u

instead of using a fixed probability threshold τ0 as done by (Gnecco et al., 2022). Again following
Theorem 1.2.1 from de Haan and Ferreira (2006), using a high enough threshold u allows the use
of the aforementioned Hill tail estimation formula from EVT (McNeil et al., 2015) to extrapolate
to a VaR quantile beyond the available data range:

V̂ aR(τ) = u

(
ĝ

1− τ

)ξ̂

. (2.17)

with ξ̂ again as the shape parameter and ĝ = ̂P(Y > u) as an estimate for the exceedance probability
of Y being larger than threshold u.

One could now calculate the unconditional V̂ aR(τ) by using the empirical exceedance probability
for ĝ and a Hill estimator for ξ̂. However, as Ahmed (2022) want to include a conditional dependence
Y |X = x, they define ξ(x) as the conditional shape parameter (more detailed description in Section
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2.4.2) and g(x) = P(Y ≥ u|X = x) as the conditional probability of Y |X = x exceeding u. Equation
(2.17) then changes to:

V̂ aRx(τ) = u

(
ĝ(x)
1− τ

)ξ̂(x)
, (2.18)

with ĝ(x) = P ̂(Y > u|X = x) denoting the estimated conditional probability of exceeding u.

2.4.2 Estimation of ξ(x)

To estimate the VaR, it is necessary to estimate ξ(x). With this objective in mind, Ahmed (2022)
derived the following approximation from EVT:

ξ(x) ≈ E

(
log
(

Y

u

) ∣∣∣∣∣Y > u, X = x

)
= E (S|X = x) , (2.19)

with Si = log
(

Yi
u

∣∣∣∣Yi > u

)
similar to Zi as defined in Section 2.3.1.

Ahmed (2022) points out that E (S|X = x) can be estimated using a random forest regression
algorithm. In the algorithm, they use a splitting process that maximizes the decrease of the least
squared error. That is, if we create B regression trees Tr (r indicating regression tree) in a forest,
then for each tree b ∈ {1, ..., B} the random forest regression algorithm constructs an architecture
Θb in relation to splits and nodes. For an observation i, with covariates xi, each regression tree
Tr(.; Θb) then gives a local estimate for the shape parameter ξ̂(xi) = Tr(xi; Θb). Using the standard
random forest procedure pioneered by Breiman (2001), we then aggregate the outcome of all the
trees to obtain our localized conditional shape parameter estimate. For the general case of X = x,
the estimator for the conditional shape parameter then becomes:

ξ̂(x) = 1
B

B∑
b=1

Tr(x; Θb). (2.20)

2.4.3 Estimation of g(x)

The conditional probability g(x) of Y exceeding the threshold u given X = x is estimated by first
building a random forest classification model, after which they follow Niculescu-Mizil and Caruana
(2005) in calibrating the estimates using the Platt Calibration method (Platt et al., 1999) to produce
robust probability estimates.

Ahmed (2022) use the random forest classification model to estimate the exceedance probability
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g(x) via the conditional expectation E(Vi|X = x), with:

Vi =


1 if Yi > u,

0 if Yi ≤ u
.

In the splitting process, the best split is defined as the split that maximizes the Gini gain
(Ahmed, 2022). The outcome of the random forest classification model then becomes:

f̂(x) = 1
B

B∑
b=1

Tc(x; Θb), (2.21)

with Tc(x; Θb) representing the local prediction of a single classification tree analogous to the de-
scription in Section 2.4.2 of the local prediction of a single regression tree Tr(x; Θb).

As f̂(x) should not be used as a probability, Ahmed (2022) use the Platt Calibration method
as described by Niculescu-Mizil and Caruana (2005) to obtain calibrated probabilities for P(V =
0|X = x). That is, we estimate the regression:

P(V = 0|X = x) = 1
1 + exp(β0f(x) + β1) ,

with β0 and β1 as the parameters to be estimated by minimizing:

(β̂0, β̂1) = min
(β0,β1)

−
n∑

i=1
Vilog (pi) + (1− Vi)log (1− pi) , (2.22)

with pi = 1
1+exp(β0f̂(x)+β1) .

Then to estimate g(x), we use P(V = 1|X = x) = 1 − P(V = 0|X = x). Hence, the equation
used for the conditional probability of Y exceeding u given X = x, is defined as:

ĝ(x) = exp(β̂0f̂(x) + β̂1)
1 + exp(β̂0f̂(x) + β̂1)

. (2.23)

We follow Ahmed (2022), in using the Brier score (Brier, 1950) to evaluate the calibrated
probabilities ĝ(x). That is, we use it for hyperparameter tuning (see Section 2.4.5). See Section
2.5.1 for a more detailed description.

2.4.4 Algorithm

Again, all the previous steps are used to get to the algorithm developed by Ahmed (2022). Different
from Algorithm 1, Algorithm 2 only consists of a ’Predict’ step which consists of the three steps
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that were described in Sections 2.4.2 and 2.4.3. These are, the random forest regression used to
estimate ξ̂(x), the random forest classification used to calculate f̂(x) which are calibrated in the
third step with the Platt Calibration method to obtain ĝ(x). Using equation (2.18) and ξ̂(x) and
ĝ(x), the algorithm then returns V̂ aRx(τ).

Algorithm 2 Ahmed (2022)
Require: Training data D = {(Xi, Yi)}ni=1, predictor value x ∈ Rp, intermediate threshold u,

extreme quantile level τ , and the vector of hyperparameters α.
1: procedure Predict(D, u, α)
2: ξ̂(x)← RF regression (D, u, α)
3: f̂(x)← RF classification (D, u, α)
4: ĝ(x)← Platt Calibration method (D, f̂(x))
5: output V̂ aRx(τ) as in (2.18)

Given that the modifications to the ERF method (see Section 2.3.6) were specifically designed
to adapt it to the heavy-tailed Pareto environment for which the method of Ahmed (2022) was
developed, there is no need to make any alterations to the methodology presented in Ahmed (2022).
Hence, we can directly use Algorithm 2 as is.

2.4.5 Hyperparameter Tuning

Similar to Gnecco et al. (2022), Ahmed (2022) also limit their hyperparameter tuning to the mini-
mum node size. Hence we will make use of the cross-validation scheme as described in Section 2.3.5,
without using the cross-validation error from equation (2.12), Instead, for the estimation of ĝ(x),
we will follow Ahmed (2022) by using the Brier score (Brier, 1950) to find the ‘optimal’ minimum
node size for the random forest classification model. Furthermore, using this ‘optimal’ minimum
node size setting for the classification forest, we follow the same cross-validation scheme to find
the ‘optimal’ minimum node size for the regression forest by using the Proportion of Failures test
(PoF), which is discussed later in Section 2.5.1.

Lastly, we follow Ahmed (2022) in their selection of the appropriate threshold u by means of a
Hill plot. That is, they create a Hill plot using all the training data and choose from a wide range
of values.

2.5 Methods of Comparison

As we mentioned in the Introduction, we will combine the accuracy measures of the extensive
literature on VaR backtesting (see Gencay and Selçuk (2004), Campbell (2005), Berkowitz et al.
(2011), Abad et al. (2014), and Berger and Moys (2021)) with four of the nine properties of good
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explanations as described by Robnik-Šikonja and Bohanec (2018). These four properties can be
described as follows:

1. Prediction Accuracy: the ability of the model to make accurate predictions at different quantile
levels.

2. Robustness: the resilience to outliers and noise variables.

3. Consistency: the consistency of the accuracy under changing market conditions.

4. Importance: the capacity of the model to communicate the key variables that influenced the
predicted outcome.

In this section, we will explain the individual components.

2.5.1 Prediction Accuracy

When comparing the accuracy of the two methods, we have to make a distinction between the real
data application and the simulation studies. That is, for the simulation studies we know the actual
VaR at any quantile level τ because we know the data generating process (DGP), whereas for the
real data application we have to make inferences from the empirical sample at hand.

For the simulation studies we will follow Gnecco et al. (2022) in using the square root of the
Integrated Squared Error (ISE) and the Mean ISE (MISE). Specificallly, the ISE is defined as:

ISE = 1
n

n∑
i=1

(
V̂ aRxi(τ)− V aRxi(τ)

)2
, (2.24)

where x → V aRx(τ) is the true VaR inferred from the DGP. The ISE is computed based on
one simulation, whereas the MISE is obtained by averaging the ISE over a number of repeated
simulations.

To evaluate the accuracy for the real data application, we will make use of the ‘hit rate’
(Christoffersen, 1998) given by:

Hi(τ) =


1 if Yi > V aRxi(τ)

0 if Yi ≤ V aRxi(τ)
. (2.25)

This indicator function simply counts the number of times the return variable has a value lower
than the VaR estimate. Using the hit rate allows us to evaluate two important properties of a good
VaR measure as mentioned by Christoffersen (1998):

16



1. The Unconditional Coverage Property: the number of VaR violations (i.e. ∑n
i=1 Hi(τ)) should

be close to the observed number of expected VaR violations (i.e. n× (1− τ)).

2. The Independence property: observed violations should not have any explanatory power over
future violations.

When both properties are satisfied, the VaR forecasts are considered to have correct conditional
coverage. This means the hit rate is Bernoulli distributed with the probability equal to 1−τ (Berger
& Moys, 2021):

Hi(τ) i.i.d.∼ Bernoulli(1− τ). (2.26)

The first property can be compared using the observed violation ratio V R(τ):

V R(τ) = 1
n

n∑
i=1

Hi(τ), (2.27)

where n is the number of observations used for backtesting.
This ratio is used to test H0 : E[H(τ)] = 1 − τ by means of the aforementioned PoF-test (see

Section 2.4.5). This test is one of the standard VaR backtesting tests (Ahmed, 2022) and uses the
likelihood-ratio (LR) statistic (Kupiec, 1995) as:

LRP oF = −2ln
(

(1− τ)n−rτ r

(1− V R(τ))n−rV R(τ)r

)
∼ χ2(1), (2.28)

where r = ∑n
i=1 Hi(τ) denotes the number of exceedances.

To check the Independence property we use the independence test from Christoffersen (1998).
This test is based on a first-order Markov chain, evaluating the relation of (non-)successive VaR
violations:

0 1

π01

1− π01 π11

1− π11

Figure 1: First order Markov Chain for Violation Transitions

where πjk = Pr(Hi(τ) = k|Hi−1(τ) = j), represents the probability of a violation given a
violation or no violation in the previous observation.

The hypothesis of independence is then also tested by means of a LR test:

LRIND = −2ln
(

(1− V R(τ))n−rV R(τ)r

(1− π̂01)T00 π̂T01
01 (1− π̂11)T10 π̂T11

11

)
∼ χ2(1), (2.29)

17



with Tjk representing the number of times a j state was followed by a k state over all observations
n.

In their paper, Christoffersen (1998) also combine the PoF and the Independence test to simul-
taneously test the Unconditional Coverage and Independence properties by creating the Conditional
Coverage Independence (CCI) test, by computing:

LRCCI = LRP oF + LRIND = −2ln
(

(1− τ)n−rτ r

(1− π̂01)T00 π̂T01
01 (1− π̂11)T10 π̂T11

11

)
∼ χ2(2). (2.30)

2.5.2 Robustness

Robustness is an important quality for financial market risk estimators, as it ensures the reliability
and stability of predictions and resilience to human error. In theory, robust risk methods should
instill greater confidence in decision-making processes and facilitate more effective risk management
strategies in the financial industry. To evaluate robustness, we will consider two aspects: resilience
to outliers and resilience to noise variables.

Outliers: To test the robustness of the methods to outliers, we will only focus on the simulation
studies, as this gives us the opportunity to manually add outliers and see how this influences the
accuracy over multiple simulations. That is, for each of the three simulation studies, we will report
the
√

MISE (see Section 2.5.1) across various percentages of outliers within the training sets. These
percentages are {0.1%, 0.5%, 1%, 2%, 5%, 10%}, all while maintaining a fixed quantile level τ = 0.99
and a fixed dimension p. This evaluation will be conducted over 25 simulations of the simulation
studies described in Sections 3.1, 3.2, and 3.3.

To introduce outliers we simulate data points from a uniform distribution using the range of
observed values from the existing simulated dataset via Youtlier ∼ Uniform(Ymin, Ymax). Addition-
ally, we generate new iterations of covariates Xoutlier conform to the respective simulation study
and link the covariates to the outliers Youtlier.

Noise variables: Financial market risk analysis involves numerous possible explanatory variables
we can consider. However, not all may have the significant explanatory power we initially assumed.
Hence, it is pivotal for the methods to be able to cope with a certain amount of noise variables.

To assess robustness to noise variables, we will follow Gnecco et al. (2022) by assessing the per-
formance of the methods with varying quantities of noise variables in the simulations. Specifically,
will report the

√
MISE (see Section 2.5.1) for multiple dimensions p = {5, 10, 20, 40} at a fixed

quantile level τ = 0.99. This evaluation will be conducted over 25 simulations of the simulation
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studies described in Sections 3.1, 3.2, and 3.3.

2.5.3 Consistency

Financial institutions and regulators desire models that remain effective and applicable for a rea-
sonable time period, with minimal need for modifications. Consistent models reduce the frequency
of building and agreeing on new models, which is a costly process. In this paper we consider a
model to be consistent if it shows good predictive performance over varying DGPs.

For the simulation studies, we will assess the performance of the methods on multiple altered
variations on the simulation studies described in Sections 3.1, 3.2, and 3.3 (see Appendix B for the
altered DGPs). That is, we will compute the

√
ISE for a fixed level of dimensionality and a fixed

quantile level τ = 0.99 over 50 simulations for each of the alternative DGPs (see for example Figure
9).

For the real data application, we will split the test set into five subsets and assess the accuracy
of the methods for each subset. That is, we assume that for each subset the DGP changes slightly
which will allow us to assess the level of consistency over the test set via the PoF- and CCI-test
statistics as described in Section 2.5.1 (see for example Figure 13).

2.5.4 Importance

An effective financial risk method should accurately identify the covariates that significantly influ-
ence the outcome, enabling financial institutions to make informed and transparent decisions. Both
methods use random forests, and hence for both methods, we will make use of the model-agnostic
SHAP Feature Importance method from Lundberg and Lee (2017) to determine which covariates
were given the most weight by the methods. This method examines the importance given to co-
variates by evaluating the change in the predicted outcomes when the relevant feature is shuffled
randomly ceteris paribus.3

This component can only be assessed through our simulation studies as we cannot be sure about
the true drivers behind the losses for the real data application and can therefore never say which
method best identified the correct covariates.

For the simulation studies we follow Ahmed (2022) in comparing the importance ranking for
the covariates that are used in the DGP. That is, we will train the methods on 50 simulations
and calculate the ratio of it correctly identifying most important covariates. The methods are
then compared by their respective ratios of correctly identifying the rank of the covariates (see for
example Table 1).

3For a detailed description of SHAP see Molnar (2022).
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3 Simulation Study

In this section, we will outline the three simulation methods used to comprehensively assess the
quality of the two methods. As mentioned in the Introduction, we use the simulation studies from
Gnecco et al. (2022) and Ahmed (2022) to assess the methods in the environment in which they
were developed. In addition, we introduce a new simulation study that emulates a financial market
environment.

3.1 Simulation Gnecco et al. (2022)

The simulation setup from Gnecco et al. (2022) is based on the simulation from Athey et al. (2019).
Specifically, they use a setup where the scale of the response variable Y is dependent on covariates
X through a step function s(x). However, they differ from Athey et al. (2019) in their choice of
noise distribution for the response variable, opting for the more heavy-tailed Student’s t-distribution
instead of a Gaussian distribution.

The setup can be described as follows: the conditional response variable is given by Y |X = x ∼

s(x)Tv, where the predictor space is defined as X ∼ Up, with Up depicting the uniform distribution
on [−1, 1]p. Here, Tv denotes the Student’s t-distribution with v degrees of freedom, and they define
the step function as

s(x) = 1 + 1{x1 > 0}, (3.1)

where x1 is the first covariate in the p-dimensional predictor space x ∈ Rp. The GPD scale parameter
σ(x) of the response variable depends only on the first covariate, indicating that all other covariates
act as noise variables. In our research, we slightly adjust the scale function to:

s(x) = 1 + 0.8× 1{x1 > 0}+ 0.4× 1{x2 > 0}+ 0.2× 1{x3 > 0}, (3.2)

this is done to be able to better compare the performance of the methods for the ‘Importance’
component as described in Section 2.5.4.

Additionally, the shape parameter is independent of X and constant over the distribution at
ξ(x) = 1

v . Gnecco et al. (2022) use this configuration to evaluate the performance of the methods
across multiple dimensions p, varying quantile levels τ , and different levels of tail heaviness ξ(x).

In their appendix, Gnecco et al. (2022) expanded the simulation study by adding some exten-
sions to the basic setup. Primarily, they made the degrees of freedom v and, therefore, the shape
parameter ξ(x) dependent on X through:

v(x) = 3[2 + tanh(−2x1)]. (3.3)
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Furthermore, they introduced variations in the relation between the scale parameter σ(x) and the
covariates X by employing different step functions s(x) (see Gnecco et al. (2022)). However, for
the purposes of our comparison, we will only use the extension of the v(x) function as part of the
Financial Market simulation (see Section 3.3), as estimating the reciprocal of this function, the
shape parameter ξ(x), is of more significance for our research.

3.2 Simulation Ahmed (2022)

The simulation study conducted by Ahmed (2022) is somewhat tailored for assessing the quality of
their own method. That is, they directly define the shape parameter ξ(x), the exceedance probability
g(x), and the threshold value u.

The setup can be described as follows: the conditional response variable Y |X = x has a layered
form where each ith observation is defined as

Yi =


uỸi , pi = 1,(

Fi−Fiu
0.1+u0.1

u0.1

)−10
, pi = 0,

with pi as a Bernoulli random variable, with probability g(xi), Ỹi Pareto distributed with shape
parameter ξ(x), Fi ∼ Uniform(0, 1), and u the aforementioned predefined threshold value.

ξ(x) and g(x) depend on the covariates X and are defined as:

ξ(xi) = 0.15+0.7×1{xi,3 = 2}+0.93×1{xi,2 = 2}, g(xi) = 0.1+0.05×1{xi,2 = 3}+0.1×1{xi,1 = 2},

where the covariates X are defined as Xi = (Xi,1, ..., Xi,5), 1 ≤ i ≤ n, for n observations. These five
covariates are categorical variables from a multinomial distribution, which are independent of each
other:

• X1 ∼ multinom([0.7, 0.2, 0.1], n)

• X2 ∼ multinom([0.1, 0.5, 0.3, 0.1], n)

• X3 ∼ multinom([0.3, 0.4, 0.2, 0.1, 0.09], n)

• X4 ∼ multinom([0.7, 0.2, 0.06, 0.04], n)

• X5 ∼ multinom([0.8, 0.1, 0.1], n).

Ahmed (2022) used this setup to assess the performance with different numbers of observations n

across varying quantile levels τ .
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An important distinction between the Ahmed simulation study compared to the other simulation
studies lies in the use of categorical variables. This feature of the Ahmed simulation study is upheld
to retain the fundamental characteristics on which Ahmed (2022) assessed their methodology. In
preparation for application across all methods, we applied one-hot encoding to the simulated data.

3.3 Simulation Financial Market Data

To emulate financial market data, we follow the approach of Berger and Moys (2021), which com-
bines the eGarch(1,1) method from Nelson (1991) and the skewed t-distribution from Hansen (1994).
This setup is given by:

ri = σizi,

lnσ2
i = ω + α

[∣∣∣∣∣ ri−1
σi−1

∣∣∣∣∣− E

(∣∣∣∣∣ ri−1
σi−1

∣∣∣∣∣
)]

+ γ
ri−1
σi−1

+ βlnσ2
i−1,

zi
i.i.d.∼ Skewed-t(v, λ),

(3.4)

where ω, α, γ, and β are regression parameters, v again denotes the degrees of freedom, and λ

indicates the level of skewness.
In their simulation study, Berger and Moys (2021) estimated the parameters using the daily

log-returns of the S&P500 index during the financial crisis of 2007-2008. From this, they obtained
the following parameter values: ω = −0.2305, α = 0.0264, γ = −0.2578, β = 0.975, v = 6.9003, λ =
−0.2388. However, to include a dependency of the degrees of freedom v on the covariates X, we
borrow the dependency formula given by equation (3.3) from Gnecco et al. (2022) and make a slight
adjustment similar to what we did to the scale function in equation (3.2):

v(x) = 3
[
2 + tanh

(
−2
(4

7x1 + 2
7x2 + 1

7x3

))]
. (3.5)

We also copy the predictor space of Gnecco et al. (2022), by defining X ∼ Up, with Up as the
uniform distribution on [−1, 1]p.

For the assessment of the accuracy, robustness, consistency, and importance components, we
will directly use zi as the return variable instead of ri to make the comparison between the methods
more transparent. We will call this simulation the Time-Invariant Financial Market simulation.

Additionally, for the assessment of the accuracy, we will also include a comparison based on the
simulation of ri, which we will call the Time-Varying Financial Market simulation.

In this Time-Varying Financial Market simulation, we will assess the performance of the methods
under two variations: one variation that estimates the VaR as described in the previous sections,
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and one variation using an eGarch(1,1) filter on ri before estimating the VaR. This filter involves
estimating σ̂ and ẑ through an eGarch(1,1) model on the training data, after which the methods are
trained on ẑ. The quantile prediction for ri is then given by multiplying the eGarch(1,1) estimate
of σ̂i with the quantile prediction of the methods for ẑi. In both variations, we include the one- and
two-lagged returns ri−1 and ri−2 as part of the covariate space X.

3.4 Results Simulation Study

The original objective of this research was to find which of the methods is best suited for financial
market risk prediction. As discussed in Section 2.5 we will try to answer this question along four
key components. That is, we will compare the performance of the methods based with regards to
the prediction accuracy in Section 3.4.2, the robustness in Section 3.4.3, the consistency in Section
3.5, and the importance in Section 3.5.1.

3.4.1 Hyperparameter Tuning

To ensure the methods are evaluated under comparable conditions and to maximize their perfor-
mance, we adopt the approach outlined by Ahmed (2022) in using the true quantiles for the cross-
validation of the hyperparameters. However, whereas Ahmed (2022) conducted the cross-validation
using the Root Mean Squared Error (RMSE), we use the MISE as the respective cross-validation
error. We calculate the MISE over ten simulations for a wide range of configurations. The range of
configurations and the resulting hyperparameter settings are described in Appendix C.

When comparing the performance of the methods on the S&P500 data the cross-validation
schemes as described in Sections 2.3.5 and 2.4.5 are upheld (see Section 4.1.1).

3.4.2 Prediction Accuracy

The performance in terms of prediction accuracy is depicted in Figures 2, 3, 4, and 5.
In general, both ERF variations show better accuracy compared to the method from Ahmed

(2022). This discrepancy in performance, is especially visible in the Gnecco simulation study, see
Figure 2. Here, the performance shows a drawback of using a fixed value threshold u when the
DGP has a varying scale parameter. While the ERF Pareto method also assumes a constant scale,
it is able to compensate through the estimation of V̂ aRx(τ0). The argument of the drawback is
further illustrated in the Time Invariant Financial Market simulation study, see Figure 4. In that
scenario, where the DGP closely resembles the DGP of the Gnecco simulation study except it
has a varying shape instead of a varying scale parameter, the relative performance gap between the
Ahmed algorithm and ERF methods narrows. The fixed value threshold might also explain why the
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largest increase in performance caused by the eGarch-filter in the Time-Varying Financial Market
simulation, see Figure 5, is observed for the Ahmed algorithm. The filter estimates the scale in its
stead, while the unfiltered Ahmed method occasionally overestimates the VaR by a large amount.
This is similar to what we observe in the application on the S&P500 index in Section 4.1, where
the eGarch filtered Ahmed method has very competitive performance while the unfiltered version
drastically overestimates the VaR as τ → 1.
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Figure 2: Boxplots of
√

ISE over 50 Gnecco Simulations, with n = 5, 000 observations and dimension
p = 10.

0 100 200 300

Ahmed

ERF P.

ERF

τ = 0.90

0 100 200 300

τ = 0.95

50 100 150

τ = 0.99, 10 ·
√

ISE

0 50 100

τ = 0.995, 100 ·
√

ISE

Figure 3: Boxplots of
√

ISE over 50 Ahmed simulations, with n = 10, 000 observations and dimension
p = 5.
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Figure 4: Boxplots of
√

ISE over 50 Time-Invariant Financial Market simulations, with n = 5, 000
observations and dimension p = 10.
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Furthermore, we observe that all methods have instances of significant performance degradation.
At closer inspection, these instances often occur where the methods associate large shape parameters
with a certain part of the predictor space. This tendency leads to large overestimations of the VaR,
especially for cases where ξ(x) < 1 < ξ̂(x). This is particularly evident in Figure 3, where the
standard ERF method and the Ahmed algorithm display notably high maximum

√
ISE values at

τ = 0.90, τ = 0.95, and τ = 0.99, τ = 0.995, respectively. It is most pronounced in the Ahmed
simulation study because the DGP has shape parameters ranging from 0.15 to 1.78 and uses only
categorical variables.

Finally, we observe the comparable accuracy from the figures between the standard ERF method
and its adjusted version, ‘ERF Pareto’, which is designed to address heavy-tailed distributions.
This similarity in performance persists across all simulation studies. Even in the case of the Ahmed
simulation study, as depicted in Figure 3, which is characterized by the presence of the largest
shape parameters, the ERF Pareto method only shows improved accuracy for the lower quantile
levels, specifically τ = 0.90 and τ = 0.95. However, it is at least doubtful to attribute this improved
accuracy to the adjustment for heavy tails.
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Figure 5: Boxplots of
√

ISE over 50 Time-Varying Financial Market simulations, with n = 5, 000
observations and dimension p = 10.
To ensure comparability, the x-axes for quantile levels τ = 0.99 and τ = 0.995 are constrained.

3.4.3 Robustness

The performance in terms of robustness to outliers and noise variables is represented in Figures 6,
7, and 8.

Based on the results, the methods exhibit a relatively high degree of robustness to the inclusion
of noise variables. For instance, in the Gnecco simulation study, see Figure 6, there is no tangible
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impact on the performance of all three methods when the dimension p increases. However, in the
remaining two simulation studies, see Figures 7 and 8, although the effect remains modest, the
method from Ahmed (2022) seems less affected by the inclusion of noise variables compared to the
ERF methods.

Conversely, the situation is different when we assess the robustness to outliers. Notably, in
Figure 7, the Ahmed method exhibits a rapid decline in performance as the proportion of outliers
increases. The

√
MISE value (13478.920) associated with the Ahmed method at only a 0.1% outlier

rate surpasses the
√

MISE value (585.492) of the ERF Pareto method by over 20 times, indicating
a pronounced vulnerability to outliers.

Moreover, except for the notable performance drop observed in the standard ERF method at
the 1% outlier rate in the Ahmed simulation study, see Figure 7, the robustness of the standard
ERF method and the adapted ERF method remain similar. This similarity is particularly evident
in terms of robustness to noise variables, as indicated by the resembling trend lines across all three
figures.
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Figure 6: Robustness outliers (left) and noise variables (right) for 25 Gnecco simulations, with
n = 5, 000 observations.
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Figure 7: Robustness outliers (left) and noise variables (right) for 25 Ahmed simulations, with
n = 10, 000 observations.
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Market simulations, with n = 5, 000 observations.
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3.5 Consistency

The assessment of the consistency of the methods is illustrated in Figures 9, 10, and 11.
The most prominent illustration of inconsistency becomes evident in the Gnecco simulation

study, specifically at ξ̄ = 1
2 and ξ̄ = 5

6 , see Figure 9. For these particular DGPs, the Ahmed method
features notably larger outliers and higher median errors in comparison to the ERF methods.

The results of the Ahmed and the Time-Invarying Financial Market simulation studies are less
conclusive. In Figure 10, which concerns the Ahmed simulation study, the ERF method underper-
forms considerably at ξ̄(x) = 0.135 (contrasted by the performance of the ERF Pareto method).
However, at ξ̄(x) = 0.57, the method from Ahmed (2022) once again shows negative performance
outliers. A similar pattern is visible in the Time-Invariant Financial Market simulation at ξ̄(x) = 1

8

in Figure 11.
Overall, it is challenging to draw strong conclusions from these results, as the three simulation

studies produce somewhat varied outcomes. Nevertheless, the ERF methods demonstrate more
consistent results compared to the Ahmed method, characterized by smaller outliers and slightly
better average performance.
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Figure 9: Boxplots of
√

ISE over 50 Gnecco Simulations with τ = 0.99, to represent the consistency
over different levels of ξ. See Appendix B for the data generating processes.
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ISE over 50 Time-Invariant Financial Market simulations with τ = 0.99, to
represent the consistency over different levels of ξ. See appendix B for the data generating processes.

3.5.1 Importance

The performance of the methods with regards to the identification of the relevant covariates is
presented in Tables 1, 2, and 3.

The results show that the ERF methods are better able to identify the important factors behind
the DGP. This is particularly evident when examining the Gnecco and the Financial Market simu-
lation studies, see Tables 1 and 3. In these studies, the ERF methods consistently achieve higher
percentages of correctly identified rankings and also attribute higher average importance scores to
the relevant covariates. This capability of the ERF methods might be a consequence of using sim-
ilarity weights, see Section 2.3.3, enabling them to capture the heterogeneous relation between Y
and X more effectively.

Tables 1 and 3 emphasize the challenge of identifying covariates that influence the DGP through
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the shape parameter rather than the scale parameter. For instance, in the Gnecco simulation study,
both methods were able to correctly identify x1 as the most important factor for all simulations,
achieving a score of 100%. However, in the Financial Market simulation study, this percentage drops
to 68% for the ERF method and 70% for the Pareto-adjusted ERF method, which indicates the
relatively increased difficulty of identifying shape-driven covariate effects compared to scale-driven
covariate effects.

Lastly, in the Ahmed simulation study, see Table 2, there is no clear distinction between the
performance of the three methods. However, we do observe that the three methods struggle to
distinguish between the importance of x2 = 2 and x3 = 2, illustrated by the closely matched
average importance scores for both covariates. Furthermore, the Ahmed method seems to ignore
the information stored in x1 = 2, suggesting that it relies solely on x2 = 3 for the estimation of
g(x).

Table 1: Importance ranking for the covariates used in 50 Gnecco simulations, with n = 5, 000
observations and dimension p = 10.

Method Identified First Identified Second Identified Third Average importance

Rank 1: x1

ERF 100% 0% 0% 0.583

ERF Pareto 100% 0% 0% 0.424

Ahmed 66% 18% 6% 0.168

Rank 2: x2

ERF 0% 98% 2% 0.122

ERF Pareto 0% 92% 8% 0.124

Ahmed 6% 26% 26% 0.119

Rank 3: x3

ERF 0% 2% 52% 0.053

ERF Pareto 0% 8% 46% 0.070

Ahmed 4% 8% 10% 0.095

30



Table 2: Importance ranking for the covariates used in 50 Ahmed simulations, with n = 10, 0000
observations and dimension p = 5.

Method Identified First Top Two Top Four Correct Order* Avg. Importance

Rank 1 ξ(x)-covariate: x2 = 2

ERF 54% 44% 100% 54% 0.229

ERF Pareto 40% 58% 100% 46% 0.210

Ahmed 42% 58% 100% 42% 0.309

Rank 2 ξ(x)-covariate: x3 = 2

ERF 46% 46% 100% 54% 0.229

ERF Pareto 54% 34% 100% 46% 0.209

Ahmed 58% 42% 100% 42% 0.312

Rank 1 g(x)-covariate: x1 = 2

ERF 0% 10% 92% 86% 0.139

ERF Pareto 6% 8% 94% 92% 0.136

Ahmed 0% 0% 0% 0% 0.015

Rank 2 g(x)-covariate: x2 = 3

ERF 0% 0% 72% 86% 0.080

ERF Pareto 0% 0% 68% 92% 0.070

Ahmed 0% 0% 100% 0% 0.097

*A covariate is considered correctly ordered when it is appropriately designated as either more or
less significant than another covariate utilized within the same ξ or g function. E.g., in the case of
xi,2 = 2 and xi,3 = 2, the former should be more important.
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Table 3: Importance ranking for the covariates used in 50 Time-Invariant Financial Market simu-
lations, with n = 5, 000 observations and dimension p = 10.

Method Identified First Identified Second Identified Third Average importance

Rank 1: x1

ERF 68% 16% 6% 0.170

ERF Pareto 70% 14% 6% 0.156

Ahmed 4% 4% 4% 0.084

Rank 2: x2

ERF 16% 26% 8% 0.114

ERF Pareto 10% 26% 18% 0.113

Ahmed 18% 14% 16% 0.116

Rank 3: x3

ERF 4% 14% 8% 0.095

ERF Pareto 4% 10% 12% 0.096

Ahmed 14% 8% 8% 0.103

4 Application S&P500 Index

In addition to the simulation studies, we also compare the methods in an application on actual
financial market data. That is, we make use of the daily log loss returns from the Standard &
Poors 500 (S&P500), obtained from the Refinitiv Datastream database. The VaR estimates are
based on a combination of index-specific and various macroeconomic covariates collected from the
Refinitiv Datastream, Bloomberg, FRED, and OECD databases (see Appendix A for the source
and summary statistics of all the covariates).

Our dataset covers the period from January 1st, 1998, until December 31st of 2023, comprising
a total of 6, 587 log loss returns. We employed a 70%/30% split, giving us a training set containing
4, 611 observations and a test set with 1, 976 observations.
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Given that stock data often exhibits serial dependence, as was pointed out in (Baltussen, van
Bekkum, & Da, 2019), it is important to address this issue to prevent bias in our models. As
illustrated by McNeil et al. (2015), the existence of serial dependence can have a large negative
impact on the performance of both Hill-based and GPD-based tail estimates and could therefore
affect both methods. Hence, to mitigate this issue we will make use of the same eGarch-filter we
used for in the Time-Varying Financial Market simulation. The filter is based on the Garch-filter
developed by McNeil and Frey (2000) which was previously implemented on the S&P500 index by
Paul and Sharma (2021).

4.1 Results Application S&P 500

Similar to the results for the simulation studies (see Section 3.4), we split the results into subsections
containing results on the prediction accuracy (see Section 4.1.3) and consistency (see Section 4.1.4).
Additionally, we start with a section on the observed VaR estimates (see Section 4.1.2), to illustrate
the differences between the methods in this application. We do not include sections on robustness
and importance for the S&P500 application, because we cannot objectively compare the performance
of the methods for the components with an empirical data set.

4.1.1 Hyperparameter Tuning

For the application of the S&P500 data, we employ the cross-validation schemes as described in
Sections 2.3.5 and 2.4.5 to find the hyperparameter settings for the methods. Notably, the cross-
validation process for the Ahmed Algorithm was based around the τ = 0.995 quantile level, whereas
the ERF cross-validation scheme is independent of the quantile level. Details regarding the range
of configurations and the resulting hyperparameter settings are described in Appendix B.

4.1.2 VaR Estimates S&P500

The observed VaR estimates are depicted in Figure 12.
Figure 12 provides valuable insights into the relationship between the VaR estimates generated

by the six estimators and the empirical Log Losses associated the S&P500 Index. From this figure,
we observe that, while most methods follow similar estimation trend lines, the Ahmed method
exhibits a much flatter estimation line. This flat line is particularly evident in subfigures (a) and
(b) of Figure 12, and in subfigures (c) and (d) we observe much higher peaks from the method. The
flatness of the Ahmed estimation line can be attributed to the fact that the threshold (u = 2) is
probably too high for these lower quantile levels. This once again shows the drawback of using a fixed
value threshold, especially in scenarios where the scale parameter varies over time. The absence of
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these problems in the filtered Ahmed method reaffirms what we saw in the Time-Varying Financial
Market simulation study, see Section 3.4.2, emphasizing that the Ahmed method benefits the most
from filtering the time series data with eGarch(1,1).

Overall, the results in Figure 12 do not offer a clear distinction in the predictive performance
of the methods. However, we do observe the notable underperformance of the Ahmed method.
Additionally, noteworthy observations are the relatively high VaR estimates of the eGarch-Ahmed
method at the upper quantile levels of τ = 0.99 and τ = 0.995 compared to other estimators (except
the unfiltered Ahmed method), and, conversely, the relatively low VaR estimates of the eGarch-ERF
Pareto method. These observations may indicate either positive or negative standout performances.
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Figure 12: VaR estimates of the filtered and unfiltered ERF and Ahmed methods plotted against
the actual Log Loss of the S&P500 Index.
To ensure comparability, the y-axes for quantile levels τ = 0.99 and τ = 0.995 are constrained.

4.1.3 Prediction Accuracy S&P500

The performance of the methods in terms of prediction accuracy is presented in Table 4.
Before discussing the accuracy results for the S&P500 data set, we have to acknowledge the fact

that we cannot draw too strong conclusions from these results, since we only have one historical
outcome. Especially since we saw from the simulation studies that the methods had certain instances
in which their performance deteriorated significantly. Nevertheless, Table 4 yields interesting results
that align with what we saw in the simulation studies.

Firstly, we note that the ERF methods, when unfiltered, demonstrate the most promising per-
formance, which is consistent with our observations in Section 3.4.2. Furthermore, there is no clear
indication which of the ERF configurations is the most accurate; for instance, we observe higher
P-values for the standard ERF method at τ = 0.99 and higher P-values for the ERF Pareto method
at τ = 0.995.

Additionally, consistent with our findings from the Time-Varying Financial Market simulation
study, the eGarch filtering significantly enhances the performance of the Ahmed method. The
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improvement is so substantial, that the performance based on the Pof test and the CCI test cannot
be distinguished from the unfiltered ERF methods. However, contrary to the results from the Time-
Varying Financial Market simulation study, filtering has a negative impact on the ERF methods.
This divergence from the simulation studies may be attributed to differences in the cross-validation
scheme; the ERF methods employ filtered data in the calculation of the negative log-likelihood
contribution, while the eGarch-Ahmed method utilizes the Brier score and the PoF Test Statistic
for cross-validation.

Lastly, as discussed in the previous section (see Section 4.1.2), we alluded to the possibility of
distinctly positive or negative relative performance for the eGarch-ERF Pareto and eGarch-Ahmed
methods. Table 4 shows that the eGarch-ERF Pareto tends to underestimate the VaR, resulting
in low P-values. Conversely, the eGarch-Ahmed does have relatively good predictive performance,
with P-values well within the commonly used acceptance regions. However, it is worth noting that
the eGarch-Ahmed method also exhibits significantly higher average VaR estimates than the ERF
Pareto methods, while suffering more violations than the ERF Pareto method at quantile level
τ = 0.995. This suggests a propensity to overestimate the VaR, which could be seen as a drawback
for financial institutions (overestimating risk leads to unnecessarily high capital reserves), or a
positive feature for regulatory institutions (overestimating risk leads to more conservative capital
reserves).

Table 4: Accuracy VaR predictions S&P500

τ = 0.90

PoF Test CCI Test

Method Average VaR Estimate #Violations (%) P-value Test Statistic P-value

ERF 1.163 177 (8.957) 0.116 8.230 0.016

ERF Pareto 1.223 162 (8.198) 0.006 11.290 0.004

Ahmed 1.952 78 (3.947) 0.000 106.220 0.000

eGarch-ERF 1.222 182 (9.211) 0.236 3.429 0.180

eGarch-ERF Pareto 1.245 174 (8.806) 0.071 6.585 0.037

eGarch-Ahmed 1.080 220 (11.134) 0.098 7.241 0.027
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τ = 0.95

PoF Test CCI Test

Method Average VaR Estimate #Violations (%) P-value Test Statistic P-value

ERF 1.651 93 (4.706) 0.546 3.169 0.205

ERF Pareto 1.550 105 (5.314) 0.526 1.555 0.460

Ahmed 2.407 41 (2.074) 0.000 45.308 0.000

eGarch-ERF 1.706 79 (3.998) 0.034 6.787 0.034

eGarch-ERF Pareto 1.530 116 (5.870) 0.084 4.608 0.100

eGarch-Ahmed 1.431 139 (7.034) 0.000 16.063 0.000

τ = 0.99

PoF Test CCI Test

Method Average VaR Estimate #Violations (%) P-value Test Statistic P-value

ERF 2.893 20 (1.012) 0.957 0.432 0.806

ERF Pareto 2.693 26 (1.316) 0.178 2.531 0.282

Ahmed 4.105 8 (0.405) 0.003 9.196 0.010

eGarch-ERF 2.789 27 (1.366) 0.121 6.135 0.047

eGarch-ERF Pareto 2.471 35 (1.777) 0.002 11.730 0.003

eGarch-Ahmed 2.791 24 (1.215) 0.354 1.975 0.372

τ = 0.995

PoF Test CCI Test

Method Average VaR Estimate #Violations (%) P-value Test Statistic P-value

ERF 3.479 12 (0.607) 0.513 0.587 0.746

ERF Pareto 3.418 9 (0.455) 0.776 0.173 0.917

Ahmed 5.303 4 (0.202) 0.033 4.564 0.102
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eGarch-ERF 3.238 17 (0.860) 0.040 6.480 0.039

eGarch-ERF Pareto 3.038 21 (1.063) 0.002 15.044 0.001

eGarch-Ahmed 3.757 10 (0.506) 0.970 0.113 0.945

Note: this table presents the results for the PoF Test and the CCI Test as described in Section
2.5.1.

4.1.4 Consistency

The performance of the methods with regards to consistency is presented in Figures 13 and 14.
Again, we have to note that the following results are based on a limited amount of data and

should therefore be interpreted carefully.
In both figures, we observe that the non-filtered methods exhibit shorter performance spans

across the five subsets compared to the filtered methods. This distinction is most apparent in
Figure 14, where the non-filtered methods have the same P-value for at least two or more subsamples.
Furthermore, the fact that the filtered methods have both the highest and the lowest P-values for
both quantiles suggests that the effectiveness of the eGarch filter varies over time.

The results in Figure 13 show that the Ahmed method displays the most consistency, as it has
the shortest performance span. However, in the previous sections on the S&P500 results we saw the
consistent overestimation by the Ahmed method, which complicates this result. That is, when a
method consistently overestimates the VaR, a comparison of the consistency based on the violations
will show high consistency. Additionally, Figure 14 reveals a wider performance span for the Ahmed
method, with the ERF methods, especially ERF Pareto, exhibitihng greater consistency.

While we cannot convincingly conclude which method is most consistent from these results, they
do not contradict the results on consistency from the simulation studies that suggested the Ahmed
method may be less consistent compared to the ERF method (see Section 3.5).
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Figure 13: Boxplots of the P-values for the PoF Test (left) and the CCI Test (right) at quantile
level τ = 0.99, to represent the consistency over five subsets of the test set.
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Figure 14: Boxplots of the P-values for the PoF Test (left) and the CCI Test (right) at quantile
level τ = 0.995, to represent the consistency over five subsets of the test set.

5 Conclusion

In our research, we conducted a comprehensive examination of two new Random Forest tail risk
estimation methods, aiming to address the question of which of the methods is better suited to
financial market risk prediction. We aimed to answer this question by evaluating four key quality
components for financial market risk models for the methods over three simulation studies and an
application involving data from the S&P500 Index.
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Our findings from the simulation studies suggested that the ERF methodology (both the stan-
dard ERF and the Pareto adjusted ERF) from Gnecco et al. (2022) in general showed better
predictive performance, more consistent results at higher shape parameters, and could also best
identify the most important covariates driving the data generating process. When looking at the
robustness, the methods showed similar performance, with the approach from Ahmed (2022) dis-
playing greater sensitivity to outliers and the ERF method showing more susceptibility to noise
variables. In summary, we conclude that the results from the simulation studies suggest that the
ERF methodology is best suited for financial market risk prediction. Nevertheless, it is worth noting
that the eGarch-filtered Ahmed method showed promising predictive accuracy in the Time-Varying
Financial Market simulation study.

Our application of the methods on the S&P500 Index confirmed many of our findings from the
results in the simulation studies. In particular, the application illustrated the drawback of using a
fixed value threshold (u), instead of a fixed quantile level threshold (τ0) and exposed the problems of
the method from Ahmed (2022) with data generating processes with varying scale. Notably, we also
confirmed the promising results of the eGarch-filtered Ahmed method, which seemed to reduce the
problem of the time-varying scale. Conversely, in contrast with the Time-Varying Financial Market
simulation study, filtering had a negative impact on the ERF methods, which we suggested might be
attributable to cross-validation problem. Our investigation into consistency, though constrained by
a relatively small dataset, suggested that filtered models tend to exhibit lower consistency compared
to their non-filtered counterparts. Overall, the stock market application confirmed our conclusion
from the simulation studies that the ERF methodology from Gnecco et al. (2022) is more suited to
financial market risk prediction.

In light of these findings, our recommendation for practical implementation would be to use
a combination of ERF, ERF Pareto, and the eGarch-Ahmed method for financial market risk
prediction. This diversified approach would account for the fact that all methods showed moments
where their performance deteriorated. A financial regulator could, for instance, oblige important
financial institutions to base their capital reserves on the most conservative risk estimate the three
methods produce.

Lastly, we would like to acknowledge that there are some limitations to our research for which
further research might be needed. Firstly, our data application suffered from a limited amount of
data and focused solely on single index. Future research endeavors should extend this evaluation
to diverse continents, economies, and indices to validate our conclusions across varied contexts.
Furthermore, the substantial performance improvement observed by the eGarch filtering for the
Ahmed method implies the potential for fine-tuning the methodologies. For instance, based on the

41



results of the ‘importance’ component, see Section 3.5.1), we recommend exploring the integration
of similarity weights from the GRF method (Athey et al., 2019) into the Ahmed methodology. This
might improve its ability to understand the complex relation between X and Y . Lastly, we based
our analysis on a subset of components and statistical tests; it remains possible that alternative test
or components could have yielded different conclusions.
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A Data Description and Summary Statistics

Table 5: Data Description and Summary Statistics of Data Used for S&P500 Application.

Name Description Mean Min. Max. #NAs Imp. Method Used

S&P500 Specific Sourced Variables (Source: Datastream)

Price Closing Closing price (D) 1840.8 676.5 4796.6 0 NA Y

Price Opening Opening price (D) 1840.5 679.3 4804.5 234 Kalman Y

Price High Highest obs. price (D) 1851.6 695.3 4818.6 234 Kalman Y

Price Low Lowest obs. price (D) 1828.5 665.8 4780.0 234 Kalman Y

Dividend Yield Associated Div. Yield (D) 1.831 1.040 3.610 0 NA Y

S&P500 Specific Sourced Variables (Source: Bloomberg)

Transaction Volume Volume of Stocks Traded (D) 9.238×108 1.134×106 2.953×109 233 Kalman Y

Volatility 10 Day Implied 10-day volatility (D) 16.75 2.34 127.32 233 Kalman Y

Volatility 30 Day Implied 30-Day volatility (D) 17.26 3.41 87.99 234 Kalman Y

Volatility 90 Day Implied 90-Day volatility (D) 17.88 5.50 65.05 234 Kalman Y

Volatility 180 Day Implied 180-Day volatility (D) 18.27 6.74 53.03 234 Kalman Y

S&P500 Specific Transformed Variables

Log Loss Return Neg. Log Ret. via Price Closing (D) -0.022 -10.957 12.765 0 NA NA

L.Loss Return 1D Prior Lagged Log Loss Return (D) -0.022 -10.957 12.765 0 NA Y
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L.Loss Return 2D Prior Two-day lagged Log Loss Return (D) -0.022 -10.957 12.765 0 NA Y

Price 5D Avg. Five-day moving average (D) 1839.9 690.3 4785.6 0 NA Y

Price 10D Avg. Ten-day moving average (D) 1838.7 707.9 4765.8 0 NA Y

Bias (Price Closing - Price 5D Avg.) 0.000 -0.103 0.007 0 NA Y

/Price 5D Avg. (D)

DMA Price 5D Avg. - Price 10D Avg. 1.151 -190.686 112.817 0 NA Y

CDP/Lagged HLCC4 (Price High Prev. D. + Price Low Prev. D. + 1840.0 680.3 4795.0 0 NA Y

2 × Price Closing Prev. Day)/4 (D)

AR (Price High - Price Opening) 98.66 50.00 150.00 0 NA Y

/(Price Opening - Price Low)×100 (D)

BR (Price High - Price Closing) 138.9 50.0 300.0 0 NA Y

/(Price Closing - Price Low)×100 (D)

Percent Change (Price High - Price Low) 1.352 0.146 11.521 0 NA Y

/(Price Low) ×100 (D)

Overnight Spread (Price Opening - Price Closing Prev. Day) (D) 0.150 202.430 111.320 0 NA Y

Macroeconomic Sourced Variables (Source: FRED)

Oil Price Brent Crude Oil Price (D) 61.60 9.10 143.95 180 Kalman N

Inflation Exp. 5 Year 5-Y. Forward Inflation Expectation Rate (D) 1.785 -2.240 3.590 1305 Kalman Y

Inflation Exp. 10 Year 10-Y. Forward Inflation Expectation Rate (D) 1.989 0.040 3.020 1305 Kalman Y

FFR Percent Federal Funds Rate % (D) 1.954 0.040 7.060 0 NA Y
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Money Supply ×B. Money Supply M1 (W) 4017 1058 21016 37 Mov. Avg. N

FSI Financial Stress Index (W) 0.047 -1.162 9.315 35 Kalman Y

Inflation Sticky Price CPI less Food and Energy (M) 2.512 2.512 6.617 0 NA Y

CPI Expectation Univ. of Michigan: Inflation Expectation (M) 3.046 0.400 5.400 0 NA Y

Unemployment Unempl. as a percentage of the labor force (M) 5.716 3.400 14.700 0 NA Y

Real GDP Per Capita Real GDP per capita (Q) 51721 43062 60611 0 NA N

Public Debt To GDP Total Public Debt as % of GDP (Q) 84.67 54.03 134.84 0 NA Y

Private Debt×B. Household and Non-Profit Org. Debt (Q) 12800 5771 19159 0 NA N

GDP×B. Gross Domestic Product (Q) 15873 8866 26530 0 NA N

FDI Foreign Direct Investment (Q) 4.443×106 1.474×106 1.310×107 0 NA N

GPDI×B. Gross Private Direct Investment (Q) 2770 1696 4671 0 NA N

Imports Imp. of Goods & Services as % of GDP (Q) 15.02 11.90 18.20 0 NA N

Exports Exp. of Goods & Services as % of GDP (Q) 11.39 8.90 13.80 0 NA N

Macroeconomic Sourced Variables (Source: Bloomberg)

PMI Composite Purchasing Managers Index C. (M) 54.67 37.90 66.90 0 NA Y

PMI Manufacturing Purchasing Managers Index M. (M) 52.94 34.50 63.80 0 NA Y

Macroeconomic Sourced Variables (Source: OECD)

GDP Growth FC Year ahead GDP Growth Forecast 2.334 -29.857 35.317 0 NA Y

Other Macroeconomic Variables (Source: No Source)
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Election Year Indicator function El. Y. (1) vs. No El. Y. (0) 0.238 0 1 0 NA Y

Macroeconomic Transformed Variables

Private Debt To GDP Private Debt / GDP (Q) 80.83 64.58 98.20 0 NA Y

Trade Openness Imports + Exports (Q) 26.41 21.20 31.20 0 NA Y

Real GDP P.C. Growth R. GDP P.C. Growth vs. Prev. Q. (Q) 0.347 -8.91 7.510 0 NA Y

Oil Price Change Oil Price Change Comp. to Prev. D. (D) 0.024 -64.370 41.202 0 NA Y

M1 Yearly Change M1 Supply Change Comp. to Prev. Y. (W) 16.256 -6.528 162.091 0 NA Y

FDI Change FDI Change Comp. to Prev. Q. (Q) 2.025 -30.448 26.787 0 NA Y

GPDI Change GPDI Change Comp. to Prev. Q. (Q) 1.017 -16.741 16.894 0 NA Y

All variables (except for the Log Loss Return and the Election Year variables) were lagged by one day before using them in the
estimation of the VaR.

49



B Alternate Data Generating Processes

B.1 Gnecco Simulation Alternate DGPs

The alternate DGPs of the Gnecco simulation study, which were used to test the consistency of the
methods (see Section 3.5), were generated by changing the shape parameter ξ(x) = 1

v through the
number of degrees of freedom v. The original DGP used ξ(x) = 1

4 . The three alternate variations
are given by:

ξ1(x) = 1
6 ,

ξ2(x) = 1
2 ,

ξ3(x) = 5
6 .

B.2 Ahmed Simulation Alternate DGPs

The alternate DGPs of the Ahmed simulation study, which were used to test the consistency of
the methods (see Section 3.5), were generated by changing the shape parameter function ξ(x). The
original DGP used ξ(x) = 0.15+0.7×1{x3 = 2}+0.93×1{x2 = 2}. The three alternative variations
are given by:

ξ1(x) = 0.00 + 0.15× 1{x3 = 2}+ 0.15× 1{x2 = 2},

ξ2(x) = 0.15 + 0.15× 1{x3 = 2}+ 0.30× 1{x2 = 2},

ξ3(x) = 0.30 + 0.30× 1{x3 = 2}+ 0.30× 1{x2 = 2}.

B.3 Time-Invariant Financial Market Simulation Alternate DGPs

The alternate DGPs of the Time-Invariant Financial Market simulation study, which were used to
test the consistency of the methods (see Section 3.5), were generated by changing the shape param-
eter function ξ(x) = 1

v(x) . The original DGP used v(x) = 3×
[
2 + tanh

(
−2
(

4
7x1 + 2

7x2 + 1
7x3

))]
.

The three alternative variations are given by:

v1(x) = 4×
[
2 + tanh

(
−2
(4

7x1 + 2
7x2 + 1

7x3

))]
,

v2(x) = 2×
[
2 + tanh

(
−2
(4

7x1 + 2
7x2 + 1

7x3

))]
,

v3(x) = 1×
[
2 + tanh

(
−2
(4

7x1 + 2
7x2 + 1

7x3

))]
.
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C Hyperparameter Settings

For each method, we only tuned certain hyperparameters (to be discussed in following sections).
For the parameters we tuned we will present the range of configurations that were tried and the
final hyperparameter settings obtained through cross-validation. The other hyperparameters were
set to either the default value given in the R package or a default value determined by some initial
model runs. The latter will be presented in the following sections as well.

C.1 ERF Hyperparameter Settings

For the ERF method, we tuned the minimum node size (κ)), the lambda parameter (λ)), and the
intermediate quantile (τ0). The first two were optimized for both the simulation studies and the
data application, whereas the intermediate quantile was only optimized for the simulation studies.
For the data application, we could not properly use the cross-validation scheme described in Section
2.3.5, therefore we set τ0 = 0.8 which is the default value in the ERF package.

This means that for the simulation studies we tried the following range of parameters:

• κ ∈ {5, 10, 40, 80, 100},

• λ ∈ {0, 0.001, 0.01, 0.1},

• τ0 ∈ {0.8, 0.85, 0.90}.

For the data application we tried the following range of parameters:

• κ ∈ {5, 10, 40, 80, 100},

• λ ∈ {0, 0.001, 0.01, 0.1},

• τ0 = 0.8.

Gnecco Simulation ERF Hyperparameter Settings:

• κ = 100,

• λ = 0.001,

• τ0 = 0.8.
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Ahmed Simulation ERF Hyperparameter Settings:

• κ = 100,

• λ = 0.001,

• τ0 = 0.9.

Time-Invariant Financial Market Simulation ERF Hyperparameter Settings:

• κ = 40,

• λ = 0,

• τ0 = 0.85.

Time-Varying Financial Market Simulation ERF Hyperparameter Settings (non-filtered):

• κ = 40,

• λ = 0,

• τ0 = 0.85.

Time-Varying Financial Market Simulation ERF Hyperparameter Settings (filtered):

• κ = 40,

• λ = 0.001,

• τ0 = 0.9.

S&P500 Application ERF Hyperparameter Settings (non-filtered):

• κ = 80,

• λ = 0.1,

• τ0 = 0.8.

S&P500 Application ERF Hyperparameter Settings (filtered):

• κ = 40,

• λ = 0.1,

• τ0 = 0.8.
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C.2 ERF Pareto Hyperparameter Settings

For the ERF Pareto method, we tuned the minimum node size (κ)), the lambda parameter (λ)),
and the intermediate quantile (τ0). The first two were optimized for both the simulation studies
and the data application, whereas the intermediate quantile was only optimized for the simulation
studies. For the data application, we could not properly use the cross-validation scheme described
in Section 2.3.5, therefore we chose to set τ0 = 0.9 since this was the most observed τ0 setting in
the simulation studies. We set the number of trees to 2000 after some initial running, this number
of trees is in alignment with the advised setting for the ERF method as advised by Gnecco et al.
(2022).

This means that for the simulation studies we tried the following range of parameters:

• κ ∈ {5, 10, 40, 80, 100},

• λ ∈ {0, 0.001, 0.01, 0.1},

• τ0 ∈ {0.8, 0.85, 0.90}.

For the data application we tried the following range of parameters:

• κ ∈ {5, 10, 40, 80, 100},

• λ ∈ {0, 0.001, 0.01, 0.1},

• τ0 = 0.9.

Gnecco Simulation ERF Pareto Hyperparameter Settings:

• κ = 40,

• λ = 0.1,

• τ0 = 0.9.

Ahmed Simulation ERF Pareto Hyperparameter Settings:

• κ = 80,

• λ = 0.1,

• τ0 = 0.9.
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Time-Invariant Financial Market Simulation ERF Pareto Hyperparameter Settings:

• κ = 5,

• λ = 0.1,

• τ0 = 0.9.

Time-Varying Financial Market Simulation ERF Pareto Hyperparameter Settings (non-

filtered):

• κ = 40,

• λ = 0.1,

• τ0 = 0.9.

Time-Varying Financial Market Simulation ERF Pareto Hyperparameter Settings (fil-

tered):

• κ = 5,

• λ = 0.1,

• τ0 = 0.9.

S&P500 Application ERF Pareto Hyperparameter Settings (non-filtered):

• κ = 40,

• λ = 0.1,

• τ0 = 0.9.

S&P500 Application ERF Pareto Hyperparameter Settings (filtered):

• κ = 10,

• λ = 0.01,

• τ0 = 0.9.
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C.3 Ahmed Hyperparameter Settings

For the Ahmed method, we tuned the minimum node size for the regression tree (κr), the minimum
node size for the classification tree (κc)), and the fixed value threshold (u). For the f irst two
we cross-validated over a fixed range of options, whereas for the fixed threshold u, we followed
Ahmed (2022) by considering the starting points of the tail region at the 0.7, 0.8, and 0.9 historical
quantiles. In turn, we tuned the fixed value threshold using the cross-validation scheme described
in 2.4.5 over the three possible thresholds for both the simulation studies and the data application.

Additionally, we set the number of trees to 500 for the regression forest and 1000 for the classi-
fication forest after some initial running.

This means that we tried the following range of parameters:

• κr ∈ {10, 20, 50, 100, 250, 500, 1000},

• κc ∈ {10, 20, 50, 100, 250, 500, 1000},

• u ∈ {u1 = Ytrain(τ = 0.7), u2 = Ytrain(τ = 0.8), u3Ytrain(τ = 0.9)}.

Gnecco Simulation Ahmed Hyperparameter Settings:

• κr = 250,

• κc = 10,

• u = 3.5.

Ahmed Simulation Ahmed Hyperparameter Settings:

• κr = 250,

• κc = 100,

• u = 20.

Time-Invariant Financial Market Simulation Ahmed Hyperparameter Settings:

• κr = 500,

• κc = 20,

• u = 2.
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Time-Varying Financial Market Simulation Ahmed Hyperparameter Settings (non-

filtered):

• κr = 1000,

• κc = 1000,

• u = 0.1.

Time-Varying Financial Market Simulation Ahmed Hyperparameter Settings (filtered):

• κr = 500,

• κc = 20,

• u = 2.

S&P500 Application Ahmed Hyperparameter Settings (non-filtered):

• κr = 250,

• κc = 20,

• u = 2.

S&P500 Application Ahmed Hyperparameter Settings (filtered):

• κr = 20,

• κc = 1000,

• u = 1.5.
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