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Abstract

Optimising inventory allocation within multi-echelon distribution systems through fill rate service

measures can lead to excessive stock for slow-moving items. This paper addresses this issue by

proposing two Various-Service Level (VSL) models implementing both wait time and fill rate service

measures. Compared to the baseline model, the VSL models significantly decrease the total stock and

cost by a minimum of 31.7% and 5.1%, respectively. Results obtained through simulation indicated

an adequate performance across the models. Further testing indicated the challenging scenarios, the

importance of adequately selecting order quantities to optimally determine the reorder points and

the sensitivity to large demand sizes. In general, the VSL models proved the possibilities to include

flexible wait time targets within multi-echelon inventory optimisation.
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1 Introduction

Effective inventory management poses a significant challenge, especially within multi-echelon distribution

systems. The objective of inventory management is ensuring product availability while simultaneously

minimising costs. Achieving this objective is considerably more difficult in a multi-echelon setting, as one

must consider all locations within the distribution chain during optimisation. These locations may experi-

ence direct as well as indirect demand, but, more importantly, they can vastly differ in demand frequency

and sizes. In addition, all locations typically have a service measure to suffice, further complicating the

optimisation process.

The current paper focuses on a two-echelon distribution system, which consists of a central warehouse

or distribution centre (DC) supplying all local warehouses (depots). Within this distribution system

depots experience direct demand, whilst only the DC experiences indirect demand. To ensure effective

inventory management, all depots must satisfy a predetermined service measure. Prior research, exempli-

fied by Axsäter (2003a) and Geelen et al. (2019), has developed models to optimise inventory allocation

within such distribution systems. However, these models primarily rely on fill rate targets as their main

service measure. Such a fill rate service measure can apply to the entire distribution system or be location

and item specific. These type of models excel when applied to fast-moving items and in scenarios where

depots have similar high demand frequencies, as they prefer to stock locally. However, slow-moving items

can differ significantly in demand frequency and may require an alternative approach to avoid excessive

holding costs and prolonged shelf occupancy.

This research results from an internship at Gordian Logistic Experts, a consultancy firm specialised in

the field of supply chain and (spare part) inventory management. Currently at Gordian Logistic Experts,

the implemented model (the vNext model) uses a fill rate service measure to optimise the inventory

allocation within a distribution system. Since each depot must satisfy its fill rate target, the vNext

model always allocates stock at a depot even if the demand frequency of an item is considerably low

and therefore slow-moving. This results in excessive inventory within the distribution system. Hence, we

will address the following research question: How can the inventory, especially of slow-moving items, be

reduced within a multi-echelon distribution system whilst providing a proper and flexible solution?

At present, no proper solution exists and the implemented solution at Gordian Logistic Experts is very

‘ad hoc’. Namely, reorder points at depots with slow-moving items are manually set to minus one, whilst a

fill rate target of 65% is maintained for the DC (Gordian Logistic Experts, 2021). For the current research,

we assume that depots’ replenishment orders from the DC have constant and reliable inter-lead times.

Therefore, we propose to incorporate wait time as a service measure at depots with slow-moving items.

The wait time service measure permits customers to wait at a depot for a maximum period of time before

being served. Thus, allowing the inventory within the distribution system to be reduced as the depots

with a wait time service measure are not required to have stock on hand. The introduced models within

this paper incorporate both fill rate and wait time as service measures and optimise the reorder point at all

locations within the distribution system. The models distinguish between fast-moving and slow-moving

items and assign a service measure accordingly. Moreover, it permits placing more inventory centrally
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rather than locally, which allows it to reduce the total cost within the entire multi-echelon distribution

system.

The current research provides practical relevance, as it is not uncommon to encounter widely varying

demand frequencies among different depots within a distribution system. Depots may vary in the number

of assets, due to a difference in installed base, or even in the types of assets they handle. All of which affect

the demand at a depot and making effective inventory management a challenging task. The proposed

models offer a flexible alternative, incorporating multiple service measures and diverging from the existing

literature that predominantly relies on fill rate service measures. Furthermore, the current paper provides

valuable insights into the application of wait time service measures in a multi-echelon distribution system,

extending its relevance beyond spare part inventory management.

Scientifically, the present research addresses the gap in existing literature by offering a solution to

reduce the inventory in distribution systems concerning items with heavily diverging demand frequencies,

especially those considered to be slow-moving. Furthermore, the existing literature mainly optimises the

inventory allocation of multi-echelon distribution systems using a fill rate service measure. Approximation

methods of the wait time at depots in relation to the central reorder point are proposed in the existing

literature. However, unlike existing literature, the current paper combines fill rate and wait time service

measures to present an alternative solution to optimise the inventory allocation within a multi-echelon

distribution system.

In the subsequent sections, we first provide a detailed problem description, delineate the scope of our

research and elaborate on our approach in Section 2. Thereafter, we provide a comprehensive literature

review in Section 3, elaborating on the currently existing solutions in scientific literature. Furthermore,

it provides an overview of different wait time approximations and discusses their important differences.

Section 4 introduces the (current) vNext model and the (proposed) Various-Service Level models together

with methods to compare their performances. Afterwards, Section 5 briefly discusses the provided data

for this research. The results are analysed in Section 6, displaying the reduction in inventory allocation

through the proposed models whilst also elaborating on their challenges. Subsequently, Section 7 con-

cludes the research with a summary of our key findings. Finally, Section 8 presents a discussion regarding

our most useful insights and foundations for future research.

2 Problem description and approach

This section provides a detailed problem description. First, we illustrate the problem at hand and

elaborate why the current approach is inadequate. Following that, we describe our research questions

and proposed solution. After which, the assumptions that delineate our scope are defined. Finally, we

discuss our problem approach, through answering the research questions.

2.1 Problem definition

Gordian Logistic Experts specialises in supply chain and inventory management. They optimise inventory

strategies for their clients, including multi-echelon distribution systems. More specifically, their multi-
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echelon clients usually deal with two-echelon distribution systems. Figure 1 provides a visualisation of

such two-echelon distribution system. It displays the flow of items within the network from outside

supplier to customer. The first echelon consists of the local warehouses (depots), which experience the

direct demand of arriving customers. The second echelon only contains the central warehouse (DC),

which experiences indirect demand and supplies the depots. Within this system, a client of Gordian

Logistic Experts has full ownership of all warehouses in both echelons. Therefore, the goal is to optimise

the inventory strategy of all warehouses within both echelons.

Figure 1: Visualisation of a two-level distribution system

The chosen inventory strategy at every warehouse is a general (R, nQ) strategy, where R represents

the reorder point and Q the order quantity at the warehouse. The present model (the vNext model) uses

fill rate as its service measure to determine the optimal reorder levels at all warehouses (Gordian Logistic

Experts, 2021). This approach performs well when customer arrivals are frequent with little variance in

demand sizes. However, it is common for depots to experience different demand frequencies, especially

when dealing with spare items. When customer arrivals for an item become too infrequent at a depot,

i.e. for slow-moving items, the vNext model allocates extravagant amounts of inventory at these local

warehouses. Leading to excessive stock within the distribution system, which causes unnecessary costs

for the client.

Depots experience excessive stock as the fill rate service measure needs a positive target, causing a

depot to always need a positive inventory in order to suffice its set target. In other words, if there is

never stock on hand available at a depot, the fill rate service measure can not be attained. Therefore,

the reorder point will be non-negative, which causes there to be stock on hand continually. Depots with

slow-moving items thus experience redundant stock, since stock on hand is obligatory to suffice their

fill rate service measure. Therefore, the present model poses the problem of excessive stock within the
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distribution system due to its chosen service measure.

The currently implemented solution to solve for the excessive stock within the distribution system is

very ‘ad hoc’. Namely, reorder points of slow-moving depots are manually set to zero and a fill rate target

of 65% is applied to DC. Through this ‘ad hoc’ solution, Gordian Logistic Experts is able to decrease

the stock on hand within the distribution system and, therefore, its associated cost. However, as no

proper optimisation method is used, this approach does not guarantee an optimal inventory strategy or

proper solution. Therefore, our research answers the broad question: “How can the inventory, especially

of slow-moving items, be reduced within a multi-echelon distribution system whilst providing a proper

and flexible solution?”

2.2 Proposed solution

We propose to use wait time as an alternative service measure at depots with slow-moving items. The

target on the wait time determines the time a customer is allowed to wait at a particular depot before

being served. Utilising wait time as a service measure naturally facilitates the scenario wherein depots are

not inherently required to maintain stock on hand. These depots can instead be served from the central

warehouse. Therefore, shifting the inventory within the distribution system to the central warehouse and

reducing the stock locally at depots with low demand.

We propose to use a probabilistic wait time. Thus, the wait time service measure has to be met for

a predetermined percentile of the customers at a specific depot. This approach allows us to differentiate

between the different methods of serving a customer, i.e. through stock on hand or back orders. Moreover,

it offers more flexibility compared to a fixed maximum wait time if the central warehouse is out of stock.

Therefore, it dismisses the consideration of determining how to weigh the wait times of specific customers

or scenarios used in the expected wait time.

In this research, we propose two different models: a Simple Various-Service Level (SVSL) model and

an Advanced Various-Service Level (AVSL) model. Both models focus on incorporating the wait time

service measure for depots with slow-moving items and reducing the local stock. The SVSL model forces

depots with slow-moving items to have a reorder point equal to minus one. Thus, these depots will only

replenish upon a customer arrival and mainly serve customers through back orders. Therefore, the target

on their wait time service measures must be greater than the inter-lead time between the DC and the

depot. The AVSL model allows depots with slow-moving items to have reorder points that are greater

than or equal to minus one. Thus, also allowing them to be non-negative. This model is therefore capable

of having targets on the wait time service measure that are smaller than or equal to the inter-lead time

between the DC and the depot.

Both introduced models incorporate fill rate and wait time as their service measures. A fill rate service

measure will be used at depots with fast-moving items, whilst a wait time service measure will be used

at depots with slow-moving items. Through these models, we provide a proper and flexible solution to

the problem, whilst reducing the inventory within the distribution system. The following sub-research

questions aid us in determining the necessary factors and important characteristics of the introduced

models:
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1. Which type of wait time approximation is most appropriate?

2. What additional assumptions need to be considered for the proposed models?

3. How do the performances of the proposed models compare to the vNext model?

4. What parameters significantly influence the solutions and performances of the proposed models?

2.3 Problem assumptions

For the comprehensibility of the problem, we delineate the scope of our research. We define and specify

the following assumptions to provide the outline. First of all, let us indicate the assumptions on the

entire two-echelon distribution system.

Assumption 1. The two-echelon distribution system is divergent with a single central warehouse.

Assumption 2. The distribution system operates under continuous review policies.

Assumption 3. All warehouses within the distribution system have unlimited storage.

Assumption 4. The distribution system only handles nonperishable items.

Assumption 5. The use of emergency shipments within the distribution system is prohibited.

Assumption 6. The use of lateral transshipments within the distribution system is prohibited.

Assumption 7. The demand within the distribution system is stationary.

Assumption 1 outlines the the structure of the distribution system. The distribution system consists

of two echelons, where the first echelon consists of many depots and the second echelon contains a single

central warehouse, as depicted in Figure 1. Hence, it is divergent as the single central warehouse supplies

all lower echelon depots. Through Assumption 2 we define the type of review policies used. The use of a

continuous review policy indicates that order levels are followed continuously and replenishment orders

may occur at any time, as described by Axsäter (1993). Assumption 3 limits the scope of the research to

explicitly optimise the total inventory within the distribution system rather than optimising the storage

of the items. To ensure that items can only be removed from inventory through customer demand, we

introduce Assumption 4. Prohibiting emergency shipments (Assumption 5) and lateral transshipments

(Assumption 6), allows us to properly evaluate the performance of the distribution system. Moreover,

Assumption 5 also ensures that no additional supply enters the distribution system, whilst Assumption

6 also ensures that no stock moves between locations within the same echelon, therefore the DC is the

only supplier for the depots. Assumption 7 entails that no changes in demand size and frequency occur

within the distribution system over time.

Finally, we state assumptions with regard to the functioning of the warehouses.

Assumption 8. All warehouses follow an (R, nQ) policy, where R ∈ Z and Q ∈ N+.

Assumption 9. All warehouses operate on a first-come, first-serve basis.
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Assumption 10. Partially fulfilled orders are prohibited within the distribution system and unsatisfied

demand is back ordered with the available stock on hand being reserved.

Assumption 11. All warehouses place replenishment orders when their inventory position is at or below

their reorder point.

As per the problem description, we use Assumption 8 to indicate the inventory policy under which all

warehouses operate. Furthermore, warehouses only handle complete items, therefore all values must be

integer based. More specifically, the order quantity Q is a strictly positive integer. Assumption 9 describes

how arrivals at all warehouses are handled. Moreover, Assumption 10 indicates that an arrival at a

warehouses must be completely fulfilled before continuing to the succeeding arrival. Hence, if the demand

of an arrival cannot be completely fulfilled, the remainder is back ordered with the currently available

stock on hand being reserved for the initial arriving customer. This also coincides with Assumption 8,

which allows for warehouses to work (almost) completely with back orders, since the reorder points are

also allowed to be non-positive. Finally, Assumption 11 dictates exactly when replenishment orders are

placed.

2.4 Problem approach

Let us now outline our approach to answer the primary research question: How can the inventory within

a multi-echelon distribution system be reduced whilst providing a proper and flexible solution? To better

address this broad question, we have formulated four sub-research questions, see Section 2.2. These sub-

questions aid us in defining a proper solution and offer valuable insights into the essential factors and

item characteristics inherent to the proposed models in the current paper.

To address the first sub-research question, we conduct a literature review on existing literature to

select a wait time approximation method that best fits the scope of the problem at hand. Section

3 provides an overview of the considered wait time approximations and elaborates on the advantages

and disadvantages per method. Subsequently, Section 4.2 elaborates on which approximation method

is chosen, considering the current problem and the existing vNext model. Throughout Section 4, we

introduce additional assumptions, thus addressing the second sub-research question. These assumptions

are primarily derived from the insights and recommendations of prior research. Moreover, additional

assumptions must be formulated based on the constraints and limitations inherent to the selected wait

time approximation method.

Moreover, in Section 4, we present the equations and algorithms for all models, along with a discussion

on the implementation and performance measurement. Gordian Logistic Experts provided data, as

detailed in Section 5, which we will utilise as a case study to access and evaluate the performance of

the different models. Section 6 describes and depicts the obtained results for all models, using the vNext

model’s performance as a baseline for comparing the performances of the proposed models.

To assess the performances, two distinct analyses are conducted. First, the inventory allocation is

investigated across all models, illustrating the potential stock and cost savings of the proposed models.

Secondly, customer arrivals are simulated within the distribution system to evaluate the inventory allo-

8



cation performance of the different models over a prolonged time period. The simulations incorporate

the historical demand patterns within the provided data to imitate realistic circumstances within the

distribution system. During both performance measures, we evaluate two distinct items individually.

Subsequently, the overall performance of the entire distribution system is analysed. Through the as-

sessment of the distinct items, we aim to provide a more in-depth analysis and a better insights into

the choices made in allocating inventory by the different models. Combining these analyses allows us to

address the third sub-research question.

Continuing from the performance measurement, we address the fourth and final sub-research question

in Section 6.3 by examining the robustness of the proposed models. The tests assess the robustness of the

entire inventory allocation process, emphasising on the overall impact of the modifications made rather

than focusing specifically on the precise effects of changes in a single parameter. Various item charac-

teristics will be modified to observe their influence on the performance of the inventory allocation and

simulation for the proposed models. Identifying the parameters that significantly impact the performance

offers subsequent research a foundation to address possible issues that may arise in the proposed models.

The main research question of in the current paper is addressed throughout Sections 4 to 7. In

these section two distinct models are proposed, both with unique purposes and limitations. The SVSL

model adopts a more straightforward approach, offering a proper solution to the problem by adequately

approximating the wait time and implementing it as a service measure in a multi-echelon distribution

system. The AVSL model provides both a proper and flexible solution. It enables a more pragmatic

use of wait time service measures by lifting restrictions on the possible targets of the wait time service

measure. Both models utilise both fill rate and wait time as service measures within a multi-echelon

distribution system, providing an alternative solution to these type of inventory management problems.

Furthermore, we conduct an experiment on a simplified scenario to further justify our decision regarding

the scope of the proposed models. Finally, Section 7 concludes our findings, and discusses the strengths

and crucial parameters of the proposed models.

3 Literature review

This section discusses the relevant literature regarding multi-echelon distribution systems and wait time

approximation methods. A lot of different type of inventory management systems and strategies have

been developed in the past. de Kok et al. (2018) provided a review and typology study on different

stochastic multi-echelon inventory systems. Moreover, they indicated a detailed classification of the

research conducted up until 2017. Through their research, they were able to outline major classes within

the study of multi-echelon inventory models and classify papers through their different dimensions. These

dimensions specify which type of problem and model is being researched combined with their selected

assumptions. Therefore, we will review papers within our scope and relevant to the problem at hand, as

per Section 2.

An important aspect of inventory management systems is the selection of a review policy. As per

Section 2.3, one of the assumptions of the current research is to use a continuous review policy for the
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distribution system. By opting for this policy, we avoid the use of the so-called balance assumption. As

explained by Doğru et al. (2009), the balance assumption indicates that the supply within an inventory

system is exactly equal to the demand of the inventory system over a period of time. In other words,

the assumption relaxes the constraint on the inventory positions at local warehouses (depots) after re-

plenishment needing to be greater than or equal to the inventory positions prior to the replenishment.

Therefore, optimal inventory allocation within the distribution system is always achievable, and the

inventory positions of downstream depots become insignificant.

Axsäter (2003b) stated that, in general, the balance assumption provides a good approximation of

inventory levels. However, several studies have investigated the effects of the balance assumption on

inventory management models. For instance, Axsäter et al. (2002) indicated that the use of this assump-

tion could cause considerable errors when demand characteristics deviate significantly at depots, as is

common in practice. Moreover, according to Doğru et al. (2009) and Gallego et al. (2007), the balance

assumption is unsuitable in many scenarios. In particular, if the lead times to the central warehouse

(DC) are lengthy and the lead times to the downstream depots are short, the scenario also encountered

in the current paper, see Section 5.

The choice of order policy is another crucial dimension de Kok et al. (2018) consider. Current literature

distinguishes between different policies. Chew and Tang (1995) proposed an approach using an (s,S)-

policy. This policy orders up until a given level S, i.e. it allows for non-fixed order quantities. Besides

allowing for varying order quantities, the (s,S)-policy also frequently applies the balance assumption, as

done by Diks and De Kok (1998). Most of these policies ignore the restriction of a Minimum Order

Quantity (MOQ). In order to account for this, Kiesmüller et al. (2011) proposed a so-called base-stock

policy or S-policy. This policy orders up to S whenever the inventory level drops below s. If the order size

is smaller than the MOQ, the order size is set to the MOQ. However, models incorporating this policy

mainly use periodic review. Therefore, as mentioned in Section 2.3, the current paper operates under the

assumption of using (R,nQ)-policies. These policies depend on a fixed order quantity and can incorporate

MOQs. Moreover, as discussed in Section 4, it is assumed that the order quantities are known and given.

Within the current literature, models exist to optimise for a multi-echelon distribution system using

fill rate targets as its service measure. For example, Axsäter (2003a) developed such a model. However, in

their optimisation, they make use of holding and shortage costs, which usually need to be approximated

and can introduce errors when estimated incorrectly. Moreover, Forsberg (1997) has shown in their re-

search that exactly determining the holding and shortage cost of an (R,Q)-policy drastically increases the

computation time, especially when the order quantities change. Therefore, during a previous internship

at Gordian Logistic Experts, Geelen et al. (2019) introduced a model to optimise over a multi-echelon

distribution system without the need for holding and shortage costs. Their model is mainly based on

the works of Grob and Bley (2018) and Axsäter (2003a). The present multi-echelon model of Gordian

Logistic Experts (2021) (vNext model) is based on the research of Geelen et al. (2019).

Building on the vNext model, the proposed models in the current paper will also use wait time service

measures in combination with fill rate service measures. In order to use wait time targets, the wait

time has to be approximated. Grob and Bley (2018) provided an overview of four different wait time
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approximation methods.

The first kind of approach is the so-called METRIC type of approximation. It was first introduced

by Sherbrooke (1968) and is based on Little’s law. The approach from Axsäter (2003a) was selected to

represent this class of approximations. This approach approximates the mean and variance of the wait

time under the assumption of normally distributed demand. The wait time is considered to be identical

across all depots, not considering their individual contribution to the overall demand at the DC.

Secondly, Kiesmüller et al. (2011) provided a different approach. They approximate the first two

moments of the wait time using the stationary interval method from Whitt (1982). Their approach is

only applicable to non-negative central reorder points. Moreover, as noted by Grob and Bley (2018) and

Berling and Farvid (2014), their approach leads to negative values for the variance in some cases.

Berling and Farvid (2014) provided a third approach that also computes the first two moments of the

wait time using a stochastic demand rate. This rate considers the excess demand of other depots at the

DC and, therefore, approximates the moments for the wait time per depot. It considers three different

cases depending on the central reorder point and the local order quantity. Grob and Bley (2018) do note

that the approach of Berling and Farvid (2014) fails when a local order quantity is greater than the sum

of the central reorder point and central order quantity. In that case, it produces a negative expected

value for the wait time. However, in practice it is improbable for this scenario to occur.

The final approach to approximate the wait time considered, is proposed by Grob and Bley (2018)

themselves. They used the negative binomial distribution to approximate the aggregate lead time demand.

After which, they compute the first two moments of the wait time identically to the approach provided

by Kiesmüller et al. (2011). Their approach solved most issues encountered by Kiesmüller et al. (2011).

However, they did assume that the actual order size is always equal to the order quantity. Moreover,

their approach is still not applicable for negative central reorder points.

Using one of the wait time approximation methods described by Grob and Bley (2018), we approximate

the customer wait time at a depot and utilise it to determine its optimal reorder point. Hence, our

research integrates wait time and fill rate service measures, using the present multi-echelon model of

Gordian Logistic Experts (2021) as a framework. Thereafter, we propose two new models that optimise

all reorder points within a distribution system, utilising both wait time and fill rate service measures

within the same distribution system. Moreover, we propose adjustments to the current model to decrease

its computation time compared to the original introduced method by Geelen et al. (2019).

4 Methodology

This section defines all models and describes the methods utilised within the current research. We will

start by specifying the existing vNext model, which uses fill rate as its service measure (Gordian Logistic

Experts, 2021). Secondly, we will introduce the Simple and Advanced Various-Service Measure models.

These new models implement both fill rate and wait time service measures. Furthermore, we discuss the

implementation of the models together with their required decisions. Finally, we provide the methods

used to evaluate the performances of the different models.
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Before continuing to with describing and defining the models for this research, let us elaborate on the

general notation used throughout the remainder of the paper. For every item i = 1, . . . , N , the goal is

to optimise for the reorder points Rij , where j = 0, 1, . . . , Mi. Here j represents a warehouse. In partic-

ular, it represents the central warehouse (DC) if j = 0 and a local warehouse (depot) if j = 1, . . . , Mi.

Note that the number of depots differs per item, since not every item is handled by all warehouses (ex-

cept for the DC, needless to say). For easier notation, we will introduce the set Ji = {1, . . . , Mi} and

J+
i = Ji ∪ {0}. For the general notation we drop the index i, as we optimise the reorder points per

item for all warehouses. Hence, the set J+
i indicates that these variables only correspond to item i at

all warehouses j. Therefore, the general notation is provided below and all subsequent sections utilise

similar notation.
Rj The reorder point at warehouse j ∈ J+

i .

Qj The order quantity of warehouse j ∈ J+
i .

Lj The lead time for warehouse j ∈ J+
i .

ILj The inventory level at warehouse j ∈ J+
i .

IPj The inventory position at warehouse j ∈ J+
i .

Section 2 provided the scope of the current paper and introduced the necessary assumptions for the

problem at hand. We will now introduce the set of assumptions that apply to and hold for the models

depicted in the current paper. Any deviations from these assumptions will be clearly indicated and

elaborated on in the subsequent sections.

Assumption 12. All models optimise for a single item, no consolidation between different items.

Assumption 13. The DC lead times are independently and identically distributed random variables

with known mean and variance.

Assumption 14. The inter-lead times from the DC to the depots are deterministic.

Assumption 15. Single-item batching is allowed.

Assumption 16. The order quantity Q is known for each item at every warehouse.

Assumption 17. Customers arrive according to independent compound Poisson processes across all

depots.

Assumption 18. Demand sizes are strictly positive and integer valued.

As stated at the beginning of the current section, the goal is to optimise the reorder points for all

warehouses per item. Hence, Assumption 12 indicates that the models will optimise for the reorder points

on item level. Furthermore, it also states that consolidation between different items is not possible, thus

providing item specific solutions. Assumption 13 indicates the stochasticity of the DC lead times and

assumes that the mean and variance are known. On the other hand, Assumption 14 denotes that the

inter-lead times are known and constant. Assumption 15 states that single-item batching is allowed since

all locations operate on an (Rj , nQj) policy. Thus indicating that n multiples of the order quantity Qj

can be batched and ordered at once. Moreover, as per Assumption 16, we assume that the order quantity
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is known for all items at all locations as the scope of this research focuses on optimising the reorder points

rather than the order quantities.

Finally, Assumptions 17 & 18 describe the arrival process of the customers and indicate that demand

sizes are strictly positive integers. Moreover, the former indicates that all compound Poisson processes

are independent across the depots. Hence, each individual compound Poisson process depicts the arrival

process only for a specific depot. As customers will arrive according to a Poisson process, their inter-

arrival times are exponentially distributed. Furthermore, as stated by Axsäter (2015), it can be assumed

that demand sizes are strictly positive without a loss of generality, as the latter assumption indicates.

Lastly, assuming a Poisson arrival process permits the use of the Poisson Arrivals See Time Averages

(or PASTA) property (Wolff, 1982), indicating that customers always observe the distribution system in

steady state.

4.1 The vNext model

The vNext model (Gordian Logistic Experts, 2021) is the currently existing model. It determines the

optimal reorder points for a two-level distribution system using fill rate service measures. The model is

mainly based on the thesis of Geelen et al. (2019) at Gordian Logistic Experts. This section outlines the

theoretical framework of the model and the adjustments made compared to Geelen et al. (2019). Section

4.4 discusses the implementation of the vNext model, including the alterations made to the theoretical

framework for implementation purposes and to decrease computation time.

Let us first introduce the notation for this section:
µj The expected demand at depot j ∈ Ji during one time period.

σj The standard deviation of the demand at depot j ∈ Ji during one time period.

q The greatest common divisor of the local order quantities; q = gcd(Q1, . . . , QMi
).

Dj(l) The stochastic demand at depot j ∈ Ji over a time period of length l.

D0(L0) The stochastic lead time demand of the DC.

Leff
j The effective lead time at depot j ∈ Ji.

Kj The stochastic customer demand sizes at depot j ∈ J+
i .

βj(Rj) The fill rate at warehouse j ∈ J+
i given Rj .

βT
j The fill rate target at depot j ∈ Ji.

∆ The delay experienced by a depot at the DC, it indicates the experienced wait time for a

replenishment order at the DC for a depot. The delay is assumed to be identical across

all depots j ∈ Ji.

TS(R0) The total stock within the distribution system given R0; TS(R0) =
∑

j∈J+
i

Rj .

The vNext model can be divided into three steps. The coming subsections will discuss these in order.

The three main steps are:

I. Compute the distribution of the central lead time demand D0(L0).

II. Compute bounds on all the reorder points Rj for j ∈ J+
i .

III. Compute the optimal central reorder point R∗
0 minimising the total stock TS(R0).
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As mentioned in Assumption 16, the current paper assumes that Qj for j ∈ J+
i is known. The

computation and optimisation of these values are not within the scope of the current paper. Do note

that the chosen order quantities can affect the optimisation of the reorder points and, therefore, should

be selected carefully.

4.1.1 The central lead time demand

The first step of the vNext model is to compute the distribution central lead time demand D0(L0). The

formulas used for this step are mainly based on the research of Grob and Bley (2018), as explained by

Geelen et al. (2019). However, alterations are made in comparison with the original formulas, and are

highlighted throughout this section.

We ultimately want to compute the central lead time demand in this step. To do so, we make use of

the formulas proposed by Grob and Bley (2018). Let us, therefore, first introduce δj(k). It represents the

probability of depot j ∈ Ji placing at most k orders of size Qj over the central lead time L0, for k ∈ N. As

indicated by Assumption 13, L0 is considered to be a random variable with probability density function

pdfL0(l). Hence, we can condition on this probability by setting L0 = l, indicating the stochasticity of

this variable. The conditioned probability is given by

δj(k, L0 = l) =
Qj∑

x=1

1
Qj

Pr(Dj(l) ≤ kQj + x − 1), (1)

as described by Grob and Bley (2018). In this equation the PASTA property is used such that all arriving

customers observe the distribution system in a stationary position. Using this property, Axsäter (2015)

described the uniformity property of the inventory position as IPj ∼ Unif(Rj + 1, Rj + Qj), or, as used

in (1), IPj − Rj ∼ Unif(1, Qj). Hence, due to the PASTA property, the probability of the IPj being any

state within the given domain is 1
Qj

. Furthermore, as k tends to infinity, the probability δj(k) tends to

one. Therefore, if k gets sufficiently large, its contribution will become negligible.

Integrating over the lead time and incorporating pdfL0 , allows us to relax the conditioning on L0:

δj(k) =
∫ ∞

l=0

 Qj∑
x=1

1
Qj

Pr(Dj(l) ≤ kQj + x − 1) · pdfL0(l)

 dl. (2)

Using δj(k), Grob and Bley (2018) indicate that the probability of depot j placing exactly k orders

of size Qj over L0, given as sord
j (k), can be computed as:

sord
j (k) =


δj(0), if k = 0

δj(k) − δj(k − 1), if k > 0, k ∈ N

0, otherwise.

(3)

Note that this probability only uses k ∈ N, as the order quantities and demand sizes are both non-negative

integers (Assumption 8 & 18). Therefore, all multiples of order quantities must be integer valued as well.

Given (2) and (3) and using the independence of the orders from the depots (due to the independent

arrival processes, see Assumption 17), we can compute the mean and variance of the central lead time
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demand as

E[D0(L0)] =
M∑

j=1
µjE[L0], (4)

V ar[D0(L0)] =
M∑

j=1

[ ∞∑
k=0

(µjE[L0] − kQj)2sord
j (k)

]
, (5)

(Grob and Bley, 2018). The mean equals the summation of the average demand over the central lead time

per depot. The variance evaluates the squared deviance between the average demand over the central

lead time and the specific order of size kQj , which is multiplied by the probability of the depot placing

exactly k orders of size Qj . Orders with a small deviance or with lower probabilities, i.e. uncommon

order sizes, add little value to the variance. On the contrary, large deviating orders from the average that

are common, i.e. the orders with higher probability, add more significant value to the variance.

The mean and variance can be used to fit a standard distribution for D0(L0). Section 4.4 describes

which standard distribution will be used and how it will be estimated.

4.1.2 Bounds on the reorder points

In this step, we compute the bounds on the central and local reorder points. Moreover, we provide an

algorithm that optimises for the lowest local reorder point given a specific central reorder point and fill

rate target. As stated by Assumption 8, reorder points must be integer valued. Furthermore, to ensure

a positive inventory position which is needed for a positive fill rate, it is essential for the inequality

R > −Q to hold, as explained by Axsäter (2015). This property must hold for all warehouses as they

need a positive fill rate to oblige by their fill rate service measures.

Besides this strict lower bound on the reorder point, we will bound the reorder level from above and

further tighten it from below through defining Rmin
j and Rmax

j for all j ∈ J+
i . Let us however first define

how to compute the fill rate of a depot after which we will elaborate on how to determine Rmin
j and

Rmax
j . The computation of the fill rate is very similar for the depots and the DC, the differences will be

discussed after describing the computations.

Computing local fill rates

The fill rate βj for a depot j ∈ Ji is affected by the central reorder point R0. Hence, for the computation

of the local fill rates it is assumed that R0 is known and given. To compute βj(Rj), we first need the

effective lead time of a depot. To determine the effective lead time we assume that the lead time of

a depot and the delay experienced by the depot are mutually independent. The delay indicates the

experienced wait time for a replenishment order at the DC for a depot and is assumed to be identical

across all depots j ∈ Ji. We approximate the delay using the METRIC-type approximation methods

described by Axsäter (2003a), see Appendix A. Note that the approximation depends on the given R0.

As described by Geelen et al. (2019), the mean and variance of the effective lead time for a depot can be
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computed as:

E[Leff
j ] = E[Lj ] + E[∆], (6)

V ar[Leff
j ] = V ar[Lj ] + V ar[∆]. (7)

Using the effective lead time, Grob and Bley (2018) propose the following equations to determine the

mean and variance of the effective lead time demand:

E[Dj(Leff
j )] = µjE[Leff

j ], (8)

V ar[Dj(Leff
j )] = σ2

jE[Leff
j ] + µ2

jV ar[Leff
j ]. (9)

These are used to fit a standard distribution to the demand over the effective lead time, see Section 4.4.

Next, we need Pr[ILj = p], i.e. the probability of the inventory level at depot j equals p. To compute

this probability, Grob and Bley (2018) uses the properties and equations provided by Axsäter (2015)

for the inventory level and the inventory position based on the PASTA property of the Poisson process

(Assumption 17). Identically to (1), the uniformity property of the inventory position indicates that

IPj ∼ Unif(Rj + 1, Rj + Qj). Using this property together with the distribution of the demand over the

effective lead time, Grob and Bley (2018) derive the probability of the inventory level at depot j equal

to p, as:

Pr[ILj = p] = Pr[IPj − Dj(Leff
j ) = p]

=
∞∑

x=0
Pr[IPj − Dj(Leff

j ) = p | IPj = x] · Pr[IPj = x]

=
Rj+Qj∑

x=max{Rj+1,p}

Pr[Dj(Leff
j ) = x − p | IPj = x] · Pr[IPj = x]

Pr[ILj = p] = 1
Qj

Rj+Qj∑
x=max{Rj+1,p}

Pr[Dj(Leff
j ) = x − p]. (10)

Note that, contrary to Grob and Bley (2018), for x we sum over the domain [max{Rj + 1, p}, Rj + Qj ]

as also proposed by Axsäter (2015). Assumption 18 states that the demand sizes are strictly posi-

tive, therefore the demand over a certain time frame must be non-negative. Hence, the probability

Pr(Dj(Leff
j ) = x − p) is only defined for x − p ≥ 0. Therefore, x ≥ p which is implied by the maximum

over the two different starting values for x.

As stated in Assumption 10, we do not allow for partially fulfilled orders. Therefore, all customers

arriving at depot j are only fulfilled if the inventory level p is greater or equal to the incoming customer

demand size k. Let us denote the probability of customers having a demand size of k as pdfKj (k). It is

assumed that these probabilities are known. As a result, we can compute the order fill rate

βj(Rj) =
Rj+Qj∑

k=1

Rj+Qj∑
p=k

pdfKj (k) Pr(ILj = p)

=
Rj+Qj∑

k=1

Rj+Qj∑
p=k

pdfKj
(k) 1

Qj

Rj+Qj∑
x=max{Rj+1,p}

Pr(Dj(Leff
j ) = x − p). (11)
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Determining the local bounds

All depots j ∈ Ji must satisfy their specified fill rate target βT
j . For a depot j we can determine its

optimal Rj such that it suffices the target βT
j for a given R0, through Algorithm 1. R0 influences the

central wait time, affecting a depot’s effective lead time, see (6) and (7). The optimal Rj is the smallest

Rj such that it suffices the target βT
j . Moreover, the fill rate βj is increasing in Rj . Therefore, if the

fill rate is too low for Rmin
j and too high for Rmax

j , we can determine the optimal Rj through bisection.

Hence, Algorithm 1 uses a bisection-based method.

The algorithm uses Rmin
j and Rmax

j as starting values. Thus, we let Rmin
j = −Qj and Rmax

j = V ·Qj ,

where V is sufficiently large such that βj(V · Qj) ≥ βT
j always holds. Geelen et al. (2019) also computes

the optimal Rj for a given R0. Contrary to their approach, Algorithm 1 does not iterate over all possible

values of Rj between Rmin
j and Rmax

j , thus requiring less computations.

Algorithm 1 Find optimal Rj for a warehouse j ∈ Ji given R0

Input βT
j , R0, Rmin

j and Rmax
j

Output R∗
j

1: function findReorderPoint(βT
j , R0, Rmin

j and Rmax
j )

2: Determine E[∆] and V ar[∆] ▷ Axsäter (2003a)

3: Rlow
j = Rmin

j

4: Rtop
j = Rmax

j

5: Rmid
j =

⌈
Rlow

j +Rtop
j

2

⌉

6: Compute βj(Rlow
j ) ▷ Equation (11)

7: if βj(Rlow
j ) >= βT

j then

8: R∗
j = Rlow

j

9: return R∗
j

10: end if

11: while Rmid
j ̸= Rlow

j and Rmid
j ̸= Rtop

j do

12: Compute βj(Rmid
j ) ▷ Equation (11)

13: if βj(Rmid
j ) >= βT

j then

14: Rtop
j = Rmid

j

15: else

16: Rlow
j = Rmid

j

17: end if

18: Rmid
j =

⌈
Rlow

j +Rtop
j

2

⌉
19: end while

20: R∗
j = Rtop

j

21: return R∗
j
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22: end function

Algorithm 1 first computes the expected value and variance of the central wait time, which depends

on R0. If the fill rate target is satisfied for Rmin
j then it is the optimal value. Otherwise, the algorithm

computes the fill rate for the intermediate reorder point Rmid
j . The current upper bound Rtop

j is decreased

to Rmid
j if the fill rate target βT

j is satisfied for Rmid
j . Otherwise the lower bound Rlow

j is increased to

Rmid
j . This continues until either the current lower or upper bound is equal to the new intermediate

reorder point, i.e. the difference between the lower and upper bound is exactly one. The algorithm then

always returns Rtop
j , which is the lowest reorder point to satisfy the specified fill rate target βT

j and thus

optimal.

As stated earlier, a reorder point for a depot j ∈ Ji is affected by the central reorder point R0.

However, as depicted above, R0 does not directly affect the local fill rate. Instead it influences the central

wait time. Therefore, we can identify which cases bound the central wait time that in turn bounds

the local reorder points. Hence, the lower and upper bound on the reorder points of a depot j can be

described as:

Rmin∗
j : Achieved when the DC is always able to supply the depot j on time implicating the central

wait time is zero. Depot j holds the minimum amount of stock on hand to satisfy it’s

demand requests.

Rmax∗
j : Achieved when the DC restocks very rarely, i.e. R0 = −Q0, implicating the central wait

time is maximal. Depot j holds maximal amount of stock on hand to satisfy it’s demand

requests.

The starting values Rmin
j and Rjmax of Algorithm 1 can thus be improved upon. The description

above determines the scenarios in which Rmin
j and Rmax

j occur. Therefore, to compute Rmin
j , we set

E[∆] and V ar[∆] equal zero in Algorithm 1, the corresponding R0 is irrelevant in this case. The resulting

reorder point is Rmin∗
j . To compute Rmax

j we set R0 to its theoretical minimum, as stated by Axsäter

(2015), of −Q0. Hence, E[∆] and V ar[∆] attain their maximum values. The resulting reorder point is

Rmax∗
j . We can now replace the initial Rmin

j and Rmax
j by the lower bound Rmin∗

j and the upper bound

Rmax∗
j , respectively, for all depots j ∈ Ji.

Computing the central fill rate

To compute the fill rate of the central warehouse (β0(R0)), we use the distribution of the central lead

time demand, determined in Section 4.1.1, as the distribution of the demand in (11). Moreover, as stated

by Geelen et al. (2019), the distribution of the order size at the DC is given as:

pdfK0(k) =
∑Mi

j=1|Qj=k

(∑∞
z=0 sord

j (z) ∗ z
)∑Mi

j=1
(∑∞

z=0 sord
j (z) ∗ z

) . (12)

Therefore, the fill rate of the central warehouse can be computed as:

β0(R0) =
R0+Q0∑

k=1

R0+Q0∑
p=k

pdfK0(k) 1
Q0

R0+Q0∑
x=max{R0+1,p}

Pr(D0(L0) = x − p). (13)
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Note that contrary to the local fill rates, the central fill rate simply uses L0 instead of the effective lead

time as the delays encountered for the DC are encompassed by the central lead time. Moreover, as noted

by Geelen et al. (2019), the probability in (12) only holds for an (R, Q) policy but not an (R, nQ) policy

as assumed in Assumption 8. However, to adjust (12) such that it fits an (R, Q) policy requires additional

complexity. Therefore, since the central fill rate will only be applied to determine the initial bounds on

the central reorder point, Rmin
0 and Rmax

0 see below, the benefit of the additional accuracy does not

outweigh the additional complexity needed to adjust (12).

Furthermore, the arrival process at the DC is not naturally a Poisson process as the replenishment

orders are generated through the arrival processes of the depots. Therefore, we assume that the central

arrival process is a compound Poisson process in (13), which allows us to use the PASTA property of

the Poisson process (Assumption 17) for (13) to compute the probabilities of the central inventory level

and inventory position. Furthermore, we expect the arrival process at the DC to converge to a Poisson

process when the number of independent depots with distinct order quantities is increasing.

Finally, Assumption 16 indicates that all order quantities are known and given. However, as also indi-

cated by Grob and Bley (2018), for a proper approximation of β0(R0) we need q = gcd(Q0, . . . , QMi
) = 1

to hold. Therefore, if q > 1, we need to divide all demand related variables, i.e. µj , σ2
j and Qj for all

j ∈ Ji, by q in (1) - (5).

Determining the central bounds

For the DC, we need βmin
0 and βmax

0 to determine the bounds, these are assumed to be given and indicate

the limits on the fill rate for the DC. Moreover, it should hold that 0 < βmin
0 < βmax

0 ≤ 1. With these

values, we can describe and compute these bounds as

Rmin
0 : Compute the smallest R0 for which the central fill rate β0(R0) ≥ βmin

0 .

Rmax
0 : Compute the smallest R0 for which the central fill rate β0(R0) ≥ βmax

0 .

In the case of R0 = Rmin
0 the distribution system encounters the maximum central delay ∆ given βmin

0 .

On the other hand, if R0 = Rmax
0 the distribution system encounters the minimum ∆ given βmax

0 . Note

that as β0 goes towards zero, the E[∆] increases towards its limit. Additionally, as β0 goes towards one,

the E[∆] decreases towards zero.

To compute the bounds Rmin
0 and Rmax

0 , one could start from −Q0 and increase R0 by one until

the fill rate is greater or equal to the provided target value for the lower and upper bound. However,

we can slightly alter Algorithm 1 to determine these bounds in similar fashion to Rmin
j and Rmax

j . The

central wait time computation can be omitted. We use the given βmin
0 and βmax

0 as previously described.

Finally, the fill rate computation as in (11) will be replaced by (13). Through these alterations, Algorithm

1 allows us to find all the lower and upper bounds for the DC and thus every warehouse j ∈ J+
i .

4.1.3 Computing optimal reorder points

The final step is to compute the optimal central reorder point R∗
0 such that the total stock TS(R0) is

minimised. The total stock given a central reorder point is defined as TS(R0) =
∑

j∈J+
i

Rj . Geelen et al.
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(2019) determines the optimal R0 for which the sum over the reorder points of all depots,
∑

j∈Ji
Rj , is

minimised. However, if R0 is not taken into consideration this summation will lead to the summation

over all lower bounds, i.e.
∑

j∈Ji
Rmin

j , as this is the minimum sum over the local reorder points and is

achieved at Rmax
0 . Therefore, we need to minimise for TS(R0) to determine R∗

0.

Let us first introduce Algorithm 2 through which we can determine the total stock at R0.

Algorithm 2 Find TS(R0) for a given R0

Input R0

Output TS(R0)

function getTotalStock(R0)

TS(R0) = R0

for all j ∈ Ji do

R∗
j = findReorderPoint(βT

j , R0, Rmin
j∗ and Rmax

j∗ ) ▷ Algorithm 1

TS(R0) = TS(R0) + R∗
j

end for

return TS(R0)

end function

Using the previous algorithm, we can determine the optimal central reorder point R∗
0 and TS(R∗

0)

through Algorithm 3. In addition, the algorithm also optimises the local reorder points through the

computation of TS(R∗
0). The original idea of Geelen et al. (2019) is to iterate over all distinct values for

R0 between the computed bounds. At each iteration we compute TS(R0) and select the R0 for which

TS(R0) achieves its minima. However, iterating over all possibilities is computationally very heavy.

Therefore, we adjust the proposed optimisation approach by Geelen et al. (2019) and introduce a type

of bisection method to limit the number of computations. For this to be feasible, it is assumed that the

relation between R0 and TS(R0) is unimodal, which is made plausible by Geelen et al. (2019) as they

indicated that this relation is generally convex. Hence, Algorithm 3 is a bisection-based algorithm similar

to Algorithm 1, and uses a step size equal to half of the current search domain.

Algorithm 3 Find optimal R0 and TS(R0)

1: RLB
0 = findReorderPoint(βmin

0 ) ▷ Algorithm 1

2: RUB
0 = findReorderPoint(βmax

0 )

3: TSLB = getTotalStock(RLB
0 ) ▷ Algorithm 2

4: TSUB = getTotalStock(RUB
0 )

5: while RUB
0 − RLB

0 > 1 do

6: Rmid
0 =

⌈
RLB

0 +RUB
0

2

⌉
7: TSmid = getTotalStock(Rmid

0 ) ▷ Algorithm 2

8: if TSUB − TSmid ≥ TSLB − TSmid then

9: RUB
0 = Rmid

0

10: TSUB = TSmid

11: else
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12: RLB
0 = Rmid

0

13: TSLB = TSmid

14: end if

15: end while

16: if TSLB < TSUB then

17: return TSLB and RLB
0

18: else

19: return TSUB and RUB
0

20: end if

Note that the provided solution will be near-optimal if the objective function TS(R0) is not strictly

convex but only unimodal.

4.2 The wait time service measure

Before introducing the proposed Various-Service Level (VSL) models, let us first provide the notation

and additional assumptions needed for the wait time service measure. We define Wi ⊆ Ji as the set of

depots with wait time service measures for an item i. Note that it is possible for Wi to equal Ji. In

that case, all depots use a wait time service measure. The additional notation used for the subsequent

sections is provided below.
WT T

j The wait time target at depot j ∈ Wi, WT T
j > 0. It represents the total time a customer

is allowed wait at a depot.

P T
j The probability target on the wait time at a depot j ∈ Wi. It indicates the probability

of a customer having a shorter wait time than WT T
j , or the percentile of customers or

demand requests that must satisfy the wait time service measure.

∆j The stochastic delay at the DC experienced by depot j ∈ Wi.

ρj The probability a customer encounters wait time at depot j ∈ Wi.
Note that contrary to Section 4.1, here the stochastic delay ∆j is depot specific and will be estimated

per depot. The delay for a depot j denotes the wait time incurred for a replenishment order by depot j

at the DC.

In addition to the assumptions made in Section 2 and Section 4, we introduce the following additional

assumptions for the wait time service measure of theVSL models.

Assumption 19. The set Wi ⊆ Ji is known and given.

Assumption 20. The central lead time L0 is constant.

Assumption 19 indicates that the depots using wait time service measures are known. Finally, in Section

4, Assumption 13 indicates that the DC lead times are stochastic. However, for the wait time service

measure, we require these to be constant. Therefore, Assumption 20 is made and overrules Assumption

13. The necessity of this assumption will be further elaborated on in Section 4.2.1.
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The VSL models use fill rate and wait time service measures. The wait time depots j ∈ Wi, are

allowed to have negative reorder points. Having negative reorder points allows depots to service their

customers through back orders. Hence, this lowers the total stock within the distribution system whilst

maintaining the set service level targets.

However, by allowing negative reorder negative reorder points for wait time depots, we need to consider

the following two reorder point cases:

1. −1 ≤ Rj ,

2. −Qj ≤ Rj < −1.

To outline the major difference between the reorder point cases we will look at what happens to the

customer wait time when the customer demand sizes Kj is less and equal to the inventory position IPj

at a depot j ∈ Wi, Kj ≤ IPj , and when Kj > IPj .

Let us first examine when Kj ≤ IPj holds, in other words when the demand size of the arriving

customer order is less or equal to the inventory position at a depot j. Per Assumption 18, Kj > 0

must hold and Kj is integer valued. Moreover, per definition of the inventory position, we know that

IPj = ILj + OOj , where OOj are the outstanding replenishment orders at depot j. Combining these

gives 1 ≤ Kj ≤ ILj + OOj . The best case is when Kj ≤ ILj , the customer is served from stock on hand

and experiences zero wait time. Otherwise, the customer will be served using outstanding orders, which

in the worst case are ordered by the arrival of the previous customer. Hence, the customer experiences a

wait time of at most ∆j + Lj . For both the reorder point cases if Kj ≤ IPj holds, the wait time is at

most ∆j + Lj .

Now, we will investigate when Kj > IPj holds, in other words when the demand size of the arriving

customer is greater than the inventory position at a depot j. First, let us rewrite the inequality using

Assumption 18, the definition of the inventory position and the fact that Kj and IPj are always integer

valued:

Kj > IPj

⇔ Kj − IPj > 0

⇔ Kj − IPj ≥ 1

⇔ IPj − Kj ≤ −1. (14)

Using (14) and −1 ≤ Rj , the first case of the reorder point cases, we get the inequality IPj−Kj ≤ Rj . This

implicates that a reorder is always triggered if Kj > IPj and −1 ≤ Rj hold simultaneously. Therefore,

the wait time of a customer is still at most ∆j + Lj as we always order on or below the reorder point,

Assumption 11.

However, in the second reorder point case where we have −Qj ≤ Rj < −1, the inequality in (14)

implicates that not every arriving customers triggers a reorder. Therefore, customers will have to wait

upon more arriving customers before a reorder will be triggered to serve them. Hence, the wait time

now consists of and can be at most ∆j + Lj plus the additional time of more customers arriving. This

is problematic since the wait time service measure is only intended for depots with slow-moving items,
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thus customers may have to wait an extensive amount of time before other customers arrive to trigger

a reorder. Therefore, we restrict the reorder points of depots j ∈ Wi to −1 ≤ Rj . Section 4.3.3 will

provide a simpler setting to allow for an experiment on the second case, to demonstrate how cumbersome

allowing for the second reorder point case is for the problem at hand.

In this section we start by explaining the computation of the individual wait time. Thereafter, we

will introduce the wait time condition depots need to suffice by in order to satisfy their wait time service

measure.

4.2.1 Approximating the wait time per depot

To use wait time as a service measure, we need to approximate the wait time for all depots j ∈ Wi. As

shown prior, the customers’ wait time is at most ∆j + Lj , where the lead time Lj is constant as per

Assumption 14. The delay ∆j is a random variable and will be approximated in the current section. The

approximation is used to approximate the customer wait time of a depot j ∈ Wi.

Section 3 discussed four different methods to approximate the wait time. We opt to apply the approach

from Berling and Farvid (2014) to approximate the delay. Their idea revolves around finding the total

wait time for a batch of Qj units placed by a depot j ∈ Ji. This approximation provides the best fit and

integration considering the problem at hand, Section 2, in combination with the already existing model,

Section 4.1. As previously mentioned, their approach approximates the first two moments of the delay

at the depot level and is able to incorporate negative central reorder points. This approximation differs

from the wait time approximation in Section 4.1.2, which uses the approach from Axsäter (2003a) and

approximates a general central wait time identical across all depots. To determine the delay per depot,

Berling and Farvid (2014) assume a constant central lead time L0, similarly we use Assumption 20 as

previously introduced.

The additional notation needed for this section is:
ζ0,j The demand at the DC during the lead time L0 in excess of the current order of Qj placed

by depot j ∈ Wi.

fj(ζ0,j) The probability density function of ζ0,j .

µζ0,j ,p The expected demand for depot p at the DC over time period L0, i.e. the individual

contribution of depot p to µζ0,j .

σ2
ζ0,j ,p The variance of the demand for depot p at the DC over time period L0, i.e. the individual

contribution of depot p to σ2
ζ0,j

.

τ The time between the arrival of the final unit(s) to complete the current order placed by

depot j and the placing of the current order by depot j. Differs for each depot j ∈ Wi.

µ0,j The expected demand at the DC over time period τ expressed in units per time unit of

L0.

First of all, let us determine the expected value and variance of ζ0,j according to the formulas in

23



Berling and Farvid (2014):

E[ζ0,j ] =
M∑

p=1
µζ0,j ,p, (15)

V ar[ζ0,j ] =
M∑

p=1
σ2

ζ0,j ,p. (16)

Here, if p ̸= j, we can determine µζ0,j ,p as:

µζ0,j ,p = µpL0, (17)

and if p = j, then

µζ0,j ,j =
∞∑

k=0
kQjsord

j (k), (18)

holds for µζ0,j ,j . Moreover, we can estimate σ2
ζ0,j ,p for all p ∈ Ji as:

σ2
ζ0,j ,p =

∞∑
k=0

(µζ0,j ,p − kQp)2sord
p (k). (19)

Combining these equations, and writing out (15) and (16) completely, gives us:

E[ζ0,j ] =
M∑

p=1, p ̸=j

µpL0 +
∞∑

k=0
kQjsord

j (k), (20)

V ar[ζ0,j ] =
M∑

p=1, p ̸=j

[ ∞∑
k=0

(µpL0 − kQp)2sord
p (k)

]
+

∞∑
k=0

(( ∞∑
x=0

xQjsord
j (x)

)
− kQj

)2

sord
j (k)

 . (21)

Note that for the E[ζ0,j ], only the term for depot j, µζ0,j ,j changes compared to (4). Moreover, the

formula for the variance V ar[ζ0,j ] is also similar to (5), again except from the term of depot j, σ2
ζ0,j ,j .

The term for depot j in (20) and (21) is altered to properly represent the demand at the DC, excluding

the current order batch of depot j. For all other depots, the terms are identical to those used in (4) and

(5), respectively. Note that these functions are denoted using the notation introduced by Grob and Bley

(2018), yet they correctly represent the proposed formulas from Berling and Farvid (2014). Appendix B

provides a complete overview regarding the difference in notation.

Berling and Farvid (2014) do indicate that, if Qj is small or tends to one (Qj ∈ N), it is appropriate

to use δj(k) for depot j as expressed in (1) in the computation of ζ0,j . However, if Qj is relatively large

an adjusted δj(k) should be used for depot j, since the demand at the DC is more influenced by the

current ordered batch Qj . This is due to the likelihood of depot j ordering additional batches during L0

is decreasing in k. The adjusted δj(k) for depot j is given as:

δj(k, L0 = l) = Pr(Dj(l) ≤ (k + 1)Qj). (22)

Note for depot p ̸= j in (20) and (21), we always use the unadjusted δj(k) as given in (1).

Similar to the lead time demand D0(L0), the mean and variance can be used to fit a standard

distribution for ζ0,j . Section 4.4 describes which standard distribution will be used and how it will be

estimated. Both will assume the same standard distribution for proper comparison and computation of

the fill rate and wait time service measures.

24



Using the distribution of ζ0,j , we can compute the expected value and variance of the wait time at

depot j as done in Berling and Farvid (2014). They implicated three separate cases which depend on the

relation between the central reorder point R0 and the relationship to the order quantity Qj of a depot j:

Case 1: Qj ≤ R0

E[∆j ] = L0

Q0

R0+Q0∑
x=R0+1

 ∞∑
ζ0,j=x−Qj+1

(
1 − x − Qj

ζ0,j

)
fj(ζ0,j)

 , (23)

E[∆2
j ] = L2

0
Q0

R0+Q0∑
x=R0+1

 ∞∑
ζ0,j=x−Qj+1

(
1 − x − Qj

ζ0,j

)2
fj(ζ0,j)

 , (24)

Case 2: 0 ≤ R0 < Qj

E[∆j ] = L0

Q0

Qj − R0 − 1 +
R0+Q0∑
x=Qj

 ∞∑
ζ0,j=x−Qj+1

(
1 − x − Qj

ζ0,j

)
fj(ζ0,j)

 , (25)

E[∆2
j ] = L2

0
Q0

Qj − R0 − 1 +
R0+Q0∑
x=Qj

 ∞∑
ζ0,j=x−Qj+1

(
1 − x − Qj

ζ0,j

)2
fj(ζ0,j)

 , (26)

Case 3: R0 < 0

E[∆j ] = L0

Q0

 −1∑
y=R0+1

(
1 + y − R0

µ0,j

)
+ Qj +

R0+Q0∑
x=Qj

 ∞∑
ζ0,j=x−Qj+1

(
1 − x − Qj

ζ0,j

)
fj(ζ0,j)

 , (27)

E[∆2
j ] = L2

0
Q0

 −1∑
y=R0+1

(
1 + y − R0

µ0,j

)2
+ Qj +

R0+Q0∑
x=Qj

 ∞∑
ζ0,j=x−Qj+1

(
1 − x − Qj

ζ0,j

)2
fj(ζ0,j)

 . (28)

Note that (25) and (26) differ from the original formulation provided by Berling and Farvid (2014). We

improved these equations and they now contain the correct probability for the central inventory position

IP0, following a Unif(R0 + 1, R0 + Q0) distribution. Appendix C discusses the slight error in the original

formula and derives the correct probability as utilised above.

The three different cases compute all compute the expected value and second moment of the delay

depending on the relation between the central reorder point and local order quantity. In each case, the

current order of Qj units plays a distinct part in when the order can be shipped and when a replenishment

order is triggered by the DC. Hence, the different cases take into consideration the placing of the current

order, the size of the orders, the size of the additional demand at the DC and the lead time of the DC to

compute the expected value and second moment of the delay.

Only in (27) and (28) µ0,j is used, because τ is only positively defined for R0 < 0. Berling and Farvid

(2014) state the following equation to calculate µ0,j :

µ0,j =

µj
0,j

τ
+

M∑
p=1, p ̸=j

µp

 · L0. (29)

Here, µj
0,j is the expected demand of depot j over the time period τ . Hence, the contribution of depot

j to the total expected demand µ0,j is µj
0,j

τ · L0. Berling and Farvid (2014) indicate that finding µj
0,j

and τ is not straightforward, thus they provided an approximation. τ can be approximated as −R0/2∑
j∈Ji

µj
.

They based this approximation on the average inventory position when a shortage occurs at the DC
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that is small enough to not trigger an additional replenishment order at the DC. They then divide this

by the mean demand rate at the DC. Using this approximation for τ , we can compute µj
0,j . Note that

µj
0,j =

∑∞
k=0 kQjsord

j (k), it therefore coincides with the latter part of (20). Therefore, we can compute

it in similar fashion, but we use τ as the time period instead of L0 in (2).

With the equations (23) - (28), we can determine the first and second moment of the delay at the DC

for any combination of R0 and Qj . The variance of the delay experienced by a depot j is determined

through:

V ar[∆j ] = E[∆2
j ] − E[∆j ]2. (30)

The delay distribution F [∆j ] can be fitted to a standard distribution using the expected value and

variance. Note that F [∆j ] corresponds with the CDF of the delay at depot j. Thus, F∆j
(x) corresponds

with the probability Pr[∆j ≤ x], where Pr[∆j ≤ x] = 0 if x < 0 holds as the delay non-negatively

defined. We can assume a standard distribution depending on how conservative we want the delays to

be. Heavy-tailed distributions, specifically heavy right-tailed distributions, are more conservative as they

place more weight on the possibility of longer delays and ensure that extreme values are captured when

determining the wait time at higher probability levels. Section 4.4 specifies which distributions will be

used and elaborates on how these distributions can be fitted to the expected value and variance of the

delay.

4.2.2 Computing the probability of waiting and defining the wait time condition

The goal of the wait time service measure is to serve P T
j percent of the customers within the set wait

time target WT T
j at depot j ∈ Wi. Therefore, we define a condition that must hold for a depot to suffice

its target. It is straightforward that R0 affects the wait time. However, Rj affects the probability of

waiting. Therefore local and central reorder point both need to be taken into account since they affect

different parts of the condition.

Before introducing the wait time condition, we need to compute ρj , the probability a customer en-

counters wait time at depot j ∈ Wi. A customer experiences wait time when it arrives at a depot j with

a greater demand size Kj than the current inventory level ILj . Therefore, we first need the probability

of the customer demand being greater than the current inventory level of depot j.

To compute the cumulative probability of the inventory level, we need to integrate over (10) until the

selected value. However, since we only allow for discrete quantities, this is similar to summing over all

possible discrete values:

Pr[ILj ≤ y] = 1
Qj

∫ y

−∞

Rj+Qj∑
x=Rj+1

Pr[Dj(Leff
j ) = x − p] dp

= 1
Qj

y∑
p=−∞

Rj+Qj∑
x=Rj+1

Pr[Dj(Leff
j ) = x − p]. (31)

Note that similarly to (10), the demand over the effective lead time is used here as described in (8) and

(9). However, in Section 4.1.2, the effective lead time is defined using the METRIC-type approximation

of the general wait time, (6) and (7). Now in (31), we need to redefine the effective lead time and use
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the delay experienced by depot j ∈ Wi, as approximated in (23) - (28) and (30). The effective lead time

is now defined as:

E[Leff
j ] = E[Lj ] + E[∆j ], (32)

V ar[Leff
j ] = V ar[Lj ] + V ar[∆j ]. (33)

With the inventory level distribution, we can determine the probability of a customer demand size

being greater than the current inventory level. Similar to (11), we denote the probability of a customer

with demand size k as pdfKj
(k). It is assumed that these probabilities are known. Furthermore, we

introduce the set κj = {k ∈ N+ | pdfKj (k) > 0}, denoting the set of all customer demand sizes at depot

j ∈ Wi. Using these two probabilities, we can determine ρj as:

ρj =
∑
k∈κj

pdfKj
(k) Pr[ILj ≤ k − 1]. (34)

Note that we need the cumulative probability of the inventory level to be less than or equal to the

customer demand size minus one (k − 1) as we need to compute the probability of a customer with

demand size k experiencing wait time.

Having determined ρj , we introduce a sufficient wait time condition for a depot j in order to suffice

its wait time service measure in (35). The left-hand side of the condition adds distinct probabilities of a

customer being served within the wait time target. The first term denotes the probability of a customer

having to wait, ρj , times the probability that the delay of the depot j is less than the wait time target

minus the inter-lead time. In the second term, 1−ρj indicates the probability of a customer being served

through stock on hand, i.e. experiences zero wait time. A customer with zero wait time always suffices

the wait time target. Hence, this probability (1 − ρj) is actually multiplied by one. The addition of the

two terms need to be greater than or equal to the probability target P T
j .

ρj · F∆j
(WT T

j − Lj) + (1 − ρj) ≥ P T
j . (35)

In general this condition is too strict as it assumes that every customer that incurs wait time triggers

a replenishment order at a depot j. In case customers experience wait time, but do not trigger a

replenishment order as there is already a large enough outstanding order, the probability of sufficing the

wait time target is greater than the first term in (35). To further elaborate on the approximation and the

inaccuracy that is paired with it, we need to consider the following cases: WT T
j < Lj and WT T

j ≥ Lj .

If WT T
j < Lj holds, then F∆j

(WT T
j − Lj) = 0, see Section 4.2.1, therefore (35) reduces to the simple

condition of (1 − ρj) ≥ P T
j . This indicates that the probability of a customer being served through stock

on hand must be greater than or equal to the probability target. Since the condition assumes that a

waiting customer triggers a replenishment order, it is unfeasible for this customer to be served within

WT T
j if WT T

j < Lj holds. Although the condition disregards the exact value of WT T
j , it can matter for

the fulfilment of the wait time target.

By disregarding WT T
j if WT T

j < Lj holds, the condition is too strict in general. Hence, it is only a

sufficient condition. Yet, given the problem of the current paper, see Section 2, the use of wait time is

only applied to slow-moving items. For small order sizes Qj and large inter-arrival times the likelihood of
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customers that incur wait time but do not trigger a replenishment order is small, benefiting the accuracy

of this condition. Furthermore, as further elaborated on in Section 4.3.2, this case only occurs in the

AVSL model where the condition is applied to optimise the local reorder point Rj . Due to the integrality

of Rj , see Assumption 8, large increases of ρj are expected when the reorder level is increased. Hence,

the approximation is expected to have an insignificant effect during optimisation.

For the second case, if WT T
j ≥ Lj holds, the condition only considers two types of customers. A

customer that incurs no wait time as it is served through stock on hand, or a customer that incurs wait

time and triggers a replenishment order. A customer is served through stock on hand with a probability

of (1 − ρj) and satisfies the wait time target WT T
j with a probability of 1. Furthermore, a customer

incurs wait time with a probability of ρj and satisfies the wait time target WT T
j with a probability of

F∆j
(WT T

j −Lj). However, a customer can incur wait time but not trigger a replenishment order when Qj

is large enough. The condition assigns all wait time incurring customers the identical probability, namely

that of a wait time incurring customer triggering a replenishment order. Hence, all customers that incur

wait time have a probability of at least F∆j
(WT T

j − Lj) to be served within the wait time target WT T
j .

The condition therefore overestimates their wait time and is therefore only a sufficient condition.

The overestimation is expected to have no significant effect on the optimisation of the reorder points in

Section 4.3, as we expect the amount of customers that incur wait time and do not trigger a replenishment

order, to be very limited. Similarly to the first case, the likelihood of these customers decreases as Qj

gets smaller and the inter-arrival times get larger, thus reducing the effect of this approximation on the

condition.

As stated previously, both the local and central reorder point affect the condition. The local reorder

point affects ρj . A decrease in Rj leads more customers are served through back orders and therefore

encounter wait time. An increase in Rj gives the opposite effect. The central reorder point affects the

delay ∆j . A decrease in R0 leads to an increase in delay experienced by the depot j, increasing R0 lowers

the delay. Note that R0 does also affects ρj through ∆j and the effective lead time. A decrease in R0,

reduces ρj and vice versa.

4.3 Various-Service Level models

The current paper proposes two different models. In both models, the first two steps remain identical to

the vNext model, as described in Section 4.1. After these steps, we distinguish between the Simple and

Advanced Various-Service Level models (the SVSL and AVSL models).

Given the restriction on the reorder points in 4.2, the main difference between the SVSL and the

AVSL model is the allowed values for the reorder points of the wait time depots. In the SVSL model,

we only allow the reorder point of depot j ∈ Wi, to be equal to −1. This ensures that a depot reorders

upon customer arrival and has minimal stock on hand, serving customer demand mainly through back

orders. The central reorder point is expected to increase to guarantee the wait time service measures. By

choosing a set reorder point at these depots, the wait time targets must be greater than the inter-lead

time between the DC and the depot to always ensure a feasible solution.

For the AVSL model, we allow the reorder point of the depot j ∈ Wi, to be greater than −1 and thus
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also to be non-negative. By allowing an increase in local stock, targets on the wait time are enabled to

be less than or equal to the inter-lead time between the DC and the depot. Thus, providing more options

for the wait time service measure and resulting in a more flexible model.

In this section we first introduce the SVSL model. Afterwards, we describe the optimisation procedure

of the AVSL model. Finally, we will sketch a simpler scenario in which we allow for reorder points below

−1.

4.3.1 The Simple Various-Service Level model

We will now outline the SVSL model. For this model, we assume that the reorder point Rj = −1 for

all j ∈ Wi, such that customers are mainly served through back orders. Compared to the vNext model

in Section 4.1, the SVSL model consists of the same steps, with the only addition being the third step

below:

I. Compute the distribution of the central lead time demand D0(L0).

II. Compute bounds on all the reorder points Rj for j ∈ J+
i .

III. Compute a new lower bound on the central reorder point R0, such that all depots j ∈ Wi satisfy

their wait time targets.

IV. Compute the optimal central reorder point R∗
0 minimising the total stock TS(R0).

Since we want to ensure that Rj = −1 is valid for all depots j ∈ Wi, we need to make an assumption

for the imposed wait time target:

Assumption 21. The wait time target WT T
j must be greater than the inter-lead time Lj between the

DC and the depot j ∈ Wi.

Section 4.3 provided a brief explanation of the model and elaborated on why this assumption must be

made. Moreover, the wait time condition in (35) indicates the necessity of this assumption. Since depot

j ∈ Wi has a constant reorder point of −1, a wait time target smaller than or equal to the lead time

always results in F∆j
(WT T

j − Lj) = 0. Therefore, it could prove Rj = −1 to be invalid as the depot j is

not able to suffice the condition due to insufficient customers being served by stock on hand.

The first two steps remain identical to Sections 4.1.1 and 4.1.2, respectively. The third step of the

SVSL model determines the new lower bound Rmin∗
0 , this is the lowest central reorder point that satisfies

the wait time targets of all depots j ∈ Wi. The existing bounds Rmin
0 and Rmax

0 are determined in step

II. through satisfying a predetermined fill rate target at the DC, in Section 4.1.2. However, the lower

bound here does not necessarily provide a feasible solution to all the depots j ∈ Wi given the wait time

condition in (35).

We first introduce Algorithm 4. This algorithm determines the lowest central reorder point Rmin, j
0

such that the wait time target of depot j ∈ Wi is satisfied at the P T
j percentile of the distribution F∆j

.

Since the delay is decreasing in R0, we use a bisection-based approach in this algorithm to limit the

necessary computations.
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Algorithm 4 Find the minimum R0 that satisfies the target at depot j ∈ Wi

Input WT T
j , P T

j , Rmin
0 and Rmax

0

Output Rmin, j
0

1: function findReorderPointSimple(WT T
j , P T

j , Rmin
0 and Rmax

0 )

2: Rlow
0 = Rmin

0

3: Rtop
0 = Rmax

0

4: Rmid
0 =

⌈
Rlow

0 +Rtop
0

2

⌉

5: Determine E[∆j ], V ar[∆j ] and F [∆j ] for Rlow
0 ▷ Equations (23) - (28), (30)

6: Determine ρj for Rlow
0 ▷ Equation (34)

7: if ρj · F∆j
(WT T

j − Lj) + (1 − ρj) ≥ P T
j then ▷ Equation (35)

8: Rmin, j
0 = Rlow

0

9: return Rmin, j
0

10: end if

11: while Rmid
0 ̸= Rlow

0 and Rmid
0 ̸= Rtop

0 do

12: Determine E[∆j ], V ar[∆j ] and F [∆j ] for Rmid
0 ▷ Equations (23) - (28), (30)

13: Determine ρj for Rmid
0 ▷ Equation (34)

14: if ρj · F∆j
(WT T

j − Lj) + (1 − ρj) ≥ P T
j then ▷ Equation (35)

15: Rtop
0 = Rmid

0

16: else

17: Rlow
0 = Rmid

0

18: end if

19: Rmid
0 =

⌈
Rlow

0 +Rtop
0

2

⌉
20: end while

21: Rmin, j
0 = Rtop

0

22: return Rmin, j
0

23: end function

Note that if Rlow
0 is already sufficient, we can return this value without further computations.

We can now determine the new Rmin∗
0 , which is done through Algorithm 5. This algorithm iterates

through all depots j ∈ Wi and identifies the depot j∗ with the largest gap between between P T
j and

ρj · F∆j
(WT T

j − Lj) + (1 − ρj). Whereafter, we use Algorithm 4 to determine Rmin, j∗

0 . We then iterate

through all remaining depots to check if this reorder point also satisfies the wait time of the remaining

depots j ∈ Wi \ {j∗}. If it does we determine that Rmin, j∗

0 is the new lower bound Rmin∗
0 . Otherwise, we

continue and determine a new depot j∗ and repeat this process until we all wait time targets are satisfied

or until the upper bound Rmax
0 is reached.

Algorithm 5 Find the Rmin∗
0 such that all depots j ∈ Wi satisfy their targets
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Input Rmin
0 , Rmax

0 , and WT T
j , P T

j ∀j ∈ Wi

Output Rmin∗
0

1: function findMinimumReorderPointWT(Rmin
0 , Rmax

0 , and WT T
j , P T

j ∀j ∈ Wi)

2: Set j∗ = NA

3: Set γ = −∞

4: for all j ∈ Wi do

5: Determine E[∆j ], V ar[∆j ] and F [∆j ] for Rmin
0 ▷ Equations (23) - (28), (30)

6: Determine ρj for Rmin
0 ▷ Equation (34)

7: if P T
j − (ρj · F∆j

(WT T
j − Lj) + (1 − ρj)) > γ then

8: j∗ = j

9: γ = P T
j − (ρj · F∆j

(WT T
j − Lj) + (1 − ρj))

10: end if

11: end for

12: while γ > 0 and Rmin
0 < Rmax

0 do

13: Rmin
0 = findReorderPointSimple(WT T

j∗ , P T
j∗ , Rmin

0 and Rmax
0 ) ▷ Algorithm 4

14: Set γ = −∞

15: for all j ∈ Wi \ {j∗} do

16: Determine E[∆j ], V ar[∆j ] and F [∆j ] for Rmin
0 ▷ Equations (23) - (28), (30)

17: Determine ρj for Rmin
0 ▷ Equation (34)

18: if P T
j − (ρj · F∆j

(WT T
j − Lj) + (1 − ρj)) > γ then

19: j∗ = j

20: γ = P T
j − (ρj · F∆j

(WT T
j − Lj) + (1 − ρj))

21: end if

22: end for

23: end while

24: Rmin∗
0 = min(Rmin

0 , Rmax
0 )

25: return Rmin∗
0

26: end function

The algorithm above returns the new lower bound on the central reorder point Rmin∗
0 that satisfies the

wait time targets of all depots j ∈ Wi. Note that it is possible that the returned reorder point Rmin∗
0

does not suffice all wait time targets due to Rmax
0 being too low. If this is the case, one should return to

step II. and increase βmax
0 in Section 4.1.2, such that Rmax

0 is always big enough to satisfy all the wait

time targets. With Rmin∗
0 , we can continue with step IV., this step is identical to the step explained in

Section 4.1.3.
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4.3.2 The Advanced Various-Service Level model

The idea for the AVSL model is to allow a more flexible selection of the wait time targets WT T
j for all

depots j ∈ Wi. We want to also allow for targets to be below or equal to the inter-lead time between the

DC and the depot. Therefore, we drop Assumption 21 of the SVSL model. To enable these targets, we

have to allow for non-negative reorder points. Moreover, we need to be able to determine the minimum

local reorder point Rj that suffices the wait time target for a given R0 for all depots j ∈ Wi.

The steps in the AVSL model are identical to those of the vNext model (Section 4.1) with only an

adjustment to Algorithm 2. Since we now need to optimise for depots with different service levels. Similar

to Algorithm 1, we now need to find the optimal reorder points for the wait time depots given R0. Let

us introduce Algorithm 6 that finds these reorder points for all j ∈ Wi. Given a central reorder point,

it determines the wait time distribution and finds the minimum reorder point R∗
j that satisfies the wait

time service measure at depot j. The algorithm uses Rmin
j and Rmax

j as starting values. Here, Rmin
j

is always equal to −1, as explained in Section 4.3. Let Rmax
j be V · Qj , V must be large enough such

that V · Qj always suffices the target in (35). These initial values are, respectively, the lower and upper

bound in this bisection-based method. These bounds need to be used instead of the computed bounds

from Section 4.1.2, as those are based on the fill rate. Note that this bisection-based approach is similar

to Algorithm 4, we again use it since ρj is decreasing in Rj and it decreases the necessary computations.

Algorithm 6 Find best Rj for a warehouse j ∈ Wi

Input R0, WT T
j , P T

j , Rmin
j and Rmax

j

Output R∗
j

1: function findReorderPointWTAdvanced(R0, WT T
j , P T

j , Rmin
j and Rmax

j )

2: Determine E[∆j ], V ar[∆j ] and F [∆j ] ▷ Equations (23) - (28), (30)

3: Rlow
j = Rmin

j

4: Rtop
j = Rmax

j

5: Rmid
j =

⌈
Rlow

j +Rtop
j

2

⌉

6: Determine ρj for Rlow
j ▷ Equation (34)

7: if ρj · F∆j
(WT T

j − Lj) + (1 − ρj) ≥ P T
j then ▷ Equation (35)

8: return Rlow
j

9: end if

10: while Rmid
j ̸= Rlow

j and Rmid
j ̸= Rtop

j do

11: Determine ρj for Rmid
j ▷ Equation (34)

12: if ρj · F∆j
(WT T

j − Lj) + (1 − ρj) ≥ P T
j then ▷ Equation (35)

13: Rtop
j = Rmid

j

14: else

15: Rlow
j = Rmid

j

16: end if
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17: Rmid
j =

⌈
Rlow

j +Rtop
j

2

⌉
18: end while

19: R∗
j = Rtop

j

20: return R∗
j

21: end function
Note that if the lower bound already suffices, we can return it and no further computations are necessary.

Moreover, much like in Section 4.1.2, we can tighten the upper bound in similar fashion, namely:

Rmax∗
j : Achieved when the DC restocks very rarely, i.e. R0 = −Q0, implicating that the delay experienced

by depot j is maximal. Depot j holds maximal amount of stock on hand to to comply by its wait

time target.

Hence, the upper bound in Algorithm 6 can be improved upon. Following the description above, we let

R0 = −Q0 be the starting value of the algorithm. The E[∆j ] and V ar[∆j ] will attain their maximum

value, increasing the local reorder point such that (35) is still satisfied. This results in the outcome of

the algorithm being Rmax∗
j , the tightened upper bound.

Let us now redefine Algorithm 2. Algorithm 7 computes the total stock TS(R0) for a given central

reorder point R0. It determines the minimum reorder point R∗
j for a depot j based on its assigned service

measure through Algorithms 1 or 6.

Algorithm 7 Find TS(R0) for a given R0

Input R0

Output TS(R0)

function getTotalStock(R0)

TS(R0) = R0

for all j ∈ Ji do

if j ∈ Wi then

R∗
j = findReorderPointWTAdvanced(R0, WT T

j , P T
j , Rmin

j and Rmax
j ) ▷ Algorithm 6

else

R∗
j = findReorderPoint(βT

j , R0, Rmin
j and Rmax

j ) ▷ Algorithm 1

end if

if R∗
j < Rmin

j then

R∗
j = Rmin

j

end if

TS(R0) = TS(R0) + R∗
j

end for

return TS(R0)

end function
This algorithm is used in Algorithm 3 to find all optimal reorder points. The final algorithm of the vNext

model, therefore, remains unchanged and replaces Algorithm 2 with the algorithm above.

33



4.3.3 Allowing local reorder points below −1

As stated previously, the VSL models only allow for reorder points that are greater than or equal to

minus one. Section 4.2 elaborated on why this restriction is chosen. However, in this section we will

discuss an experiment in which we include the following boundary −Qj ≤ Rj < −1, the second reorder

point case, within the solution space of depots j ∈ Wi. To do so we will make an important additional

assumption:

Assumption 22. All customers arrive with a demand size of 1. In other words, the customer demand

size Kj is constant and equal to 1 in the compound Poisson process for all j ∈ Wi.

This assumption simplifies the compound Poisson process to a standard Poisson process for the customer

arrivals in the distribution system. However, it does allows us to establish why including the second

reorder point case does not yield any benefit.

For the first reorder point case, −1 ≤ Rj for j ∈ Wi, we will use the computations and formulas from

the AVSL model. Given Assumption 22 and if −1 ≤ Rj holds, ρj in (34) can be rewritten as:

ρj = Pr[ILj ≤ 0] (36)

which is possible since κj = 1 and pdfKj
(1) = 1. Therefore, this remains of the summation in (34). The

left hand side multiplies the probability of a customer having to wait, if ILj ≤ 0, by the largest wait

time it can experience at most. If the above inequality holds, the wait time target for a depot j ∈ Wi is

satisfied if −1 ≤ Rj .

For the second reorder point case we need to introduce some additional formulas, but extend on the

AVSL model. For the remainder of this paper we will refer to this extension of the AVSL model as the

Experiment Various-Service Level model, the EVSL model. Let us first introduce the additional notation

needed for this section:
Ck

j The stochastic customer inter-arrival time at depot j ∈ Wi, given that the customer must

wait on k other customers.

ωj The average additional wait time a customer encounters at depot j ∈ Wi. The average

time over all customers until enough customers to arrive to prompt a replenishment order.

Now, if −Qj ≤ Rj < −1 holds, a customer encounters wait time if ILj ≤ 0. However, a customer

experiences additional wait time ωj if IPj ≤ 0 since it has to wait upon other customers to arrive in

order for a replenishment order to be triggered. This poses the following two cases:

1. IPj > 0, a customer experiences a wait time of at most ∆j + Lj .

2. IPj ≤ 0, a customer experiences a wait time of at most ∆j + Lj + ωj .

Therefore, we alter the condition in (35), such that now the following must hold for a depot j ∈ Wi to

suffice its wait time target when −Qj ≤ Rj < −1 holds:

ρj ·
[
Pr[IPj > 0] · F∆j

(WT T
j − Lj) + Pr[IPj ≤ 0] · F∆j

(WT T
j − Lj − ωj)

]
+ (1 − ρj) ≥ P T

j . (37)
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Note that we use the ρj from (36). Moreover, compared to (35), the term multiplied by ρj is split into

two parts as per the two cases described above.

To approximate the additional wait time ωj , let us first define F [Ck
j ] as the CDF of the inter-arrival

times of customers at depot j, with known mean and variance. Thus, FCk
j
[x] corresponds with the

probability Pr[Ck
j ≤ x]. Since all customers arrive according to a Poisson process (Assumptions 17 &

22), the inter-arrival times between customers are exponentially distributed. Therefore, Ck
j follows an

Erlang k-distribution. The rate of the inter-arrival times, λ, is assumed to be known.

Next we know that ILj ≤ 0 and IPj ≤ 0 both hold, as otherwise a customer would not experience

additional wait time. Therefore, the probability Pr[IPj = x | IPj ≤ 0] is the probability that the inventory

position is in a non-positive state. Using Bayes’ Theorem, it can be rewritten as:

Pr[IPj = x | IPj ≤ 0] = Pr[IPj ≤ 0 | IPj = x] Pr[IPj = x]
Pr[IPj ≤ 0]

=
1 · 1

Qj

−Rj

Qj

Pr[IPj = x | IPj ≤ 0] = 1
−Rj

, (38)

making use of the discrete uniform distribution of the inventory position. Moreover, Pr[IPj ≤ 0 | IPj =

x] = 1 for x ∈ [Rj + 1, 0]. Since, it is given that x is non-positive this always holds and the outcome of

this probability can be used in the equation above.

Utilising the distribution of the inter-arrival times and (38), we can now approximate ωj as:

ωj = Pr[IPj = x | IPj ≤ 0]
0∑

x=Rj+1
E[Cx

j ]

= 1
−Rj

·
|Rj+1|∑

x=1
E[Cx

j ]. (39)

The sum in (39) computes on how many additional customers arrivals a customer has to wait per inventory

position. If a customer arrives when IP = 0, then it has to wait for |Rj + 1| additional customers. On

the other hand, arriving at IP = |Rj + 1| triggers a replenishment order immediately, thus the customer

does not have to wait for any additional customers. Moreover, we use the mean of the kth-customer

inter-arrival time as this suffices to approximate the average additional wait time of a customer for this

experiment.

Finally, we need to replace Algorithm 6 used in Algorithm 7 to allow for the second reorder point case.

Therefore, we introduce Algorithm 8, it incorporates both the reorder point cases with its corresponding

equations and replaces Algorithm 6

Algorithm 8 Find best Rj for a warehouse j ∈ Wi

Input R0, WT T
j , P T

j and V

Output R∗
j

1: function findReorderPointWTExperiment(R0, WT T
j , P T

j and V )

2: Determine E[∆j ], V ar[∆j ] and F [∆j ] ▷ Equations (23) - (28), (30)

3: Rlow
j = −Qj
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4: Rtop
j = V · Qj

5: Rmid
j =

⌈
Rlow

j +Rtop
j

2

⌉

6: Determine ρj for Rlow
j ▷ Equation (36)

7: if −1 ≤ Rlow
j then

8: if ρj · F∆j
(WT T

j − Lj) + (1 − ρj) ≥ P T
j then ▷ Equation (35)

9: R∗
j = Rlow

j

10: end if

11: else

12: Determine ωj for Rlow
j ▷ Equation (39)

13: if ρj ·
[
Pr[IPj > 0] · F∆j

(WT T
j − Lj) + Pr[IPj ≤ 0] · F∆j

(WT T
j − Lj − ωj)

]
+ (1 − ρj) ≥ P T

j

then ▷ Equation (37)

14: R∗
j = Rlow

j

15: end if

16: end if

17: if R∗
j = Rlow

j then

18: return R∗
j

19: end if

20: while Rmid
j ̸= Rlow

j and Rmid
j ̸= Rtop

j do

21: Boolean bool = False

22: Determine ρj for Rmid
j ▷ Equation (36)

23: if −1 ≤ Rmid
j then

24: if ρj · F∆j
(WT T

j − Lj) + (1 − ρj) ≥ P T
j then ▷ Equation (35)

25: bool = True

26: end if

27: else

28: Determine ωj for Rlow
j ▷ Equation (39)

29: if

ρj ·
[
Pr[IPj > 0] · F∆j

(WT T
j − Lj) + Pr[IPj ≤ 0] · F∆j

(WT T
j − Lj − ωj)

]
+ (1 − ρj) ≥ P T

j then

▷ Equation (37)

30: bool = True

31: end if

32: end if

33: if bool then

34: Rtop
j = Rmid

j

35: else
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36: Rlow
j = Rmid

j

37: end if

38: Rmid
j =

⌈
Rlow

j +Rtop
j

2

⌉
39: end while

40: R∗
j = Rtop

j

41: return R∗
j

42: end function

Note that the starting values for the algorithm are −Qj and V · Qj . Again, V must be great enough such

that V · Qj always satisfies the target in (37). In the algorithm above we separate the different reorder

point cases. Moreover, the structure is adjusted slightly compared to Algorithm 6 for readability, since

we have to consider both cases every time we want to evaluate the wait time for a specific Rj .

4.4 Implementation of the models

This section discusses the implementation of the models. It first elaborates on the choice of distributions

and to fit these to the computed moments. Furthermore, we elaborate on the discretisation of the

distributions. Next, the associated choices for the implementation are disclosed. Finally, the stochasticity

of the central lead time is discussed.

4.4.1 Choice and fitting of distributions

As mentioned in the preceding sections, distributions are needed for the probabilities of the order sizes,

demand over time, delay and inter-arrival times. Let us now explain which distributions we use and how

these are fitted to the known or computed first two moments.

First of all, we will make use of the empirical distribution for the demand sizes, thus making use of

historical data. The probabilities of the demand sizes Kj for j ∈ Ji are assumed to be known and given.

Therefore, it follows an empirical distribution in (11) and (34). To determine the probability density

function (PDF) and cumulative density function (CDF), we use the definition given by Dekking et al.

(2005). It is assumed that the historical data points (X1, . . . , Xn) are all independently and identically

distributed random variables. We can then identify their PDF (f̂n(x)) and CDF (F̂n(x)) as:

f̂n(x) = 1
n

n∑
i=1

1Xi=x (40)

F̂n(x) = 1
n

n∑
i=1

1Xi≤x. (41)

Here, 1 represents the indicator function and equals either one or zero depending on the state of the

defined event.

Furthermore, a Gamma(k, θ) distribution is assumed for the total demand over time, Dj(t) (where

t is either L0 or Leff
j ) for all j ∈ J+

i , used in (1), (2), (10), (11) and (31). Hence, also the central lead

time demand, D0(L0) follows a Gamma(k, θ) distribution in (13). In addition, the delay, ∆j , and the

demand in excess at the DC, ζ0,j , also both assume a Gamma(k, θ) distribution in (35) and (37), and
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(23) - (28), respectively. For the Gamma distribution, k > 0 is the shape parameter and θ > 0 is the

scale parameter. These parameters are estimated exactly using the mean (E[X]) and variance (V ar[X]):

k = E2[X]
V ar[X] (42)

θ = V ar[X]
E[X] . (43)

Note that Ck
j in Section 4.3.3 is Erlang(k, λ) distributed, which is a special case of the Gamma(k, θ)

distribution, in (39). However, for Ck
j it holds that k is the number of customers upon which the current

customer has to wait and λ is the rate at which customers arrive at the depot j. Since all customers

arrive with a demand size of one in Section 4.3.3, the rate can be estimated by dividing the total time

period by the total demand experienced at depot j.

Finally, we consider the LogNormal(µ, σ2) distribution for the delay, ∆j , to compare the performance

of the two distributions. Further elaborated on in Section 4.5. For the LogNormal distribution, µ and

σ are the mean and standard deviation, respectively. We can determine these parameters as:

µ = ln

 E[X]√
1 + V ar[X]

E2[X]

 (44)

σ2 = ln
(

1 + V ar[X]
E2[X]

)
. (45)

Note that when V ar[X] = 0 in (42) and (44), there is a division by zero. As this leads to an improper

and unattainable implementation, we set V ar[X] = 10−10 if this occurs. This leads to a significantly

small variance, thus not affecting the distribution but allowing us to use the distribution by preventing

division by zero.

4.4.2 Discretisation of the distributions

As stated in Assumption 18, demand sizes are integer valued. However, as mentioned previously, we

assume a continuous Gamma distribution for all demand related variables, Dj(t) and ζ0,j . The domain is

non-negative per definition for both. However, acquiring the exact probability of an integer valued demand

size through the PDF is not consistent. Therefore, we need to discretise the Gamma distribution.

We use the CDF of the Gamma distribution can be used to discretise the distribution. For all

equations in which we require the probability of demand to exactly equal a certain value, e.g. as in (10)

and (23), the CDF will be used in implementation instead of the PDF. However, the CDF computes the

probability Pr[X ≤ x] instead of the probability Pr[X = x], as done by the PDF. Therefore, to compute

the probability around a given integer x, we use the following substitution:

Pr[X = x] = Pr[X ≤ x + (1 − α)] − Pr[X ≤ x − α]. (46)

Here α, with 0 ≤ α ≤ 1, determines how conservative the substitution will be. If α = 0, the least conser-

vative option, the entire probability value between x and x + 1 will be counted towards the probability

of Pr[X = x]. On the other hand, if α = 1, the most conservative option, the entire probability value

between x − 1 and x will be counted towards the probability of Pr[X = x].
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In our approach, we opt for α = 0.6 to be slightly more conservative. However, using this α, we

still allow the probability of a random variable being equal to zero to exist. This is necessary to attain

minimal reorder points at the depots, since there is a positive probability of the demand over a certain

time period being equal to zero.

Furthermore, implementing the exact probabilities using the CDF, as described above, also solves for

the cases in which the PDF observes a significant peak between two integer values. In such cases the PDF

would assign probabilities that are far too low to yield any adequate results in the necessary equations.

Therefore, this implementation discretises and assigns proper probabilities to the integer valued random

variables. Appendix D provides an in-depth example of this implementation and elaborates more on why

it would be problematic if peaks occur in between integer values in the PDF.

Finally, as mentioned in Section 3 and noted by Grob and Bley (2018), the wait time approximation

of Berling and Farvid (2014) can provide a negative expected value if Qj > R0 + Q0 holds for j ∈ Ji,

which is the second case. As explained in Section 4.2.1, we improved the formulation of Berling and

Farvid (2014) in (25). Therefore, this phenomenon should not occur anymore.

4.4.3 Implementation choices

In order to successfully implement the equations and models, we need to solve some issues that may arise

from them. The main reason for these choices are to decrease the computation time.

Let us start on how we cope with the infinite sums in Sections 4.1 & 4.3. These sums are computation-

ally heavy and contain parts that are obsolete, as they do not add alter the result of the sum significantly

beyond a certain point. Consequently, we want to decrease the computations needed whilst upholding

the integrity of the equations.

We encounter two different types of infinite sums. The first type considers sums with a limit of one at

infinity, i.e. cumulative probabilities. In (5), (12) and (20) - (28), such a term is contained in the form of

a probability, more specifically, the terms sord
j (k) and fj(ζ0,j). For equations with these terms, we sum

until the following inequalities hold respectively:
∞∑

k=0
sord

j (k) > 1 − ϵ, (47)

∞∑
ζ0,j=x−Qj+1

Fj(ζ0,j) > 1 − ϵ. (48)

Here Fj(ζ0,j) is the CDF of ζ0,j , and ϵ is a specified tolerance level; ϵ = 10−6 is used. With these

inequalities, we can limit the necessary computations without introducing large errors.

Finally, there is one more infinite sum in (31). Here we sum over x from negative infinity to a given

value y. In the implementation, we reverse this sum. Keeping the latter in mind, let Tx be the total

value of the sum from y until x. Thereafter, we sum until it holds that x < −100 and Tx − Tx+1 < ϵ.

Note that it has to hold that Tx+1 ≤ Tx by reversing the summation.
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4.4.4 The stochasticity of the central lead time

In Section 4.1 the central lead time L0 is considered to be stochastic. However, this can greatly affect

the computations of the vNext model. If for example the variance is very large, a depot might need a

higher reorder point to satisfy its fill rate target as it needs to account for the additional demand due to

the variance in central lead time. The VSL models, in Section 4.3, consider a constant central lead time.

Therefore, depots in these models do not need encounter these case of large variance.

To make a fairer comparison between the models during performance measurement, see Section 4.5, we

determine which items have an acceptable level of variance in the central lead time. These are determined

through the coefficient of variation. If the coefficient of variation of the central lead time is less than or

equal to a half, i.e.
√

V ar[L0]
E[L0] ≤ 0.5, we consider it to be reliable and use the mean and variance as given

for its stochastic process. Therefore, in equations were the central lead time is considered to be constant

but also reliable, we use E[L0] as the constant value. Otherwise, if
√

V ar[L0]
E[L0] > 0.5 holds, the variance

is too large and the central lead time is considered to be unreliable. Therefore, we will use a constant

central lead time constant across all models for that specific item. Section 5 indicates which constant

value will be used in case of an unreliable central lead time.

4.5 Measuring the performance

This section elaborates on how the performance and robustness of the various models will be measured

and compared. The performance of the models is assessed in two ways. First of all, all models determine

their optimal reorder points, after which the inventory allocation is evaluated per model. Secondly,

we simulate customer demand to assess the performance of the distribution systems with the models’

inventory allocation and evaluate their ability to achieve the service measures. Finally, the robustness of

the new models is tested by adjusting specific parameters and assessing how these affect the performance

of the models.

Throughout the analysis we will distinguish between assessments on distribution system level and

item level. Assessing the distribution system will be done by comparing the models’ overall performance

between one and another over all items. Whilst for the assessment on item level, we use two distinct

items, see Section 5, and evaluate the models’ performance. This provides a more comprehensive and

in-depth analysis of the performance of the different models.

4.5.1 Comparison of inventory

As previously stated, we will assess the models on their inventory allocation within the distribution

system. To assess the inventory allocation, we will first analyse the two individual items and their

inventory allocation per model. Moreover, the analysis delves into the optimisation range and domain

per model, specifically exploring the relationship between the central reorder point and the total stock,

determined by summing over all reorder points within the distribution system. This relation is expected

to lead to a convex optimisation domain for the vNext model, as also elaborated upon by Geelen et al.

(2019). We expect the AVSL models to have a similar optimisation domain. However, the SVSL is
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expected to have a much smaller optimisation range, as it determines a new lower bound on the central

reorder point. This lower bound is expected to be significantly higher than the original lower bound of

the vNext model since the reorder points at the wait time depots are constant, thus the central reorder

point must increase to satisfy the service measures at these depots.

Secondly, the models are assessed on their performance on the distribution system level, or across all

items see Section 5. Each model is evaluated on the total stock, determined by summing over all the

reorder points within the distribution system. Additionally, we assess the total inventory cost per model,

which is computed by multiplying the positive reorder points for an item by its respective price. In this

instance, only depots with a positive reorder point are used as these are the only depots that add to the

inventory of the distribution system. Note that the order quantities are given and therefore assumed to

be constant, as per Assumption 16. Hence, left out during evaluation of the total stock and the total

inventory cost, as they do not affect the performance across the different models.

Finally, since the SVSL is bound to wait time targets that exceed the DC-depot inter-lead time, a

comparable target will be selected for the AVSL model to provide the fairest comparison between the

two models. The selected target for the AVSL model will still show the possible flexibility it allows for.

The results of the in-depth analyses on item level are shown through bar plots and line graphs, and the

results on distribution system level are displayed in tables.

4.5.2 Simulation

Secondly, we will measure the models’ overall performance through simulation. We evaluate the perfor-

mances by measuring the actual service levels and compare these to the set service measures. The general

layout and set-up of the simulation is described below. However, the exact parameters of the simulation

will be provided in Section 6.2.

For the simulation, we create a distribution system per item. Within the distribution system, cus-

tomers arrive according to a compound Poisson process as per Assumption 17. Hence, the inter-arrival

times at each depot follow an exponential distribution with a parameter λj , the average inter-arrival time

at depot j ∈ J . We estimate λj by dividing the entire time span of the historical data by the total number

of customers that arrived at depot j, further elaborated on in Section 5. Customer demand is simulated

per depot according to the historical data, as the demand sizes Kj in (11) and (34) use an empirical

distribution. We expect the means and variances of the demand size to decrease in the simulation, due

to the choice of distribution.

For a fair comparison we will use identical random number sequences for each model to simulate the

customer arrivals and demand sizes. However, it is possible for an item that different depots have the same

λ parameter for the inter-arrival time distribution, i.e. they have identical demand frequencies, further

displayed in Section 5.1. In such cases it is important that depots with the same demand frequencies do not

get assigned identical random number sequences, as these depots otherwise always experience demand

requests at the same time. It is natural this occurs at some point within the simulation, however to

consistently experience demand requests simultaneously across different depots is unrealistic and overload

the distribution system. Therefore, to prevent such an occurrence we assign a unique seed to each depot,

41



which is a constant value multiplied by the depot’s assigned number. This ensures identically generated

random number sequences across the different models without overloading the distribution system.

To verify the validity of the simulation, the simulated average inter-arrival times of customers, demand

frequency and demand sizes will be tested against the actual values from the historical data. A Wilcoxon

Signed-Rank test (Wilcoxon, 1945) will be performed between each pair of actual and simulated variables.

The test is a non-parametric test, therefore does not require us to assume a distribution over the variables.

The Wilcoxon Signed-Rank test tests the location between two dependent samples, the simulated values

depend on the actual values as the individual variables are simulated according to a distribution based

on the historical data. As stated by Rey and Neuhäuser (2011), we can define the null and alternative

hypotheses of this test, respectively, as:

H0: The distribution of differences between the simulated and actual values are symmetric around zero,

i.e. the two samples do not differ in location.

H1: The distribution of differences between the simulated and actual values are not symmetric around

zero, i.e. the two samples differ in location.

If we accept the null hypothesis, the simulated values do not differ significantly from the historical data.

The simulation therefore accurately replicates the realistic setting based on the historical data.

Next, let us elaborate on the layout of the simulation. The simulation has a set time frame and is

simulated per day. On a simulated day, first all replenishment orders arrive at all warehouses j for j ∈ J+
i .

After which, we check the depots j ∈ Ji, in random order, if they have a customer arrival. It is possible

for a depot j to have multiple customer arrivals on the same day. A depot can only place a replenishment

order per day, which is placed after observing all customer arrivals, i.e. at the end of the day. After all

depots are checked and have placed their replenishment orders if necessary, the DC is checked. The DC

sends out the demand requests on first-come first-serve basis, Assumption 9, which corresponds to the

checking order of the depots for that day. The DC can only place a supplier replenishment order if they

receive an order from a depot. This process corresponds to our assumption of a continuous review policy,

see Assumption 2.

Furthermore, replenishment orders are only placed when the inventory position of a warehouse j ∈ J+
i

is less than or equal to its reorder point, i.e. IPj ≤ Rj for j ∈ J+
i , corresponding to Assumption 11.

Replenishment orders are of size nQj , Assumption 8, such that IPj + nQj > Rj for j ∈ J+
i . The order

size is thus equal to n times the order quantity, such that the new inventory position is greater than the

reorder point.

The DC-depot inter-lead times Lj are constant, Assumption 14, and provided in Section 5. Moreover,

the central lead time L0 follows a Gamma distribution if reliable, see Section 4.4.4, which is estimated

according to Section 4.4.1. We opted for the Gamma distribution as the exponential distribution has

a coefficient of variation of one, which is too large to be reliable. Otherwise if the central lead time is

unreliable, it is considered to be constant. Section 5 elaborates on the constant value used.

The simulated distribution systems do not use a warm start through simulating an extensive time

period before measuring the performance. The simulation focuses on replicating a realistic situation to
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its best extent. The models are intended to optimise the inventory within a distribution system given

historical data in combination with possible forecast data. Therefore, in practice, the parameters of the

models should be updated after every customer arrival or on a scheduled basis. As the demand within

the distribution systems are assumed to be stationary, Assumption 7, this is unnecessary.

Using a warm start would either require each depot to experience a minimum number of customer

arrivals or the entire distribution system to encounter a predetermined number of customers. The first

option is unrealistic as customer arrivals can be very infrequent for a wait time depot j ∈ Wi, as will be

shown in Section 5. Geelen et al. (2019) did use a warm start and measured the service level for each

depot per arriving customer. They showed that these remain stable when enough customers arrived in

the distribution system. However, they were generally dealing with more fast-moving items. Since our

models are generally intended for more slow-moving items, customer arrivals are expected to be more

infrequent. Hence, we expect service levels to fluctuate more and these depots may need an unrealistic

amount of time or customer arrivals to attain stable service levels. The second option provides an unfair

start to the wait time depot, as fill rate depots experience vastly more customer arrivals. Therefore, the

wait time depots might have yet to converge to their attainable service level.

Hence, we opt to let warehouses start with a predetermined amount of stock and use this as the

starting set-up, Section 6.2 indicates the specific set-up parameters of the simulation. Moreover, the

distribution systems will be simulated for an extensive period of time, such that each depot experiences

sufficient customer arrivals to measure its performance.

Finally, the results of the in-depth analysis of the two distinct items will be analysed first. The analysis

inspects which depots meet their service measure and why some do not satisfy their service measure.

Moreover, it will also investigate the wait time distributions of specific wait time depots. Furthermore,

we will analyse the results on distribution level. Hence, the simulation is performed individually for the

distinct items and simultaneously for all items. Analyses will be conducted on the depots to determine

the number of service measures satisfied and also the type service measures satisfied.

4.5.3 Testing the robustness

After the simulation, the robustness of the AVSL model will be analysed. It is the most flexible model,

therefore we want to test its performance under varying scenarios. Moreover, we also want to highlight

important parameters that influence the model’s performance. These tests will mainly be carried out on

the individual items, as given in Section 5 but can be broadened to the entire distribution system. We

test the robustness by adjusting different parameters and analysing how the model’s proposed solution

and performance are affected. Below we describe the various tests and characteristics that are explored.

The specific modifications will be provided in Section 6.3. All test results will be compared to the baseline

results presented in Sections 6.1 and 6.2.

Firstly, as mentioned in Section 4.4.1, we compare the two different wait time distributions. In general,

the gamma distribution is used in all computations regarding the wait time. However, we want to analyse

the effects on the wait time when using a more heavy-tailed distribution, i.e. the LogNormal distribution

as stated in Section 4.4.1. The expectation is that a heavier-tailed distribution causes a more conservative
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approach. Therefore, leading to higher reorder points locally or, in other words, the model prefers to

stock locally.

Secondly, the main strength of the AVSL model is the ability of set wait time targets WT T
j below

the DC-depot inter-lead times Lj . A baseline target is determined in Section 6.1 to compare the VSL

models fairly. However, we want to explore the effects on the AVSL model and evaluate its performance

when the wait time targets are altered. We expect that the AVSL model’s performance will be negatively

effected when WT T
j < Lj holds.

Furthermore, we expect that the order quantities are of great influence on the performance of the

AVSL model. These are determined by Gordian Logistic Experts according to the historical demand

data, therefore incorporating the demand frequencies and sizes. Keeping the order quantity constant, we

want to explore the effect on the AVSL model when the demand frequency and sizes are altered, and

the order quantity is no longer valid for the demand. The expectation is that when there is a significant

difference in average demand size and order quantity at a depot, especially when the average demand size

is greater than the order quantity, the AVSL model can encounter difficulties in predicting the correct

central reorder point to account for the increasing orders of a depot.

Finally, we will explore the effect of the order quantity. The demand statistics in Table 1 indicate that

the demand sizes generally experience a lot of variances. Therefore, the order quantities might be unable

not cover most of the demand requests, possibly negatively impacting the performance as the DC needs

to correctly account for such high demand sizes. Therefore, we want to explore the possibility of assigning

every depot an order quantity that covers at least 80% of its demand requests. In other words, the order

quantity is the 80% quantile of the demand sizes. This percentage is obtained through conferring with

Gordian Logistic Experts. Moreover, the equations in Section 4.2 suggest that the DC accounts for kQj

replenishment orders. Therefore, we want to examine the effects on the AVSL model’s performance when

using increased order quantities. We expect that using order quantities that cover most demand sizes,

provides a better input for the AVSL model and thus positively affects its performance.

5 Data

This section provides a detailed description of the data employed in the current paper. A client of

Gordian Logistic Experts, referred to as “Company A”, provided the data. Company A is a South-African

enterprise specialised in the manufacturing, distributing, and supplying of material handling equipment

to various industries. They primarily focus on the selling and distribution of agriculture, forestry, and

mining equipment. Company A operates on a global scale, with central warehouses in Africa and Europe.

Our paper focuses on the African distribution system, consisting of 25 local warehouses (depots) and a

central warehouse (DC). However, it should be noted that the DC also encounters direct demand. A

fictitious depot is created to account for this demand, as also proposed in Axsäter et al. (2007). This

depot will be treated as a regular, non-prioritised depot to ensure consistency throughout this paper,

increasing the total number of depots to 26.

The data consists of 10,000 distinct items handled by the distribution system. Each item has its own
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data, including demand and supply data per warehouse. The data covers a five-year time frame, from

01-01-2018 to 31-12-2022. Upon further inspection of the data, 51 items have no demand data within the

set time frame. Hence, these items are excluded, and the remainder of the research only considers the

other 9949 items.

Section 2 indicates that the proposed models in the current paper use distribution systems containing

depots handling slow-moving items. Gordian Logistic Experts classifies items per depot based on their

demand frequency. Items are therefore classified with regards to all the other items at each distinct

depot. We use the classification of Gordian Logistic Experts. However, the rule-of-thumb is that an item

is considered to be slow-moving if it has a demand frequency of 1.0 or less. Table 2 discusses the demand

statistics in detail and elaborates on the possible divergent items from the rule-of-thumb.

Upon analysing the data, 11 items are classified as pure fast-moving items. Therefore, they do not

classify as slow-moving at any depot. Since these items compose less than one percent of the data, they

will not significantly affect the results and are therefore not excluded.

As already indicated, items are classified per depot. Therefore, a depot can be considered fast-moving

for one item and slow-moving for another. For ease of analysis, and the displaying of the data and results,

we divide the complete distribution system into a distribution system per item. This does not alter the

data or results in any way, but each item now has its own distribution system. Therefore, we now have a

total of 38041 depots. For convenience, we denote a depot with an item classified as fast-moving as FL

and a depot with an item classified as slow-moving as WL. Resulting in, 5208 FL depots and 32833 WL

depots.

Table 1 presents the general statistics of all items at the DC. The contractual central lead time is the

agreed-upon lead time between Company A and its external suppliers. However, as shown, the actual

central lead times is also known. The table indicates that the contractual lead times and the actual lead

times can differ significantly. Therefore, if the central lead time is considered to be unreliable for a specific

item, as per Section 4.4.4, we use the contractual lead time as the constant central lead time across all

models. The table further shows that for some items the contractual central lead times are 999 days.

Conferring with Gordian Logistic Experts, they indicated that these items do not have a contractual lead

time. Therefore, for the remainder of this paper, the contractual central lead time of these items is set to

888 days, the highest actual contractual central lead time. This alteration causes the average contractual

central lead time to decrease to 64.479 days.

As per Assumptions 14 & 16, the DC-depot inter-lead times as well as the order quantities are

constant. The order quantities are predetermined by Gordian Logistic Experts based on the time frame

of the data. Their precise methods remain undisclosed, but use the EOQ method (Harris, 1913) and

Croston method (Croston, 1972) to determine their optimal order quantities (Gordian Logistic Experts,

2021). However, Gordian Logistic Experts conferred with Company A, and due to their preferences the

order quantities are adjusted downwards, especially for the depots with slow-moving items. Company A

prefers order quantities of 1 at these depots. The depots’ lead times are divided into three groups; one

depot has a lead time of 1 day, 21 depots of 3 days and finally four depots have a lead time of 14 days.

The average depot lead time is 4.615 days. Note that these refer to the original 26 mentioned depots
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within the complete distribution system. When we consider the weighted values of the 38041 depots in

the distribution systems per item, the average depot lead time is 3.609 days.

Furthermore, Table 1 also indicates the number of items per depot for the complete distribution

system. As well as the number of depots per item for the distribution systems per item. Obviously, each

item is distributed to at least one depot. The maximum number of depots is 26, which equals the total

number of existing depots. The average amount of depots per item is about four. The average amount

of FL depots per item is significantly lower than the average amount of WL depots. Following this table,

we will refer solely to the distribution systems per item for all further analyses.

Table 1: Statistics of the original data at the DC

Min. Mean Max.

Price (ZAR) 0.001 3574.328 800086.200

Contract central lead time (days) 2 65.326 999

Avg. central lead time (days) 0.000 46.380 888.000

Avg. variance of central lead time 0.000 2012.10 127569.330

Avg. supplies at the DC per item 0.000 4.604 362.000

DC order quantity 1 16.281 5000

Items per depot 311 1462.962 7569

DC-depot inter-lead time (days) 1 4.615 14

Depots per item 1 3.804 26

FL depots per item 0 0.521 26

WL depots per item 0 3.283 24

Note: FL depots handle items classified as fast-moving. WL depots handle

items classified as slow-moving.

Table 2 displays the statistics regarding the demand data. This includes the demand frequencies, inter-

arrival times and demand sizes. It displays the statistics for all depots combined and per classification

of the depots with fast-moving or slow-moving items, FL and WL, respectively. The average time inter-

arrival time at a depot is computed by dividing the time frame (in days) by the number of customer

arrivals. Moreover, we computed the yearly demand frequency by multiplying the number of customer

arrivals by 365 days (the assumed number of days within a year) and then dividing this by the time

frame.

The data shows a clear difference in yearly demand frequency between the FL and WL depots. The

mean demand frequency is more than 20 times greater for the FL depots than for the WL depots. The

inter-arrival times also reflect and further highlight this difference. The mean of the WL depots is almost

1000 days higher than that of the FL depots. Note that there appear to be WL depots with a relatively

high demand frequency. As mentioned previously, classification is done per item with regard to all other

items at a single depot. Therefore, although these items defer from the rule-of-thumb, they are still

considered to be slow-moving with regard to the other items at that depot. As this only concerns a
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handful of items, we opt to retain all of these items for the remainder of this research.

Finally, the average demand sizes’ mean differs slightly between the WL and FL depots. However,

the variance of the average demand sizes differs significantly between the two types of depots. The FL

depots have a generally much higher variance of demand sizes compared to the WL depots. Moreover, we

notice a significant difference in average demand size and average order quantity, especially for the WL

depots as their average demand size is double their average order quantity. However, for the FL depots,

the opposite holds, their average order quantity is greater than their average demand size.

Table 2: Demand statistics of the data specified per depot type

Depots Min. Mean Max.

Demand frequency (yearly) All 0.200 2.708 1770.630

FL 0.200 15.402 1770.630

WL 0.200 0.672 48.400

Avg. inter-arrival time (days) All 0.206 939.732 1826.000

FL 0.206 78.563 1826.000

WL 7.541 1077.793 1826.000

Avg. demand size All 1.000 2.483 1481.000

FL 1.000 3.152 292.208

WL 1.000 2.376 1481.000

Var. demand size All 0.000 35.350 69,938.000

FL 0.000 72.480 65,179.300

WL 0.000 25.230 69,938.000

Order quantity All 1.000 1.407 325.000

FL 1.000 3.502 325.000

WL 1.000 1.071 69.000

Note: FL depots handle items classified as fast-moving. WL depots handle items

classified as slow-moving.

5.1 Individual items

As stated previously, two distinct individual items are selected for a more in-depth analysis in Section 6.

With these items, we aim to provide further insight into the workings of the different models. For the

first item we consider a general slow-moving item. The demand across all depots is very infrequent, and

the demand sizes vary little to not at all. On the other hand, the second item we consider is classified as a

more fast-moving item across some depots, yet it is slow-moving for most depots. The demand sizes vary

quite heavily for both different sets of depots. Hence, these two items have been selected in particular to

further investigate the performances of the models for these varying types of items.

Let us introduce the Item I, the first item. This item is distributed to five depots, all classifying it

as slow-moving. Table 3 displays the statistics across all warehouses. Note that there is no demand data
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for the DC, as it only receives indirect demand and is therefore entirely dependent on the orders from

the depots. It holds that the demand is relatively infrequent for all depots, with only WL5 experiencing

demand multiple times a year on average. Moreover, as the table shows, the demand sizes vary little to

not at all, with only WL5 having any variance in its demand sizes. For WL2 - WL4, no variance can

be determined, since only one demand request was encountered for each depot. Order quantities do not

equal the average demand sizes, even though they are fairly constant.

Table 3: Descriptive statistics of Item I

Warehouse
Contractual

lead time

(days)

Order

quantity

Avg. time

between demand

(days)

Demand

frequency

(per year)

Avg. demand

size

Var. demand

size

DC 47 5 - - - -

WL1 3 1 912.500 0.400 2.000 0.000

WL2 3 1 1825.000 0.200 2.000 -

WL3 3 1 1825.000 0.200 1.000 -

WL4 14 1 1825.000 0.200 2.000 -

WL5 1 1 121.667 3.000 1.267 0.638

Note: FL depots classify the item as fast-moving, and WL depots as slow-moving.

The statistics for Item II are displayed in Table 4. An immediate noticeable difference compared to

the previous item is the number of depots. Item II has a total of 21 depots, of which 17 depots classify

the item as slow-moving and four as fast-moving. Therefore, Item II deals with more frequent demand,

greater average demand sizes, and heavier varying demand sizes. The difference between the slow-moving

and fast-moving depots is very notable. The WL depots have a demand frequency of at most 1.2 items

per year. On the other hand, the FL depots have an average demand frequency of at least three items

per year. Finally, the table indicates that, similar to Item I, the order quantities do not correspond to

the average demand size when they have a low variance .
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Table 4: Descriptive statistics of Item II

Warehouse
Contractual

lead time

(days)

Order

quantity

Avg. time

between demand

(days)

Demand

frequency

(per year)

Avg. demand

size

Var. demand

size

DC 22 500 - - - -

WL1 3 1 365.000 1.000 5.600 34.800

WL2 3 1 304.167 1.200 5.000 36.000

WL3 3 1 365.000 1.000 2.000 0.000

WL4 3 1 365.000 1.000 3.200 7.200

WL5 3 1 608.333 0.600 2.000 0.000

WL6 3 2 1825.000 0.200 16.000 -

WL7 3 1 456.250 0.800 28.250 1240.250

WL8 3 2 608.333 0.600 14.000 252.000

WL9 3 1 1825.000 0.200 16.000 -

WL10 3 1 365.000 1.000 10.000 24.000

WL11 3 1 912.500 0.400 12.000 32.000

WL12 3 1 608.333 0.600 8.333 56.333

WL13 3 1 1825.000 0.200 8.000 -

WL14 14 1 365.000 1.000 8.000 22.000

WL15 14 1 365.000 1.000 3.600 6.800

WL16 14 1 1825.000 0.200 2.000 -

WL17 14 3 608.333 0.600 24.000 0.000

FL1 3 3 24.333 15.000 2.200 1.432

FL2 3 1 53.676 6.800 6.676 48.529

FL3 3 1 96.053 3.800 3.474 2.485

FL4 1 5 9.973 36.600 5.792 91.836

Note: FL depots classify the item as fast-moving, and WL depots as slow-moving.

5.2 Alteration for the EVSL model

As elaborated on in Section 4.3.3, we will conduct an experiment in which we allow reorder points below

−1. To facilitate these reorder points, we require Assumption 22 stating that all wait time depots, j ∈ Wi,

have a Poisson arrival process with a constant demand size of one. Therefore, we alter the data as in

Table 2 to accommodate for this assumption and only permit a constant demand size of one.

The following alteration is performed. For all WL depots, every customer with a demand size greater

than one is split into distinct customers, such that all new customers have a demand size of exactly one.

Every new customer arrives on the initial demand date. Note that by altering the data in such manner

only the demand frequency, inter-arrival times and demand sizes are modified. All other parameters
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remain unaffected.

Table 5 displays the modified demand statistics. Comparing these statistics to Table 2, one should

note that the statistics regarding the FL depots are unaffected. Moreover, the order quantity statistics

are omitted from the table as they remain unmodified. However, the remaining demand statistics behave

as expected. The demand frequency increases on average whilst the average inter-arrival time decreases

for the WL depots, and therefore a similar change occurs for the averages of all depots combined. Finally,

the average demand size of the WL depots is exactly one and the variance of the demand size drops to

zero. Logically, this also lowers the average and variance of the demand size for all depots combined.

Table 5: Demand statistics of the modified data specified per depot type for the EVSL model

Depots Min. Mean Max.

Demand frequency (yearly) All 0.200 3.615 1770.630

FL 0.200 15.402 1770.630

WL 0.200 1.725 489.732

Avg. inter-arrival time (days) All 0.206 735.392 1826.000

FL 0.206 78.563 1826.000

WL 0.745 840.754 1826.000

Avg. demand size All 1.000 1.297 292.208

FL 1.000 3.152 292.208

WL 1.000 1.000 1.000

Var. demand size All 0.000 10.020 65,179.300

FL 0.000 72.480 65,179.300

WL 0.000 0.000 0.000

Note: FL depots handle items classified as fast-moving. WL depots handle items

classified as slow-moving.

6 Results

This section discusses the results of our research, we analyse the outcomes of the models as discussed

in Section 4. We will first analyse the inventory allocation as done per model. Secondly, a simulation

will be conducted, through which we access the models’ performances. Thirdly, we will provide results

on the robustness of the developed models and determine which parameters are most influential during

the optimisation of the inventory allocation. Hence, this section’s order corresponds to the analysis’s

explanation in Section 4.5. Finally, as discussed in Section 4.3.3, we conduct an experiment on allowing

reorder points below −1 at depots with a wait time service measure, i.e. the EVSL model. We will

analyse the results of the inventory allocation and simulation for this model.

All results are obtained using the Java programming language (Oracle Corporation, 1995). The results

are visualised using the R programming language (R Core Team, 2019). Finally, computation times are

analysed within this section, therefore it is important to note that these results are obtained on a 2020
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MacBook Pro with an 8-core Apple M1 CPU-chip and 16 GB of RAM.

6.1 Inventory allocation results

Before discussing the results, let us elaborate on the targets and parameters for the various models. As

mentioned in Section 4, the various models cannot use identical targets due to their intended usage.

Therefore, we will assign similar targets across all models for the fairest comparison. All models use a fill

rate target of 95% at all fill rate depots, i.e. βT
j = 0.95 for all j ∈ Ji \ Wi. For the SVSL model, the wait

time target at all wait time depots equals the DC-depot inter-lead time plus one day, i.e. WT T
j = Lj + 1

for all j ∈ Wi, as the target must be greater than said lead time, see Section 4.3.1. For the AVSL model,

a wait time target of four days is used at all wait time depots, i.e. WT T
j = 4.0. This wait time target is

chosen as most depots have a DC-depot inter-lead time of three days, see Section 5. Therefore, this target

selection provides the fairest comparison between the SVSL and AVSL model, whilst still displaying the

flexibility of the AVSL model as some depots have an inter-lead time of 14 days.

Furthermore, as mentioned in Section 4.2, the wait time service measure is computed as a probabilistic

wait time, i.e. it must hold for predetermined percentile of the customers. The SVSL and AVSL models

both use a 95% probability target, i.e. P T
j = 0.95, indicating that at least 95% of all customers must be

satisfied within the set wait time target at a specific depot. The remaining parameters for the models

include βmin
0 = 0.6 and βmax

0 = 0.99. These values are determined in collaboration with Gordian Logistic

Experts. They prefer the DC to have a minimal fill rate of 60% and consider it to be maximal at 99%.

Furthermore, Section 4.2.1 indicates that for the VSL models an adjusted δj(k) should be used if Qj is

relatively large. Therefore, we will use the adjusted δj(k) in (22) if Qj > 10.

Depots will use a fill rate service measure when they classify an item as fast-moving, and a wait time

service measure is used for depots that classify an item as slow-moving. The assignment for the type of

service measure corresponds to the grouping of depots in Section 5. Thus, fill rate depots are denoted as

FL and wait time depots as WL, respectively, indicating fast-moving and slow-moving depots. Finally,

this section only analyses the inventory allocation across the different models. Therefore, these results

provide an indication of the possibilities regarding the inventory reduction, yet they are not indicative

for the performances of the models. We access the models’ performances in Section 6.2, in which we

highlight the importance of effective inventory allocation over simply allocating minimum inventory.

Finally, as elaborated in Section 4, we refer to the total stock (given a specific reorder point) as

the sum over all reorder points, i.e. TS(R0) =
∑

j∈J+
i

Rj . This definition of the total stock will be

used throughout the remainder of the current section and is an important term and concept within our

analyses.

6.1.1 Individual items

We first analyse the two individual items presented in Section 5.1. Since all models optimise between

a certain lower and upper bound of the central reorder point, as per Section 4.1.2, Figure 2 displays

the optimisation range for Item I. The highlighted points are the determined solutions per model. The
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figure shows that the vNext model’s solution lies at the lower bound, as its total stock is monotonically

increasing in the central reorder point on the entire domain.

The solution of the AVSL model is located in a local minimum and on a section of the domain for

which the total stock remains constant, after which the relation increases slightly and experiences a

sudden decrease to the global optimum at (5, 2). The AVSL model is able to assign more stock centrally,

therefore it can decrease the local stock and provide a better solution. However, due to the bisection-

based optimisation approach, the determined solution is non-optimal and is not at the global minimum.

The bisection-based approach requires unimodality on the selected domain, this is violated by the AVSL

model in general. Moreover, the step size used in our bisection-based approach is generally too big.

Combining these causes the AVSL model to achieve non-optimal solutions as it can get stuck in a local

minimum, or possibly not achieve a minimum as by leaping over it due to its step size.

The lower bound on the central reorder point R0 for the SVSL model is greater compared to the other

two models, as it must provide a valid solution at all the wait time depots. Its optimal solution therefore

lies at this lower bound, and, similarly to vNext model, the total stock is monotonically increasing in

the central reorder point. Finally, the graph displays that the total stock is lowest for the SVSL model,

whilst the vNext model allocates the most stock.

Figure 2: Total stock versus central reorder point per model for Item I

Note: The highlighted points indicate the determined solution per model

Figure 3 shows the reorder points per warehouse of all models for Item I, such that all depots achieve

their fill rate and wait time service measures. Note that since all depots are considered to be slow-moving,

they all use a wait time service measure in the the the SVSL and AVSL models. Hence, all depots have

a negative reorder point, equal to minus one, for the SVSL model.

The vNext and AVSL models stock similarly for most of the depots. The AVSL model prefers a larger

central reorder point at the DC, whereas the vNext model prefers a larger reorder point at WL5 instead.

Note that both ensure a positive inventory position across all depots, even though some reorder points

are set to zero or even negative one for the DC. The inventory position (IP) will still always be positive,
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since order quantities are always positive and the IP is defined on [Rj + 1, Rj + Qj ] for all j ∈ J+
i .

Moreover, for the depots with zero or no variance in demand size, their lower bound on the IP is equal

to the average demand size, see Table 3. This explains the difference in stock for WL5, as this depot

varies in demand size and has a lead time of one day. Therefore, the AVSL model is able to replenish

it in time for the wait time service measure. It should be noted that the gap between the allowed wait

time and lead time is the largest at this depot. Finally, due to the SVSL model’s restrictions on the local

reorder points, it must allocate significantly more stock at the DC compared to the other models in order

to satisfy all wait time service measures.

Figure 3: Reorder points at all warehouses per model for Item I

For Item II, Figures 4 and 5 display a similar graph and plot as above. Figure 4 shows a similar result

to Figure 2 for Item I. Again, the SVSL model allocates the least amount of stock, while the vNext model

allocates the most. Moreover, the SVSL model has a smaller optimisation range as its lower bound is in

the domain of the vNext and AVSL models.

As the order quantity at the DC for Item II is considerably large, the optimisation range is greater

than that of Item I. In general, the order quantity at the DC greatly affects the optimisation range.

The graph displays the general form of the optimisation domain for the vNext and AVSL models, as the

optimisation range is extensive. As expected, the relation between the central reorder point and the total

stock is (almost) convex for the vNext model, see Section 4.1.3. For the AVSL model, it was expected to

have a similar shape and thus also be convex. However, the graph indicates that the relation between the

central reorder point and the total stock is not convex at all, or even unimodal. Therefore, similar to Item

I, using a bisection-based optimisation approach to determine the solution does not lead to the global

minimum but a non-optimal solution. In general, due to the optimisation range being not unimodal and

the step sizing being rather large, the AVSL model is unable to attain the global minimum. Hence, for

Item II, the global minimum is actually achieved at (11, 96), instead of the highlighted point at (18, 102).

The graph displays another interesting result for the AVSL model. It was already visible on a smaller

53



scale in Figure 2, but the total stock heavily decreases at certain points and then slightly increases again

as the central reorder point increases. However, when the optimisation reaches a central reorder point

of 11, the total stock increases monotonically thereafter. Thus, the AVSL model prefers to stock at

most 11 items at the DC and increasing the central reorder point further provides no additional benefit.

Furthermore, these sudden declines in total stock occur due to the model being able to decrease the local

stock significantly for a certain central reorder point. Thereafter, slightly increasing it, does not yield

any further decrease in local stock until another specific central reorder point is reached, after which

this process repeats itself. This phenomenon occurs due to the integrality of the reorder points, as per

Assumption 8.

Finally, a final observation can be made from Figures 2 and 4. As mentioned, the AVSL model cannot

determine an optimal solution and thus does not arrive at the global minimum for both items. However,

its global minimum corresponds to the optimal solution of the SVSL model. This could implicate that

the solutions from the SVSL model can indicate where the global minimum of the AVSL model is located.

Moreover, both models prefer a non-negative central reorder point, contrary to the vNext model which

prefers a negative central reorder point.

Figure 4: Total stock versus central reorder point per model for Item II

Note: The highlighted points indicate the determined solution per model

Considering the previous graph, Figure 5 shows an unsurprising result. It displays the reorder points

for each model per warehouse. It is clearly visible that both the SVSL and AVSL models have a con-

siderable positive central reorder point, allowing for a lower stock allocation locally. On the other hand,

the vNext model tends to stock more locally due to its fill rate service measures, and is therefore selects

a negative central reorder point.

The most interesting depots are FL4, WL14, WL15, WL16 and WL17. The first depot is a fill

rate depot. However, due to the SVSL and AVSL stocking more centrally, they are able to allocate

significantly less stock to this depot compared to the vNext model. For WL14, WL15, WL16 and WL17,

it is interesting that the AVSL and vNext models both allocate stock locally. This is due to their DC-

depot inter-lead time of 14 days, see Table 4, and their wait time target of 4 days. Therefore, the AVSL

must allocate stock to these depots, similar to the vNext model, in order to satisfy their wait time service
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measures. For the remainder of the wait time depots, the AVSL and SVSL do not allocate any stock

contrary to the vNext model. Therefore, especially at WL6 - WL13, the allocation differs significantly.

Figure 5: Reorder points at all warehouses per model for Item II

6.1.2 All items

Let us now analyse the inventory allocation results of all items for each model. Tables 6, 7 and 8 present

the inventory allocation for the vNext, SVSL and AVSL models, respectively, obtained through the

bisection-based approaches utilised by all models as described in Section 4. In these tables the minimum

(Min.), average (Avg.) and maximum (Max.) are given per item, whilst the final column (Total) is the

summation over all items. The total stock TS is computed similarly to Section 4 and is therefore equal

to the summation over the reorder points. The total cost on the other hand is computed by multiplying

the price by Rj + Qj , as this provides the fairest comparison.

The central reorder points and total stock behave as expected upon analysing the results. The vNext

models prefers stock at the depots, whilst the SVSL and AVSL models prefer to stock centrally. Therefore,

the average central reorder point is significantly lower for the vNext model. The average central reorder

point is largest for the SVSL model due to having fixed reorder points of −1 at the wait time depots;

as expected, the AVSL model finds an intermediate solution. Identical results are observed for the

total central reorder point. However, the difference between the vNext model and the VSL models is

astonishingly immense. The total central reorder points for the AVSL model increased by 388.6% and

for the SVSL they increased by 1116.4% compared to the vNext model.

As a result of the central reorder points, we observe the opposite result for the total stock within the

distribution system. Here it holds that the vNext allocates the most stock while the SVSL model allocates

the least. Again, the AVSL determined intermediate solutions in between the other models. However,

it is considerably closer to the total stock of the SVSL model, as it only differs 2.8%. The decrease in

the total stock compared to that of the vNext model is 33.6% for the SVSL model and 31.7% for the

AVSL model. Therefore, both models exhibit great potential as they decrease the total stock within the

distribution system significantly.

Following the results above, the vNext model’s inventory allocation is the most expensive. However,
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the AVSL model’s inventory allocation is the cheapest. It seems that even though the AVSL model used

more stock than the SVSL model, it distributes the allocation of the more expensive items better; thus

having a lower total cost compared to the SVSL model. Due to the SVSL model’s fixed local reorder

points, the central reorder point sometimes has to increase significantly to accommodate the wait time

service measures. Alternatively, the AVSL model is allowed to allocate stock at the depots. Therefore,

the central reorder point does not increase as much, resulting in a lower total cost. Comparing the total

cost to the vNext model, the SVSL model decreases the total cost by 5.1%, whilst the AVSL model

decreases it by 7.0%.

Finally, the results do indicate that the decrease of total stock and total cost for the AVSL model

are paired with a significant increase in computation time. On average, the AVSL model takes about

0.1 seconds more to compute the inventory allocation per item versus the vNext model. The difference

between the SVSL model and AVSL model is not significant. The total computation time of the AVSL

model is about 18.3 minutes, which is an increase of 275.9% in comparison with the vNext model, but

only 12.2% more than the SVSL model. Thus, the AVSL model is able to produce the cheapest inventory

allocation of the three models, but it takes much more computation time.

Table 6: Inventory allocation results of all items for the vNext model

Min. Avg. Max. Total

Central reorder point -1988 0.713 1642 7128

Total stock -1163 13.860 2934 138,524

Inventory cost (ZAR) 0.00 33,238.00 4,646,336.00 332,209,936.00

Computation time (s) 0.000 0.029 18.441 292.657

Table 7: Inventory allocation results of all items for the SVSL model

Min. Avg. Max. Total

Central reorder point -224 8.675 2747 86,706

Total stock -57 9.209 3403 92,040

Inventory cost (ZAR) 0.00 31,534.00 4,795,590.00 315,177,437.00

Computation time (s) 0.000 0.098 162.967 980.746
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Table 8: Inventory allocation results of all items for the AVSL model

Min. Avg. Max. Total

Central reorder point -1988 3.484 1646 34,827

Total stock -1184 9.470 2932 94,655

Inventory cost (ZAR) 0.00 30,902.00 4,646,336.00 308,812,736.00

Computation time (s) 0.000 0.110 165.535 1100.189

6.2 Simulation results

This section depicts the simulation results of the various models and accesses their performance. The

general outline of the simulation is given in Section 4.5.2. For convenience, the simulation utilises the

identical service measures from the inventory allocation results (Section 6.1). The results of individual

items will be analysed first, after which the overall results regarding the performance of the models are

evaluated.

Before discussing the results, let us elaborate on the simulation parameters. As described in Section

4.5.2, we use a starting set-up instead of a warm start. Therefore, we assign a starting inventory at each

warehouse. For a depot j ∈ Ji, its starting inventory equals zero if Rj < 0 and is equal to Rj + Qj

otherwise. Moreover, the starting inventory at the DC is always equal to R0 + Q0. These values allow

for a fair start of the simulation.

Furthermore, as elaborated on in Section 4.5.2, customers arrive according to a Poisson process.

Hence, their inter-arrival times follow an exponential distribution based on the average time between

demands in days, as given in Section 5. The demand sizes are based on the historical data and therefore

follow an empirical distribution. The supply lead times of the DC, L0, are Gamma distributed if the

historical data is reliable, see Section 4.4.4. Otherwise, L0 is considered to be constant and equals the

contractual lead time, see Section 5.

The simulation has a duration of 1000 years and is simulated on a daily basis. This duration provides

each depot with sufficient customer arrivals to measure its performance. To verify the starting set-up

of the simulation will divide the simulation into five equal periods of 200 years to compare the results

per period. This is done to verify that the performance remains similar across the different periods.

Moreover, the starting period, the first 200 years, is compared to the total duration, 1000 years, as it

is possible for the service measures to be more influenced by individual customer arrivals in the first

200 years. This phenomenon is more likely to occur at the wait time depots due to their general lower

demand frequencies. Therefore, to verify these results we again use a Wilcoxon-Signed-Rank Sum test

(Wilcoxon, 1945), as previously elaborated on in Section 4.5.2 for the simulation parameters.

6.2.1 Individual items

Let us first analyse the results for Items I and II. Note that all tables display the achieved service level

per depot in percentages. A depot satisfies its fill rate or wait time service measure if it achieves a service
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level of at least 95%, as described in Section 6.1. Moreover, as discussed in Section 5, Tables 3 and 4

display the statistics of both items and will be referred back to during the analysis.

The simulation results of Item I are displayed in Tables 9, 10 and 11 for the vNext, SVSL and AVSL

models, respectively. Note that, Table 12 provides the results of the DC per model. Moreover, as indicated

in Section 4.5.2, all models experience identical demand requests. The results indicate that all depots

satisfy their service measure for the vNext and SVSL models. For the AVSL model, however, WL5 misses

its target by 1.7%. Note that this is the only depot with a demand frequency greater than one per year

and a demand size variance greater than zero. Therefore, it seems that the AVSL model is less able to

cope with these parameters.

Another noticeable result is that the AVSL model is able to achieve its service measure at WL4. This

is the only depot where Lj > WT T
j holds, or in other words its lead time is larger than the set wait time

target. The AVSL model is able to achieve this as it is allowed to assign non-negative reorder points, as

described in Section 2.2 and 4.3.2.

Finally, the wait time service levels of the SVSL model are greater than those of the AVSL model, in

general. Yet, the local reorder points are lower as they must be equal to minus one for the SVSL model.

Due to the higher central reorder point, the SVSL model is able to replenish the depots consistently, as

will be shown in Figures 6 and 7, therefore the depots are able to serve their customers more consistently

within their wait time target. Leading to a higher achieved wait time service levels for the SVSL model.

Table 9: Simulation results of vNext model for Item I, R0 = −1

Depot
Reorder

point

Order

Quantity

Fill rate

target (%)

Achieved

service level (%)

Total

customers

Total

demand

WL1 1 1 95.0 97.8 447 894

WL2 1 1 95.0 98.7 224 448

WL3 0 1 95.0 99.5 187 187

WL4 1 1 95.0 98.3 177 354

WL5 3 1 95.0 96.9 3001 3838

Table 10: Simulation results of SVSL model for Item I, R0 = 5

Depot
Reorder

point

Order

Quantity

Wait time

target (days)

Achieved

service level (%)

Total

customers

Total

demand

WL1 -1 1 4 99.8 447 894

WL2 -1 1 4 100.0 224 448

WL3 -1 1 4 100.0 187 187

WL4 -1 1 15 100.0 177 354

WL5 -1 1 2 99.8 3001 3838

58



Table 11: Simulation results of AVSL model for Item I, R0 = 0

Depot
Reorder

point

Order

Quantity

Wait time

target (days)

Achieved

service level (%)

Total

customers

Total

demand

WL1 1 1 4 99.1 447 894

WL2 1 1 4 99.6 224 448

WL3 0 1 4 100.0 187 187

WL4 1 1 4 98.9 177 354

WL5 1 1 4 93.3 3001 3838

Subsequently, Table 12 displays the simulation results for the DC of Item I per model. Note that the

total replenishment orders represent the fulfilled orders by the DC within the simulation. Therefore, this

indicates the demand requests at the DC. Moreover, the total replenishment size is the total demand

requested by the depots, from Tables 9, 10 and 11, at the DC. The total amount of orders is identical

across all models. However, there is a significant difference in fill rate between the vNext model’s DC

and the DC of the VSL models. The fill rate is about 20% lower compared to the AVSL model and more

than 40% lower compared to the SVSL model. Moreover, it is also lower than the set minimum central

fill rate βmin
0 of 60%. This is likely due to the DC of the vNext model having a negative reorder point

and the positive demand size variance at WL5.

Table 12: Simulation results DC for Item I, Q0 = 5

Model
Reorder

point

Achieved

fill rate (%)

Total

replenishment

orders

Total

replenishment

size

vNext -1 58.4 4024 5721

SVSL 5 99.8 4024 5721

AVSL 0 78.3 4024 5721

Finally, for Item I, Figures 6 and 7 display the wait time density distributions per location for the

SVSL and AVSL models. Note that we exclude the vNext model since all depots achieve their fill rate

service measure and thus, in general, customers did not experience any wait time. Furthermore, for the

DC, the wait time indicates the time depots have to wait before their replenishment order is sent out,

whilst for the depots it indicates the wait time experienced by the customers.

Within each density distribution, three lines are drawn that represent the 25%, 50% and 75% quantiles.

However, it holds for all distributions that these lines overlap and are concentrated at the peaks, indicating

that the densest part of the distribution is within the 75% quantile. This is consistent with the previous

results, as all depots achieved a service level of at least 93.3%. The peaks of the density distributions

are consistent with their wait time targets for the SVSL model. For the AVSL model, the peaks are
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concentrated at zero since they mostly have non-negative reorder points. Therefore, they satisfy most

customers with the stock on hand.

The dots within the plots indicate the individual observations of the wait time for a customer. Note

that darker dots indicate a larger amount of observations. Since the depots of the SVSL model all satisfied

their service measure, most observations overlap. Only for the depots with a service level of less than

100%, some observations deviate from the peak. For the AVSL model however, we observe far more

deviations. We especially encounter more observations above the wait time target of four days. This is

due to a lower central reorder point and therefore depots frequently have to wait upon their replenishment

orders, which is indicated by the wait time at the DC.

A right tail of the density distribution only exists for the DC of the AVSL model. We determined

that the lead time data of the DC is unreliable, see Section 4.4.4, therefore the DC used a constant lead

time of 47 days, i.e. L0 = 47, in both the inventory allocation and simulation. The wait time distribution

explains the lower fill rate at the DC for the AVSL model. The wait times at the DC also correlate with

the increased wait times at WL5. Together with Figure 2, these results indicate that this allocation for

the AVSL model is sub-optimal. Increasing the central reorder point and decreasing the reorder point at

WL5, proves to be a better solution as shown by the SVSL model.

Figure 6: Wait time density distribution per location for the SVSL model of Item I
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Figure 7: Wait time density distribution per location for the AVSL model of Item I

For Item II, Tables 13, 14 and 15 display the simulation results for the vNext, SVSL and AVSL models,

respectively. Similarly to Item I, the results of the DC per model are provided in Table 16. Note that

this item has both FL and WL depots, i.e. depots with a fill rate service measure and depots with a

wait time service measure, respectively. A depot either has a fill rate or wait time service measure. The

excluded service measure for a depot is denoted by ‘NA’.

The vNext and SVSL models struggle with achieving all service measures, and satisfy only 14 out of 21

and 16 out of 21 depots, respectively. Table 13 further indicates that the vNext model fails to achieve the

service measure of 95% at all of the FL depots. Both models also struggle with depot WL17, implicating

that the relatively large DC-depot inter lead time of 14 days and a significant average demand size of 24,

see Table 4, challenge the models’ capabilities.

For the AVSL model, Table 15 indicates only WL7 and FL1 fail to achieve their service measure.

These depots also fail to satisfy their service measure for the SVSL model. It implies that both the VSL

models struggle with wait time depots that have a large average demand size and a significant variance

in demand size, see Table 4. Contrary to the other two models, the AVSL model is able to satisfy the

service measure at WL17, due to the increased central reorder point and the placement of local stock.

Finally, it is interesting that all models fail to achieve the fill rate service measure at FL1. Comparing

this depot to the other fill rate depots, again see Table 4, it has relatively low average demand size and

variance of the demand size. Therefore, it should be easier for the depot to attain its target. However, the

higher relative demand frequency causes complications. FL4 has the highest demand frequency, relatively

large average demand size and the greatest variance of the demand size amongst the fill rate depots. Yet,

due to only having a DC-depot inter-lead time of one day, it is able to be replenished in time to satisfy

its customers for the SVSL and AVSL models.
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Table 13: Simulation results of vNext model for Item II, R0 = −135

Depot
Reorder

point

Order

quantity

Fill rate

target (%)

Wait time

target (days)

Achieved

service level (%)

Total

customers

Total

demand

WL1 15 1 95.0 NA 97.7 988 5458

WL2 15 1 95.0 NA 97.3 1184 5969

WL3 2 1 95.0 NA 92.5 1036 2072

WL4 7 1 95.0 NA 98.3 967 3014

WL5 1 1 95.0 NA 95.3 574 1148

WL6 16 2 95.0 NA 99.5 206 3296

WL7 79 1 95.0 NA 97.7 786 21,172

WL8 31 2 95.0 NA 97.0 605 8638

WL9 16 1 95.0 NA 96.9 194 3104

WL10 16 1 95.0 NA 94.3 980 9734

WL11 16 1 95.0 NA 98.7 395 4512

WL12 15 1 95.0 NA 96.2 631 5492

WL13 8 1 95.0 NA 99.0 193 1544

WL14 16 1 95.0 NA 95.4 1028 8386

WL15 7 1 95.0 NA 96.2 932 3332

WL16 1 1 95.0 NA 99.0 207 414

WL17 27 3 95.0 NA 92.3 544 13,056

FL1 11 3 95.0 NA 92.4 15,025 33,087

FL2 28 1 95.0 NA 93.6 6758 45,011

FL3 8 1 95.0 NA 93.1 3805 13,172

FL4 80 5 95.0 NA 93.3 36,677 214,430
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Table 14: Simulation results of SVSL model for Item II, R0 = 11

Depot
Reorder

point

Order

quantity

Fill rate

target (%)

Wait time

target (days)

Achieved

service level (%)

Total

customers

Total

demand

WL1 -1 1 NA 4 97.1 988 5458

WL2 -1 1 NA 4 96.2 1184 5969

WL3 -1 1 NA 4 96.9 1036 2072

WL4 -1 1 NA 4 97.1 967 3014

WL5 -1 1 NA 4 96.9 574 1148

WL6 -1 2 NA 4 96.6 206 3296

WL7 -1 1 NA 4 92.2 786 21,172

WL8 -1 2 NA 4 94.4 605 8638

WL9 -1 1 NA 4 96.4 194 3104

WL10 -1 1 NA 4 95.0 980 9734

WL11 -1 1 NA 4 96.5 395 4512

WL12 -1 1 NA 4 94.0 631 5492

WL13 -1 1 NA 4 97.4 193 1544

WL14 -1 1 NA 15 95.3 1028 8386

WL15 -1 1 NA 15 97.0 932 3332

WL16 -1 1 NA 15 97.6 207 414

WL17 -1 3 NA 15 90.6 544 13,056

FL1 3 3 95.0 NA 94.5 15,025 33,087

FL2 23 1 95.0 NA 96.6 6758 45,011

FL3 5 1 95.0 NA 98.7 3805 13,172

FL4 20 5 95.0 NA 95.1 36,677 214,430
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Table 15: Simulation results of AVSL model for Item II, R0 = 18

Depot
Reorder

point

Order

quantity

Fill rate

target (%)

Wait time

target (days)

Achieved

service level (%)

Total

customers

Total

demand

WL1 -1 1 NA 4 97.9 988 5458

WL2 -1 1 NA 4 97.3 1184 5969

WL3 -1 1 NA 4 97.8 1036 2072

WL4 -1 1 NA 4 97.8 967 3014

WL5 -1 1 NA 4 98.3 574 1148

WL6 -1 2 NA 4 96.6 206 3296

WL7 -1 1 NA 4 93.1 786 21,172

WL8 -1 2 NA 4 95.9 605 8638

WL9 -1 1 NA 4 96.9 194 3104

WL10 -1 1 NA 4 96.6 980 9734

WL11 -1 1 NA 4 98.2 395 4512

WL12 -1 1 NA 4 95.7 631 5492

WL13 -1 1 NA 4 99.0 193 1544

WL14 15 1 NA 4 98.2 1028 8386

WL15 7 1 NA 4 99.0 932 3332

WL16 1 1 NA 4 99.5 207 414

WL17 24 3 NA 4 98.5 544 13,056

FL1 3 3 95.0 NA 94.6 15,025 33,087

FL2 23 1 95.0 NA 96.6 6758 45,011

FL3 5 1 95.0 NA 98.7 3805 13,172

FL4 19 5 95.0 NA 95.0 36,677 214,430

The simulation results for the DC per model of Item II are displayed in Table 16. The most noticeable

result here is the difference in fill rate between the vNext model and the VSL models, as it is about 30%

lower for the vNext model. It is caused by the significant difference between the central reorder points.

The difference in central reorder points between the SVSL and AVSL model only causes a difference in

fill rate of 1.1%. The DC faces an identical number of orders and total order sizes across all models.
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Table 16: Simulation results DC for Item II, Q0 = 500

Model
Reorder

point

Achieved

fill rate (%)

Total

replenishment

orders

Total

replenishment

size

vNext -135 67.0 54,171 406,041

SVSL 11 96.0 54,171 406,041

AVSL 18 97.1 54,171 406,041

Finally, similar to the previous item, Figures 8, 9 and 10 show the wait time density distributions of

Item II per depot for the vNext, SVSL and AVSL model, respectively. Note that the DC is disregarded as

it provided no further useful insights compared to Item I, lower central reorder points increase the wait

time for replenishment orders of the depots. Furthermore, it again holds that the wait time indicates

the wait time experienced by the customers at each depot. Moreover, for convenience, the individual

observations are disregarded as the density distributions provide sufficient insight.

There are two major differences between the wait time distributions of the vNext model and the VSL

models. Firstly, for all depots of the vNext model, the 75% percentile is at zero days. This is obvious

as they all must satisfy a fill rate service measure. The 75% percentile for all depots in the SVSL model

are located at the DC-depot lead time Lj . On the other hand for the AVSL, the wait time depots with

a positive reorder point have their 75% percentile located at zero, whilst for the remaining depots it is

again located at Lj .

Secondly, the SVSL and AVSL model have wait time depots that experience relative frequent wait

times of 25 days or more. This is indicated by their longer right tails. These extreme wait times occur due

to these depots having a substantial average demand size, additionally some also have a large variance

in demand size. This proves difficult to handle for the VSL models. For the AVSL, it was able to allow a

positive reorder point at WL17. Therefore, the right tail that is clearly visible for the SVSL model, does

not occur for the AVSL model. The vNext model clearly has much smaller right tails compared to the

VSL models, which is due to the positive reorder points at all the depots needed for the fill rate service

measure.

Finally, we do not observe any abnormalities in general. The central lead time was deemed to be

unreliable, therefore the contractual lead time of 22 days was used as the constant central lead time, see

Table 4, in the inventory allocation and the simulation. Hence, L0 = 22, which caused the right tails

around the 25 day mark, as this equals L0 plus the DC-depot inter-lead time Lj of three days. The right

tail for WL17 in the SVSL model is around the 36 days as this again equals L0 + Lj , where Lj = 14, see

Table 4.
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Figure 8: Wait time distribution per location for the vNext model of Item II

Figure 9: Wait time distribution per location for the SVSL model of Item II
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Figure 10: Wait time distribution per location for the AVSL model of Item II

Simulation results for the AVSL model per period

We want to verify the simulation results and provide an insight into the confidence intervals for the

achieved service levels by the depots for the AVSL model. Therefore, we separate the total simulation

time into five distinct periods of equal length, i.e. 200 years. The length per period provides sufficient time

for all depots to experience enough customer arrivals for a fair comparison amongst the periods. Section

4.5.2 described the use of a Wilcoxon Signed-Rank test to determine if there is a significant difference in

location between the simulated and historical values. The test requires two dependent samples. Hence,

we opt to use this test to determine if the achieved service levels differ significantly between periods.

First, Table 17 displays the achieved service levels for each depot per period for Item I. Moreover, it

also presents the 95% confidence intervals and the 2.5% margin of errors used to determine the confidence

intervals per depot. To obtain these results, we assumed a normal distribution as it is considered to be

the most appropriate. Comparing the periodic results to the simulation results obtained over the entire

duration for the AVSL model, see Table 11, we observe similar results. Only WL5 is unable to satisfy its

wait time service every single period, this coincides with results over the entire duration. Moreover, the

95% confidence interval of WL5 indicates that it is very unlikely to satisfy its wait time service measure,

as the upper bound of the confidence interval is below the 95% probability target of the wait time service

measure. The margins of errors across all depots are significantly small, ranging from about 0.0% to

0.6%, indicating that the achieved service levels over the entire simulation duration are reliable.

To compare the achieved service levels across the periods for Item I, Table 18 displays the p-values of

the Wilcoxon Signed-Rank test between each pair of periods. The test pairs the achieved service levels of

the depots between the different periods, thus we can evaluate whether the difference in location between

the different periods over all depots is significant. Note that the results are symmetric as comparing one

period with another period achieves the same result as its inverse. Moreover, the test cannot compare

a period with itself, thus these results are denoted as ‘NA’. These apply to all similar tables in the
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remainder of Section 6.2. The p-values implicate that we should reject the alternative hypothesis of the

Wilcoxon Signed-Rank test for all periods. Therefore, the achieved service levels at the depots do not

differ significantly across the distinct periods. Hence, the obtained results for Item I are considered to be

reliable.

Table 17: Periodic simulation results and confidence intervals of Item I for the AVSL model

Depot
Achieved service level (%) in the 95% confidence

interval (%)

2.5% margin

of error (%)1st period 2nd period 3rd period 4th period 5th period

WL1 98.9 98.8 100.0 98.7 99.0 [ 98.9 - 99.3 ] 0.207

WL2 100.0 100.0 100.0 100.0 97.9 [ 99.2 - 99.9 ] 0.365

WL3 100.0 100.0 100.0 100.0 100.0 [ 100.0 - 100.0 ] 0.000

WL4 97.0 100.0 100.0 97.2 100.0 [ 98.2 - 99.5 ] 0.625

WL5 93.9 92.1 93.7 93.3 93.3 [ 93.0 - 93.6 ] 0.274

Table 18: P-values of the Wilcoxon Signed-Rank test comparing the periodic service levels of Item I for

the AVSL model

1st period 2nd period 3rd period 4th period 5th period

1st period NA 1.000 0.423 0.789 1.000

2nd period 1.000 NA 0.371 0.789 1.000

3rd period 0.423 0.371 NA 0.181 0.181

4th period 0.789 0.789 0.181 NA 0.855

5th period 1.000 1.000 0.181 0.855 NA

Note: The test can not be applied between the nth period with itself. Hence, these are

denoted as NA.

For Item II, Table 19 presents the achieved service levels for each depot per period together with

their 95% confidence intervals and the 2.5% margin of errors, again we assume a normal distribution to

obtain these results. These results mostly coincide with the simulation results over the entire duration

displayed Table 15. The results over the entire duration in combination with the computed confidence

intervals indicate that it is unlikely for WL7 and FL1 to satisfy their service measures. However, Table

15 indicated that FL4 does suffice its fill rate service measure over the entire simulation duration, yet

the confidence interval of FL4 indicates that the lower bound is just below the fill rate target of 95%.

The margins or errors diverge more compared to those of Item I and range from about 0.1% to 1.2%.

We consider these still to be relatively small and therefore the achieved service levels over the entire

simulation duration are deemed to be reliable.

Finally, Table 20 displays the the p-values of the Wilcoxon Signed-Rank test between each pair of

periods to compare the achieved service levels across the periods for Item II. Given these p-values we

reject the alternative hypothesis of the Wilcoxon Signed-Rank test for all periods, except between first
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and second period. For these periods, the test indicates that there is a significant difference between the

achieved service levels across the depots. However, provided that this only holds for these periods, we

accept the simulation results and also conclude that in general the achieved service levels at the depots

do not differ significantly across the periods for Item II. Therefore, the obtained results are reliable.

Table 19: Periodic simulation results and confidence intervals of Item II for the AVSL model

Depot
Achieved service level (%) in the 95% confidence

interval (%)

2.5% margin

of error (%)1st period 2nd period 3rd period 4th period 5th period

WL1 97.8 98.6 99.4 97.8 96.0 [ 97.4 - 98.4 ] 0.488

WL2 97.0 96.9 96.5 98.3 97.9 [ 97.0 - 97.6 ] 0.292

WL3 98.7 97.7 98.5 97.4 96.4 [ 97.4 - 98.1 ] 0.350

WL4 96.9 99.0 97.9 98.4 96.9 [ 97.4 - 98.2 ] 0.375

WL5 98.3 98.1 97.4 98.3 99.2 [ 98.0 - 98.5 ] 0.248

WL6 97.4 95.1 97.2 100.0 93.2 [ 95.6 - 97.6 ] 1.009

WL7 91.9 93.0 93.2 97.0 90.2 [ 92.1 - 94.1 ] 0.978

WL8 96.4 96.9 94.6 97.3 94.4 [ 95.4 - 96.4 ] 0.519

WL9 93.5 94.7 100.0 97.9 100.0 [ 96.0 - 98.4 ] 1.178

WL10 93.5 96.6 96.4 97.8 99.0 [ 95.9 - 97.5 ] 0.799

WL11 97.5 98.6 100.0 96.4 98.8 [ 97.7 - 98.8 ] 0.534

WL12 95.9 98.1 94.4 93.6 97.0 [ 95.1 - 96.5 ] 0.728

WL13 97.1 100.0 100.0 97.7 100.0 [ 98.4 - 99.5 ] 0.572

WL14 98.5 97.6 99.6 97.2 98.4 [ 97.9 - 98.6 ] 0.355

WL15 98.9 98.9 99.5 99.5 98.4 [ 98.9 - 99.2 ] 0.175

WL16 100.0 100.0 100.0 100.0 97.4 [ 99.0 - 99.9 ] 0.461

WL17 94.7 98.4 100.0 100.0 99.1 [ 97.6 - 99.3 ] 0.864

FL1 95.0 94.9 94.3 94.7 94.2 [ 94.5 - 94.8 ] 0.134

FL2 96.7 97.3 97.1 96.1 96.0 [ 96.4 - 96.9 ] 0.221

FL3 98.1 98.7 99.0 99.1 98.7 [ 98.6 - 98.9 ] 0.155

FL4 94.7 95.2 94.8 95.5 94.9 [ 94.9 - 95.2 ] 0.125
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Table 20: P-values of the Wilcoxon Signed-Rank test comparing the periodic service levels of Item II for

the AVSL model

1st period 2nd period 3rd period 4th period 5th period

1st period NA 0.031 0.054 0.097 0.780

2nd period 0.031 NA 0.533 0.614 0.173

3rd period 0.054 0.533 NA 0.984 0.121

4th period 0.097 0.614 0.984 NA 0.412

5th period 0.780 0.173 0.121 0.412 NA

Note: The test can not be applied between the nth period with itself. Hence, these are

denoted as NA.

Using the global minimum for the AVSL model

As described in Section 6.1.1, the AVSL model cannot determined an optimal solution due to the bisection-

based optimisation method. Therefore, we will compare the simulation results of the determined solution,

as given in Tables 11 and 15, to the solution at the global minimum, which is the optimal solution

according to the AVSL model. Hence, we want to determine if the inventory allocation at the global

minimum also provides the best performance through simulation.

Table 21 displays the simulation results for the DC of both items at the global minimum, depicted

in Section 6.1.1. For both items, the number of total orders and total order size remains unchanged.

However, for Item I, the fill rate increases by about 20% which naturally follows from the significant

increase of the central reorder point. The contrary is true for Item II, the central reorder point decreased

slightly and therefore the fill rate decreased by 1.1%. These results are compared to those in Tables 12

and 16, respectively.

Table 21: Simulation results DC for Item I and II of the AVSL model at global minimum

Model
Reorder

point

Order

quantity

Achieved

fill rate (%)

Total

replenishment

orders

Total

replenishment

size

Item I 5 5 99.8 4024 5721

Item II 11 500 96.0 54,171 406,041

For Item I, Table 22 displays the simulation results for the solution at the global minimum. First,

comparing the reorder points between the two different solutions, see Table 11, we notice that all depots

now have a reorder point of -1, except for WL4. Due to the DC-depot inter-lead time of 14 days, WL4

still has a reorder point of one as it is otherwise not able to satisfy its wait time target of four days.

This also explains the difference between the global minimum of the SVSL and AVSL models in Figure 2.

Finally, for this solution, the AVSL model is able satisfy all the service measures. Therefore, increasing

the central reorder point and decreasing the reorder points for which it holds that Lj < WT T
j , proves to

70



be the best solution.

Table 22: Simulation results of AVSL model at global minimum for Item I, R0 = 5

Depot
Reorder

point

Order

quantity

Wait time

target (days)

Achieved

service level (%)

Total

customers

Total

demand

WL1 -1 1 4 99.8 447 894

WL2 -1 1 4 100.0 224 448

WL3 -1 1 4 100.0 187 187

WL4 1 1 4 99.4 177 354

WL5 -1 1 4 99.9 3001 3838

Table 23 displays the simulation results for the solution at the global minimum of Item II. Following

Figure 4, the only difference between the reorder points is the decrease of the central reorder point. All

local reorder points remain unchanged. Therefore, comparing these results to Table 15, all service levels

have either decreased or remained unchanged. Furthermore, due to these decreasing, WL8 and WL12

now fail to meet their service measure, as was also the case for the SVSL model in Table 14. Therefore, it

seems that the non-optimal solution performs better than the global minimum due to the higher central

reorder point. Hence, these results indicate that the optimal central reorder point, as determined by

the AVSL model, is too low for all depots to attain their service measures. It suggests that during

optimisation the DC does not anticipate the correct replenishment order sizes over its lead time. Since

the average demand sizes are significantly larger than the order quantities at most depots, see Table 4.

We will further analyse and elaborate on this issue in Section 6.3.
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Table 23: Simulation results of AVSL model at global minimum for Item II, R0 = 11

Depot
Reorder

point

Order

quantity

Fill rate

target (%)

Wait time

target (days)

Achieved

service level (%)

Total

customers

Total

demand

WL1 -1 1 NA 4 97.1 988 5458

WL2 -1 1 NA 4 96.2 1184 5969

WL3 -1 1 NA 4 96.9 1036 2072

WL4 -1 1 NA 4 97.1 967 3014

WL5 -1 1 NA 4 96.9 574 1148

WL6 -1 2 NA 4 96.6 206 3296

WL7 -1 1 NA 4 92.2 786 21,172

WL8 -1 2 NA 4 94.4 605 8638

WL9 -1 1 NA 4 96.4 194 3104

WL10 -1 1 NA 4 95.0 980 9734

WL11 -1 1 NA 4 96.5 395 4512

WL12 -1 1 NA 4 94.0 631 5492

WL13 -1 1 NA 4 97.4 193 1544

WL14 15 1 NA 15 98.2 1028 8386

WL15 7 1 NA 15 99.0 932 3332

WL16 1 1 NA 15 99.5 207 414

WL17 24 2 NA 15 98.5 544 13,056

FL1 3 2 95.0 NA 94.5 15,025 33,087

FL2 23 1 95.0 NA 96.6 6758 45,011

FL3 5 1 95.0 NA 98.7 3805 13,172

FL4 20 5 95.0 NA 95.1 36,677 214,430

6.2.2 All items

The simulation results over all items for the vNext, SVSL and AVSL models are shown in Tables 24,

25 and 26, respectively. For all tables, the minimum (Min.), average (Avg.) and maximum (Max.) are

determined per item, whilst the final column (Total) is the summation over all items. Again, a fill rate

or wait time service measure is achieved when a depot has a service level of 95%.

The tables indicate that the SVSL model experiences difficulties in achieving the wait time service

measures, whilst the AVSL model experiences difficulties with the fill rate service measures. The vNext

performs best on the depot level, 80.4% of all depots satisfy their service measure. The SVSL model

performs worst, with only 76.3% of all depots achieving their service measure. For the AVSL model,

77.1% of all depots achieve their target. The AVSL model also outperforms the SVSL model when only

considering the WL depots, as 82.0% of all wait time service measures are achieved. The SVSL model

only outperforms the AVSL model regarding solely the FL depots by 28.8%. These results partially
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contradict the simulation results of the individual items, as there the AVSL model performed best. The

DC fill rates are entirely in line with the individual item results. The fill rates for the VSL models are,

on average, about 15% higher compared to vNext model.

The average service levels for the vNext, SVSL and AVSL models are 97.0%, 95.1% and 95.4%,

respectively. This indicates that all models do perform adequately. Moreover, the depots that fail their

service measure, generally miss their target only slightly. The FL and WL depots separately achieve an

average service level of 95.9% and 94.5% for the SVSL model. For the AVSL model, the FL depots attain

an average service level of 94.4% and the WL depots of 95.6%.

The vNext model performed better in general compared to the VSL models. However, it does allocate

significantly more inventory, see Section 6.1.2, to achieve its 3.3% better performance across all depots.

Moreover, as indicated by the results for the individual items in Section 6.1.1, the AVSL model in

general achieves a non-optimal solution. That said, the results in Section 6.2.1 indicated that the optimal

solution can perform worse than the non-optimal solution due to it providing a lower central reorder point.

Therefore, it is crucial to determine the adequate central reorder point as these significantly affect the

service measures attained at the depots. Finally, considering these results, the VSL models, particularly

the AVSL model, do not underperform compared to the baseline, the vNext model.

Table 24: Simulation results of all items for the vNext model

Min. Avg. Max. Total

Customers 167 10,618.987 8,517,494 105,595,202

Demand 167 35,116.947 17,998,964 349,202,923

FL depots 1 3.786 26 37,652

FL depots

achieved service measure
0 3.044 21 30,270

WL depots 0 0.000 0 0

WL depots

achieved service measure
0 0.000 0 0

Fill rate DC (%) 0.0 66.5 100.0 NA
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Table 25: Simulation results of all items for the SVSL model

Min. Avg. Max. Total

Customers 167 10,618.987 8,517,494 105,595,202

Demand 167 35,116.947 17,998,964 349,202,923

FL depots 1 0.521 26 5205

FL depots

achieved service measure
0 0.339 20 3386

WL depots 1 3.246 24 32,447

WL depots

achieved service measure
0 2.536 24 25,350

Fill rate DC (%) 0.0 90.9 100.0 NA

Table 26: Simulation results of all items for the AVSL model

Min. Avg. Max. Total

Customers 167 10,618.987 8,517,494 105,595,202

Demand 167 35,116.947 17,998,964 349,202,923

FL depots 1 0.521 26 5205

FL depots

achieved service measure
0 0.241 14 2411

WL depots 1 3.246 24 32,447

WL depots

achieved service measure
0 2.662 24 26,602

Fill rate DC (%) 0.0 79.4 100.0 NA

Verifying the simulated demand statistics

To verify the simulation parameters we perform Wilcoxon Signed-Rank tests, as described in Section

4.5.2. Table 27 displays the demand statistics for the simulation, which we compare to the actual demand

statistics in Table 2. Moreover, the table also displays the results of the performed tests, describing the

test statistic, p-value and confidence interval per variable. The test is performed on the actual values

versus the simulated values, which is important as the test uses the difference between these paired values.

The test results indicate that the null hypothesis can be rejected for all variables with 99% certainty, as

all p-values are smaller than 0.01. Hence, the distribution differences between the actual and simulation

values are not symmetric around zero and, therefore, differ significantly in location, implicating that the

simulation variables do correctly portray the actual values. However, upon inspecting the 95% confidence

intervals, the results indicate that the absolute differences are only slight. Comparing the simulated

averages to the actual averages in Table 2, only a difference of small margin is observed considering the
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vast number of depots in the distribution system. The confidence interval indicates that the average

inter-arrival times only differs about one day. Moreover, as the tests compared the actual versus the

simulated values, and as shown by the simulated demand statistics, the simulation actually provided a

slightly increases demand frequency.

The opposite holds for the average demand size and variance of demand size, the actual values exceed

the simulated ones. As mentioned in Section 4.5.2, this is due to the use of the empirical distribution

for the demand sizes and therefore these results follow our expectation as continuous sampling from

deterministic values is expected to decrease the variance.

The results per type of depot are disregarded, as these do not differ in any regard from the overall

results, i.e. all null hypotheses are rejected. Thus, there is a significant difference in location between the

simulated and actual values even per type of depot. However, similar to the overall results, the differences

are minimal. Therefore, even though the tests indicate a significant difference, we accept the simulation

as valid as the differences are minimal and indicate that the distribution systems experienced increased

amounts of demand during the simulation period.

Table 27: Simulated demand statistics and Wilcoxon Signed-Rank test statistics

Min. Avg. Max. Test statistic p-value
95% confidence

interval

Demand frequency (yearly) 0.167 2.804 4087.852 306,229,049 0.000 [ -0.003, -0.003 ]

Avg. inter-arrival

time (days)
0.089 936.301 2186.228 380,287,975 0.000 [ 0.500, 0.840 ]

Avg. demand size 1.000 2.485 1481.000 38,389,520 0.000 [ -0.004, -0.003 ]

Var. demand size 0.000 19.080 63,921.100 85,181,577 0.000 [ 0.233, 0.254 ]

Simulation results for the AVSL model per period

Finally for the simulation results, we want to verify the use our starting set-up for our simulation,

as discussed in Section 4.5.2 and presented in Section 6.2. Moreover, we want to provide an overall

insight into the confidence intervals for the achieved service levels per type of depot for the AVSL model.

Therefore, similarly to individual items in Section 6.2.1, we split the total simulation duration into five

distinct periods of equal length, i.e. 200 years. Moreover, we again make use of a Wilcoxon Signed-Rank

test to determine if there is a significant difference between the achieved service levels of the distinct

periods.

Let us first analyse the achieved service levels per type of depot per period, the 95% confidence

intervals and the 2.5% margin of errors per type of depot, all presented in Table 28. Note that we again

assume a normal distribution to obtain the confidence intervals as, similarly to Section 6.2.1, this is

considered to be most appropriate. We observe that on average all depots achieve their service measure

per period. Moreover, the average achieved service level remains constant over the different periods.

However, the results do show that on average the FL depots fail to achieve their fill rate service measure,

contrary to the WL depots with their wait time service measure.
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Furthermore, the lower bound of the 95% confidence intervals is above the service measure target of

95.0%, indicating that about 95% of the depots should satisfy their service measure as they should be

contained within the confidence interval. This seems to be a discrepancy with the result in Table 26,

as it indicated that only 77.1% of depots satisfy their service measure. However, upon investigating the

quantiles of the achieved service levels, the 24.0% quantile is at exactly 95.0% and thus confirming our

earlier findings. The margin of errors are on average significantly small. However, we do note a significant

difference between the FL and WL depots, as the average margin of errors for the WL depots is almost

twice that of the FL depots. In general, the results indicate that the achieved service levels over the entire

simulation duration are reliable and therefore displayed service levels throughout Section 6 are accurate.

Finally, we compare the achieved service levels across the periods through Table 18, displaying the

p-values of the Wilcoxon Signed-Rank test for each pair of distinct periods. Note that, similarly to

Section 6.2.1, the results are symmetric and the results denoted as ‘NA’ are due to the test not being

able to compare a period with itself. Given the p-values, we should reject the alternative hypothesis of

the Wilcoxon Signed-Rank test for all periods, with the exception of period 4 with periods 1 through 3.

The test indicates that period 4 seems to have significant differences in achieved service levels with all

remaining periods except period 5. However, given that the first period only differs significantly from

the fourth period, the provided starting set-up of the simulation provided a fair and unbiased start to

the simulation and did not significantly affect the results. Moreover, given that the depots do not differ

significantly across most periods, we deem the obtained service levels across the entire distribution system

to be reliable and do not depend on randomness.

76



Table 28: Statistics of the periodic simulation results for the AVSL model

Depots Min. Avg. Max.

Achieved service level (%)

1st period

All 0.0 95.4 100.0

FL 0.0 94.4 100.0

WL 0.0 95.6 100.0

Achieved service level (%)

2nd period

All 0.0 95.4 100.0

FL 0.0 94.4 100.0

WL 0.0 95.5 100.0

Achieved service level (%)

3rd period

All 0.0 95.4 100.0

FL 0.0 94.5 100.0

WL 0.0 95.5 100.0

Achieved service level (%)

4th period

All 0.0 95.4 100.0

FL 0.0 94.4 100.0

WL 0.0 95.6 100.0

Achieved service level (%)

5th period

All 0.0 95.4 100.0

FL 0.0 94.5 100.0

WL 0.0 95.6 100.0

95% confidence

interval (%)

All [ 0.0 - 0.0 ] [ 95.0 - 95.8 ] [ 100.0 - 100.0 ]

FL [ 0.0 - 0.0 ] [ 94.2 - 94.7 ] [ 100.0 - 100.0 ]

WL [ 0.0 - 0.0 ] [ 95.1 - 96.0 ] [ 100.0 - 100.0 ]

2.5% margin

of error (%)

All 0.000 0.437 6.351

FL 0.000 0.258 1.519

WL 0.000 0.465 6.351

Table 29: P-values of the Wilcoxon Signed-Rank test comparing the periodic service levels for the AVSL

model

1st period 2nd period 3rd period 4th period 5th period

1st period NA 0.650 0.304 0.003 0.089

2nd period 0.650 NA 0.542 0.000 0.268

3rd period 0.304 0.542 NA 0.040 0.346

4th period 0.003 0.000 0.040 NA 0.497

5th period 0.089 0.268 0.346 0.497 NA

Note: The test can not be applied on the nth periods themselves. Hence these are denoted

as NA.
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6.3 Tests on robustness

In this section we analyse robustness tests performed on the AVSL model and identify the important

parameters that influence its performance. Furthermore, we want to analyse why the performances of

the AVSL model are sometimes subpar. This section follows the order of Section 4.5.3, in which all tests

and expectations are discussed. Any adjustments made on the data or model parameters compared to

the baseline results in Section 6.1 and 6.2, are indicated per part of the analysis.

6.3.1 Different wait time distributions

As indicated in Section 4.5.3, we want to test a heavier-tailed wait time distribution and determine its

effect on the inventory allocation. The Gamma distribution is assumed to be the standard distribution

of the wait time as indicated in Section 4.4.1. Therefore, we compare its performance to that of the

LogNormal distribution using the AVSL model for Items I and II.

Figures 11 and 12 display the optimisation range and inventory allocation of Item I, respectively, for

the different wait time distributions. The optimisation ranges indicate only a slight deviation at the lower

bound of the optimisation domain. Here, the LogNormal distribution provides a greater total stock, i.e.

the sum over all reorder points. However, the AVSL model achieves an identical total stock for both wait

time distributions at different non-optimal solutions, i.e. the highlighted points. It is noteworthy that

both distributions produce an almost identical relation between the total stock and central reorder point,

which is likely due to the integrality of the reorder points.

The second figure depicts the difference between the determined solutions. For the Gamma distribu-

tion, a R0 = 0 is proposed, while an Rj = 1 is proposed for WL5. The opposite holds for the LogNormal

distribution. Hence, the wait time distribution did not significantly influence the inventory allocation

results of Item I.

Figure 11: Total stock versus central reorder point for Item I of the AVSL model per wait time distribution

Note: The highlighted points indicate the determined solution per wait time distribution
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Figure 12: Reorder points at all warehouses for Item I of the AVSL model per wait time distribution

For Item II, Figures 13 and 14 depict the optimisation range and inventory allocation of Item II for

the different wait time distributions, respectively. Contrary to Item I, here the first figure does indicate

a significant change in the relation between the total stock and central reorder point for the LogNormal

distribution compared to the Gamma distribution. The deviation only occurs on a sub-space of the

domain as the choice of distribution only affects the optimisation on this sub-space. On the sub-space,

the LogNormal distribution behaves as expected. It allocates more stock locally and only after the central

reorder point has significantly increased compared to the Gamma distribution, is it able to reduce the

local reorder points. However, both wait time distributions produce the identical non-optimal solution,

as the LogNormal distribution synchronises with the Gamma distribution around the global minimum.

Due to both wait time distributions producing the identical solution, the second figure displays the

obvious identical inventory allocation across all warehouses. As previously stated in Section 6.1, the

bisection-based optimisation approach causes the proposed solution to be non-optimal as the relation

between the total stock and central reorder point is not unimodal.

Figure 13: Total stock versus central reorder point for Item II of the AVSL model per wait time distri-

bution

Note: The highlighted points indicate the determined solution per wait time distribution
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Figure 14: Reorder points at all warehouses for Item II of the AVSL model per wait time distribution

6.3.2 Different wait time targets

The AVSL model is developed to be flexible in its selection of wait time targets. Therefore, we want to

test its performance using different wait time targets on Items I and II. The baseline presented in Sections

6.1 and 6.2 uses a wait time target of four days, i.e. WT T
j = 4 for all j ∈ Wi. We want to analyse the

case in which almost all locations have a DC-depot inter-lead time greater than its set wait time target,

i.e. Lj > WT T
j , and the case in which the wait time target is significantly larger than most inter-lead

times. Therefore, we will analyse the cases in which it holds that WT T
j = 2 and WT T

j = 7 for all j ∈ Wi.

With these cases we want to evaluate the AVSL model’s flexibility in its wait time target selection.

Figure 15 and 16 display the optimisation range and inventory allocation results for Item I, respec-

tively. They indicate that assigning a larger wait time target decreases the total stock, which is as

expected. However, decreasing the wait time target does not lead to an increase in total stock compared

to the original solution of the AVSL model. The optimisation range does show that with WT T
j < Lj , the

AVSL model prefers to stock locally.

The inventory allocation further highlights these findings. For a wait time target of seven days, the

AVSL model only stocks the DC and WL4, the depot for which it holds that Lj = 14. These results are

unsurprising and thus follow our expectation.
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Figure 15: Total stock versus central reorder point for Item I of the AVSL model per wait time target

Note: The highlighted points indicate the determined solution per wait time target

Figure 16: Reorder points at all warehouses for Item I of the AVSL model per different wait time target

The simulation results for Item I are displayed in Tables 30 and 31 of the AVSL model with WT T
j = 2

and WT T
j = 7, respectively. As previously indicated, these results are compared to Table 11, which

displays the simulation results for Item I results with a four-day wait time target. The results between a

wait time target of two and four days are nearly identical. Both fail to meet the target at WL5. Whilst,

unsurprisingly, using a wait time target of seven days allows all depots to satisfy their wait time service

measure.
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Table 30: Simulation results for Item I of AVSL model with WT T
j = 2, R0 = 0

Depot
Reorder

point

Order

quantity

Wait time

target (days)

Achieved

service level (%)

Total

customers

Total

demand

WL1 1 1 2 99.1 447 894

WL2 1 1 2 99.6 224 448

WL3 0 1 2 100.0 187 187

WL4 1 1 2 98.9 177 354

WL5 1 1 2 93.1 3001 3838

Table 31: Simulation results for Item I of AVSL model with WT T
j = 7, R0 = 4

Depot
Reorder

point

Order

quantity

Wait time

target (days)

Achieved

service level (%)

Total

customers

Total

demand

WL1 -1 1 7 98.4 447 894

WL2 -1 1 7 99.1 224 448

WL3 -1 1 7 95.5 187 187

WL4 1 1 7 100.0 177 354

WL5 -1 1 7 99.5 3001 3838

For Item II, Figures 17 and 18 display the optimisation range and inventory allocation results of the

AVSL model per wait time target. The optimisation ranges implicate similar results compared to Item I.

However, an important observation here is that for a wait time target of two days the AVSL model does

not consider stocking centrally across entire optimisation range. This is observed as the relation between

the total stock and central reorder point is almost monotonically increasing for the entire domain. We

expected that using WT T
j < Lj would lead to an increase in local stock. However, with a large enough

central reorder point it was expected for the AVSL to still determine a solution in which not every

depot has to be stocked. Instead, the proposed solution is at the lower bound for the AVSL model with

WT T
j = 2. For the seven-day wait time target, the results are identical to those of Item I.

The inventory allocation results show that for a two-day wait time target, all depots are stocked. For

WT T
j = 7, the allocation is almost identical to the initial results with a four-day wait time target, with

the only difference being the central reorder point and the reorder point at FL4. Finally, if we compare

the inventory allocation results of the AVSL model with a wait time target of two days to the vNext model

for Item II, see Figure 5, we do see a decrease in total stock. The central reorder point is significantly

decreased. Moreover, due to the wait time service measure at the wait time depots, the local reorder

points of the fill rate depots do not increase that drastically and leads to a decrease in total stock.
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Figure 17: Total stock versus central reorder point for Item I of the AVSL model per wait time target

Note: The highlighted points indicate the determined solution per wait time target

Figure 18: Reorder points at all warehouses for Item II of the AVSL model per different wait time target

Tables 32 and 33 display the simulation results of Item II for the AVSL model with WT T
j = 2 and

WT T
j = 7, respectively. Again, we compare these to the initial results for the AVSL model with a four-

day wait time target, see Table 15. The results indicate that setting a four-day wait time provides the

best performance for Item II. It allows most depots to achieve their service measure, with the exception

of WL7 and FL1, see Section 6.1.1.

The two-day wait time target seems to be unattainable as 9 out of 21 depots are unable to achieve

their either their fill rate or wait time service measure. WL3 and WL5 are the depots with the lowest

expected and varying demand sizes, see Table 4, whilst WL17 is one of the depots with the highest

expected demand size. Moreover, all the FL depots fail to meet their service measure. The results imply

that due to the lower wait time target, the AVSL model stocks locally. However, the central reorder

point is reduced too drastically to replenish the depots on time. Therefore, this mainly affects the FL

depots and the wait time depots with smaller demand sizes as they have a lower likelihood of triggering

a replenishment order at the DC.
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For the seven-day wait time target, the results are unexpected. One expects that increasing the

number of days customers are allowed to wait increases the likelihood of depots attaining their service

measures. However, the contrary yields as, compared to the initial simulation results, more depots fail to

achieve their service measure. The WL depots that perform subpar have significant variance in demand

size, compared to the remaining ones. For the FL depots, FL1 and FL4 fail to satisfy their service

measure and have the greatest demand frequency.

Table 32: Simulation results for Item II of AVSL model with WT T
j = 2, R0 = −173

Depot
Reorder

point

Order

quantity

Fill rate

target (%)

Wait time

target (days)

Achieved

service level (%)

Total

customers

Total

demand

WL1 15 1 NA 2 96.9 988 5458

WL2 15 1 NA 2 96.9 1184 5969

WL3 1 1 NA 2 91.0 1036 2072

WL4 7 1 NA 2 98.0 967 3014

WL5 1 1 NA 2 93.6 574 1148

WL6 15 2 NA 2 97.6 206 3296

WL7 79 1 NA 2 96.9 786 21,172

WL8 31 2 NA 2 96.9 605 8638

WL9 15 1 NA 2 96.4 194 3104

WL10 15 1 NA 2 92.7 980 9734

WL11 16 1 NA 2 98.2 395 4512

WL12 15 1 NA 2 95.6 631 5492

WL13 7 1 NA 2 98.4 193 1544

WL14 15 1 NA 2 94.4 1028 8386

WL15 7 1 NA 2 95.6 932 3332

WL16 1 1 NA 2 97.1 207 414

WL17 25 3 NA 2 91.9 544 13,056

FL1 15 3 95.0 NA 92.6 15,025 33,087

FL2 32 1 95.0 NA 93.1 6758 45,011

FL3 9 1 95.0 NA 92.9 3805 13,172

FL4 103 5 95.0 NA 93.7 36,677 214,430

84



Table 33: Simulation results for Item II of AVSL model with WT T
j = 7, R0 = 5

Depot
Reorder

point

Fill rate

target (%)

Wait time

target (days)

Achieved

service level (%)

Total

customers

Total

demand

WL1 -1 1 NA 7 96.5 988 5458

WL2 -1 1 NA 7 95.9 1184 5969

WL3 -1 1 NA 7 96.5 1036 2072

WL4 -1 1 NA 7 97.5 967 3014

WL5 -1 1 NA 7 96.3 574 1148

WL6 -1 2 NA 7 96.6 206 3296

WL7 -1 1 NA 7 91.9 786 21,172

WL8 -1 2 NA 7 94.2 605 8638

WL9 -1 1 NA 7 95.4 194 3104

WL10 -1 1 NA 7 94.8 980 9734

WL11 -1 1 NA 7 93.2 395 4512

WL12 -1 1 NA 7 93.2 631 5492

WL13 -1 1 NA 7 97.4 193 1544

WL14 15 1 NA 7 98.4 1028 8386

WL15 7 1 NA 7 99.1 932 3332

WL16 1 1 NA 7 100.0 207 414

WL17 24 3 NA 7 99.3 544 13,056

FL1 3 3 95.0 NA 94.4 15,025 33,087

FL2 23 1 95.0 NA 96.5 6758 45,011

FL3 5 1 95.0 NA 98.7 3805 13,172

FL4 20 5 95.0 NA 94.8 36,677 214,430

Therefore, these findings implicate that the performance of the AVSL model is significantly affected

by the central reorder point. However, it is evident that the AVSL model tends to excessively reduce

the central reorder point due to insufficient consideration of incoming replenishment order sizes, thus

negatively impacting the service levels at the depots.

6.3.3 Alteration of demand frequency and size

The influence of the demand frequency and size on results on the VSL models has been mentioned

throughout the the current section. To further investigate their effect on the inventory allocation and

performance of the AVSL model, we adjust the demand frequency and size of WL2 for Item I, see Table

34, whilst conserving its initial order quantity. The new demand frequency is 1.000, i.e. the depot now

experiences one customer arrival per year. The new average demand size is set to 20. Note that we

distinguish between two demand cases. Namely, case 1 where all other parameters remain unchanged

and thus WL2 has no demand size variance. However, for case 2, we also add significant demand size
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variance at WL2. These separate cases aid us in highlighting the difficulties that arise in the AVSL model.

Table 34: Demand statistics for WL2 of Item I with adjusted demand frequency and sizes

Contractual

lead time

(days)

Order

quantity

Avg. time

between demand

(days)

Demand

frequency

(per year)

Avg. demand

size

Var. demand

size

Initial WL2 3 1 1825.000 0.200 2.000 -

Case 1 WL2 3 1 365.000 1.000 20.000 -

Case 2 WL2 3 1 365.000 1.000 20.000 312.500

Figure 19 displays the inventory allocation results for the AVSL model with the initial demand and two

demand cases at WL2. Naturally, the central reorder point experiences a significant increase. However,

for case 1, with no demand size variance, the increase seems to be insufficient. The inventory position at

the DC will never equal 20, the average demand size at WL2. Therefore, it will be impossible to replenish

WL2 within the set wait time. For case 2, the increase is sufficient to satisfy replenishment orders from

WL2 as the demand size variance causes replenishment to be within or below the domain of inventory

position. Due to the increase of the central reorder point for both cases, all local reorder points drop to

-1. Except for WL4 as it has a DC-depot inter-lead time of 14 days, causing the reorder point to remain

unchanged compared to the solution of the AVSL model with initial demand parameters at WL2.

Figure 19: Reorder points at all warehouses for Item I of the AVSL model with different demand cases

for WL2

The simulation results of cases 1 and 2 are displayed in Tables 35 and 36, respectively. These indicate

that a significant increase in demand frequency and size for WL2, causes it to be unable to satisfy its

service measure. As already mentioned, the central reorder point for case 1 is too low to replenish WL2

from stock on hand. The simulation results confirm this observation and show a wait time service level of

86



0% at WL2. Due to the disproportionate central reorder point, the wait time service levels at all depots,

except WL4, are negatively affected. For case 2, only the service level at WL2 is significantly affected.

Hence, the addition of demand size variance caused the AVSL model to anticipate greater replenishment

orders, leading to a greater central reorder point. Therefore, the remaining depots service levels are

unaffected by the increase in demand frequency and size at WL2.

Table 35: Simulation results of case 1 for WL2 of Item I for the AVSL model, R0 = 7

Depot
Reorder

point

Order

quantity

Wait time

target (days)

Achieved

service level (%)

Total

customers

Total

demand

WL1 -1 1 4 88.1 447 894

WL2 -1 1 4 0.0 1026 20,520

WL3 -1 1 4 88.2 187 187

WL4 1 1 4 99.4 177 354

WL5 -1 1 4 87.9 3001 3838

Table 36: Simulation results of case 2 for WL2 of Item I for the AVSL model, R0 = 18

Depot
Reorder

point

Order

quantity

Wait time

target (days)

Achieved

service level (%)

Total

customers

Total

demand

WL1 -1 1 4 97.1 447 894

WL2 -1 1 4 65.7 1026 21,010

WL3 -1 1 4 96.3 187 187

WL4 1 1 4 99.4 177 354

WL5 -1 1 4 95.7 3001 3838

These results indicate that a high demand frequency and a large demand size, whilst maintaining the

initial order quantity, is troublesome for the AVSL model. This issue is particularly highlighted through

case 1. The central reorder point is unable to increase sufficiently, as it does not anticipate for the

demand size at WL2. The mean of the demand over the central lead time, E[Dj(L0)], equals about 2.57,

whilst its variance, V ar[Dj(L0)], is zero. In combination with the low order quantity, the DC does not

expect constant replenishment orders of such magnitude. This is confirmed by the fact that δj(k) = 1

for k = 3 at WL2 in (2), i.e. the DC expects WL2 to order at most three times its order quantity. This

is significant as for all k > 3, δj(k) = 1. Therefore, as the probability of WL2 ordering a replenishment

order of exactly three times its order quantity equals one, sord
j (k) = 1 for k = 3, and sord

j (k) = 0 for all

other k in (3).

These probabilities affect the expected value and variance of ζ0,j in (20) and (21), which in turn

affect the delay ∆j in (23) - (28). Since the cumulative probability of the inventory level at the depot,

Pr[ILj ≤ y], in (31) always indicates that a customer must wait for Rj = −1, the ∆j and Pr[ILj ≤ y]
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affect the wait time condition in (35) to such a degree that the DC is only able to cover the expected

demand over the central lead time instead of the actual demand sizes. Ultimately resulting in the wait

time condition implicating that the currently determined central and local reorder points will suffice the

wait time target. However, during simulation we observe that the determined solution fails to serve the

customers at WL2 within the set wait time target, negatively impacting the service levels at most depots

and especially the service level at WL2.

Adding variance to the demand size in case 2, increased V ar[Dj(L0)] significantly. Therefore, the DC

has to frequently expect larger replenishment orders from WL2, which is represented by a wider spread

of probabilities for sord
j (k). Even though, as stated by Berling and Farvid (2014), the likelihood of a

depot ordering multiple batches is diminishing in k; the DC accounts for these varying demand sizes and

is better able to, yet it is still insufficient. Hence, as expected increasing the demand frequency and size

significantly affects the results of the AVSL model. Moreover, the computed probabilities throughout the

optimisation are heavily dependent on the provided order quantities.

6.3.4 Adjusting the order quantities

As indicated throughout the preceding sections, the order quantities greatly affect the performance of

the wait time service measure. Moreover, Section 6.3.3 displayed the challenges that arise if the order

quantity at a depot is significantly lower than most of the customer demand sizes. Consequently, the

DC is unable to anticipate the significant replenishment orders demanded by the depot, resulting in an

inventory allocation by the AVSL model within the distribution system that is insufficient. Even though,

the preceding section adjusted the demand frequency and sizes, as mentioned in Section 5, the statistics

in Table 2 also indicate that the average demand size at the WL depots is significantly greater than their

average order quantity. Therefore, we will analyse the effect on the performance of the AVSL model by

modifying the order quantities at all depots, such that the modified order quantity at a depot covers at

least 80% of its customer demand sizes.

First, we will analyse the effect of modifying the order quantities on the performance for Item II. For

Item I, the demand sizes have little to no variance and do not differ drastically from the order quantities,

therefore the modification is unlikely to have a significant impact. Thus, we will investigate the effects

of the order quantity modification on cases 1 and 2 for WL2 of Item I with altered demand frequency

and sizes from Section 6.3.3. Finally, we evaluate the implications on the performance of the entire

distribution system for the AVSL model.

Before analysing the effects of utilising the modified order quantities, Table 37 displays the statistics

of the initial and modified order quantities. For the FL depots, we only observe a slight increase in the

average order quantity. However, as expected, the average order quantity for the WL depots increased

significantly, as it almost tripled in value. Comparing these modified order quantities to the demand

statistics in Table 2, we observe that the average order quantity of the WL depots is now greater than

their average demand size. This was already true with the initial order quantities for the FL depots.
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Table 37: Order quantity statistics of the initial and modified data specified per depot type

Depots Min. Avg. Max.

Initial order quantity All 1.000 1.407 325.000

FL 1.000 3.502 325.000

WL 1.000 1.071 69.000

Modified order quantity All 1.000 3.017 1481.000

FL 1.000 4.128 410.000

WL 1.000 2.839 1481.000

Table 38 displays the simulation results for Item II with the modified order quantities. Note that the

original order quantities, as given in Table 4, are also provided. Moreover, the simulation results with the

initial order quantities are provided in Table 15. The modified order quantities experienced a significant

increase, especially at the depots with a large demand size variance. The results indicate that, the current

inventory allocation by the AVSL model allows all depots to satisfy their service measure. Therefore, the

modification of the order quantities significantly impacted the performance of the distribution system, as

previously WL7 and FL1 were unable to attain their service measures.

The most noticeable differences between the initial inventory allocation and the current one with

the modified order quantities are the reorder points at the DC and WL7. The central reorder point

increased significantly, indicating that it anticipates greater replenishment order sizes. Furthermore, the

local reorder point of 23 at WL7 suggests that the models wants to suffice most the customers at this

depot through stock on hand. Yet, for the infrequent customers with larger demand sizes, it permits

them to wait. Therefore, the AVSL model determined an intermediate approach at this depot, allowing

WL7 to achieve its service measure through a combination of using stock on hand and back orders.
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Table 38: Simulation results of Item II for the AVSL model with modified order quantities

Warehouse
Initial

order

quantity

Reorder

point

Adjusted

order

quantity

Fill rate

target

(%)

Wait time

target

(days)

Achieved

service

level (%)

Total

customers

Total

demand

DC 500 34 500 NA NA 98.7 48,954 406,006

WL1 1 -1 4 NA 4 99.3 988 5458

WL2 1 -1 8 NA 4 98.8 1184 5969

WL3 1 -1 2 NA 4 99.3 1036 2072

WL4 1 -1 2 NA 4 99.7 967 3014

WL5 1 -1 2 NA 4 98.8 574 1148

WL6 2 -1 16 NA 4 98.1 206 3296

WL7 1 23 80 NA 4 98.3 786 21172

WL8 2 -1 32 NA 4 99.0 605 8638

WL9 1 -1 16 NA 4 100.0 194 3104

WL10 1 -1 12 NA 4 98.9 980 9734

WL11 1 -1 16 NA 4 99.2 395 4512

WL12 1 -1 16 NA 4 98.6 631 5492

WL13 1 -1 8 NA 4 99.5 193 1544

WL14 1 14 8 NA 4 99.0 1028 8386

WL15 1 7 4 NA 4 99.7 932 3332

WL16 1 1 2 NA 4 99.5 207 414

WL17 3 23 24 NA 4 98.7 544 13056

FL1 3 4 2 95.0 NA 95.2 15,025 33,087

FL2 1 18 12 95.0 NA 95.8 6758 45,011

FL3 1 4 4 95.0 NA 95.2 3805 13,172

FL4 5 19 6 95.0 NA 95.4 36,677 214,430

Note: For the DC the ‘Achieved service level’, ‘Total customers’ and ‘Total demand’ are the ‘Achieved fill rate’, ‘Total

replenishment orders’ and ‘Total replenishment size’, respectively. These apply to the replenishment orders from the depots.

For demand case 1 and 2 for WL2 of Item I, Tables 39 and 40 display their simulation results with

modified order quantities, respectively. Note that the respective simulation results with the initial order

quantities are provided in Tables 35 and 36. For case 1 of WL2, we observe a significant improvement

in the achieved wait time service levels across all depots. For the initial order quantities, only WL4 was

able to satisfy its service measure, whilst now with the modified order quantities only WL5 is unable to

achieve its wait time target. Therefore, the modification of the order quantities provided a significant

improvement in the achieved service levels for case 1.

However, for case 2 of WL2, although the central reorder point is significantly increased due to the

order quantity of WL2 increasing, the service level at WL2 did not improve as significantly. It is still
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unable to satisfy its wait time service measure. Due to the introduced variance in case 2, about 20% of its

customers arrive with a demand size of 50. The DC still does not account for replenishment order of this

size, therefore these customers cannot be served within the wait time target as the modified local order

quantity only covers 80% of the demand sizes at WL2. Hence, accounting for the additional customers

that WL2 is unable to serve within the set wait time target, the achieved service level is only 73.0%.

Implicating that even while using the modified order quantities, if the average customer demand sizes

differ significantly between depots, the AVSL model still faces difficulties allocating sufficient stock to the

distribution system.

Similarly to Section 6.3.3, the expected demand over the central lead time, E[Dj(L0)], remains about

2.57, even if its variance, V ar[Dj(L0)], is now positive in case 2 for WL2. Due to increasing the order

quantity, the DC now accounts for a single replenishment order of size 25 for this depot. However, due

to the low demand over the effective lead time, the DC does not anticipate for the 20% of customers

that demand twice the order quantity of WL2. This is confirmed as δj(k) = 1 for k = 1 at WL2 in (2),

therefore the DC expects WL2 to order its order quantity at most once during the central lead time.

Hence, the probability of WL2 ordering exactly its order quantity equals one, sord
j (k) = 1 for k = 1, and

sord
j (k) = 0 for all other k in (3). These probabilities again affect the delay ∆j and Pr[ILj ≤ y] such

that the wait time condition in (35) implicates that the currently determined central and local reorder

points will suffice the wait time target. Resulting in a solution that fails to serve part of its customers

within the set wait time target at WL2.

Table 39: Simulation results of case 1 for WL2, Item I for the AVSL model with modified order quantities

Warehouse
Initial

order

quantity

Reorder

point

Adjusted

order

quantity

Wait time

target (days)

Achieved

service level (%)

Total

customers

Total

demand

DC 5 0 5 NA 53.4 4824 25,793

WL1 1 1 2 4 98.4 447 894

WL2 1 32 20 4 99.1 1026 20,520

WL3 1 0 1 4 100.0 187 187

WL4 1 1 2 4 98.9 177 354

WL5 1 1 1 4 91.9 3001 3838

Note: For the DC the ‘Achieved service level’, ‘Total customers’ and ‘Total demand’ are the ‘Achieved fill rate’, ‘Total

replenishment orders’ and ‘Total replenishment size’, respectively. These apply to the replenishment orders from the depots.
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Table 40: Simulation results of case 2 for WL2, Item I for the AVSL model with modified order quantities

Warehouse
Initial

order

quantity

Reorder

point

Adjusted

order

quantity

Wait time

target (days)

Achieved

service level (%)

Total

customers

Total

demand

DC 5 36 5 NA 91.3 4824 25,793

WL1 1 -1 2 4 98.0 447 894

WL2 1 -1 25 4 73.0 1026 21,010

WL3 1 -1 1 4 96.8 187 187

WL4 1 1 2 4 99.4 177 354

WL5 1 -1 1 4 96.8 3001 3838

Note: For the DC the ‘Achieved service level’, ‘Total customers’ and ‘Total demand’ are the ‘Achieved fill rate’, ‘Total

replenishment orders’ and ‘Total replenishment size’, respectively. These apply to the replenishment orders from the depots.

The simulation results with the altered order quantities for all the items are displayed in Table 38.

Comparing these results to those obtained with the initial order quantities, see Table 8, we observe that

now 86.1% of all depots are able to satisfy their service measure, which is an increase of about 9.0%.

Moreover, with the modified order quantities 92.0% of WL depots are able to satisfy their wait time

service measure, compared to only 82.0% for the WL depots with the initial order quantities. However,

the performance across the FL depots dropped by about 1.9%, indicating that these depots perform worse

with the modified order quantities.

Table 41: Simulation results of all items for the AVSL model with modified order quantities

Min. Avg. Max. Total

Customers 167 10,618.987 8,517,494 105,595,202

Demand 167 35,116.947 17,998,964 349,202,923

FL depots 1 0.521 26 5205

FL depots

service measure achieved
0 0.231 14 2313

WL depots 1 3.246 24 32,447

WL depots

service measure achieved
0 3.011 24 30,094

Fill rate DC (%) 0.0 86.2 100.0 NA

In general, we can state that the AVSL model is highly sensitive to the selection of order quantities.

The model prefers larger order quantities for the WL depots, these permit the DC to anticipate larger

replenishment orders instead of only anticipating the demand of a depot across the central lead time.

With the modified order quantities, the probabilities δj(k) and consequently sord
j (k) are better able to

reflect the probability of a wait time depot ordering the actual demand sizes. Therefore, the wait time
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condition in (35) is better able to adequately represent the wait time scenario for a customer at that

depot, resulting in a better estimation of the necessary central and local inventory. However, for the FL

depots, due to their significantly greater demand over the central lead time compared to the WL depots,

the model prefers lower order quantities as this permits a higher reorder point at the depots and thus

being able to serve sufficient customers through stock on hand. Hence, properly determining the order

quantity at every depot is crucial to the performance of the AVSL model.

6.4 The EVSL model

In Section 4.3.3 we proposed an experiment in which we allow local reorder points Rj of the wait time

depots, for j ∈ Wi, below −1. This experiment is introduced to further highlight why it is disadvantageous

to allow for local reorder points below minus one and let customers wait upon other customer arrivals.

To facilitate these reorder points, we introduced Assumption 22 and altered the data accordingly, see

Section 5.2. The results are therefore obtained using the modified data. The service measure targets are

identical to the AVSL model, βT
j = 0.95, WT T

j = 4 and P T
j = 0.95.

Let us now analyse the results of the experiment. Table 42 displays the inventory allocation results

of the EVSL model. Comparing these results to Table 8 of the AVSL model, we observe a significant

decrease in central reorder points and total stock, defined as the sum over all reorder points. The total

stock decreased by 30.8%. This significant decrease in total stock causes a 6.5% decrease in total cost.

On the other hand, the computation times are nearly identical.

Table 42: Inventory allocation results of all items for the AVSL model

Min. Avg. Max. Total

Central reorder point -1988 1.155 1646 11,544

Total stock -1187 6.562 2831 65,590

Inventory cost (ZAR) 0.00 28,891.00 4,510,061.00 288,765,649.00

Computation time (s) 0.000 0.108 175.937 1075.196

The decrease in total stock can mainly be explained by the decrease in central reorder points. These

were able to be significantly decreased due to the constant demand size equal tp one for all customers at

the wait time depots. To visualise the difference in allocation, Figure 20 displays the inventory allocation

of Item II for the AVSL model versus the EVSL model. It shows that the EVSL model prefers to stock

locally and use a very low central reorder point. Consequently, the local stock at the FL depots has to

increase significantly, yet the total stock equals −2 compared to 102 for the AVSL model. The EVSL

model determined that by placing stock locally it can suffice the wait time service measures despite the

increased demand frequency.
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Figure 20: Reorder points at all warehouses of Item II for the AVSL and EVSL models

To confirm the results above, Table 43 presents the statistics regarding the local reorder points per

type of depot for the AVSL and EVSL models. However, these indicate that the averages of local reorder

point across all depots and for the WL depots are lower for the EVSL model compared to the AVSL

model. Upon further inspection of the results, the EVSL model only allocated an Rj > 0 to 1611 WL

depots compared to 5661 for the AVSL model. Moreover, the EVSL model only has 5285 WL depots

for which Rj = −1 holds compared to the 12795 WL depots for the AVSL model. Hence, due to the

modification of the demand frequencies and sizes, the EVSL model prefers to stock locally as for the gross

of the WL depots it holds that Rj = 0, as this holds for 25,465 WL depots. Therefore, the inventory

position will always be positive as the order quantities are positively defined.

Table 43: The local reorder points per type of depot for the AVSL and EVSL models

Model AVSL EVSL

Depots All FL WL All FL WL

Min. -1.000 -1.000 -1.000 -3.000 -2.000 -3.000

Avg. 1.591 10.06 0.233 1.435 10.96 -0.092

Max. 958.000 958.000 700.000 958.000 958.000 86.000

These results indicate that the EVSL model generally stocks locally contrary to the AVSL model.

Furthermore, the number of depots with a reorder point below −1 is only 87. Hence, the EVSL model

behaves as expected and does not prefer wait time depots with reorder points below −1, even when the

demand frequency is significantly increased due to the data modification, see Section 5.2. It demonstrated

that having customers wait upon other customers to arrive for slow-moving items is not optimal, which

follows our expectation.
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7 Conclusion

The main research question posed in this paper is: How can the inventory, especially of slow-moving items,

be reduced within a multi-echelon distribution system whilst providing a proper and flexible solution?

To address this question, we proposed two distinct models. Both models implement fill rate and wait

time as their service measures, assigning a fill rate target to depots with fast-moving items and a wait

time target for depots with slow-moving items.

The Simple-Various Service Level (SVSL) model restricts the local reorder points to always equal

minus one, leading to the majority of customers being served through back orders and assigning minimal

local stock. It requires the wait time targets always to be greater than the DC-depot inter-lead times.

On the other hand, the Advanced-Various Service Level (AVSL) model allows local reorder points to be

greater than minus one, thus also permitting them to be non-negative. This allows for more adaptable

wait time targets can be set, permitting customers to be served from stock on hand. These models extend

the pre-existing vNext model, which only utilises a fill rate service measure.

To better address the main research question, we composed four sub-research questions. The first

sub-research question explored the types of wait time approximation methods. In the scope of the current

research problem, Berling and Farvid (2014) presented the most suitable wait time approximation method,

as it is able to determine the specific wait time per depot and can account for negative central reorder

points.

The second sub-research question focuses on the additional necessary assumptions for the introduced

VSL models. These assumptions mainly concerned the limitations of the chosen wait time approximation

methods and the model-specific restrictions. An important additional assumption, as stated by Berling

and Farvid (2014), is that of constant central lead times. Furthermore, we elaborated on the choice of

distributions, where assume that all demand over time follows a Gamma distribution.

Thirdly, we conducted performance tests on the VSL models, comparing them to the performance of

the vNext model, which we regarded as the baseline. The VSL models demonstrated a significant reduc-

tion in stock within the distribution system. Notably, the SVSL model achieved the greatest inventory

reduction, while the AVSL model saved most on the inventory costs. However, general performances

during the simulation were subpar across all models. All of them encountered difficulties throughout

the simulation. As a result, no model significantly out performed one other. It is worth noting that

the VSL models, in general, did not underperform compared to the vNext model. Both VSL models

effectively implemented wait time as a service measure and successfully reduced the inventory within the

distribution system.

Robustness tests were conducted specifically on the AVSL model to address the fourth and final sub-

research question. The simulation results hinted at the significance of the size of order quantities, as

these directly affect the reorder points both locally and centrally. The robustness tests clearly revealed

the importance of determining an appropriate order quantities, and how these affect the central and

local reorder points and therefore the performances. The tests highlighted the difficulties the AVSL

model experiences in scenarios where the variance of the demand sizes is significant and when the order
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quantity is significantly lower than the average demand size. The tests provided valuable insights of the

AVSL model’s behaviour across various scenarios and presented the areas of improvement.

In conclusion, incorporating wait time as a service measure within multi-echelon optimisation is

determined to be viable. The proposed models offer satisfactory solutions for a diverse range of items.

Importantly, they did not underperform compared to the baseline model. Hence, utilising a wait time

service measure provides a proper solution, leading to significant reduction in stock. The VSL models

excel when the demand size distribution coincides with the demand over the central lead time distribution,

as this allows the DC to best approximate the incoming replenishment order sizes and allocate its stock

accordingly. The models’ performances are heavily influenced by the order quantities, therefore these need

to be chosen carefully. Moreover, an alternative optimisation method has to be used in order to guarantee

optimal solutions at the global minima. The wait time service measure demonstrates to be flexible in its

target selection, as the AVSL model was the best-performing model allowing wait time targets below the

inter-lead time of the depots. Further research on wait time service measures is recommended to gain a

deeper understanding of critical features impacting performance and to explore strategies for addressing

these issues within multi-echelon distribution systems.

8 Discussion

With the current research we aimed to reduce the inventory within multi-echelon distribution systems

whilst providing a proper and flexible solution. Though the exploration of two distinct models, the SVSL

and AVSL models, we pursued the use of both fill rate and wait time service measures to achieve the

desired reduction in inventory.

A significant limitation encountered during our research, pertained the provided order quantities

used in the computations of the models. These values were determined by Gordian Logistic Experts

in consideration with Company A. Therefore, as previously mentioned, the order quantities included

preferences set by Company A instead of being the optimally selected values. We provided various

insights into the effects of the order quantities on the inventory allocation by the models. Consequently,

these non-optimal order quantities significantly impacted the performance of the models, particularly in

scenarios where the actual demand sizes were significantly greater than the assigned order quantities.

Furthermore, the introduced models applied a bisection-based method to determine the optimal in-

ventory allocation. We determined that the unimodality assumption of this method was violated by the

AVSL model, resulting in non-optimal inventory allocations. Additionally, the in some cases the used

methods were unable to adequately represent the actual replenishment order sizes of the depots at the

DC. This prevented the DC to anticipate larger replenishment orders as it could only account for their

demand over the central lead time, limiting the central reorder point to suffice the wait time depots

replenishment orders. Thus, affecting the overall performance of the models.

Despite these limitations, our research provided useful insights into incorporating wait time as a

service measure within multi-echelon optimisation. The AVSL model demonstrated significant reductions

in stock within the distribution system and saving on inventory cost. We positively demonstrated the
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viability of combining fill rate and wait time service measures to reduce the inventory within a multi-

echelon distribution system. Moving forward, further research should focus on adequately representing

the demand sizes of customers at wait time depots within the proposed formulas. Furthermore, an

alternative to the bisection-based approach should be considered. The new approach should be able

to consistently achieve the global minimum, whilst refraining from iterating over all possible solutions.

Finally, the order quantity at a depot should be selected with consideration to its demand sizes and

selected service measure.
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Axsäter, S. (2003a). Approximate optimization of a two-level distribution inventory system. International

Journal of Production Economics, 81:545–553.
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Appendix A - Central wait time for effective lead time

In this appendix, we elaborate on the computation of the central wait time used to determine the effective

lead time per depot, Leff
j , in (6) and (7). For Leff

j , it is assumed that all depots experience the identical

stochastic delay ∆. We determine the mean and variance of the delay through the methods defined by

Axsäter (2003a). One of their main assumptions states that the demand over the central lead time is

normally distributed, thus the computations are based on the normal distribution. The goal is to estimate

the mean and the standard deviation of the central delay, µ∆ and σ∆, respectively.

First, the average wait time can be computed as:

E[W ] = E[IL0]−∑M
j=1 µj

, (49)

where E[IL0]− represents the expected number of back orders at the DC during the central lead time L0.

Let q be the greatest common divisor of the local order quantities, q = gcd(Q1, . . . , QMi). Then,

Axsäter (2003a) provide the following equations for the expected back orders:

E[IL0]− = (σ(D0(L0))2

Q0 − q

[
H

(
R0 + q − E[D0(L0)]

σ(D0(L0))

)
− H

(
R0 + Q0 − E[D0(L0)]

σ(D0(L0))

)]
, (50)

with H(x) = 1
2 [(x2 + 1)(1 − Φ(x)) − xφ(x)]. Moreover, if q = Q0 holds, then

E[IL0]− = σ(D0(L0)G
(

R0 + Q0 − E[D0(L0)]
σ(D0(L0))

)
, (51)

with G(x) = φ(x) − x(1 − Φ(x)), being the loss function of the normal distribution.

Note that in both equations σ(D0(L0)) =
√

V ar[D0(L0)]. However, as mentioned before, Axsäter

(2003a) assumed normally distributed demand. Thus, they compute the V ar[D0(L0)] as follows:

V ar[D0(L0)] =
M∑

j=1

∞∑
k=−∞

(kQj − µjE[L0])2pj,k(L0), (52)

here pj,k(L0) is the probability of depot j placing k orders of size Qj . This is in fact the only term that

differs from the terms used in (5), since it is assumed here that the demand over the central follows a

normal distribution. We can compute this probability as follows:

pj,k(L0) = σjE[L0]
Qj

[
G

(
(k − 1)Qj − µjE[L0]

σjE[L0]

)
+ G

(
(k + 1)Qj − µjE[L0]

σjE[L0]

)
(53)

−2G

(
kQj − µjE[L0]

σjE[L0]

)]
.

For the variance of the wait time, they proposed the following equation:

V ar[W ] = (σ∆)2(1 − Pr(W = 0)) + µ∆E[W ] − E[W ]2, (54)

where µ∆ and σ∆ are the mean and standard deviation of the time between the arrival time and demanded

time of an item, i.e. the delay ∆. For which it is noted by Axsäter (2003a) that W = (∆)+. Also,

Pr(W = 0) is the probability of the wait time being zero.

To determine the mean and standard deviation of the delay, we have to perform the following in

between step:

∝= −µ∆

σ∆
= Φ−1(Pr(W = 0)). (55)
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for which we can derive the probability of the wait time being zero as

Pr(W = 0) = σ(D0(L0)
Q0 − q

[
G

(
R0 + Q0 − E[D0(L0)]

σ(D0(L0))

)
− G

(
R0 + q − E[D0(L0)]

σ(D0(L0))

)]
, (56)

and if again q = Q0, then it changes to

Pr(W = 0) = Φ
(

R0 + Q0 − E[D0(L0)]
σ(D0(L0))

)
. (57)

Finally we can compute the µ∆ and σ∆,

σ∆ = E[W ]
G(∝) (58)

µ∆ = − ∝ ∗σ∆. (59)

As mentioned at the start, these are the expected delay and standard deviation of the delay at the DC,

respectively. The mean corresponds to the E[∆] in (6), i.e. E[∆] = µ∆. Furthermore, the standard

deviation is used for the V ar[∆] in (7), i.e. V ar[∆] = σ2
∆.
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Appendix B - Differences in notation between Grob and Bley

(2018) and Berling and Farvid (2014)

This appendix explains the differences in notation in detail between the papers of Grob and Bley (2018)

and Berling and Farvid (2014). The current paper mainly complies with the notation introduced by Grob

and Bley (2018). Let us first revise the introduced notation in Section 4.2.1:
µζ0,j ,p The expected demand for depot p at the DC over time period L0, i.e. the individual

contribution of depot p to µζ0,j
.

σ2
ζ0,j ,p The variance of the demand for depot p at the DC over time period L0, i.e. the individual

contribution of depot p to σ2
ζ0,j

.
Moreover, Berling and Farvid (2014) introduced the following variables regarding (20) and (21):

µζ0,j The expected value of ζ0,j .

σ2
ζ0,j

The variance of ζ0,j .
Note

that these variables correspond to E[ζ0,j ] and V ar[ζ0,j ] in (20) and (21), respectively.

Then Berling and Farvid (2014) introduce the following equations for µζ0,j
and σ2

ζ0,j
:

µζ0,j
= µζ0,j ,1 + . . . + µζ0,j ,M =

M∑
j=1

µζ0,j ,p, (60)

with

µζ0,j ,p = µjL0 for p ̸= j, (61)

µζ0,j ,j =
∞∑

k=0
kQjgj(kQj) . (62)

σ2
ζ0,j

= σ2
ζ0,j ,1 + . . . + σ2

ζ0,j ,M =
M∑

j=1
σ2

ζ0,j ,p, (63)

with

σ2
ζ0,j ,p =

∞∑
k=0

(µζ0,j ,pL0 − kQp)2gp(kQp). (64)

Again, note that (60) and (63) correspond to (15) and (16), respectively. Here, gj(u) is defined by Berling

and Farvid (2014) as the probability that exactly u units are ordered by depot j. Therefore, it can be

written out as:

gj(u) =


δj(0), if u = 0

δj(k) − δj(k − 1), if u = kQj for k > 0

0 otherwise.

(65)

δj(n) is identically defined in both papers when assumed that L0 is constant, as done by Berling and

Farvid (2014). Therefore, the only difference in notation that remains, arises the definition of the function

gj(u) and sord
j (k), see (3). The latter is defined as the probability that depot j orders exactly k batches

of Qj . It can be seen in (62) and (64) that for gj(u), the only values evaluated for u are non-negative

multiples of Qj as k ∈ [0, ∞). Hence, the functions gj(u) and sord
j (k) provide identical results. Therefore,

the complete written out equations in (20) and (21) utilise the equivalent equations of (62) and (64),

respectively.
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Appendix C - Correction of the error in Berling and Farvid (2014)

In this appendix, we elaborate on the discrepancy between our formulas and the introduced ones by

Berling and Farvid (2014). More specifically, it regards the second indicated case in Section 4.2.1,

involving (25) and (26).

The formulation of Berling and Farvid (2014) for the second case is given as:

Case 2: 0 ≤ R0 < Qj

E[∆j ] = L0

Q0

Qj − R0 − 2 +
R0+Q0∑
x=Qj

 ∞∑
ζ0,j=x−Qj+1

(
1 − x − Qj

ζ0,j

)
fj(ζ0,j)

 , (66)

E[∆2
j ] = L2

0
Q0

Qj − R0 − 2 +
R0+Q0∑
x=Qj

 ∞∑
ζ0,j=x−Qj+1

(
1 − x − Qj

ζ0,j

)2
fj(ζ0,j)

 . (67)

(68)

Note that the difference between their formulation above and our formulation in (25) and (26) are the

terms Qj−R0−2
Q0

and Qj−R0−1
Q0

. These terms are the result of the following probability:

Pr[R0 + 1 ≤ IP0 ≤ Qj − 1]. (69)

The difference applies to the provided explanation by Berling and Farvid (2014). They indicate that

IP0 ∼ Unif(R0 + 1, R0 + Q0). (70)

Hence, the inventory position follows a discrete uniform distribution.

A discrete uniform distribution, Unif(a, b), has the following PDF and CDF:

fIP (x) =


1

b−a+1 = 1
Q0

, if a ≤ x ≤ b, i.e. R0 + 1 ≤ x ≤ R0 + Q0

0, otherwise,

(71)

FIP (x) =


0, if x < a, i.e. x < R0 + 1
⌊x⌋−a+1

b−a+1 = ⌊x⌋−R0
Q0

, if x ∈ [a, b], i.e. x ∈ [R0 + 1, R0 + Q0]

1, if x > b, i.e. x > R0 + Q0.

(72)

Note the cases for which it holds that a = R0 + 1 and b = R0 + Q0 are also presented, as these represent

the domain of the discrete uniform distribution at hand.

Using the CDF we determine the probability in (69) as

Pr[R0 + 1 ≤ IP ≤ Qj − 1] = Pr[IP ≤ Qj − 1] − Pr[IP ≤ R0]

= Qj − 1 − R0

Q0
− 0

= Qj − R0 − 1
Q0

. (73)

Moreover, an alternative method to compute this probability is by using the PDF and the discreteness
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of the distribution:

Pr[R0 + 1 ≤ IP ≤ Qj − 1] =
Qj−1∑

x=R0+1
Pr[IP = x]

=
Qj−1∑

x=R0+1

1
Q0

=
Qj−1−R0∑

x=1

1
Q0

= Qj − R0 − 1
Q0

. (74)

Both of these computations prompt the identical result. Therefore, we determine that the probability in

(69) is equal to Qj−R0−1
Q0

, as shown by (73) and (74). Hence, we utilise this probability in (25) and (26),

therefore correcting the original probability presented by Berling and Farvid (2014).
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Appendix D - Gamma distribution discretisations

This appendix provides an in-depth example our Gamma distribution discretisation elaborates on why it

would be problematic if peaks occur in between integer values in the PDF of the Gamma distribution. The

cases when this poses issues, is usually if the variance is significantly small. If we take the probabilities

at the integer values of a Gamma distribution for this case, the PDF provides probabilities that are too

low to ever attain a large enough fill rate in (11). Moreover, in such cases, summing over the probabilities

of the integer values does not lead to a cumulative probability of one. Therefore, we introduced (46) to

discretise the Gamma distribution accordingly with α = 0.6.

We first provide a Gamma distribution with a very low variance, let k = 125 and θ = 0.02; Figure 21

illustrates the PDF of this distribution. The figure indicates that the peak of the distribution is between

two and three. Table 44 indicates that he probabilities at these integer values are Pr[X = 2] = 0.123

and Pr[X = 3] = 0.163. Given the remainder of the probabilities provided by the PDF, we encounter

the issue that these do not add up to a cumulative probability of one; not allowing the possibility to

attain the fill rate service measure. Therefore, the probabilities have to be adjusted. Thus, we assign

the probability values as: Pr[X = 2] = 0.336 and Pr[X = 3] = 0.664. The adjusted probabilities use

the entire distribution and assign the entire probability mass to each integer value based on the selected

α-value. This provides an adjustable method to discretise the Gamma distribution as desired.

Figure 21: Density graph of a Gamma(125, 0.02) distribution with its peak at 2.5
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Table 44: Probabilities of a Gamma(125, 0.02) distribution

x
Probability

through PDF

Probability through

discretisation

0 0.000 0.000

1 0.000 0.000

2 0.123 0.336

3 0.163 0.664

4 0.000 0.000

5 0.000 0.000

The modification in (46) does alter the probabilities for the general Gamma distributions as well.

Figure 22 presents the PDF of a Gamma distribution with k = 12.5 and θ = 0.2. Note that compared

to the previous distribution, the variance increased ten fold. Table 45 provides the probabilities at

the relevant integer values for this Gamma distribution. We observe that the PDF assigns a greater

probability at 2 compared to the discretised probability. This is the affect of the selected α value. As

discussed in Section 4.4.2, we opted for a more conservative value. Hence, it assigns greater probabilities

to the larger integer values.

Figure 22: Density graph of a Gamma(12.5, 0.2) distribution with its peak at 2.5
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Table 45: Probabilities of a Gamma(12.5, 0.2) distribution

x
Probability

through PDF

Probability through

discretisation

0 0.000 0.000

1 0.027 0.038

2 0.525 0.442

3 0.374 0.411

4 0.069 0.097

5 0.006 0.010

6 0.000 0.001

7 0.000 0.000
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