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Abstract

This paper presents a robust estimator for the DCC-GARCH model, which was

originally proposed by Engle (2002). Unlike previous robust methods that only handle

rowwise outliers, our proposed estimator is specifically designed to handle cellwise out-

liers. To assess its performance, we compare it with the maximum likelihood estimation

(MLE) method and an M-estimator introduced by Muler and Yohai (2008). Through

simulation experiments, we demonstrate that our cellwise estimator outperforms the

other estimators. It successfully estimates the parameters of the DCC-GARCH model

even in the presence of outliers. In addition, an empirical study reveals the efficacy

of the cellwise estimator for analyzing real-life data. This research is significant as

it introduces a robust estimator for the DCC-GARCH model without requiring any

modifications to the model itself.
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1 Introduction

In the field of statistics, outliers are an important issue. Outliers in the data may lead to

misleading specifications of models. In turn, this may lead to incorrect conclusions. Young

(2022) notes that many economic papers rely their findings upon a few outliers. This find-

ing makes it so that the conclusions drawn by these papers carry less weight than initially

thought.

Different models aim to explain the behavior of outliers in data. The Tukey-Huber con-

tamination model assumes that a substantial proportion of cases follow a certain clean distri-

bution. Meanwhile, a significant portion of the data is contaminated and follows a different

distribution. The model assumes that outliers are row-wise. This implies that an entire

observation is considered an outlier. The problem of rowwise outliers in classical econometric

models has been extensively covered. However, cellwise outliers have not been investigated

to a great extent in the world of quantitative finance. Cellwise outliers are outliers within a

multivariate observation. In other words, a certain component of an observation is treated

as an outlier. An example of a paper that investigated cellwise outliers is Hubert, J., and

Van den Bossche (2019). The authors investigate the impact of cellwise outliers on principal

component analysis (PCA).

In the field of portfolio management, understanding the moments of assets is a cru-

cial topic. Additionally, the correlation between these assets holds significance as it is of-

ten required for optimal portfolio allocation methods. Multivariate models, such as the

Baba-Engle-Kraft-Kroner generalized autoregressive conditional heteroskedasticity (BEKK-

GARCH) model introduced by Engle and Kroner (1995), are commonly used for calculating

the dynamic behavior of asset correlations. However, the dynamic conditional correlation

GARCH (DCC-GARCH) model is predominantly preferred in practice due to its ability to

handle a large number of assets without compromising accuracy. Two papers have intro-

duced their own versions of the DCC model, namely the DCC model by Engle (2002) and

the DCC model by Tse and Tsui (2002). It is important to note that the estimation results of

these models may be unreliable if they fail to handle substantial positive or negative return

shocks. This study aims to investigate the robustness of widely used estimation methods for
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DCC-GARCH models, as proposed by Engle and Sheppard (2001).

Considering the significance of estimating the correlation matrix for portfolio allocation,

it would be worthwhile to explore the impact of return outliers on the conclusions drawn

from the DCC-GARCH model. It is possible that outliers may significantly alter the optimal

allocation of portfolios by influencing the mean, variance, and covariances of the assets under

consideration. In cases where the DCC model’s results are adversely affected by outliers, it

would be advantageous to develop a robust estimator that addresses this issue.

This paper’s relevance lies in the evaluation of common estimation methods for the DCC-

GARCH model. If these methods are found to be non-robust, it necessitates a reevaluation of

numerous findings derived from these models. Furthermore, non-robustness of the traditional

estimation techniques warrants research on robust estimation methods for the DCC-GARCH

model. Additionally, this paper may stimulate the search for robust estimation methods that

can handle cellwise outliers in other areas of finance. Furthermore, if the known estima-

tion methods for the DCC-GARCH model are unable to handle cellwise outliers, portfolio

managers have reason to discontinue their use for correlation estimation purposes. This, in

turn, prompts them to explore alternative models that yield better results in the presence

of return outliers. Ultimately, this benefits taxpayers since pension funds can make more in-

formed decisions. The risk associated with investing in a potentially risky portfolio perceived

as safe decreases when appropriate conclusions are drawn from the most suitable multivariate

models.

The objective of this paper is to examine whether our newly introduced estimator robust

to cellwise outliers for the the DCC-GARCH model by Engle (2002) is able to produce

unbiased estimates in the presence of outliers. Our analysis is twofold. First, we employ

simulations of multivariate GARCH returns with significant return outliers. By comparing

the estimation results with the underlying parameters, we aim to determine the robustness

of the conventional estimation method. We propose a cellwise robust estimator for the DCC-

GARCH model that is capable of handling large outliers. The performance of this robust

estimator is assessed by comparing it with other estimation methods. Second, we conduct a

study on real-life S&P500 data to invigorate our simulation results.

Our findings indicate that the cellwise outlier estimator outperforms both the MLE and
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M-estimator in accurately estimating the true parameters in the presence of outliers. The

cellwise estimator exhibits unbiasedness in the presence of infrequent large outliers. Moreover,

the cellwise estimator is able to handle outliers in real-life data. The DCC-GARCH model

making use of this estimation technique is able to produce stable estimates of the variance-

covariance structure, whereas the model using traditional MLE estimation fails to do this.

Firstly, we provide a general overview of relevant literature. This is followed by a detailed

explanation of all methods in the methodology section. In section 4, we present the results

of our simulations. Section 5 analyzes the S&P500 data, followed by a comparison of our

estimator with the two-step MLE estimator using this real-life data. Lastly, we discuss the

obtained results and draw conclusions.

2 Literature Review

Since the inception of DCC-GARCH models, various estimation approaches have emerged.

The MLE estimation method is commonly used to estimate the DCC-GARCH model dis-

cussed in this paper. Both the models proposed by Engle (2002) and Tse and Tsui (2002)

share the same likelihood function, but differ in the computation of optimal parameters. En-

gle and Sheppard (2001) propose a consistent two-step estimator for Engle’s DCC-GARCH

model, where the likelihood function is partitioned into mean and volatility parts and a

correlation part. Initially, the individual GARCH models are estimated, followed by the es-

timation of the DCC-GARCH model based on the optimal GARCH parameters obtained in

the first step. However, this two-step estimation is inefficient for estimating the correlation

parameters. To address this, a one-step iteration of the Newton-Raphson algorithm is pro-

posed. Aielli (2013), however, disputes the claims made by Engle and Sheppard regarding

the consistency of Engle’s DCC-GARCH estimator. He demonstrates that the estimator can

be biased in the presence of high correlation persistence and suggests a corrected version of

the model to mitigate this bias.

While robust estimation of univariate GARCH models has been extensively studied, fewer

studies have focused on robust estimation of multivariate GARCH models. One such study is

conducted by Muler and Yohai (2008), who propose two robust estimators that outperform

4



the quasi-maximum likelihood (QML) estimator in simulated environments. They recom-

mend the inclusion of their estimator for real-life data. Carnero, Peña, and Ruiz (2012)

make slight adjustments to the aforementioned robust estimator, as they argue that small

biases in parameter estimates can lead to significant biases in volatility estimates. They

propose a method to address this issue.

This paper aims to contribute to the literature on robust estimation of the DCC-GARCH

model by proposing an estimator robust to cellwise outliers. Although there have been few

studies on the effect of cellwise outliers on estimation in various econometric fields, Hubert et

al. (2019) develop a robust PCA estimation method. Boudt, Danielsson, and Laurent (2013)

also seek to find a robust DCC-GARCH model by modifying the model itself to minimize the

impact of robust outliers. In contrast, our paper focuses solely on developing an estimator

without altering the underlying model. Furthermore, our focus is specifically on outliers

within observations.

The importance of this paper lies in the potential ramifications of neglecting cellwise

outliers in the robust estimation of the DCC-GARCH model. Drawing parallels to a different

field, Young (2022) finds that in instrumental variable estimation, the conclusions of many

studies depend on a few outliers. This highlights the significance of robust estimation and the

necessity for thorough research in this area to prevent erroneous conclusions in the future.

A potential limitation of our approach is the empirical departure from normality in re-

turns. The use of Mahalanobis distances to detect outliers is most effective for elliptical distri-

butions, particularly the multivariate Gaussian distribution. The assumption of multivariate

Gaussianity facilitates the calculation of a cutoff value for outlier detection. Prykhodko,

Prykhodko, Makarova, and Pukhalevych (2018) propose a solution by suggesting the Yeo-

Johnson transformation by Yeo and Johnson (2000) to normalize non-normal data. However,

this approach may not be effective when dealing with Student’s t-distributed data, which al-

ready closely resembles the normal distribution. Another challenge with using Mahalanobis

distances to identify outlying returns is heteroskedasticity. In larger samples, heteroskedas-

ticity may lead to false identification of potential outliers, as the variance at that particular

time point may be higher or lower than usual.

Similar to the approach taken by Rousseeuw and Van Den Bossche (2018) in detecting
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deviating data cells, we develop a method to identify outlying data cells. There are no-

table differences between our method and theirs. Our approach remains effective even when

the correlation between assets is very low, although this is rarely the case in real-life data.

Additionally, our estimator initially detects outlying rows before focusing on outlying cells

directly.

3 Methodology

In this section, we provide a detailed explanation of the methodology employed in our anal-

ysis. Firstly, we provide a comprehensive explanation of the DCC-GARCH model proposed

by Engle (2002). We utilize this model to simulate DCC-GARCH returns, to which we in-

troduce outliers in order to compare the performance of the two-step estimation method and

our robust methods. Subsequently, we introduce our estimator that is robust to cellwise

contamination. Furthermore, we delve into the details of an M-estimator that we employ to

assess the performance of our cellwise estimator, a method introduced by Muler and Yohai

(2008).

3.1 DCC-GARCH

To begin with, we elaborate on the specifications of the DCC-GARCH model considered in

this paper. Furthermore, we explain the two-step MLE estimation method with which we

compare our estimator. Lastly, we provide a brief overview of how we simulate DCC-GARCH

returns.

3.1.1 Model specification

The generalized autoregressive conditional heteroskedasticity (GARCH) model is introduced

by Bollerslev (1986). The GARCH(1,1) model is defined as

ht = ω + αv2t−1 + βht−1, (1)
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where h is the conditional variance, ω a constant and v is an error term. This error term is

defined by

rt = µ+ vt. (2)

Here, µ is the mean return. Hence, vt can be considered as the demeaned return at time t.

To ensure that the conditional variance is always positive ω, α and β > 0. Furthermore,

to ensure a stationary process we restrict α and β such that α + β < 1. For this process,

weak stationarity means that the mean and variance are constant throughout the sample

time. This model and its extensions are widely used in practice. The models are intuitive

and are able to produce tractable forecasts. We do not consider different specifications of

a GARCH(p,q) setup. Hansen and Lunde (2005) show that no GARCH specification that

does not incorporate the leverage effect is significantly better at modeling volatility than

GARCH(1,1). Since incorporating extensions, such as the leverage effect is outside the scope

of this paper, we choose an ordinary GARCH(1,1) model as the foundation of the DCC-

GARCH model.

Following the success of the univariate GARCH model, multivariate extensions were a

logical way forward. Multivariate models are not only able to model univariate series simul-

taneously, they allow the investigation of the dynamics between the univariate return series.

The constant conditional correlation GARCH (CCC-GARCH) model by Bollerslev (1990) is

an example of such a multivariate model. This model assumes there is a constant correlation

between the evaluated time series. This results in a constant correlation matrix. The covari-

ance matrix, however, is time-varying. This must be the case since the univariate conditional

variances are also dependent on t. The time-varying covariance matrix Ht is given by

Ht = DtRDt, (3)

where Dt is a matrix with the conditional standard deviations on its diagonal. This matrix
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looks like

Dt =



√
h1,t 0 · · · 0

0
√
h2,t · · · 0

...
...

. . .
...

0 0 · · ·
√
hk,t

 .

Furthermore, R is the constant correlation matrix. To complete the model, the demeaned

returns are generated by

vt = H
1/2
t zt, (4)

where zt ∼ N(0, Ik) is a vector with length k. The CCC-GARCH model is a great attempt at

modeling multivariate return series. The main assumption of a constant correlation matrix,

however, is not applicable in practice. Correlations between assets are time-varying, hence

the CCC-GARCH model is generalized by Engle (2002) to allow for a time-varying correlation

structure. They alter the equation for the covariance matrix such that

Ht = DtRtDt. (5)

Here, Rt has the shape

Rt =


1 ρ12,t · · · ρ1k,t

ρ21,t 1 · · · ρ2k,t
...

...
. . .

...

ρk1,t ρk2,t · · · 1

 .

This setup allows for a dynamic correlation structure. Rt is also the conditional covariance

matrix of the standardized residuals vector ϵt. This vector is defined as

ϵt = rt/
√
ht. (6)

The introduction of time-varying correlation causes the introduction of a set of equations that
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explains the conditional correlation matrix. The conditional correlation matrix is defined as

Rt = Q∗−1
t QtQ

∗−1
t . (7)

Here, Qt is defined as

Qt = (1− a− b)S+ a(ϵt−1ϵ
′

t−1) + bQt−1. (8)

This specification ensures that Rt is positive definite. This is a necessary requirement, since

we need to ensure that Ht is positive definite. This is a necessity since Ht represents a

covariance matrix. None of the values in this matrix can fall below zero. Another require-

ment that is ensured through this specification is that none of the values in the conditional

correlation matrix are above one. Q∗
t is a diagonal matrix with the diagonal entries of Qt

on its diagonal. In (8), a and b are the DCC parameters. Note that the specification of

Qt is similar to the autoregressive pattern in (1). The coefficient a is multiplied with the

realized correlation matrix of last period, whereas the coefficient b is multiplied with the Q

matrix of last period. This resembles autoregressive nature of the unconditional variance

in a GARCH(1,1) equation. S is the unconditional covariance matrix of the standardized

residuals, it is defined as

S =
1

n

n∑
t=1

ϵtϵ
′

t. (9)

There are two constraints on the parameters a and b. Namely, a, b > 0 and a+ b < 1. These

parameter restrictions strongly resemble the GARCH parameter restrictions. They ensure

the stationarity of the model.

3.1.2 MLE Estimation

We compare the performance of our cellwise estimator with the two-step estimator introduced

by Engle and Sheppard (2001). This estimator is widely used in practice to estimate the

DCC-GARCH model. This estimator is not robust to outliers in the data and likely to fall

apart in the presence of outliers. The two-step estimator allows us to separate the likelihood

function into a mean and correlation part. This way, parameter stability is improved since
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fewer parameters are estimated simultaneously. Since rt ∼ N(0,Ht), the total log-likelihood

function is as follows

L = −1

2

n∑
t=1

(k log (2π) + log (|Ht|) + r
′

tH
−1
t rt)

= −1

2

n∑
t=1

(k log (2π) + log (|Dt|)RtDt|+ r
′

tD
−1
t R−1

t D−1
t rt)

= −1

2

n∑
t=1

(k log (2π) + 2 log (|Dt|) + log (|Rt|) + ϵ
′

tR
−1
t ϵt).

(10)

In the first step, the univariate GARCH parameters are estimated. Subsequently, in the

second step, the DCC parameters are estimated. We separate the parameters of the DCC-

GARCH model into two parameter sets, namely (θ, ϕ). Here the parameters of θ correspond

to the univariate GARCH parameters, such that θi = (ωi, αi, βi). Furthermore, ϕ = (a, b).

When we replace Rt with the identity matrix Ik, we get the log-likelihood function for the

first step as

L1(θ|rt) = −1

2

n∑
t=1

(k log (2π) + 2 log (|Dt|) + ϵ
′

tϵt)

= −1

2

n∑
t=1

(
k log (2π) +

k∑
i=1

(
log (ht) +

r2t
ht

))

= −1

2

k∑
i=1

(
T log (2π) +

n∑
t=1

(
log (ht) +

r2t
ht

))
.

(11)

The resulting log-likelihood is the sum of the univariate GARCH log-likelihoods. Hence, we

can estimate the parameters of each GARCH model individually. Now in the second step, we

estimate the DCC parameters given the estimated univariate GARCH parameters through

the following log-likelihood function

L2(ϕ|θ̂, rt) = −1

2

n∑
t=1

(k log (2π) + 2 log (|Dt|) + log (|Rt|) + ϵ
′

tR
−1
t ϵt)

= −1

2

n∑
t=1

(log (|Rt|) + ϵ
′

tR
−1
t ϵt).

(12)

In the last step, we omit the constant terms since they do not affect the estimation of the

optimal parameters.
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3.1.3 Returns Algorithm

To simulate DCC-GARCH returns, we propose an algorithm that can iteratively generate

returns. We simulate demeaned returns instead of actual returns. This makes the algorithm

easier without losing the characteristics of a DCC-GARCH model. Ultimately, a level shift of

the returns has no influence on the covariance structure. The return series which result from

this algorithm adhere to the individual GARCH specifications and the multivariate DCC

specification. The algorithm is given as

Algorithm 1: DCC-GARCH return algorithm

Result: DCC-GARCH returns
Define DCC and GARCH parameters a, b, ωi, αi and βi
Initialize Q0,S0, h0 and v0
for s ∈ (1, ..., t) do

for i ∈ (1, ..., k) do
hs,i = ωi + αiv

2
s,i + βihs,i

end

Ds = diag(
√
hs)

Ss =
1
s

∑s
m=1 ϵsϵ

′
s

Qs = (1− a− b)S+ aϵs−1ϵ
′
s−1 + bQs−1

Q∗
s = diag(

√
Qs)

Rs = Q∗−1
s QsQ

∗−1
s

Hs = DsRsDs

zs ∼ N(0, 1)

vs = H
1
2
s zs

ϵs = D−1
s vs

end

The algorithm starts with initializing the DCC and GARCH parameters. Furthermore,

the matrices Q, S and the conditional variances and returns are also initialized. Thereafter,

the loop starts by calculating the conditional variances for s = 1. The conditional variances

are used to obtain the conditional standard deviation matrix D. Subsequently, the condi-

tional correlation matrix R is calculated according to the steps explained earlier. Lastly,

the conditional covariance matrix and the returns are computed. Now, another iteration can

commence. The loop ends when there have been t iterations. This algorithm ensures that the

univariate return series follow the chosen GARCH parameters. Moreover, the entire system

follows the DCC parameters a and b.
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3.2 Cellwise outliers

To examine our estimator in a simulation setting, we artificially add outliers to DCC-GARCH

simulated returns. We create additive outliers as follows. We introduce two new variables,

namely the fraction of outliers 0 < δ < 1, and the magnitude of the addition λ. After

the returns are simulated, we randomly add λ to a fraction δ of returns. Note that if the

selected returns are small, they will not be large outliers after addition. We investigate the

effect of these outliers on the estimation of the DCC-GARCH model for differing values of δ

and λ. First, we concatenate the return series. Thereafter, we add the outliers at random.

Hence, it is almost a certainty that the amount of outlying observations is not equal among

the univariate return series. In order to make a valid comparison between our findings and

the conclusions drawn by Muler and Yohai (2008) and Boudt et al. (2013), we merely add

positive outliers. Hence, we create the concatenated return series v∗l through

v∗l =

vl + λ, if l = li, 1 ≤ i ≤ u = λpn,

vl, otherwise,

where l1, ..., lu are the instances where the outliers are added.

3.3 Cellwise Estimator

3.3.1 Estimator

Now, we present and elaborate on our estimator that is specifically designed to handle cellwise

contamination. This estimator enables robust estimation of the DCC-GARCH model. What

differentiates our estimator from existing robust estimators is its ability to handle not only

rowwise outliers but also cellwise outliers. Consequently, valuable data is not discarded if

an observation is flagged as an outlier. Instead, we identify the outlying return or returns

within the observation, thereby preserving non-outlying returns in an observation flagged as

outlying. This approach prevents the unnecessary removal or shrinkage of data, which would

potentially lead to a loss of estimation efficiency in determining the values of the DCC-

GARCH parameters. Additionally, the identification of outlying returns provides insight
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into the return series responsible for the outlying observation.

The purpose of this estimator is to detect and deal with large outliers caused by, for

instance, a period of financial instability or a big shock. This period of large outliers heavily

influences the estimation of the parameters of the DCC-GARCH model, such that the model

is not correct when just looking at times when the financial market is more stable. Since these

periods with large returns occur sparsely, we deem it safe to label them as outlying. Another

way of looking at this estimator is by correcting for volatility. Hence, devolatizing the returns

before looking for the outlying values. This way, returns through the whole sample period

would be flagged and labeled as outlying returns. We did not choose for this approach, since

we deem it more useful for our estimation method to deliver robust estimates in the event of

a small period of large outlying returns. This choice means that our estimation method holds

less value in the absence of financial turmoil. In this absence, an approach with devolatized

returns would be more sensible.

The estimator consists of three key steps. First, we employ Mahalanobis distances, as

introduced by Mahalanobis (1936), to detect outlying observations. An observation is flagged

as outlying when the squared Mahalanobis distance exceeds a predetermined threshold. Next,

we introduce a method that utilizes partial Mahalanobis distances to detect and eliminate

the cellwise outliers. Finally, we employ the Expectation-Maximization (EM) algorithm to

impute the values of the missing data. This iterative algorithm fills in the most likely values

and allows for the completion of the data.

Mahalanobis distances are commonly used in practice to identify outlying cases in large

datasets. However, a prerequisite for its application is that the multidimensional distribution

is elliptical. Since return data generally follows a Student’s t distribution, our approach is

applicable. The Mahalanobis distance of an observation can be viewed as the multivariate

equivalent of a z-score. A large distance indicates an outlying observation, which could be

due to either outlying cells or a fully outlying observation. We assume that observations

with a sufficiently low Mahalanobis distance do not contain cellwise outliers. To calculate

the squared Mahalanobis distance for each observation x, we employ the following formula

D2(x) = (x− µ)′Σ−1(x− µ), (13)

13



where µ is the location vector of the data and Σ the scatter matrix. However, there is

a major problem with this approach. According to Rousseeuw and Van Zomeren (1990),

using the location vector and scatter matrix of the contaminated data set will result in

contaminated and biased Mahalanobis distances. Ideally, we would like to use the mean

vector and covariance matrix of the underlying clean distribution. If we knew the underlying

distribution, we could easily locate and remove the contaminated rows. Therefore, we need

to find robust estimates of µ and Σ given the contaminated data set.

We find these robust estimates through the Minimum Covariance Determinant (MCD)

estimator as introduced by Rousseeuw (1985). The MCD estimator estimates the mean

vector and covariance matrix with the d observations that minimize the determinant of the

sample covariance matrix, where d ≤ n, the total number of observations. This procedure

yields the raw estimates µ̂0 and Σ̂0. Since only a subset of points is used, the covariance

matrix of the subset does not represent the covariance structure of the whole sample. The

covariances and variances are underestimated in a sense. After all, points that result in a large

determinant of the covariance matrix are not taken into account. Therefore, the covariance

matrix needs to be multiplied by a constant, which is called the Fisher consistency correction.

Fisher consistency entails that an estimator is the true parameter when the population is

used as a sample. To make the estimated covariance matrix Fisher consistent at the normal

distribution, a consistency factor c0 is needed as explained in Butler, Davies, and Jhun (1993).

Hence, the Fisher consistent covariance matrix is defined as c0Σ̂0, where c0 is defined as

c0 = γ/FΓ2
k
2 +1,1

(
χ2
γ

2

)
, (14)

where γ = d/n and k is the number of return series. In other words, k is the number of

dimensions in the DCC-GARCH model.

There is still a shortcoming to the obtained parameter estimates. A trade-off exists in

the choice of γ. A lower γ results in a higher robustness of the estimates, but simultaneously

makes the MCD estimator less efficient. This is investigated in Croux and Haesbroeck (1999).

We choose γ to be 0.5 for our analysis, since we value the robustness of the MCD over its effi-

ciency. Moreover, we use a large horizon in our simulations, which we will elaborate on later in
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the paper. Ideally, we would want to maintain high robustness while increasing the efficiency

of the estimator. A paper by Lopuhaa and Rousseeuw (1991) proposes to apply a weighting

step to the MCD estimators. The squared Mahalanobis distances D2(xi, µ̂MCD, Σ̂MCD) are

computed with the previously obtained estimates. Then the reweighted estimates are defined

as:

µ̂MCD =

∑n
i=1w(D

2
i )xi∑n

i=1w(D
2
i )

, (15)

Σ̂MCD = c1

∑n
i=1w(D

2
i )(xi − µ̂MCD)(xi − µ̂MCD)

′∑n
i=1wi

. (16)

The weights wi are defined as

wi =

1, if l = li, 1 ≤ i ≤ u = λkn,

0, otherwise.

In essence, observations with a higher squared Mahalanobis distance than the cutoff value are

disregarded for the estimation of the final location and covariance matrix. The Mahalanobis

distances are calculated with the location and covariance matrix obtained in the previous

step. Once again, we multiply the covariance matrix with a constant c1 to obtain a Fisher

consistent estimator. This time the constant is defined as

c1 = (1− δ)/FΓ( k
2
+1,1)(χ

2
1−δ/2), (17)

where δ is 0.025. Let F denote the F-distribution. With the reweighted mean and covariance

matrix, we compute the squared Mahalanobis distances for each observation. If the squared

Mahalanobis distance exceeds the cutoff value of χ2
k,0.975, we flag this observation as an outlier.

The subsequent stage in the estimator involves identifying cellwise outliers by examining

the flagged observations. Danilov (2010) introduced the procedure for identifying cellwise

outliers in the flagged observations, known as the Partial Mahalanobis distance approach

(P-approach). This approach compares the partial Mahalanobis distances to the full Maha-

lanobis distances calculated in the initial step of the algorithm in order to identify outliers.

The P-approach employs an iterative procedure where one observation is omitted at a time
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to calculate the Mahalanobis distance for the remaining values. If the resulting Mahalanobis

distance falls below the cutoff value, the remaining observations are considered normal or

non-outlying, implying that the omitted observation is an outlier. The partial squared Maha-

lanobis distance is denoted asMD2
j , where j represents the index of the omitted observation.

The cutoff value for the partial Mahalanobis distance, denoted as Cn−1, is determined by the

number of return observations, or the number of investigated equity prices, indicated by n.

It should be noted that this cutoff value is smaller than the value used to identify outliers,

as the degrees of freedom have decreased. When examining the flagged observations, three

possible outcomes can occur.

The first outcome can be expressed as #(j|MD2
j ≤ Cn−1) = 1. This signifies that

excluding the jth return value results in the remaining observation no longer being classified

as an outlier. Eliminating any other data point will not cause the observation to fall below

the cutoff value. The outlying observation is consequently removed from the dataset.

The second outcome is #(j|MD2
j ≤ Cn−1) = u ≥ 2. This outcome indicates that eliminat-

ing any of the u data cells renders the remaining observation non-outlying. This circumstance

is misleading because it suggests that if a supposedly non-outlying observation is removed,

it suddenly becomes an outlier, and vice versa. To resolve this issue, we adopt a strategy

where we remove the data cell that triggers the largest decrease in the squared Mahalanobis

distance, denoted asMD2−MD2
j . By doing so, we eliminate the observation that is deemed

most likely to be an outlier from the dataset.

The third outcome is #(j|MD2
j ≤ Cn−1) = 0. In this case, there is not a single instance

where the squared partial Mahalanobis distance falls below the predefined threshold when

data cells are omitted. This leads us to suspect that multiple observations are outliers,

rather than just one. If the number of observations n is equal to or less than 3, we classify

all cells as outliers. However, if n is greater than 3, we proceed to engage in a more thorough

detection process by gradually removing pairs of observations. The same logic applies here:

if eliminating a pair of observations yields a normal observation, both observations in the

pair are flagged as outliers. If, at this level, no outliers are found, we delve even deeper and

create groups of three cells. This process continues until a group of outliers is identified. The

identified outlying observations are then eliminated from the dataset.
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In the third and final stage, the missing values caused by the removal of outliers in the

previous step are imputed in the dataset. To accomplish this, we utilize the Expectation Max-

imization (EM) algorithm, introduced by Dempster, Laird, and Rubin, 1977. We opt for EM

imputation over alternative methods such as mean imputation, as Donders, Van Der Heijden,

Stijnen, and Moons (2006) demonstrate that mean imputation introduces undesirable biases

to the dataset. The resulting clean dataset is subsequently used to compute the parameters of

the DCC-GARCH model. The EM algorithm is predicated on the assumption of multivariate

normal data, as it simplifies the utilization of conditional normal distributions. The entire

data matrix is denoted as Y, where each ith observation constitutes a k-dimensional vector,

with k representing the number of distinct returns. Given our assumption of a normal data

matrix, ys follows a multivariate normal distribution N(µ,Σ). Nonetheless, some of these

ys vectors will contain missing components due to the removal of outlying values during the

previous step. We denote these missing components as zs, whereas the observed components

are denoted as xs. We further assume that each subvector follows a normal distribution.

Therefore, the following holds true:xs
zs

 ∼ N

µs,x

µs,z

 ,

Σs,xx Σs,xz

Σs,zx Σs,zz

 .

We are interested in the expected mean and variance of the missing values given the observed

values and the parameters. In other words, we are interested in ms and Vs in

p(zs|xs, µ,Σ) ∼ N(ms,Vs). (18)

Following a property of joint normal distributions, we can compute the conditional mean and

variance as

ms = µs,z +Σs,zxΣ
−1
s,xx(xi − µs,x), (19)

Vs = Σs,zz −Σs,zxΣ
−1
s,xxΣs,xz. (20)

The previous equations form the basis of the EM-algorithm used to impute the missing values

after deletion of the outlying cells. The algorithm is as follows
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Algorithm 2: EM missing values imputation

Result: Imputed return matrix
Define the return matrix with removed cells as Y. Furthermore, define the small
stopping value ν = 0.001. Define P as a copy of the initial missing data matrix Y.
Furthermore, initialize µ0 and Σ0 with the observed data.
while ||(µs − µs−1)||F > ν or ||(Σs −Σs−1)||F > ν do

for s ∈ (1, ..., n) do
if Ps contains missing values then

E-step:
ms = µs,z +Σs,zxΣ

−1
s,xx(xs − µs,x)

Vs = Σs,zz −Σs,zxΣ
−1
s,xxΣs,xz

Ys,z = ms

end

end
M-step:
µw+1 =

1
n

∑n
i=1 yi

Σw+1 =
1
n

∑n
i=1 yiy

′
i − µw+1µ

′
w+1 +Vi

end

where w is the iteration of the algorithm. Furthermore, ||...||F is the Frobenius norm. The

Frobenius is another name for the Euclidean norm in the case of a vector. The Frobenius

norm of a matrix is defined as

||A||F =
√
Tr(AAT ). (21)

This algorithm runs as long as there is a significant improvement in the estimation of the

mean vector or the covariance matrix. In the Expectation-step, all the missing values are

imputed. Subsequently, the mean and covariance structure are updated. Note that Vi is a

zero matrix when there are no missing values in row i of the data set.

3.3.2 Cutoff values

There is an issue when using Mahalanobis distances to determine outliers in a data set

of returns. The general Mahalanobis cutoff values are χ2 distributed since the cutoff is

based on a multidimensional normal distribution. However, return data is empirically not

normally distributed. Return data is almost always characterised by a multidimensional

Student’s t distribution. Hence, it would not be appropriate to use the χ2 cutoff values.

The usage of these values would result marking regular observations as outlying. Finding a
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closed-form solution for cutoff values based on a Student’s t distribution is a cumbersome

endeavour. Therefore, we take a different approach. We simulate multiple multidimensional

Student’s t distributions. Thereafter, the Mahalanobis distances for every simulated data

set are computed. We define κ as the significance level. If we want to find the cutoff value

for k = 3 and κ = 0.05, we select the Mahalanobis distance such that 5 percent of the

Mahalanobis distances is bigger than this particular distance. The same reasoning holds for

different values of κ. Below, we present a table with Mahalanobis cutoff values for different

k and κ. The degrees of freedom for the Student’s t distributions is set to 4.

Table 1

Mahalanobis distance cutoff values
k

2 3 4

κ
0.05 13.89 19.72 25.54
0.025 21.28 29.74 38.36
0.01 35.98 49.50 64.05

Note. This table displays the Mahalanobis distance cutoff values for different combinations of
κ and k. The values are generated through simulating 50,000 samples from a multidimensional
Student’s t distribution

3.4 M-estimator

To invigorate the effectiveness of our Mahalanobis estimator, we compare the estimating

accuracy with the M-estimator used in Muler and Yohai (2008). Note that the estimators

used in their paper merely focus on the estimation of the univariate GARCH models. The

estimation of the multivariate parameters a and b are thus not compared. M-estimators

are a generalization of MLE estimation. They allow for a different specification of the loss

function used to estimate the parameters. This allows for putting less weight on outliers

while estimating, making these estimators more robust to large outliers.

We now elaborate on the M-estimator suggested by Muler and Yohai. They show that

maximizing the log-likelihood function in (11) is the same as minimizing

L =
1

n− k

n∑
t=k+1

ψ0(yt − log (ht)), (22)
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where ψ0 = − log (g0). Here, g0 is defined as

g0(w) =
1√
2π
e

1
2
(ew−w). (23)

This QML estimate of the GARCH parameters is not robust since ψ0 is unbounded. In

other words, one single outlier is able to introduce a large bias to the estimated parameters.

The estimation of the log-likelihood can be made more robust by using alternative bounded

ψ-functions. Nevertheless, these estimates will still be influenced by outliers since the con-

ditional variances are computed with (1). An outlying conditional variance value at time t

influences the conditional variances after t.

Muler and Yohai suggest to use an M-estimate defined as ψ1 = m(ρ0), where m(x) is

defined as

mx =


x, if x ≤ 4.02,

c4x
4 + c3x

3 + c2x
2 + c1x+ c0, if 4.02 < x ≤ 4.30,

4.16, otherwise,

where c0 = 6777, c1 = −6536.2, c2 = 2362.3, c3 = −379.0087 and c4 = 22.777. Note that

this is a smoothed function of a function that attains the value 4.02 after x reaches 4.02.

Propagating ψ0 into this smoothing function results in bounding the conventional ψ-function

used in general QMLE of univariate GARCH models. This way, the influence of large outliers

diminishes greatly.

4 Simulation

In this section, we conduct a simulation study of the DCC-GARCH model in the presence of

additive outliers. The parameters of the model are estimated by two-step maximum likelihood

estimation (MLE), M-estimation, and the newly proposed estimator that uses Mahalanobis

distances to filter out cellwise outliers. We compare the performance of the three estimation

methods in terms of bias and variance.

We simulate a three-dimensional DCC-GARCH model with 5000 data points. For all

results, the number of iterations per simulation is 100. The Mahalanobis cutoff values are
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chosen for κ = 0.01. The multivariate parameters a and b are set to the values of 0.1 and

0.8 respectively. This specification adheres to the parameter restrictions of a, b < 1 and

a + b < 1. Moreover, these values are realistic to be obtained for real-life time series. The

GARCH parameters are ω1 = 0.1. α1 = 0.3, β1 = 0.6, ω2 = 0.1, α2 = 0.2, β2 = 0.7, ω3 =

0.1, α3 = 0.1, β3 = 0.8. Similarly to the multivariate parameters, these parameter values

also adhere to the parameter restrictions ω, α, β < 1 and ω + α + β < 1.
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We first present the estimation results for particular choices of δ and λ. Table 2 shows

the results for a simulation without any outliers. This simulation is carried out to gauge

the efficacy of the robust estimation methods when no outliers are present. The biases of

the robust estimators are slightly higher than the bias of the MLE method. This is to be

expected, since large values are unrightfully marked as outliers. However, since the biases

are still small, we can conclude that the amount of wrongly flagged outliers is not large. The

highest biases are found for the cellwise estimator parameters estimates of α1 and β1. Across

the board the variances are low with no significant differences. Hence, we can conclude that

in the case of no outliers, the cellwise estimator possibly has a small bias in the estimation

of univariate GARCH parameters.

Table 3 shows the results for a simulation where δ = 0.01 and λ = 5. We observe a clear

difference in the performance of the estimators. As expected, the MLE estimator introduces

significant bias to the estimates. The positive bias is particularly large for the estimation

of the constants ω. This is because the addition of outliers increases the variance of the

time series significantly. The α-parameters are affected the least out of all the GARCH

parameters. Moreover, there is a large negative bias of the multivariate parameter b. The

M-estimator results in less bias than the MLE estimator, especially for the constants ω. Our

cellwise estimator is the best in terms of bias. There is still some bias in the estimation of

α, but it is smaller than the bias of the MLE and M-estimator.

When examining the variance of the estimator, a distinct observation emerges. In general,

all estimators demonstrate low variance for the majority of parameters. However, the variance

of the Maximum Likelihood Estimation (MLE) estimate for parameter b deviates notably

from this pattern with a value of 0.073. This is significantly higher than the variances of the

other parameters.
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For the subsequent simulation, the value of λ is modified to 10, resulting in an error mag-

nitude that is twice as large as the previous simulation. The fraction of outliers, however,

remains constant at 0.01. The results of this simulation are presented in Table 4. Upon

initial examination, it becomes evident that the performance of MLE estimation is severely

compromised. The biases for nearly all parameters are substantially large. The biases of

the estimated constants exceed 0.3, while the underlying ω parameters all have values of 0.1.

Consequently, the estimated constants are at least three times greater than their true values.

The sole parameter with relatively low bias are α3 and a. It is evident that MLE fails to

provide accurate estimates when confronted with outliers of this magnitude. As a result, the

estimates should be approached with caution, as they are of limited utility. On the other

hand, the Muler-Yohai M-estimator exhibits improved performance compared to MLE, with

significantly smaller biases for almost all parameters. The cellwise estimator estimations

display minimal bias for all parameters. Similar patterns emerge when evaluating the vari-

ances. The MLE estimates demonstrate large variances, particularly for the ω parameters.

In contrast, the variances of the a estimates are low, indicating that MLE consistently es-

timates a wrong. The cellwise estimator exhibits minimal variance in its estimations of the

DCC-GARCH parameters.

In comparison to the simulation with a fixed value of λ = 5, several notable differences can

be observed in the outcomes. Specifically, when examining the bias, it is evident that the MLE

estimates perform significantly worse as the magnitude of the added outliers increases. This

outcome was to be expected, as the presence of outliers with larger magnitudes inherently

leads to a deteriorated bias in the estimates. Similarly, the estimates obtained through the

M-estimator also exhibit a similar trend.
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Table 5

Relative variances cellwise and MLE estimator
λ = 0 λ = 5 λ = 10

α1 1.014 0.053 0.001
β1 1.067 0.193 0.014
ω1 1.264 0.073 0.010
α2 1.005 0.052 0.001
β2 0.795 0.185 0.017
ω2 0.999 0.246 0.006
α3 1.061 0.026 0.001
β3 0.767 0.363 0.215
ω3 1.023 0.033 0.007
a 5.093 0.233 0.140
b 5.474 0.029 0.014

Note. This table displays the relative variances as a ratio of the cellwise estimator variance to
the MLE variance. δ is set to 0.01 and the three values for λ’s are 0, 5 and 10.

Conversely, in contrast to the aforementioned results, the cellwise estimator demonstrates

superior performance in the presence of larger outliers. The biases and variances of the es-

timates are both reduced, likely due to the increased magnitude of the outliers enabling the

estimator to better identify and address the outlying cells. This improvement can be at-

tributed to the clearer distinction between additive outliers and regular returns, thus leading

to a greater probability of detecting and imputing additive outliers.

Table 5 shows the ratios of the cellwise estimator and MLE estimation variances. We

see that there is evidence for a tradeoff in the preferred estimation method. On top of the

higher bias of the parameter estimates, the variance of the cellwise estimator estimates is

higher for almost all parameters. Especially the multivariate parameters a and b are difficult

to estimate consistently for the cellwise estimator. However, when outliers are present in the

data, the cellwise estimator produces significantly lower variance than the MLE estimator.

These findings indicate that in the case of no outliers, the MLE estimator performs better.

However, its performance falls off quickly when outliers are present.

Now, attention is focused on the estimation bias of specific parameters, namely ω, a and

b. Figure 1 illustrates the estimates of ω1, as well as the DCC parameters a and b, as λ is

varied. The frequency of added outliers remains fixed at 0.01 for the purpose of this analysis,

and the estimates derived from both MLE and the cellwise estimator are juxtaposed. The
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scales of the left and right column are different, such that a pattern is discernible in the

column with cellwise estimates. Notably, the bias associated with MLE estimation for the

constant ω1 rapidly escalates as λ increases. This observation aligns with expectations, as

the increasingly large size of the outliers contributes to an overestimation of the univariate

conditional variance within the initial simulated return series. In contrast, the bias exhibited

by the cellwise estimator is significantly smaller than that of the MLE estimate across the

entire range of λ. Strikingly, the bias initially exhibits an upward trend before subsequently

decreasing after a λ value of 4. This peculiar pattern may be explained by the fact that

the estimator struggles to detect the presence of smaller outliers. As the magnitude of the

outliers grows, however, the estimator effectively identifies and appropriately estimates their

underlying parameter value. Similar patterns emerge when inspecting the estimates of the

multivariate parameters. Specifically, the estimates of a and b become increasingly biased

as λ rises, with biases demonstrating steady growth that accelerates upon exceeding λ = 8.

Notably, the cellwise estimates also exhibit slight bias when the outliers are of a smaller scale.

In line with the findings for ω1, the bias recedes as the outliers grow larger. These findings

suggest that the cellwise estimator outperforms MLE estimation, particularly in cases where

outliers are considerable in size.
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Figure 1. Bias MLE and Cellwise estimates for differing λ.

In Figure 2 we again look at the bias of the estimates of the same parameters. However,

now we keep λ fixed at 10 and alter the value of δ, the frequency of outliers. the first column

displays the bias for the MLE estimates, whereas the second column displays the bias for the
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cellwise estimator estimates. The magnitude of δ does not seem to have an effect on the bias

of the cellwise estimator estimate of ω1. The bias is low throughout the range of δ with only

small differences. We see that MLE is not able to estimate a accurately, regardless of the

fraction of outliers. The cellwise estimator performs slightly better, but the bias increases

for increasing δ. The cellwise estimator does a better job at estimating b. However, we see

that for increasing δ, the slightly negative bias turns into a slightly positive bias. Regular

MLE estimation is not able to estimate b accurately for any value of δ. It must be said

that the Mahalanobis cutoff values used for this simulation remain the same, thus α = 0.01.

These cutoff values do not make sense anymore, since δ increases. This results in the cellwise

estimator not being able to accurately estimate a. This result shows that the assumed fraction

of outliers is important when using the cellwise estimator. When the fraction of outliers is

underestimated, biases can occur.

The simulation results indicate that the cellwise estimator outperforms the Muler-Yohai

estimator for the univariate GARCH parameters and the MLE for both the univariate and

the multivariate parameters. Furthermore, the cellwise estimator is able to robustly estimate

DCC-GARCH parameters in the presence of large outliers. However, the cellwise estimator

does exhibit some performance degradation when the proportion of outliers is very large

and the cutoff values are not adjusted appropriately. Nevertheless, it still outperforms the

other two estimators by a substantial margin. The decreasing performance of the cellwise

estimator when the proportion of outliers grows large is not a cause for concern, since these

outlier proportions are not typically observed in practice.

We find that our results are consistent with those reported in Muler and Yohai (2008).

The cellwise estimator is able to estimate the GARCH parameters with negligible or small

bias. Muler and Yohai adjust the model so that their BM-estimator robustly estimates the

parameters. We are able to produce similar results even though the GARCH(1,1) models

are not modified to account for outliers in the data. This finding is consistent with our

comparison to the BIP-GARCH model introduced in Boudt et al. (2013). They also find

a method that robustly estimates the DCC-GARCH model, but certain modifications are

made to the model to make it robust to outliers. We conclude that the cellwise estimator

produces similar results as the estimators in the two aforementioned papers without further
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Figure 2. Bias MLE and Cellwise estimates for differing δ.

complicating the model. The cellwise estimator is therefore a good alternative for users

who are concerned with ease of use when employing robust estimators for the DCC-GARCH

model.
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5 Data

In this section, we give information on the data used to carry out the empirical part of our

research.

The return data of Apple, Amazon and Johnson & Johnson is gathered from the Yahoo

Finance database. The considered time frame is from January 2011 until December 2022.

This selection results in 3019 data points. Moreover, Covid-19 and the connected financial

turmoil fall into this period. The returns are calculated through taking the percentage

increase or decrease of the adjusted close price. So, rt = (
pclose,t

pclose,t−1
− 1) ∗ 100%, where r is the

return and pclose is the adjusted close price of the stock.

Table 6 displays the descriptive statistics of the return data. The returns of Johnson &

Johnson stand out since the standard deviation is substantially lower than every other asset.

Furthermore, the maximum and minimum are the highest and lowest of all the stocks. The

Pearson correlation coefficients of all returns are displayed in Table 7.

Table 6

Descriptive statistics
Mean Standard deviation Maximum Minimum

Apple 0.101 1.81 12.0 -12.9
Amazon 0.095 2.08 15.7 -14.0
Johnson & Johnson 0.052 1.08 8.00 -10.0

Note. This table displays the mean, standard deviation, maximum and minimum for the returns
of Apple, Amazon and Johnson & Johnson over the period of 2011 through 2022.

Table 7

Pearson correlation coefficients
Stock
Apple -
Amazon 0.487 -
Johnson & Johnson 0.357 0.289 -

Note. This table displays the Pearson correlation coefficient for the returns of Apple, Amazon
and Johnson & Johnson over the period of 2011 through 2022.

The GARCH(1,1) volatility of the Apple returns is displayed below in Figure 3. The

volatility does not display a clear trend. It is rather constant with a few large peaks. Most
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noticeable is the volatility spike during the start of the Covid-19 crisis.
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Figure 3. GARCH(1,1) daily volatility of Apple stock.

6 Empirical Results

In this section we study the data discussed in the previous section. The cellwise estimator,

M-estimator and MLE estimator are used to estimate the DCC-GARCH model for the data.

The parameter estimates are subsequently compared. Thereafter, we look at the covariance

structures of the three models. We compare the estimated variances and covariances in times

of crisis. Ultimately, this is where users of the DCC-GARCH model are interested in. This

comparison leads to conclusions on the effectiveness of estimators for real-life data.

Table 8 displays the estimated DCC-GARCH parameters for a multidimensional model

including the three stocks discussed previously. For the cellwise estimator, we chose κ to be

0.05, assuming 5 percent of the data to be outlying. The estimated constants ω of the MLE

estimation are significantly larger than the constants estimated by the robust methods. This

signifies that base level conditional volatility is estimated to be larger with MLE estimation.

This makes sense since these parameter estimates are heavily influenced by outliers. Another
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interesting observation is that the cellwise estimator consistently estimates β to be larger

and α to be smaller than the MLE estimator and the M-estimator estimates. This finding

indicates that the autoregressive property of the conditional variance is perceived to be

bigger when outliers are filtered out of the dataset. In other words, the estimated conditional

volatility is more stable and less spiky. We must note that the numbers in the cellwise

estimator column in Table 8 are different when the value of κ is different. However, the

overall conclusions do not change.

Table 8

Parameter estimates DCC-GARCH model for S&P 500 data
MLE M-estimator Cellwise estimator

ω1 0.176 0.086 0.037
α1 0.116 0.066 0.056
β1 0.833 0.878 0.929
ω2 0.390 0.047 0.042
α2 0.173 0.045 0.052
β2 0.756 0.917 0.933
ω3 0.052 0.029 0.029
α3 0.094 0.077 0.062
β3 0.858 0.859 0.901
a 0.008 0.008
b 0.990 0.991

Note. This table displays the parameter estimates of the MLE estimator, M-estimator and
the cellwise estimator for the DCC-GARCH model. The data ranges from January 2011 until
December 2022. The data consists of daily returns from Apple, Amazon and Johnson & Johnson.
The Mahalanobis cutoff values are chosen for κ = 0.05.

This result is invigorated by Table 9. The table displays the DCC-GARCH covariance

matrices during financial stability and turmoil. The 16th of March 2020 falls in the height

of the high variance return situation induced by the appearance of the Covid-19 pandemic.

The 10th of January 2018 is a random date chosen during a time with low volatility on the

market. The variances and covariances estimated by MLE explode during the highly volatile

market. Moreover, the variances and covariances are also large in 2018. This is due to the

overestimation of the covariance matrix elements. This table is another example of MLE

estimation not being able to handle outliers in the data. On the other hand, when looking

at the covariance matrices produced by the cellwise estimator, we see little difference in the

values. This indicates that the outlying period of the Covid-19 pandemic does not heavily
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influence the variance-covariance structure of the three stocks. This result is also notable

in Figure 4. This figure displays the estimated covariance between Amazon and Johnson

& Johnson returns. The covariance estimated by the MLE method is not stable and is

influenced by periods of financial instability. The covariance estimated by the DCC-GARCH

model making use of the cellwise estimator is much more stable and only slightly increases

when markets are unstable.
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Figure 4. DCC-GARCH covariances of Amazon and Johnson & Johnson.

The findings in Table 9 have great implications for, for instance, portfolio managers. We

use the portfolio selection theory of Markowitz (1952) as an example. This theory is one

of the most well-known papers in the field of portfolio management. This theory aims to

maximize profits while keeping the variance of a portfolio at a minimum. It defines the

variance of a portfolio consisting of two assets as follows

Vportfolio = w2
1σ11 + w2

2σ22 + 2w1w2σ1σ2ρ12. (24)

Here, wi corresponds to the weight given to asset i. Furthermore, σii is the variance of

asset i, whereas σi is the volatility of asset i. Lastly, ρ12 is the correlation between the two
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Table 9

Covariance tables during financial stability and turmoil
Apple Amazon J&J

Apple 4.50 3.86 1.79
Amazon 3.86 3.20 1.53
J&J 1.79 1.54 0.71

a MLE estimator covariance matrix
10/01/2018

Apple Amazon J&J
Apple 1.28 1.38 0.89
Amazon 1.38 1.47 0.95
J&J 0.89 0.95 0.61

b Cellwise estimator covariance matrix 10/01/2018

Apple Amazon J&J
Apple 39.61 30.24 23.77
Amazon 30.24 23.09 18.15
J&J 23.77 18.15 14.27

c MLE estimator covariance matrix 16/03/2020

Apple Amazon J&J
Apple 1.59 1.99 1.10
Amazon 1.99 2.49 1.37
J&J 1.10 1.38 0.76

d Cellwise estimator covariance matrix 16/03/2020

Note. This table displays the covariance matrices on two specific dates produced by the DCC-
GARCH models when the MLE and cellwise estimator are used. For the cellwise estimator, α
is chosen to be 0.05.

assets. From the above formula, we can deduce that a wrong estimate of the variances and/or

covariance of the assets has a significant impact on the estimation of the portfolio variance.

Biased estimates could thus lead to underestimated or overestimated variance portfolios.

This in turn could lead to sub-optimal portfolio allocations.

Another benefit of the cellwise estimator over the MLE estimator is the stability of the

estimates. Table 9 shows that the covariance matrix is more stable over prolonged periods

of time. This means that the optimal portfolio allocation using the cellwise estimator stays

more similar compared to an allocation using the MLE estimator. The improved stability

thus leads to a lower turnover. This in beneficial since total transaction costs are reduced,

Hence, the profitability of a dynamic portfolio allocation increases.

Altogether, we conclude that there are stark differences in the estimated DCC-GARCH

models estimated by different estimation methods. The cellwise estimator is able to filter

out outlying data cells, resulting in more robust estimates of the parameter values and the

variance-covariance structure.
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7 Discussion and Conclusion

This study introduces a novel estimator for the DCC-GARCH model. The estimator pre-

sented in this paper is robust against cells that contain outliers and utilizes the Mahalanobis

distance to detect such outliers. Our findings demonstrate that this robust estimator outper-

forms both the MLE and the M-estimator proposed by Muler and Yohai (2008). Through

simulated experiments, we observe that the cellwise estimator yields smaller biases and vari-

ances in parameter estimation compared to the other two estimators. Furthermore, the

performance of the cellwise estimator improves as the magnitude of the outliers increases.

However, it slightly deteriorates when the number of outliers is high and the cutoff values

are not adjusted accordingly.

The empirical part of our research shows that using the cellwise estimator instead of MLE

for the DCC-GARCH model brings about significantly different results. The constants in the

univariate GARCH equations are estimated to be lower and the autoregressive property of

the conditional variance appears to be more present. Moreover, it is demonstrated that the

covariance structure modeled by the DCC-GARCH model is more stable when the cellwise

estimator is used. Financial turmoil has a smaller effect on the covariance structure for the

cellwise estimator than for MLE. MLE-estimated variances and covariances tend to explode

when the market is unstable. Hence, it can be concluded that our estimator robust to cellwise

outliers is an improvement over the naive MLE estimation method.

Considering these results, it is recommended to use both the MLE estimation method

and the cellwise estimator simultaneously when employing the DCC-GARCH model in the

presence of financial instability. If the results differ, it is likely that the MLE estimation is

biased due to the presence of outliers.

However, there are limitations to consider in this research. Firstly, the simulation study

only investigates the performance of the cellwise estimator in the presence of additive out-

liers. Hence, the behavior of this estimator remains untested in the presence of innovative

outliers, which have a lasting impact even after their introduction. Considering the distinct

characteristics of innovative outliers, it is expected that the cellwise estimator may not per-

form as effectively in such scenarios. Secondly, the empirical research of this paper is focused
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solely on three stocks in the S&P 500 within the DCC-GARCH framework. Therefore, the

conclusions cannot be generalized to stocks from different sectors or countries, let alone other

types of assets such as foreign currencies. Finally, the results obtained with the cellwise es-

timator depend on several user-defined settings. For example, the choice of the cutoff value

used to determine outlying observations lacks a universally optimal setting. Determining the

optimal parameter settings for the estimator requires a case-by-case evaluation by the user.

This paper successfully introduces a cellwise estimator that robustly estimates the param-

eters of the DCC-GARCH model. Building upon this success, future research could explore

the possibility of developing similar estimators for different multivariate GARCH models.

For instance, the widely used DCC-GARCH model presented by Tse and Tsui (2002) can

be investigated before examining models such as the BEKK-GARCH model. The expansion

of robust estimators for multivariate volatility models would not only facilitate performance

comparisons but also provide a broader array of options for robust implementation of volatil-

ity models. Another avenue for future research is to further refine the imputation step

employed in the cellwise estimator. In this study, we utilize an EM-algorithm for imputing

values in the flagged cells. However, more advanced imputation techniques, such as multiple

imputation, may enhance the performance of the cellwise estimator.
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