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ABSTRACT 

This study evaluates the effectiveness of incorporating investor sentiment and macroeconomic uncertainty 

into the portfolio optimization framework through additional constraints in the optimization problem. A 

rolling methodology of portfolio construction is employed to assess the out-of-sample performance of 

several variance-minimizing portfolios. These portfolios, constructed under different combinations of 

alternative covariance matrix estimators and sentiment and uncertainty constraints, are analyzed using 

two separate datasets of asset returns from July 2001 to February 2024. The results provide moderately 

strong evidence in support of incorporating investor sentiment and macroeconomic uncertainty. My 

findings encourage researchers to assess their proposed optimized portfolios under different datasets of 

asset returns to note potential data-dependent performance. Furthermore, the effectiveness of my 

proposed optimized portfolios demonstrates the potential for using optimization constraints to incorporate 

other variables into the optimization framework. 
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1  Introduction 

While investors may care for more than returns and return variances, the standard portfolio optimization 

framework fails to account for this. This leads to the construction of intuitively unappealing optimized 

portfolios (Fisher & Statman, 1997). This study addresses this shortcoming by incorporating investor 

sentiment (IS) and macroeconomic uncertainty (MU) into the framework. Prior research has documented 

IS's significant effect on stock returns (Schmeling, 2009) and MU's significant effect on stock return 

volatility (Iania et al., 2023). Such findings illustrate the potential for integrating IS and MU to develop 

optimized portfolios with attractive returns and return volatilities. Additionally, incorporating these two 

factors in a way that allows investors to adjust the extent of their effect on optimized portfolio weights can 

give rise to more intuitively appealing portfolios by accounting for investor preferences. Behr et al. (2013) 

show that, against the findings presented in other literature, there are optimization techniques that can 

consistently outperform the nave, equally weighted portfolio. Accordingly, this study explores the 

performance of optimized portfolios incorporating IS and MU relative to the naively diversified portfolio. 

 

Researchers have explored several methods of improving upon the standard portfolio optimization 

framework developed by Markowitz (1952) and addressing its limitations. Behr et al. (2013) develop two 

portfolio strategies that incorporate endogenous weight constraints that minimize the estimation error 

present in the sample covariance matrix. Their strategies significantly outperform the naive strategy, in out-

of-sample Sharpe ratio, in five of six considered datasets of 45 years of returns on American stocks and 

portfolios of stocks. On the other hand, Campbell et al. (2001) address the wrongful return normality 

assumption drawn when using standard deviation as a risk measure, as is done in the standard portfolio 

optimization framework. They propose Value-at-Risk (VaR) as an alternative risk measure, combined with 

the assumption of a fatter-tailed student-t distribution. The authors note that by allowing the user to set the 

confidence level associated with the VaR, the optimized portfolios account for the user’s risk aversion. 

Banholzer et al. (2019) integrate IS within mean-variance portfolio optimization using a Copula Opinion 

Pooling approach and consider several stock market indices from 1993 to 2015. Their proposed strategy 

adjusts portfolio weights to account for price reversals due to initial sentiment-led mispricing, and it 

outperforms five other benchmark strategies, including the naive strategy, in several performance metrics. 

 

Although Banholzer et al. (2019) demonstrate the effectiveness of incorporating IS into portfolio 

optimization, their proposed strategy does not allow for the convenient adjustment of the extent to which 

IS should affect portfolio weights. The importance of convenient adjustment stems from the heterogeneity 

of investors and their preferences. Campbell et al. (2001) develop a framework that allows for the 

convenient incorporation of the investor’s risk tolerance but relates to their general risk and not risk 

tolerance towards the portfolio’s sensitivity to IS and MU. Kirby & Ostdiek (2012) present two active 

portfolio strategies that incorporate a tuning parameter allowing user-specified control over portfolio 
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turnover. Such user-specified control can increase the strategy's practical applicability by catering to 

investor-specific preferences. Consequently, this paper explores the incorporation of IS and MU into 

portfolio optimization in a manner that accounts for the investor’s risk tolerance towards fluctuations in 

their portfolio value due to changes in IS and MU. The question studied in this paper is the following:  

 

“Can incorporating macroeconomic uncertainty and investor sentiment in the portfolio optimization 

framework produce portfolios that outperform the equally weighted portfolio in the out-of-sample period?” 

 

The methodology for answering this question follows the standard portfolio construction and out-of-sample 

testing performed by Behr et al. (2013), with an estimation window of 60 months and a portfolio holding 

period of 12 months. IS and MU are integrated using additional constraints on the constructed portfolio’s 

sensitivity to these two factors. Beta values on the IS or MU variable are determined for all assets through 

standard OLS regressions of asset returns on IS or MU to determine portfolio sensitivity, computed as the 

weighted average of absolute regression betas of individual assets. The upper limit on the sensitivity 

constraint is a specified percentile value of the individual asset betas, which can be conveniently adjusted 

to account for the investor’s risk tolerance to changes in portfolio value due to IS and MU. I analyze various 

optimization strategies with different combinations of IS and MU constraints and covariance estimators. 

Finally, I perform significance tests comparing all strategies' mean returns and return variances relative to 

the naive strategy. My research focuses on the US stock market. I utilize two datasets of asset returns 

frequently used in portfolio optimization literature: the 17 industry portfolios and the 25 size and book-to-

market ratio portfolios from the Kenneth French data library. Macroeconomic variables are all sourced 

from the Federal Reserve Economic Data, and the proxy for IS is sourced from the American Association 

of Individual Investors. The proxy for MU is obtained from the proxy’s developers' publishing website. 

 

Based on the evidence of the significant effects of IS on returns and of MU on return volatility, as well as 

the benefit of implementing IS into portfolio optimization demonstrated by Banholzer et al. (2019), I 

hypothesized that the IS and MU strategies would significantly outperform the equally weighted benchmark 

strategy. My obtained results demonstrate moderately strong support for the incorporation of MU and IS 

when considering overall performance over both datasets; this motivates the incorporation of relevant 

variables using additional constraints in the portfolio optimization framework. 

 

The remainder of this paper is structured as follows. Chapter 2 expands on academic literature on portfolio 

optimization, IS, and MU and defines the two hypotheses tested in this study. Chapter 3 discusses the 

collection and construction of all relevant data. The relevant optimization framework and the significance 

tests that were performed are explained in Chapter 4. Chapter 5 then illustrates the results of this study, 

while Chapter 6 discusses the performed robustness tests. Finally, Chapter 7 concludes the results of this 

study, identifies its limitations, and accordingly poses topics for future research. 
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2  Theoretical Framework  

2.1 Portfolio Optimization 

The foundations for modern advancements in portfolio optimization are derived from the framework 

developed by Markowitz (1952), where efficient portfolios are defined according to two factors: expected 

returns and variance. As proposed by Markowitz, efficient portfolios are those with the maximum expected 

portfolio return for a given portfolio variance or the minimum portfolio variance for a given expected 

portfolio return. This framework aims to narrow the choice of different allocations of invested capital 

amongst assets to a set of efficient allocations, or portfolios, which the investor can then choose from based 

on their preferences (p. 91). Additionally, Markowitz segments the portfolio selection problem into two 

stages. The first stage pertains to forming beliefs over expected asset returns and asset covariances, which 

are used to determine portfolio variance. In contrast, the second stage pertains to the method of selecting 

the portfolio based on these beliefs. The focus of Markowitz’s paper was on the second stage. Since the 

publishing of Markowitz (1952), many other papers have expanded on both stages of portfolio selection.  

 

2.1.1 Expansions on stage one of portfolio selection  

According to Markowitz, stage one of portfolio selection is forming beliefs on expected asset returns and 

covariances. 

 

One of the most critical limitations of tangency portfolios, which are portfolios developed from the work 

of Markowitz (1952) and formed by maximizing Sharpe ratios, is the significant role of estimation error in 

forming these portfolios. Estimation error in the context of portfolio optimization is the error that arises 

because historical, sample-based values of all optimization inputs are poor estimators for their true 

population values (Jagannath & Ma, 2003, p. 1652).  This error can be present in the computation of an 

asset’s expected returns, variances, and covariances. Furthermore, portfolio weights are highly sensitive to 

estimation error, resulting in highly unstable portfolios with poor out-of-sample Sharpe ratios and high 

turnover when rebalancing the portfolio (Michaud & Michaud, 2007). The shortcoming of estimation errors 

has incited a notable number of researchers to employ various techniques to overcome this challenge. Some 

of this work is discussed below. 

 

The application of shrinkage theory to the covariance matrix, an input to the optimization framework, is 

one mechanism used to address estimation errors. Shrinking the covariance estimator entails reducing the 

larger estimated covariances amongst assets. Jagannathan & Ma (2003) prove the equivalence of imposing 

non-negativity constraints on portfolio weights to utilizing a shrunk covariance estimator. When high 

estimated covariances exist because of upward-biased estimation error, shrinking the covariance estimator 

through non-negativity constraints can reduce sampling error (p. 1652). Using the 25 Fama-French size and 
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book-to-market sorted portfolios and, separately, a random sample of 500 stocks trading on the NYSE and 

the AMEX, the authors obtain monthly out-of-sample returns from May 1968 to April 1999 for different 

optimized portfolios and the naive portfolio. They show that minimum variance portfolios outperform 

tangency portfolios in out-of-sample Sharpe ratios, arguing that this is due to the reduced impact of 

estimation errors in minimum-variance portfolios. They also find that minimum variance portfolios 

constructed under non-negativity constraints perform as well as those constructed under more complicated 

modifications to the covariance matrix structure, such as covariance estimators derived from assuming 

specific factor models for returns. 

 

Black & Litterman (1992) provided a seminal contribution to the field of portfolio optimization, 

significantly increasing the applicability of the mean-variance framework. Their adjustment to this 

framework allows for incorporating the investor’s views, particularly those that differ from the market’s. 

This allows investors to utilize models that can predict returns more accurately than historical estimates 

and incorporate those predicted returns within the mean-variance optimization framework. The user’s 

confidence in each absolute or relative view is also accounted for. These confidence levels determine the 

weight to give to the user’s view compared to the views held in market equilibrium when computing the 

new expected returns. The optimized weights are then obtained using these new expected returns in a 

standard mean-variance optimization framework (refer to section 4.1.2). The authors explain their 

methodology and its intuition using a dataset on equities, bonds, and currencies of seven different countries 

from January 1975 to August 1991, standardizing all values to dollar terms. 

 

Banholzer et al. (2019) demonstrate the benefits of introducing new variables in the optimization 

framework to improve the information held in asset returns and covariances. Upon noting that sentiment 

can be a signal for medium-term mean reversion of stock prices, they construct a portfolio strategy that 

incorporates IS, specifically IS-led mispricing, into portfolio optimization. Notably being the first to do so. 

Their resultant portfolio strategy, formed by maximizing the Sharpe ratio after accounting for sentiment 

information, entails underweighting assets with high sentiment in the past six months to two years and 

similarly overweighting assets with low past sentiment. Sentiment in their framework is incorporated using 

the Copula Opinion Pooling approach, an alternative to the Black-Litterman model that allows for multiple 

views on each asset and can account for dependencies amongst views. Over an out-of-sample period from 

August 2004 to September 2015, their proposed strategy outperforms all benchmark strategies, including 

the standard tangency portfolio and the equally weighted portfolio, in Sharpe ratios and other performance 

metrics. However, it exhibits considerably higher turnover than most benchmark strategies. 

 

2.1.2 Expansions on stage two of portfolio selection 

According to Markowitz, stage two of portfolio selection relates to the method of selecting the optimal 

portfolio using the beliefs on expected asset returns, covariances, and variances.  
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In constructing tangency portfolios, the standard deviation is used as a downside risk measure. However, 

using standard deviation incorrectly assumes that expected returns are normally distributed (Campbell et 

al., 2001, p. 1790). As concluded by Fama (1965), the normal distribution is an inadequate representation 

of empirical stock return distributions. Campbell et al. (2001) address this limitation by using the portfolio’s 

VaR, defined as the portfolio’s maximum expected loss with a given level of confidence over a specified 

time horizon (p. 1791), as an alternative risk measure to standard deviation. This allows for the assumption 

that returns follow other, more appropriate distributions, such as the fatter-tailed student-t distribution. They 

accordingly adjust Sharpe ratios by utilizing VaR as the appropriate risk measure in the denominator of the 

Sharpe ratio formula (refer to section 4.3). Tangency portfolios are then created using data from January 

1990 until December 1998 on the S&P 500 composite return index, the 10-year US government bond return 

index, and the 3-month US Treasury Bill rate as the risk-free rate. Their analysis of tangency portfolios 

created under normal and non-normal distributions leads to the conclusion that standard deviation 

underestimates the downside risk and allocates too much of a portfolio weight to risky assets. Moreover, 

the consideration of VaR also allows for the inclusion of the investor’s risk aversion in the portfolio 

optimization framework since the investor sets the confidence level in the VaR (p. 1802). 

 

Green and Hollifield (1992) note the potential introduction of a specification error within the optimization 

framework when portfolio weight constraints are imposed. In practice, these constraints may be wrong, as 

relatively high or low weights for certain assets might not result from estimation errors. Resultantly, 

relevant sample information may be omitted when imposing portfolio weight constraints. Jagannathan and 

Ma (2003) oppose the certainty of poor out-of-sample performance from introducing minimum weight 

constraints and provide the argument that such constraints sufficiently reduce the sampling error present in 

the covariance matrix and lead to improved out-of-sample portfolio performance. This leads to them 

recognizing the sampling error – specification error trade-off. 

 

Behr et al. (2013) extend the optimization framework by accounting for this trade-off within the 

optimization problem. Specifically, they propose new strategies that impose endogenous maximum and 

minimum weight constraints, which are determined by minimizing the estimation error in the covariance 

matrix estimator (p. 1232). They first obtain a risk function representing the sum of mean squared errors of 

the covariance matrix entries, a quantification of the estimation error. The risk function is then minimized 

with respect to the upper limit of the maximum weight constraint and the lower limit of the minimum weight 

constraint to determine the ‘optimal’ upper and lower limits. The authors apply their flexible weights 

mechanism to variance-minimizing portfolios and compare their strategy’s performance to naive portfolios 

and several other minimum-variance portfolios with different structures to the covariance matrix estimator. 

To analyze the effectiveness of their addition, they compare out-of-sample performance metrics of all 

portfolio strategies under six different datasets of monthly asset returns from July 1963 to December 2008. 
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Their proposed strategy, which incorporates flexible maximum and minimum weight constraints, achieves 

significantly higher out-of-sample Sharpe ratios than the equally weighted portfolio in five out of six 

datasets and significantly higher out-of-sample variances in all datasets.  

 

Moving beyond the mean-variance and minimum-variance optimization frameworks, researchers have 

explored alternative frameworks for constructing portfolios. Notably, Kirby & Ostdiek (2012) explore 

alternative strategies that do not require optimization yet still exploit sample information on mean returns 

and return variances. The authors construct two simple active portfolio strategies. The first determines 

portfolio weights based solely on the conditional volatility of individual assets; as an asset’s conditional 

return volatility increases relative to other assets, its weight is decreased. The second strategy functions 

similarly but considers an asset's relative ratio of conditional expected return to conditional return volatility 

instead of conditional return volatility alone. These two strategies and other benchmarks are evaluated over 

four datasets of asset returns from July 1963 to December 2008. Their proposed strategies significantly 

outperform the equally weighted portfolio in out-of-sample Sharpe ratios, even after accounting for 

transaction costs. Both strategies also allow for control over portfolio turnover, and thus incurred 

transaction costs, via a tuning parameter, increasing their practical applicability as they account for 

preferences over portfolio turnover. Kirby & Ostdiek highlight the importance of using multiple datasets in 

portfolio literature as their results are shown to depend on the spread of conditional expected returns and 

conditional return volatilities of assets within a dataset. An increase in the relevant spread improves the 

relative performance of their proposed strategies. 

2.2 Macroeconomic Uncertainty (MU) 

A large body of literature on MU focuses on how to measure it, with economic and financial researchers 

having employed a vast range of methodologies to do so. Jo and Sekkel (2019) use forecast errors in 

measuring MU, specifically the volatility of forecast errors of several macroeconomic variables from the 

Survey of Professional Forecasters. On a global level, Van Robays (2016) proxies MU as the volatility of 

world industrial production growth using a GARCH(1,1) process. The use of forecast errors and volatilities 

of macroeconomic quantities is one of the more common approaches to measuring MU; however, economic 

policy uncertainty (EPU) is also often utilized as a proxy for MU. Baker et al. (2016) constructed an EPU 

index (refer to section 3.2), which serves as a convenient measure of MU in academia. Berger et al. (2017) 

used this index to confirm the validity of their constructed MU measure’s movements in times of 

uncertainty, and Caldara et al. (2016) used it as one of six measures used to ‘infer fluctuations in 

macroeconomic uncertainty’ (p. 188). In essence, this body of research emphasizes the complexity of 

measuring MU, with no one accepted approach to this measurement.  

Resembling approaches used in prior literature, Iania et al. (2023) form their own MU measures for the US 

based on monthly, one-year-ahead forecasts for ten macroeconomic variables over twenty countries. The 
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authors utilize four different approaches to forming these MU measures. Namely, monthly standard 

deviations of forecasts, their range and interquartile range, and a measure based on the time-varying 

monthly variance of forecast errors obtained using an AR-GARCH process. Their analysis uses monthly 

US stock return data from 1989 to 2019. The considered stocks are identified to belong to 49 different 

industries, allowing the author to observe inter-industry differences in the effects of MU on returns and 

return volatility. To identify these differences, they perform four regressions for each industry; a separate 

regression for each of the four alternative measures of MU. Specifically, they regress (volatility of) stock 

returns on MU and relevant controls. Their regression results demonstrate clear evidence for a positive 

effect of MU on return volatility but weak evidence for the observed positive effect of MU on returns. 

Across the four alternative regressions, 41.7 out of 49 industries, on average, demonstrate significant effects 

of MU on volatility, while only 13 industries, on average, demonstrate a significant effect on returns.  

While MU is typically measured in a manner that treats both positive and negative movements in 

macroeconomic variables as the same form of MU, Segal et al. (2015) decompose MU into a ‘good’ and a 

‘bad’ component. The ‘good’ component of MU is measured by the realized semivariance of positive 

shocks to macroeconomic variables, such as output and consumption, computed as the variance of positive 

deviations from the mean values of macroeconomic variables. Contrarily, the ‘bad’ component is measured 

by the realized semivariance of negative shocks, computed as the variance of negative deviations from the 

mean. Regressing aggregate market price variables and, separately, future return volatility on current 

expected consumption growth, good MU, and bad MU shows that equity price increases with good 

uncertainty but decreases with bad uncertainty. Furthermore, bad uncertainty is shown to have a larger 

positive effect on future return volatility. Overall, their findings of the heterogenous effects of good and 

bad MU motivate asset pricing models to distinguish between the two components. 

Corroborating the findings of Segal et al. (2015), Chiu (2020) finds further evidence for differences between 

good and bad MU. Focusing on the Taiwanese stock market and macroeconomy from January 2000 to 

December 2017, Chiu finds that stock liquidity decreases with bad uncertainty and increases with good 

uncertainty. Additionally, the author considers the role of information competition in the MU-liquidity 

relationship. This is achieved by using interaction effects between both MU components and a proxy for 

information competition in the regression of liquidity on good MU, bad MU, and relevant control variables. 

The proxy for information competition is a dummy variable for when the number of informed investors in 

the market, measured as the number of institutional investors holding the considered stock, exceeds the 

cross-sectional median. Using separate regressions for each considered stock on the Taiwanese Stock 

Exchange and Wald’s test for significance, they note that when information competition is higher, the 

positive impact of good uncertainty on stock liquidity increases while the negative impact of bad 
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uncertainty on stock liquidity decreases. Therefore, this study highlights the benefit to all stock market 

participants of the presence of informed investors in times of good and bad uncertainty.  

2.3 Investor Sentiment (IS) 

Baker & Wurgler (2007) define IS as ‘a belief about future cash flows and investment risks that is not 

justified by the facts at hand’ (p. 129), posing an irrational view on sentiment-based trading. 

 

Baker & Wurgler (2006) provided a method for quantifying sentiment using indirect measures to form a 

sentiment index that is widely utilized in academia (Stambaugh et al., 2012; Yu & Yuan, 2011).  Their 

sentiment index is the first principal component on the current and lagged values of six sentiment proxies, 

including NYSE share turnover and the annual number of IPOs. Their study then focuses on assessing 

whether sentiment has larger effects on stocks that have highly subjective valuations and are harder to 

arbitrage. Subsequently, they consider stocks with these characteristics, such as those that are newly listed, 

smaller, more volatile, etc. To perform their analysis, the authors looked at monthly stock returns from 

1963 to 2001 and formed equal-weighted decile portfolios based on firm characteristics such as the recency 

of going public, size, return volatility, etc. Then, the decile portfolios are used to form long-short portfolios 

based on these characteristics and regress their monthly returns on IS. When sentiment is low, being below 

the sample average, the stocks that are smaller, more recently listed on public exchanges, more volatile, 

etc., earn higher returns. When sentiment is high, this pattern generally reverses. 

 

Coinciding with the significant, negative IS-return relationship noted by Brown & Cliff (2005), Schmeling 

(2009) finds that periods of increasing sentiment ‘tend to be followed by lower returns for the aggregate 

market’ (p. 394). Schmeling then shifts his analysis to explore the interaction effect between sentiment and 

two factors, the development of national market institutions and cultural proneness to overreaction, when 

analyzing the impact of sentiment on stock returns. He explored this interaction effect by collecting 

aggregate market returns and sentiment measure data for 18 industrialized countries from January 1985 to 

December 2005. The countries are split into two groups based on median values for proxies for the 

development of national market institutions, such as accounting standards, and proxies for cultural 

proneness to overreaction, such as a collectivism index. This allows the author to run panel regressions on 

both datasets of countries for each proxy, revealing that cultural proneness to overreaction strengthens the 

sentiment-return relation while increased development of national market institutions weakens it.  

 

Literature on the topic of IS is conflicted on the rationality of sentiment-based trading. Some studies,  

including Schmeling (2009), Black (1986), and Baker & Wurgler (2007), view investors for whom IS is a 

determinant of trading behavior as irrational, ‘noise’ traders, while others oppose this view. De Long et al. 

(1990) argue that the presence of sentiment-based, ‘noise’ traders in the market can stimulate professional 

arbitrageurs to consider sentiment-related information in their strategies (p. 735), implying that 
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incorporating sentiment alone does not categorize an investor as irrational. Brown & Cliff (2004) found 

that the greatest sentiment-return relationship was the effect of IS on large stock returns. As large stocks 

are disproportionately traded more often by institutional investors, their findings suggest that rational 

institutional investors also account for IS information. Verma & Verma (2008) found that institutional IS 

and individual IS exhibit fundamental differences; the former is more sensitive to changes in relevant risk 

factors, such as market returns, and thus more rational. Their work signifies that the arguments of both sides 

of the sentiment rationality conflict can coexist and be treated as credible. The findings of those arguing for 

irrationality may specifically relate to individual investors. 

2.4 Hypotheses 

IS is a relevant but inadequately explored variable in portfolio optimization frameworks. Its relevance is 

first demonstrated by Banholzer et al. (2019), who developed a sentiment reversal-based portfolio 

optimization strategy that significantly outperforms the equally weighted portfolio in Sharpe ratios. 

Banholzer et al. conclude their study by motivating the exploration of alternative methods that incorporate 

‘sentiment as an optimization criterion instead of using it as an input variable’ (p. 701). Moreover, sentiment 

is documented to negatively and significantly impact a portfolio performance metric, specifically mean 

returns (refer to section 4.3). Building on these findings, I developed a framework that incorporates IS as 

an optimization criterion and allows the user to decrease the optimized portfolio’s sensitivity to IS.  I expect 

the following hypothesis to hold for these optimized portfolios:  

 

Hypothesis 1: Optimized portfolios that incorporate investor sentiment as an optimization criterion are 

able to outperform the equally weighted portfolio in the out-of-sample period. 

 

Due to MU's significant, positive effect on return volatility observed in the previously discussed literature, 

limiting an optimized portfolio’s sensitivity to MU through appropriate optimization constraints may allow 

for reduced portfolio volatility. Furthermore, considering the forward-looking nature of MU, its 

incorporation into portfolio optimization may help mitigate some concerns of estimation error, one of the 

more significant limitations of portfolio optimization. There is also a notably more prominent absence of 

MU incorporation within the field of portfolio optimization than there is for IS, further motivating its 

consideration in this field. This leads to the development of the following hypothesis explored in this study, 

with a consistent focus on performance relative to the equally weighted portfolio: 

 

Hypothesis 2: Optimized portfolios that incorporate macroeconomic uncertainty as an optimization 

criterion are able to outperform the equally weighted portfolio in the out-of-sample period. 
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3  Data 

3.1 Asset returns  

An optimized portfolio entails the optimal distribution of invested capital across different assets. The assets 

defined in this study are portfolios of stocks traded on specific US stock exchanges: NYSE, AMEX, and 

NASDAQ. To perform my analysis, I utilize two separate datasets of portfolios and their average, monthly, 

value-weighted returns, namely, the 25 size and book-to-market sorted portfolios and the 17 industry-sorted 

portfolios. These are both collected from the Kenneth R. French Data Library. Despite both datasets 

consisting of portfolio returns from July 1926 to March 2024, the data on all variables in this study, 

including portfolio returns, are collected from July 2001 to February 2024, a total of 272 months, as the 

data on certain variables before July 2001 and after February 2024 are missing. The selection of these 

datasets was led by their frequent use in portfolio optimization literature (Cai et al., 2024; Behr et al., 2013; 

Shi et al., 2019), ensuring the validity of the collection and computation of these monthly portfolio returns.  

 

3.1.1 Size & book-to-market portfolios (25SBM) 

The 25 portfolios are constructed at the end of June every year, implying potential annual changes to the 

composition of stocks in each of these 25 portfolios. To construct these annual portfolios, stocks on the 

NYSE, AMEX, and NASDAQ are first sorted into five portfolios based on size quintiles and independently 

into five portfolios based on the quintiles of the ratio of book value of equity to market value of equity of 

the firm (BE/ME). Size quintiles are determined only by the market equity of stocks on the NYSE, while 

the BE/ME quintiles are determined by the BE/ME ratio of stocks on all three considered US stock 

exchanges. The 25 portfolios are then formed from the intersection of the five portfolios based on size with 

the five portfolios based on BE/ME. For example, a stock in the lowest quintile for market equity and the 

highest quintile for BE/ME would be placed in the ‘ME1BM5’ portfolio.  

 

Table 1 from Appendix A provides descriptive statistics for all 25 portfolios’ monthly returns over the 

sample period. In determining the effectiveness of optimization strategies, it is insightful to note that, over 

the entire sample period, the highest average monthly return for a single asset is 1.18%, belonging to the 

ME1BM5 portfolio, which has a monthly standard deviation of 6.85%, corresponding to a monthly variance 

of 0.0047. Furthermore, the lowest monthly standard deviation is 4.20%, corresponding to a monthly 

variance of 0.0018, belonging to the ME5BM2 portfolio, which has an average monthly return of 0.79%.  

 

3.1.2 Industry portfolios (17Ind) 

The 17 industry portfolios are also constructed annually, at the end of June,  by separating stocks into their  

respective industries. The separation is based on their four-digit Compustat SIC codes at the end of the 

previous fiscal year or on their four-digit CRSP SIC codes at the time of portfolio construction. The 17 

industries that stocks are categorized into are the following: Food, Mining and Minerals, Oil and Petroleum, 
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Clothes, Consumer Durables, Chemicals, Consumer Products, Construction and Construction Materials, 

Steel Works, Fabricated Products, Machinery and Business Equipment, Automobiles, Transportation, 

Utilities, Retail Stores, Financial Services and Others.  

 

Table 2 in Appendix A provides descriptive statistics for all 17 industry portfolios. It is again insightful to 

note that the Fabricated Products portfolio achieves the highest average monthly return of 1.16% over the 

entire sample period with a standard deviation of 5.81%, corresponding to a variance of 0.0034. Moreover, 

the Food portfolio achieves the lowest standard deviation of 3.43%, corresponding to a variance of 0.0012, 

with an average monthly return of 0.76%.  

 

Note that the statistics in Tables 1 and 2 relate to the entire sample period of 272 months, while the results 

of optimized portfolios are specific to the out-of-sample period. As explained later in section 4.3, the out-

of-sample period pertains to 212 months, with the first month being 60 months ahead of the first month in 

the overall sample period. However, comparing the lowest variance and highest returns of individual assets 

from Tables 1 and 2 to those of the optimized portfolios in the relevant dataset can still be insightful. It can 

help assess the effectiveness of optimization and determine whether optimization was performed correctly. 

 

3.1.3 Risk-free rate 

Data on the risk-free rate is collected to perform out-of-sample Sharpe ratio computations for each portfolio 

strategy. This requires the computation of excess returns, which are calculated as the monthly return minus 

the monthly risk-free rate. The risk-free rate here is defined as the market yield on US treasury securities at 

1-month constant maturity. The data on these yields was collected from the Federal Reserve Economic 

Data. This definition of the risk-free rate is motivated by the fact that the US Department of the Treasury 

issues such treasury securities, which are consequently guaranteed by the US government, implying a 

negligible default rate of such securities. I preprocess the daily annualized yields I collected by dividing by 

12 and taking the average in a given month, converting the data to the appropriate monthly frequency.   

3.2 Macroeconomic uncertainty (MU) 

MU is proxied using the Baker-Bloom-Davis measure of EPU, developed by Baker et al. (2016) and 

collected from the authors’ publications website, where they publish monthly EPU indices for several 

countries. This choice of proxy follows the decision of Caldara et al. (2016) and Berger et al. (2017), as 

mentioned in section 2.2. Following macroeconomic shocks, governments tend to implement policies to 

stabilize the economy, giving rise to uncertainty regarding what policies will be implemented. As such, 

macroeconomic shocks would generally increase macroeconomic forecast errors, often used to model MU 

directly (Jo & Sekkel, 2019). Thus, it is intuitive to understand why EPU can proxy MU.  
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The EPU index is constructed using three main components: newspaper coverage frequency, the number 

of federal tax code provisions scheduled to expire within ten years, and disagreements in economic 

forecasts. The latter two components are only used to measure the EPU for the US.  

 

Newspaper coverage frequency is computed using the number of articles published in a month in any of 

the ten leading newspapers in the US that contain terms relating to all of the following topics: the economy, 

uncertainty, and policy. Baker et al. also account for variations in the number of articles published in each 

newspaper over time by appropriately standardizing and normalizing these monthly frequencies, allowing 

for a more interpretable EPU index across different timeframes (p. 1599).  Tax code provisions are laws 

and regulations specific to calculating and paying taxes for all entities required to pay tax. The expiring tax 

code provisions account for uncertainty concerning taxation policy in the US. Lastly, the measure of 

disagreement is specific to that amongst economic forecasters on the future values of the Consumer Price 

Index (CPI) and federal, state, and local expenditures. 

 

3.2.1 MU regression’s control variables 

In the regression of returns on MU, proxied by EPU, control variables are chosen by following the 

methodology of Arouri et al. (2016). Namely, I include the monthly values for inflation rate, change in 

industrial production, change in unemployment rate, and default spread. The data on all controls is collected 

from the Federal Reserve Economic Data, and the data frequency for all variables is monthly. The monthly 

inflation rate is computed as the monthly percentage change in the CPI. The monthly change in industrial 

production is derived by subtracting the following month’s industrial production index (IPI) from that of 

the current month, as the observations for IPI are collected at the start of each month. Similarly, the monthly 

change in unemployment rate is computed by subtracting the following month’s unemployment rate from 

that of the current month. Finally, although undefined by Arouri et al. (2016), the default spread is measured 

as the difference between BAA and AAA corporate bond yields for the given month, as defined by Segal 

et al. (2015).  

 

3.3 Investor sentiment (IS) 

I proxy IS using the American Association of Individual Investors (AAII) index, as is frequently done in 

financial literature (Chau et al., 2016; Wang et al., 2006). The AAII sends weekly surveys to all members 

to vote on whether they are bullish, neutral, or bearish on the US stock market in the next six months. Thus, 

the data on the percentages of individual investors that are bullish, neutral, or bearish is collected from the 

AAII, and the IS index is formed using these percentages. The consideration of such survey-based IS 

measures is motivated by the findings of Chau et al. (2016), who noted that survey-based measures, as 

opposed to indirect measures, play a greater role in influencing the trading behavior of sentiment-driven 

investors. Similar to Chau et al. (2016) and Wang et al. (2006), I form my index based only on the 

percentages of bullish and bearish investors at a given point in time, treating neutral investors as 
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insignificant for determining market sentiment. However, instead of computing the IS index as the ratio of 

bullish percentage to bearish percentage, I compute it in the following manner for improved interpretation 

as it ranges from 0 to 100:  

 

    𝐵𝑢𝑙𝑙𝑖𝑠ℎ_𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑡 =  
𝐵𝑢𝑙𝑙𝑖𝑠ℎ_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑡

𝐵𝑢𝑙𝑙𝑖𝑠ℎ_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑡+𝐵𝑒𝑎𝑟𝑖𝑠ℎ_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑡
× 100            (1) 

 

This alternative index measures the percentage of bullish investors normalized by the sum of percentages 

of bullish and bearish investors. Multiplying this value by 100 implies that this index takes values between 

0 and 100, whereas the ratio-based index would have no clear upper bound and would be undefined when 

the bearish percentage is 0. As the data published by AAII is in weekly frequency, I transform all variables 

to monthly frequency by taking the average values of each variable for the month. 

 

Figure 1 in Appendix A illustrates similarities and differences between the IS and MU proxy. In level terms, 

the standard deviation of the MU proxy is visibly higher than that of the IS proxy, with computed values of 

44.8718 and 10.3631, respectively. This may be because the MU proxy does not have a clear upper bound, 

while the IS proxy ranges from a minimum of 0 to a maximum of 100. Both proxies move as expected 

during major economic and financial events. For example, MU increased and IS decreased around 2020 

when COVID-19 was publicized as a global pandemic. Similarly, MU increased, and IS decreased during 

late 2008 and 2009, regarded as crucial periods during the Global Financial Crisis (GFC). However, MU 

in the US continued increasing following the GFC for considerably longer than IS decreased, with IS 

stabilizing soon after, while the uptrend in MU only reversed around 2012. This suggests that the two 

factors, IS and MU, can potentially bring forward mutually exclusive information to portfolio optimization, 

motivating their simultaneous incorporation into the portfolio optimization framework.  

 

3.3.1 IS regression’s control variables 

The control variables I choose to include in the regression of returns on IS are based on the choice of 

controls of Schmeling (2009). Specifically, I include the monthly inflation rate, computed as the monthly 

percentage change in CPI, the industrial production index value, and the term spread, defined as the 

difference between the yields on the ten-year and two-year treasury notes. A positive term spread represents 

increasing interest rates, suggesting that future economic growth is expected due to the stabilizing role of 

interest rates in macroeconomic policy. Following this logic, a negative term spread suggests an expectation 

of future economic decline. The data on all controls is collected from the Federal Reserve Economic Data 

at a monthly frequency.  
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4  Method 

4.1 Optimization framework 

The proposed methodology to incorporate MU and IS consists of two stages. Stage one requires estimating 

individual asset returns’ sensitivities to MU and, separately, to IS. These sensitivities are proxied by the 

absolute β values of assets from the regression of asset returns on MU or IS and appropriate controls. 

Absolute β values are used since sensitivity depends on only the magnitude of the effect and not its 

direction. Given the documented positive effect of MU on return volatility and the negative effect of IS on 

returns, the directions of these effects are such that reducing sensitivity to these factors presents the 

possibility of increasing portfolio returns and decreasing portfolio return volatility. Stage two of the 

methodology entails incorporating MU and IS into the optimization framework through constraints on the 

overall portfolio’s sensitivity to MU and, separately, to IS. Portfolio sensitivities are computed as follows:  

 

     𝛽𝑝 =  ∑ (| 𝛽𝑖 | × 𝑤𝑖)𝑁
𝑖=1              (2) 

 

 

Here 𝛽𝑝  is the portfolio’s sensitivity to either MU or IS, N represents the total number of assets being 

considered, 𝛽𝑖  is asset i’s regression coefficient on either MU or IS and 𝑤𝑖  is asset i’s weight in the portfolio. 

Therefore, 𝛽𝑝  represents the weighted average of individual assets’ absolute 𝛽 values.  

 

The constraints on portfolio sensitivity are inequalities in the following form: 

 

                                                                        𝛽𝑝 ≤ 𝑥                              (3)  

 

Here, x denotes the xth percentile value of the absolute individual asset 𝛽 values. I consider the upper limits 

of the constraints to be percentile values of individual asset sensitivities to ensure the utilized optimization 

algorithm can reach a solution. Too small of an upper limit may prevent a solution from being found as 𝛽𝑝 

cannot take such a small value. Conversely, too large of an upper limit may make the constraint meaningless 

if it exceeds the maximum absolute individual asset 𝛽 value. The remainder of this chapter expands on the 

method for determining individual asset 𝛽 values and the optimization framework that incorporates these 

constraints. 

 

4.1.1 Determining sensitivities to MU and IS 

The sensitivity of individual asset returns to MU is the asset’s 𝛽1 value from the following regression: 

 

𝑟𝑡 =  𝛽0 + 𝛽1𝑀𝑈 𝑃𝑟𝑜𝑥𝑦𝑡 + 𝛽2𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒 𝐶ℎ𝑎𝑛𝑔𝑒𝑡 + 𝛽3𝐼𝑃𝐼 𝐶ℎ𝑎𝑛𝑔𝑒𝑡 +

                         𝛽4𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒𝑡 + 𝛽5𝐷𝑒𝑓𝑎𝑢𝑙𝑡 𝑆𝑝𝑟𝑒𝑎𝑑𝑡 + 𝜀𝑡             (4) 
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Here, 𝑟𝑡   is monthly asset returns, and MU Proxyt is the three-component Baker-Bloom-Davis EPU index.  

The sensitivity of individual asset returns to IS is the asset’s 𝛽1 value from this alternative regression:  

 

              𝑟𝑡 =  𝛽0 +  𝛽1𝐼𝑆 𝑃𝑟𝑜𝑥𝑦𝑡 + 𝛽2𝑇𝑒𝑟𝑚 𝑆𝑝𝑟𝑒𝑎𝑑𝑡 + 𝛽3𝐼𝑃𝐼𝑡 + 𝛽4𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒𝑡 + 𝜀𝑡                 (5) 

 

IS Proxyt is the sentiment index I created, as described in equation (1). Furthermore, it is important to note 

that equation (4) considers monthly changes in the IPI value while equation (5) considers monthly IPI 

values, following the appropriate literature mentioned in sections 3.2.1 and 3.3.1.  

 

Both regressions are simple OLS regressions without adjustments for heteroskedasticity or autocorrelated 

errors, as these issues are addressed to ensure the use of appropriate standard errors in significance testing. 

Addressing these issues would not change the coefficient estimates or result in them no longer being 

unbiased; only correct coefficient values, not standard errors, are required for my proposed methodology. 

 

4.1.2 Mean-variance optimized portfolios 

Unconstrained mean-variance optimization, as developed from the work of Markowitz (1952), accounts 

directly for both portfolio returns through the constraint in equation (7) and variance. It requires finding the 

column vector of portfolio weights for all assets, w, that solves the following problem:  

 

      min  𝑤′𝑆 𝑤                           (6) 

Subject to the following constraints: 

      𝐸[𝑅𝑝] = 𝑤′𝜇                   (7) 

           𝑤′𝜄 = 1              (8) 

 

Equation (6) represents minimizing portfolio variance, 𝑤′𝑆 𝑤, with wʹ being the transposed, 1 × N row 

vector of portfolio weights, and S being the N × N sample covariance matrix. E[Rp] is the imposed target 

portfolio return. The portfolio return is computed by the matrix multiplication of wʹ and μ, the N × 1 column 

vector of expected returns of all assets. Equation (8) is the constraint that the portfolio weights sum to one, 

with ι being an N × 1 vector of ones. 

 

To obtain the efficient frontier, the efficient set of portfolios according to Markowitz (1952), one can plot 

the standard deviation of returns of the mean-variance optimized portfolio against the different targeted 

portfolio returns specified to obtain the optimal weights. To select one optimal portfolio while accounting 

for both portfolio variance and returns, researchers use tangency portfolios formed by maximizing Sharpe 

ratios, formulated later in section 4.3. 
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Jagannathan & Ma (2003, p. 1654) illustrate that tangency portfolios perform worse in the out-of-sample 

period than minimum-variance portfolios due to greater estimation error prevalence in tangency portfolios. 

Consequently, this study focuses solely on incorporating MU and IS into minimum-variance portfolios to 

extend the findings of prior literature.  

 

4.1.3 Minimum-variance portfolios and incorporating MU and IS 

Unlike mean-variance optimized portfolios and tangency portfolios, minimum-variance portfolios only 

indirectly consider expected asset returns through the computation of covariance matrices, used as an input 

to the optimization framework. Global minimum-variance portfolios are formed by finding the column 

vector of portfolio weights, w, that solves the following problem: 

 

      min 𝑤′𝑆 𝑤                      (9)       

  Subject to the following constraints:  

                                                                                 𝑤′𝜄 = 1                      (10)

   

The solution to this problem represents the global minimum-variance portfolio, as there are no additional 

constraints other than the portfolio weights summing to one. In equation (8), S is the N × N sample 

covariance matrix, which is used instead of Σ, the true covariance matrix, as the latter is unobservable. S is 

computed as  
1

𝑇
(𝑟𝑡 − 𝜇)′(𝑟𝑡 − 𝜇), with μ being the N × 1 column vector of expected asset returns comp and 

so (rt – μ) is the N × 1 column vector of demeaned asset returns. The scalar value T represents the number 

of historical return observations considered in the computation of the covariance matrix of asset returns.  

Portfolio variance, computed by the matrix multiplication of wʹSw, has the following non-matrix formula: 

 

                                                                     𝜎𝑝
2 =  Σ𝑖=1

𝑁 Σ𝑗=1
𝑁 (𝑤𝑖𝑤𝑗𝜎𝑖𝑗)                       (11) 

 

Here, N is the number of assets in the portfolio, 𝑤𝑖 and 𝑤𝑗 are the portfolio weights of the considered assets 

in the outer and inner summation, respectively, and 𝜎𝑖𝑗 is the covariance of returns of asset i and asset j. 

To form minimum-variance portfolios that incorporate MU, IS, or both, one or both of the following 

constraints are added to the optimization problem represented by equations (9) and (10): 

 

𝛽𝑝
𝑀𝑈 ≤ 𝑥25

𝑀𝑈                         (12)      

      𝛽𝑝
𝐼𝑆 ≤ 𝑥25

𝐼𝑆             (13) 

 

To incorporate only MU, the constraint in equation (12) is added alone, where 𝛽𝑝
𝑀𝑈 is the portfolio  



 17 

sensitivity to MU, formed according to equation (2), and 𝑥25
𝑀𝑈 is the 25th percentile value of individual 

assets’ β1 values from regression equation (4).  Conversely, to incorporate only IS, the constraint in equation 

(13) is added alone, where 𝛽𝑝
𝐼𝑆 is the portfolio sensitivity to IS and 𝑥25

𝑀𝑈 is the 25th percentile value of 

individual assets’ β1 values from regression equation (5). Both constraints in equations (12) and (13) are 

added to obtain portfolios incorporating MU and IS. I consider the 25th percentile here since it allows for a 

tight constraint, ensuring MU and IS are being considered in the optimization to observe their effects. 

However, this percentile can be readjusted to match the user’s preferences on their portfolio’s insensitivity 

to MU and IS; investors with greater preference for this insensitivity would lower the considered percentile.  

 

4.1.4 Non-negativity constraints & the Ledoit-Wolf covariance estimator 

In analyzing several minimum-variance portfolios with different constraints and covariance matrix 

structures, Jagannathan & Ma (2003) find that the non-negativity (NN) constrained portfolio using the 

sample covariance estimator performs similarly to the other portfolios with more complicated covariance 

structures. This finding is specific to the use of monthly data. They also found that no portfolio had 

significantly higher average out-of-sample returns than the NN-constrained portfolio using the sample 

covariance estimator (p. 1672). Furthermore, the unconstrained portfolios with Ledoit-Wolf (LW) 

covariance estimators had the lowest out-of-sample variance and were one of the only portfolios with 

significantly lower out-of-sample variance than the NN-constrained, sample covariance matrix portfolio.  

 

Motivated by these findings, I use either the sample covariance matrix, non-negativity constraints, or the 

LW covariance estimator to impose structure to the covariance matrix. These alternative covariance 

estimator structures are combined with constraints that incorporate MU, IS, both MU and IS, or neither 

when forming minimum variance portfolios. This allows me to observe which combination of constraints 

and covariance structure performs the best out-of-sample. 

 

NN constraints require each asset’s portfolio weight to be greater than or equal to 0. Jagannathan & Ma 

(2003) prove the equivalency of this constraint to shrinking the covariance matrix, as explained in section 

2.1.1. Formally, this constraint can be written into the optimization problem as follows: 

 

                                                                𝑤𝑖 ≥ 0      𝑓𝑜𝑟 𝑖 = 1, 2, …, N.           (14) 

 

The LW covariance matrix used in this study is the shrinkage-theory-based covariance estimator presented 

in Ledoit & Wolf (2004), where the authors develop a shrunk covariance estimator as the weighted average 

of the sample covariance estimator and a shrinkage target. Unlike Jagannathan & Ma (2003), this study 

does not use the estimator presented in Ledoit & Wolf (2003), where the shrinkage target was the covariance 

matrix derived from assuming stock returns are generated by a one-factor model. Instead, the estimator 

presented in Ledoit & Wolf (2004) is used, where the shrinkage target is related to the identity matrix, as 
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presented in equation (15). This is because of the lack of easily accessible functions for the former estimator 

in Python, the software of choice for this study. This should not be a cause for concern as the findings of 

Ledoit & Wolf (2003) illustrate that the shrunk estimator based on the identity matrix performs similarly 

to the shrunk estimator based on the one-factor model in out-of-sample portfolio variance.  

 

 The LW covariance estimator, SLW, is computed as follows: 

 

𝑆𝐿𝑊 =  
𝛽2

𝛿2 𝜇𝐼 +  
𝛼2

𝛿2 𝑆           (15) 

 

In this formula 
𝛽2

𝛿2 is interpreted as the weight parameter on the N × N identity matrix, I, and it represents 

the shrinkage intensity. Conversely, 
𝛼2

𝛿2 is the weight parameter on the sample covariance matrix, S, since 

α2 = δ2 – β2. Additionally, μ is a scalar value acting as a scaling factor of the identity matrix. These optimal 

parameters and weights are determined by minimizing a predefined quadratic loss function, the mean 

squared error of the LW estimator’s entries relative to the true covariance estimator’s entries.  

 

4.2 Equally weighted portfolio  

DeMiguel et al. (2009, p. 1921) emphasize that a portfolio optimization strategy that cannot outperform a 

basic, unoptimized alternative should not be utilized, as the extra effort of optimization is rendered 

meaningless. Consequently, equally weighted portfolios are often used in portfolio literature as the basic, 

unoptimized alternative to compare with the proposed strategies, specifically comparing out-of-sample 

performance.  

 

Banholzer et al. (2019) note two frequently used equally weighted portfolio strategies: the buy-and-hold, 

equally weighted portfolio, and the dynamic, equally weighted portfolio. The buy-and-hold portfolio is set 

to have weights equal to 1/N for all N assets at the beginning of the sample period. These weights are 

allowed to change since relative returns of assets may differ, thus changing the weight allocation if weights 

are not actively readjusted, a shift in portfolio weight towards assets with higher relative returns. On the 

other hand, the dynamic portfolio’s weights are also set to 1/N at the start but are readjusted at every 

considered time period, here every month, to hold the weights fixed at 1/N. The methodology for testing 

the performance of portfolio strategies, as explained below in section 4.3, is frequently used in portfolio 

optimization literature and fixes the weights of the considered naive strategy to 1/N for every period. 

Subsequently, this study considers only the dynamic, equally weighted portfolio strategy as the naive 

benchmark. To further motivate this choice, it is of interest to note that DeMiguel et al.'s (2009) findings 

that no optimized portfolio can outperform the equally weighted portfolio consistently, specifically 

considered the dynamic, equally weighted portfolio. 
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 Henceforth, all considered portfolio strategies will be referred to by their abbreviations, which are defined 

in Table 3 in Appendix A. 

  

4.3 Out-of-sample testing & performance metrics  

Out-of-sample periods are periods in which the corresponding data was not used to determine the optimal 

portfolio weights but to assess the performance of the constructed portfolios on unseen data.  

 

To obtain out-of-sample returns for all optimization strategies, I employ the rolling methodology used 

frequently in portfolio optimization literature (Behr et al., 2013; Jagannathan & Ma, 2003). For each month 

from July 2006 to February 2023, the past 60 months of returns data are used to form the appropriate 

covariance matrix of returns and, when relevant, the individual asset sensitivities to MU and IS. The 

covariance matrix and, optionally, the asset sensitivities are used to determine the optimal weights solution 

to the appropriate variance minimization problem defined in section 4.1. These optimal portfolio weights 

are held constant for the next year to obtain 12 out-of-sample monthly portfolio returns. The monthly 

portfolio return for each of these 12 out-of-sample months is computed as 𝑤′𝑟, where 𝑤′ is the 1 × N 

transposed vector of optimal portfolio weights, and r is the N × 1 vector of each asset’s returns for that 

month. The portfolios are readjusted annually; the next starting point for optimization is 12 months from 

the previous. This rolling methodology gives T – E out-of-sample returns in total, where T is the number 

of months between and including July 2001 and February 2024, specifically 272 months, and E is the 

estimation window of 60 months.  

 

For the DEW, portfolio out-of-sample returns are computed for each of the 212 months in the out-of-sample 

period of July 2006 to February 2024 as follows:  

      𝑟𝐷𝐸𝑊,𝑡 =  𝑋𝑟           (16) 

 

In this equation, 𝑟𝐷𝐸𝑊,𝑡, is the out-of-sample return for the DEW in month t, X is a 1 × N vector with all 

entries being 1/N, and r is an N × 1 vector of each asset’s returns for that month. For the 25SBM dataset, 

N is 25, and similarly, for the 17Ind dataset, N is 17. 

 

In order to compare the out-of-sample performance of the portfolio strategies in Table 3, the following 

performance metrics, as computed by DeMiguel et al. (2009) and Behr et al. (2013, p. 1235), are used: 

 

𝜎̂2 =  
1

𝑇−𝜏−1
Σ𝑡=𝜏

𝑇−1(𝑟𝑡+1𝑤′𝑡 − 𝜇̂)2,             𝑤𝑖𝑡ℎ 𝜇̂ =  
1

𝑇−𝜏
Σ𝑡=𝜏

𝑇−1(𝑟𝑡+1𝑤′𝑡)         (17) 

            𝑆𝑅̂ =
𝜇̂𝑒𝑥

𝜎̂𝑒𝑥
,              𝑤𝑖𝑡ℎ 𝜇̂𝑒𝑥 =  

1

𝑇−𝜏
Σ𝑡=𝜏

𝑇−1(𝑟𝑡+1𝑤′𝑡 −  𝑟𝑓,𝑡+1)       (18) 

𝑇𝑅𝑁 =
1

𝑋 
Σ𝑡=0

𝑋−1Σ𝑗=1
𝑁 (|𝑤𝑗,𝑡+1 − 𝑤𝑗,𝑡+|)                (19) 



 20 

In the equations above, 𝜎̂2 is the sample variance of the portfolio’s out-of-sample returns, 𝑟𝑡+1 is an N × 1 

vector of all asset returns in period t+1, 𝑤′𝑡 is a 1 × N vector of optimized weights in period t and 𝜇̂ is the 

sample mean of out-of-sample portfolio returns, which is also considered as a separate performance metric. 

Furthermore, T represents the index value of the final month in the out-of-sample period, specifically 

February 2024, and 𝜏 is the estimation window, here 60 months, which reflects the index for the month 

before the start of the out-of-sample period, June 2006. In equation (18), 𝜎̂𝑒𝑥 has the alternative definition 

of being the standard deviation of portfolio out-of-sample excess returns while 𝜇̂𝑒𝑥 is the sample mean of 

portfolio out-of-sample excess returns; excess returns are measured as the portfolio’s out-of-sample return 

in period t + 1 subtracted by the corresponding risk-free rate for that period, 𝑟𝑓,𝑡+1. This equation represents 

the computation of the portfolio’s overall out-of-sample Sharpe ratio, which measures risk-adjusted out-of-

sample returns.  

 

Equation (19) is the computation for portfolio turnover, reflecting the average percentage of invested funds 

that are traded every time the portfolio is rebalanced. Accordingly, in equation (19), X is the total number 

of rebalancing periods, and the outer summation only considers the months when the rebalancing occurs, 

specifically every month of July in the considered out-of-sample period. Following this logic, t is no longer 

time in months but in years, as the period between two consecutive rebalancing months is a year. Turnover 

is based on the sum of absolute differences in portfolio weights of all assets before and after rebalancing, 

with 𝑤𝑗,𝑡+ being the weight of asset j at time t+1 before rebalancing and 𝑤𝑗,𝑡+1 being the weight of asset j 

at time t + 1 after rebalancing. The weight before rebalancing, 𝑤𝑗,𝑡+, is computed following the method 

demonstrated in Figure 2 in Appendix A and 𝑤𝑗,𝑡+1 is simply the optimized weight for asset j, computed in 

the subsequent annual rebalancing period. Portfolio turnover consideration is crucial; it can indirectly 

reflect a portfolio strategy's relative mean return and Sharpe ratio performance after accounting for 

transaction costs. If a portfolio strategy has considerably higher relative turnover, its post-transaction cost 

Sharpe ratio and mean return decrease relative to other strategies. 

 

I also compute two additional performance metrics for each portfolio strategy: negative return probability 

(NRP) and median optimized absolute weight (MOAW). 

 

NRP is calculated as the proportion of negative out-of-sample returns for a strategy. Given the large number 

of total out-of-sample returns, specifically 212, this proportion can proxy the general probability. It is 

possible that a highly loss-averse investor, one who experiences a much more significant loss in utility from 

a negative return than a gain from a positive return of equal magnitude, picks the portfolio strategy with a 

lower Sharpe ratio, for example, if it has considerably lower NRP than its alternatives. The additional 

insight this performance metric can provide for such investors motivates its consideration.  
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On the other hand, MOAW is calculated by first storing all optimized weights of a strategy, computed at 

every rebalancing period, into a single list. These values are then converted into their absolute values, and 

finally, the median of this list is computed. Absolute values are considered to allow for more intuitive 

comparisons of this metric between optimization strategies that allow for negative weights and those that 

do not, such as the DEW and strategies with non-negativity constraints. The MOAW of a portfolio strategy 

provides insight into the concentration of the portfolios' weights, allowing us to observe whether the 

strategy allocates negative or positive weight to only a few assets, suggesting poor diversification, or to 

several assets. The consideration of this metric is motivated by the importance of diversification, as 

encouraged by Markowitz (1952), which can reduce the portfolio’s idiosyncratic risk exposure, the risk 

specific to a single asset or a small subset of assets. Note that a well-diversified portfolio can be a mixture 

of both long and short positions, as opposed to just one type of position, thus, considering absolute weights 

is appropriate. 

 

4.4 Significance tests 

To provide statistically validated conclusions to the hypotheses of this study, standard paired t-tests are 

used to perform a two-tailed test following the methodology of Jagannathan & Ma (2003, p. 1673). The 

authors use the fact that the variance of a random variable, such as returns, is equal to 𝐸(𝑋2) − (𝐸(𝑋))2, 

with X representing the random variable, which is out-of-sample portfolio returns in this case, to test for 

differences in variances. They note that if the tests for differences in mean returns, (𝐸(𝑋)), are insignificant, 

then testing for differences in mean squared returns, (𝐸(𝑋2)), is equivalent to testing for differences in 

return variances. After observing that the t-tests for differences in mean returns between DEW and all other 

strategies considered in this study are insignificant, I utilize the t-test for differences in mean-squared 

returns of a portfolio strategy and the DEW to test the following null hypothesis: 

 

                                                                   𝐻0:  𝜎̂𝑖
2 −  𝜎̂𝐷𝐸𝑊

2 = 0            (20) 

 

This t-test comparing mean squared returns and thus return variance is run for all considered optimization 

strategies, subscript 𝑖 in equation (20) is replaced by the considered portfolio strategy’s abbreviation. 

 

As later discussed in the limitations section, standard t-tests cannot be performed on Sharpe ratio differences 

since multiple Sharpe ratio observations are required for each portfolio strategy. Additionally, alternative 

tests, such as the circular block bootstrap test developed by Ledoit & Wolf (2008), are not performed due 

to their mathematical complexity. Bootstrapping would allow for a distribution of Sharpe ratio values to be 

obtained, which can then be used to compute appropriate standard errors, test statistics, and p-values. 
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5  Results & Discussion 

5.1 Asset Sensitivities  

Appendix A includes figures for the distribution of asset sensitivities in the two considered datasets to 

potentially draw on to provide reasoning for inter-dataset differences in portfolio performances. Recall that, 

in this study, asset sensitivity to MU and IS is defined as absolute regression 𝛽1 values from regression 

equations (4) and (5), respectively. Returns, used as input to out-of-sample performance testing for every 

portfolio strategy, are converted from percentages to their equivalent decimal values. Therefore, the beta 

values in the distributions presented in Appendix A, multiplied by 100, represent the percentage change in 

the asset’s returns for a one-unit increase in either the IS or MU proxy. 

 

 5.2 Discussion on results of the 25SBM dataset 

The results discussed in this section relate to those presented in Table 4, Appendix A. Before discussing 

the results, I clarify how the assessed performance metrics can be interpreted. 

 

All performance metrics relate to either the out-of-sample returns or the computed weights of a portfolio 

strategy. It is useful to note that lower values of MOAW indicate worse diversification. Lower values 

suggest that most assets are assigned very low weights, implying that, at each point of rebalancing, most of 

the portfolio weight lies in a few assets. The DEW is an exception; it is known that the MOAW will always 

be 1/N; thus, when N, the number of assets, is high, this value can be low yet still suggest adequate 

diversification. Lower portfolio turnover, TRN, indicates that we can expect similar out-of-sample 

performance metric values when accounting for transaction costs as incurred transaction costs increase with 

portfolio turnover.  

 

The reported mean returns, 𝜇̂, are in decimal format, multiplying them by 100 gives the average monthly 

out-of-sample returns in percentage format. Similarly, multiplying NRP by 100 expresses the probability 

as a percentage. Conversely, a portfolio strategy’s monthly out-of-sample Sharpe ratio, 𝑆𝑅̂, and a strategy’s 

return variance, 𝜎̂2, are best interpreted through comparisons with their values for other portfolio strategies. 

Return variance captures the dispersion of portfolio returns around their mean, while the Sharpe ratio 

measures the risk-adjusted return.  

As noted in Table 4, no optimization strategy significantly increases mean out-of-sample return relative to 

the DEW, which is especially surprising for the IS-incorporating strategies, given that IS has been shown 

to have a significant adverse effect on returns (Schmeling, 2009). One potential explanation may be the 

lack of a significant number of periods with considerably higher IS within the sample period. In such 

periods of high IS, the returns of non-IS-incorporating strategies would be expected to reduce by a greater 

degree than those incorporating IS by reducing portfolio sensitivity to IS. However, the insignificance of 

differences in mean out-of-sample returns for minimum-variance portfolios relative to the DEW aligns with 
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the results of Jagannathan & Ma (2003, p. 1672). This suggests that this observed insignificance may be 

because minimum-variance portfolios disregard the direct consideration of mean returns within the 

optimization problem. As stated in section 4.5, this observed insignificance allows for testing the 

significance of differences in return variances following the approach of Jagannathan & Ma. 

 

The results from Table 4 illustrate that incorporating only MU has the same effect on portfolio return 

variances as incorporating only IS, as seen by the similar return variances of Min-MU-U and Min-IS-U, 

which are both insignificantly different from that of the DEW. Furthermore, the simultaneous incorporation 

of both factors does not lead to the development of portfolios that can significantly outperform the DEW 

unless combined with non-negativity constraints or the Ledoit-Wolf covariance estimator. This is 

demonstrated by the return variances of Min-MU-IS-N and Min-MU-IS-L, which are significantly lower 

than that of the DEW at a 1% significance level.  

Similar to the results presented by Jagannathan and Ma (2003), my findings greatly support the benefit of 

using an LW covariance estimator, as all strategies with the lowest return variance utilize this covariance 

estimator. Given the equal variances of Min-L, Min-IS-L, Min-MU-L, and Min-IS-MU-L and the 

significantly lower variance of all four strategies relative to DEW, it can be deduced that MU and IS 

contributed minimally to decreasing return variance, most of the contribution comes from the use of the 

LW covariance estimator. 

 

Despite the lack of tests for the significance of Sharpe ratio differences, considering the magnitude of these 

differences can speak to their economic significance. When considering the magnitude of Sharpe ratio 

differences, there is strong evidence in favor of optimization; all optimization strategies exhibit 

considerably higher Sharpe ratios than the DEW, the naive alternative to optimization. Incorporating MU 

and IS is also shown to be highly beneficial, as the highest Sharpe ratios belong to optimization strategies 

that incorporate MU, IS, or both. Namely, Min-MU-U, Min-MU-N, and Min-MU-IS-U, which exhibit 

Sharpe ratios exceeding the DEW's by roughly 36%. The lowest Sharpe ratio belongs to Min-MU-IS-N, 

exceeding the DEW’s Sharpe ratio by around 10%.  

 

A turnover ten times that of the DEW is considered by Banholzer et al. (2019, p. 690) to be relatively high, 

while Behr et al. (2013, p. 1239) find a turnover of around five to six times that of the DEW to be 

comparatively low. Following these bounds, besides the strategies that use an LW covariance estimator, 

almost all optimization strategies illustrate high turnover relative to the DEW. For these strategies, it is 

uncertain whether the post-transaction cost Sharpe ratios would exhibit the same considerable 

outperformance as is observed for pre-transaction cost Sharpe ratios in Table 4. Notably, two optimization 

strategies demonstrate highly similar turnover to the DEW, specifically Min-N and Min-MU-IS-N. 

However, both strategies produce highly concentrated portfolios. This high concentration is deduced from 
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their near-zero values for MOAW, which implies that most of the assigned weight is concentrated in a few 

out-of-sample weights. Additionally, their low turnover values strengthen this deduction, suggesting 

minimal changes to their highly concentrated portfolio weight distribution over time; most of the portfolio 

weight is allocated to the same few assets in every rebalancing period. 

 

Incorporating MU and IS does not considerably increase or decrease NRP relative to the DEW. Two 

potential explanations exist. First, the effective diversification of the DEW limits the prevalence of negative 

returns due to adverse idiosyncratic shocks, and second, the performed optimization minimizes variance, 

not NRP. When non-negativity constraints are already imposed, the incorporation of MU and IS can reduce 

NRP as seen by lower NRP values for Min-MU-N, Min-IS-N, and Min-MU-IS-N in comparison to Min-

N; however, these differences are again insubstantial.  

 

5.3 Discussion on results of the 17Ind dataset 

The results discussed in this section relate to those presented in Table 5, Appendix A. 

 

Table 5 shows that the out-of-sample mean returns of all optimization strategies from the 17Ind dataset 

insignificantly differ from the mean returns of the DEW. On the other hand, opposing the findings from the 

25SBM dataset, all optimization strategies have significantly lower out-of-sample return variances than the 

DEW at a 1% significance level, with all variances being around half of the DEW’s variance. The 

significant outperformance of the Min-MU-U coincides with MU's documented significant, positive effect 

on return volatility (Iania et al., 2023), suggesting that reducing portfolio sensitivity to MU could improve 

return variances. 

 

To understand why optimization strategies more frequently outperform the DEW in portfolio return 

variance in the 17Ind dataset, it is essential to recall the findings of Kirby & Ostdiek (2012). One of their 

proposed strategies considers asset return variances to determine portfolio weights, similar to the minimum-

variance strategies employed in this study. The performance of this strategy was shown to depend on the 

cross-sectional dispersion of return variances in the considered dataset; their strategy performs better when 

there is a larger range in return volatilities of the assets in the considered dataset. The return volatilities in 

the 25SBM dataset, as observed in Table 1, range from 0.0420 to 0.0766, a difference of 0.0346, while in 

the 17Ind dataset, as presented in Table 2, they range from 0.0343 to 0.0947, a larger difference of 0.0604. 

The larger range of cross-sectional return volatilities in the 17Ind dataset may allow for improved 

minimum-variance optimization. 

 

Following this logic, I provide another reason for the improved relative performance of the IS and MU 

incorporating strategies. In the 25SBM dataset, only four out of nine strategies incorporating IS, MU, or 

both exhibit significantly lower return variance than the DEW, whereas in the 17Ind dataset, all nine 
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strategies exhibit such variance. Notably, strategies incorporating only MU or IS, without alternative 

covariance structures, also outperform the DEW in return variance. This may be because the range of assets’ 

sensitivities to IS in the 17Ind dataset, as shown in Figure 4, is higher than the range in the 25SBM dataset, 

as shown in Figure 3. Similarly, the range of sensitivities to MU in the 17Ind dataset, as shown in Figure 

6, is higher than the range in the 25SBM dataset, as shown in Figure 5. 

 

When assessing Sharpe ratios computed in the 17Ind dataset, two similarities are observed to those 

computed under the 25SBM dataset. First, all optimization strategies have a higher Sharpe ratio than the 

DEW. Second, the Min-MU-IS-N strategy has the lowest Sharpe ratio of all optimization strategies. The 

latter finding may be because imposing all three constraints, non-negativity, MU sensitivity, and IS 

sensitivity, leads to excluding assets that cannot fit the constraints but would have still contributed to 

improving out-of-sample portfolio Sharpe ratios. Furthermore, an increased number of constraints in a 

model tends to lead to the model overfitting on its trained data, here the 60 months of historical returns, 

which reduces the generalizability to the untrained data, here the 12-month holding period. In contrast, the 

Min-MU-IS-LW strategy does not exhibit such relatively poor out-of-sample Sharpe ratios in either dataset. 

This may be because non-negativity constraints indirectly shrink the covariance estimator to reduce the 

effect of estimation errors; however, they do so by imposing an additional constraint, resulting in the 

possible exclusion of relevant assets and overfitting. On the other hand, the LW covariance estimator 

shrinks the covariance estimator without imposing such an additional constraint.  

 

Another insightful inter-dataset pattern is observed when assessing portfolio turnover, TRN. On average, 

portfolio turnover is lower in the 17Ind dataset than in the dataset with more assets, 25SBM. This pattern 

is also observed in the turnover values presented by Cai et al. (2024, p. 22). This follows logically from the 

formula of portfolio turnover in equation (17), where the turnover value is not normalized by the number 

of assets being considered. As a result, with more assets, as in the 25SBM dataset, there is a greater 

likelihood of the occurrence of idiosyncratic events, which are relevant to only a few assets, in the 12-

month holding period. Such events may cause shifts in the relative attractiveness of different assets within 

the appropriate optimization framework, leading to more significant adjustments to portfolio weights in the 

subsequent rebalancing period and, thus, increased turnover. 

 

The 17Ind dataset provides more substantial evidence than the 25SBM dataset for optimization strategies 

to preserve their outperformance in Sharpe ratios, relative to the DEW, after accounting for transaction 

costs. With Behr et al. (2013, p. 1239) finding portfolio turnover of five times that of the DEW to be 

comparatively low, all optimization strategies have relatively low turnover in the 17Ind dataset, the highest 

being roughly three times that of the DEW. This implies a negligible effect on Sharpe ratios when 

accounting for transaction costs can be expected. Therefore, similar, considerable outperformance of 
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optimization strategies relative to the DEW would be observed when assessing post-transaction cost Sharpe 

ratios, as is noted for pre-transaction cost Sharpe ratios in Table 5. 

  

Aligning with the findings of the 25SBM dataset, Min-N and Min-MU-IS-N exhibit similar turnover to the 

DEW. Both strategies again produce portfolios with consistently high concentrations of portfolio weights 

over time due to their low values for MOAW and TRN. 

 

NRP results again do not indicate that incorporating MU and IS has sizable effects on reducing or increasing 

NRP; all strategies have NRP values within a 10% range from that of the DEW. 

  

5.4 Answers to Hypotheses 1 and 2 

Hypothesis 1 states that the IS-incorporating strategies are expected to outperform the DEW in the out-of-

sample period. Hypothesis 2 is the expectation of MU-incorporating strategies outperforming the DEW in 

the out-of-sample period. 

 

As significance tests are not conducted for Sharpe ratios, I will not conclude these hypotheses based on 

Sharpe ratio differences due to a lack of statistical validity in such conclusions. However, it is worth noting 

that both datasets illustrate that all strategies that incorporate MU and IS have considerably higher out-of-

sample Sharpe ratios than the DEW. 

 

The significance tests for differences in mean returns do not provide evidence in favor of either hypothesis 

as all optimization strategies have insignificantly different mean returns relative to the DEW. However, the 

results obtained from the significance of return variance differences between IS and MU incorporating 

strategies and the DEW provide moderately strong evidence in support of both hypotheses. This is because 

the significance of these variance differences depends on the assets under consideration, specifically on 

some cross-sectional characteristics of the assets within the considered dataset. Namely, sufficient cross-

sectional dispersion in assets’ return variances and sufficient cross-sectional dispersion in asset sensitivities 

to MU and IS. When these dispersions are low, as in the 25SBM dataset, incorporating only IS or MU 

requires using an LW covariance estimator to develop minimum-variance portfolios with significantly 

lower return variances than the DEW. However, when these dispersions are sufficiently high, as in the 

17Ind dataset, incorporating IS or MU allows for developing such portfolios without additional 

considerations. It is uncertain whether the performance of MU and IS incorporating strategies depends on 

these specific dispersions or other asset characteristics. Nonetheless, the significant, relative 

outperformance of MU and IS incorporating strategies would still depend on specific characteristics of the 

assets within the dataset; indicating moderately strong, as opposed to very strong, evidence in favor of the 

hypotheses. 
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6  Robustness Tests 

Results that are highly dependent on specific parameter values and specifications of considered variables, 

diminish the validity of any conclusions formed based on those results. To ensure this validity, appropriate 

robustness checks are performed. The results for all robustness checks are provided in Appendix C. 

 

The first robustness check, encouraged by Banholzer et al. (2019), is changing the estimation window in 

the rolling methodology for constructing optimized portfolios and testing their out-of-sample performance, 

as explained in section 4.3. Previously, I used an estimation window of 60 months, which entails that at any 

point in the out-of-sample period, the prior 60 months of data is used to determine asset sensitivities, 

covariance matrices, and all other inputs to the optimization framework, which are then used to construct 

and test the optimized portfolios. To test for robustness to relatively minor changes in the estimation 

window, Banholzer et al. adjusted their initial window of 120 months down to 108 months and up to 132 

months; a 10% decrease and increase in the estimation window. Following these proportions, the results 

for adjusting my initial window of 60 months down to 54 months are presented in Tables 6 and 7, and the 

adjustment to 66 months is presented in Tables 8 and 9. The results presented in these tables for both 

datasets, specifically the nearly identical outcomes of the significance tests on mean return differences and 

return variance differences, support the same conclusions of relatively strong support for Hypotheses 1 and 

2. Consequently, the obtained results are robust to minor changes in the estimation window. 

 

The second robustness check relates to the specification of the IS proxy. As discussed in section 3.3, 

following Chau et al. (2016) and Wang et al. (2006), I ignore the percentage of neutral investors when 

forming the IS proxy variable. However, there are instances when this could lead to misrepresenting the 

stock market as being highly bearish or bullish when it is best described as being neutral. For example, 

when the percentage of neutral investors is exceptionally high, but the bullish percentage still greatly 

exceeds the bearish percentage, the previous IS proxy variable misrepresents the market as highly bullish. 

As a result, I implement an adjusted IS proxy, previously computed using equation (1). The new proxy is 

the percentage of bullish investors, which accounts for the number of neutral investors in its denominator. 

Under this new proxy, despite a considerably larger number of bullish than bearish investors, the market 

would not be incorrectly described as highly bullish when the percentage of neutral investors is 

exceptionally high. A limitation of this new proxy is that it distinguishes between a bullish and non-bullish 

market as opposed to a bullish and bearish market since, at lower percentages of bullish investors, it cannot 

distinguish between whether the market is bearish or neutral. Nonetheless, repeating the analysis under this 

alternative IS proxy can highlight the robustness of my results to alternative IS proxies. Tables 10 and 11 

illustrate that the results obtained are robust to this alternative definition for the IS proxy, as across both 

datasets, the results for the IS-incorporating strategies are almost identical for both IS proxy definitions. 

Most importantly, the t-tests for mean and variance differences yield the same results for all IS-
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incorporating strategies under both IS proxy definitions. Tables 4 and 5 contain the results for the IS-

incorporating strategies under the 25SBM and 17Ind datasets, respectively, and the previous IS proxy 

definition.  

 

The final robustness check involves changing the specification of the regressions for asset sensitivities, 

specifically regression equations (4) and (5). There may exist alternative regression specifications that allow 

for better computations of asset sensitivities to MU and IS, thus, it is insightful to observe whether my 

obtained results highly depend on the exact regression specification I have used. A simple and intuitive way 

to test for robustness to altered specifications is to add appropriate lagged variables to the regressions. 

Specifically, I add the first five lags of all control variables, which are listed in sections 3.2.1 and 3.3.1. 

The new regression equations for asset sensitivity to MU and IS are stated below in equations (21) and (22), 

respectively. 

 

𝑟𝑡 = 𝛽0 + 𝛽1𝑀𝑈 𝑃𝑟𝑜𝑥𝑦𝑡 + 𝛽2𝑈𝑛𝑒𝑚𝑝𝑙𝑦𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒 𝐶ℎ𝑎𝑛𝑔𝑒𝑡 +

          𝛽3𝑈𝑛𝑒𝑚𝑝𝑙𝑦𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒 𝐶ℎ𝑎𝑛𝑔𝑒𝑡−1 + … +  𝛽7𝑈𝑛𝑒𝑚𝑝𝑙𝑦𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒 𝐶ℎ𝑎𝑛𝑔𝑒𝑡−5 +

          𝛽8𝐼𝑃𝐼 𝐶ℎ𝑎𝑛𝑔𝑒𝑡 + … +  𝛽13𝐼𝑃𝐼 𝐶ℎ𝑎𝑛𝑔𝑒𝑡−5 + 𝛽14𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒𝑡 +  … +

          𝛽19𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒𝑡−5 + 𝛽20𝐷𝑒𝑓𝑎𝑢𝑙𝑡 𝑆𝑝𝑟𝑒𝑎𝑑𝑡 +  … + 𝛽25𝐷𝑒𝑓𝑎𝑢𝑙𝑡 𝑆𝑝𝑟𝑒𝑎𝑑𝑡−5 +  𝜀𝑡    (21) 

 

𝑟𝑡 =  𝛽0 + 𝛽1𝐼𝑆 𝑃𝑟𝑜𝑥𝑦𝑡 + 𝛽2𝑇𝑒𝑟𝑚 𝑆𝑝𝑟𝑒𝑎𝑑𝑡 + 𝛽3𝑇𝑒𝑟𝑚 𝑆𝑝𝑟𝑒𝑎𝑑𝑡−1 +  … +

          𝛽7𝑇𝑒𝑟𝑚 𝑆𝑝𝑟𝑒𝑎𝑑𝑡−5 + 𝛽8𝐼𝑃𝐼𝑡 + … + 𝛽13𝐼𝑃𝐼𝑡−5 + 𝛽14𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒𝑡 +  … +

          𝛽19𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒𝑡−5 + 𝜀𝑡                     (22) 

 

Given the large number of independent variables in the new regression equations, I do not explicitly state 

the first five lags of all control variables in equations (21) and (22). As monthly data is used in this study, 

𝑋𝑡−𝑛 is the n-month prior value of the variable 𝑋. 

 

Lagged variables are included to capture the delayed effects of the control variables on the dependent 

variable, returns. Therefore, five lags have been chosen as they capture an adequate range of prior months 

and various delayed effects, including those associated with quarterly cycles in macroeconomic data. In 

particular, the third lag accounts for the quarterly cycles inherent in the macroeconomic variables used in 

this study. As I remove observations with missing data and use up to five lags, the sample period is now 

from December 2001 to February 2024 and the out-of-sample period is from December 2006 to February 

2024; both periods start five months ahead of their previously defined range. The results of this robustness 

check for the 25SBM and 17Ind datasets are presented in Tables 12 and 13, respectively. The results in 

these tables, specifically the identical significance test results, illustrate that my previously obtained results 

are robust to alternative specifications for asset return sensitivity regressions.  
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7  Conclusion  

Prior research on portfolio optimization has concentrated on refining the information present in the inputs 

of the traditional optimization framework, specifically asset returns and covariances. The consideration of 

other variables within this framework, which can provide comparatively attractive portfolios while 

addressing the concern that investors value more than returns and variances, has been limited. Given this 

gap in prior research and evidence provided by relevant literature for the potential benefits of incorporating 

IS and MU into optimized portfolios, I developed a portfolio optimization framework that can incorporate 

IS and MU. Moreover, this framework allows investors to conveniently adjust the extent of this 

incorporation based on their preferences. This addresses the lack of consideration for the factors investors 

may value beyond returns and variances, such as the extent to which their ideal portfolio should be resilient 

to changes in IS and MU. Accordingly, this study explores the following question: 

 

“Can incorporating macroeconomic uncertainty and investor sentiment in the portfolio optimization 

framework produce portfolios that outperform the equally weighted portfolio in the out-of-sample period?” 

 

Two datasets on monthly asset returns, focusing on the US stock market, were used to answer this research 

question. The proxy for IS was defined using survey data from the AAII, while the proxy for MU was the 

Baker-Bloom-Davis measure of EPU. MU and IS were incorporated into the optimization framework using 

constraints on the optimized portfolio’s sensitivity to these factors. This study assessed the out-of-sample 

performance of several minimum variance portfolios, which were constructed under different constraints 

and covariance structures, relative to a commonly considered benchmark strategy, the DEW. Performing 

this analysis provides fairly strong evidence supporting the relative outperformance of MU-incorporating 

and IS-incorporating strategies. This relative outperformance is specifically in terms of significantly lower 

out-of-sample portfolio variance than the DEW.   

 

The general effectiveness of incorporating MU and IS motivates the use of the proposed methodology to 

incorporate other intuitive factors, which are documented to have significant effects on returns or return 

variances, using optimization constraints. Furthermore, my findings strengthen the motivation for portfolio 

optimization literature to perform their proposed additions under different datasets with different cross-

sectional characteristics. This is because the significance of the portfolio variance differences, specifically 

between MU and IS incorporating strategies and the DEW, is shown to depend on the cross-sectional 

characteristics of assets specific to a dataset, an insight that would have been unobserved if the analysis had 

been performed on a single dataset. Consistent with prior literature, my findings demonstrate that 

significantly outperforming the DEW in mean returns can be challenging for minimum-variance portfolios. 
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7.1 Limitations & future research 

A key limitation of my research is the assumptions drawn in using standard t-tests to evaluate the 

significance of differences in portfolio variance. As noted by Behr et al. (2013), ‘standard hypothesis tests 

do not control for time series characteristics in portfolio returns’ (p. 1237). Notably, such tests assume that 

monthly returns are independent, while they tend to exhibit autocorrelation, and monthly returns are 

normally distributed, while they have been documented to follow non-normal distributions (Campbell et 

al. (2001), p. 1796). To account for these shortcomings, Behr et al. (2013) use bootstrapping tests developed 

by Ledoit & Wolf (2011) to test the significance of portfolio variance differences. However, due to the 

mathematical complexity of such tests, they were not implemented in this study. Instead, the approach used 

by Jagannathan & Ma (2003), a highly regarded and frequently cited paper, was employed to test for 

significant variance differences. Nonetheless, researchers expanding on or replicating my analysis should 

reconfirm the observed t-test results using the alternative test developed by Ledoit & Wolf (2011). 

 

Another limitation of this study is the absence of testing for the significance of Sharpe ratio differences. 

Standard hypotheses tests, such as the t-test, are invalid for comparing two Sharpe ratio observations as 

they require standard errors of Sharpe ratios. While my analysis only provides one Sharpe ratio observation 

for each portfolio strategy, standard errors are typically determined using standard deviations, which require 

a series of observations to be computed. Ideally, significance tests that account for the non-normality of 

returns and return autocorrelation, such as the test developed by Ledoit & Wolf (2008), should be 

implemented instead of standard hypotheses tests. However, due to their mathematical complexity, they 

are not implemented in this study. Although there are large, economically significant differences in the 

Sharpe ratios of my proposed strategies and the DEW, conclusions on relative outperformance cannot be 

made using Sharpe ratios as they would lack statistical validity. To strengthen the conclusions of this study, 

formed through significant portfolio variance differences, researchers wishing to expand on or replicate this 

study should employ the test developed by Ledoit & Wolf (2008) and evaluate the significance of Sharpe 

ratio differences. 

 

The findings presented in this study on the benefits of incorporating MU into portfolio optimization reveal 

further points of future research, particularly in combination with the findings of Segal et al. (2015). The 

authors find that MU can be decomposed into a good and bad component, with equity prices increasing 

with good uncertainty and decreasing with bad uncertainty. Future research can aim to exploit both 

components of MU within portfolio optimization by separately considering the opposing effects of good 

and bad uncertainty on equity prices. For example, this can be achieved by identifying when good or bad 

MU is predicted to increase and placing greater portfolio weights on assets with higher sensitivity to good 

MU and lower weights on assets with higher sensitivity to bad MU. The effectiveness of my proposed 

strategies highlights the potential of such alternative uses of asset sensitivities within the optimization 

framework. 
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APPENDIX A  All tables and figures, excluding robustness check results 

Table 1. Descriptive statistics of assets’ monthly returns under the 25SBM dataset 

Asset Name avg. SD min.       max.         Asset Name       avg.       SD        min.       max. 

ME1BM1 0.0040 0.0766 -0.2385  0.2579  ME3BM4 0.0099  0.0592  -0.2695  0.1666 

ME1BM2 0.0081 0.0659 -0.1948  0.2137  ME3BM5 0.0101  0.0685  -0.3125  0.2308 

ME1BM3 0.0079 0.0605 -0.2199  0.1930  ME4BM1 0.0096  0.0538  -0.2041  0.1655 

ME1BM4 0.0096 0.0592 -0.2651  0.2043  ME4BM2 0.0100  0.0526  -0.2060  0.1578 

ME1BM5 0.0118 0.0685 -0.2763  0.4151  ME4BM3 0.0087  0.0538  -0.2488  0.1679 

ME2BM1 0.0082 0.0690 -0.2301  0.2123  ME4BM4 0.0090  0.0573  -0.3271  0.1676 

ME2BM2 0.0099 0.0609 -0.2329  0.1912  ME4BM5 0.0077  0.0666  -0.3248  0.2043 

ME2BM3 0.0100 0.0588 -0.2181  0.1757  ME5BM1 0.0092  0.0452  -0.1486  0.1409 

ME2BM4 0.0092 0.0593 -0.2367  0.1867  ME5BM2 0.0079  0.0420  -0.1491  0.1376 

ME2BM5 0.0095 0.0710 -0.3206  0.2616  ME5BM3 0.0083  0.0434  -0.1574  0.1426 

ME3BM1 0.0082 0.0612 -0.2313  0.2083  ME5BM4 0.0046  0.0543  -0.2748  0.1608 

ME3BM2 0.0105 0.0552 -0.1958  0.1912  ME5BM5 0.0073  0.0691  -0.2840  0.2198 

ME3BM3 0.0092 0.0540 -0.1794  0.1666   

Note. SD is the sample standard deviation, and avg. is the sample average. All values can be converted to 

percentages by multiplying by 100. 

 

Table 2. Descriptive statistics of monthly portfolio returns for the 17Ind dataset 

Asset Name avg. SD min        max         Asset Name       avg.       SD        min        max 

Food   0.0076 0.0343 -0.1300  0.1032  Fab. Pro. 0.0116  0.0581  -0.2314  0.1894 

Mining  0.0104 0.0828 -0.3277  0.2203  Machinery 0.0110  0.0680  -0.2432  0.1942 

Oil  0.0089 0.0730 -0.3466  0.3284  Automobiles 0.0111  0.0869  -0.2791  0.3932 

Clothes  0.0105  0.0644 -0.2253  0.2393  Transport 0.0098  0.0557  -0.2299  0.1995 

Con. Dur. 0.0062 0.0652 -0.2582  0.2963  Utilities  0.0069  0.0410  -0.1294  0.1037 

Chemicals 0.0086 0.0633 -0.2200  0.2000  Retail  0.0098  0.0475  -0.1461  0.1828 

Con. Pro. 0.0080 0.0361 -0.0977  0.1039  Fin. Ser. 0.0069  0.0573  -0.2123  0.1710 

Construct. 0.0114 0.0633 -0.2029  0.1801  Others  0.0082  0.0481  -0.1752  0.1390 

Steel   0.0096 0.0947 -0.3241  0.2589 

Note. SD is the sample standard deviation, and avg. is the sample average. All values can be converted to 

percentages by multiplying by 100. 
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Figure 1. Time series plot of MU and IS proxies 

 

Note. Here, the MU Proxy is the three-component EPU index developed by Baker et al. (2016), and the IS 

Proxy is Bullish_Relative 𝑡, as computed in equation (1). The time horizon plotted is July 2001 to February 

2024. 
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Table 3. List of all considered portfolio strategies’ descriptions and their abbreviations 

#  Portfolio strategy description       Abbreviation 

1 Dynamic, equally weighted portfolio      DEW 

2 Minimum-variance portfolio without constraints     Min-U 

3 Minimum-variance portfolio with NN constraints    Min-N 

4  Minimum-variance portfolio with LW covariance estimator   Min-L 

5 Minimum-variance portfolio with only MU constraints    Min-MU-U 

6 Minimum-variance portfolio with MU and NN constraints   Min-MU-N 

7 Minimum-variance portfolio with MU and LW covariance estimator  Min-MU-L 

8 Minimum-variance portfolio with only IS constraints    Min-IS-U 

9 Minimum-variance portfolio with IS and NN constraints    Min-IS-N 

10 Minimum-variance portfolio with IS and LW covariance estimator  Min-IS-L 

11 Minimum-variance portfolio with only MU and IS constraints   Min-MU-IS-U 

12 Minimum-variance portfolio with MU, IS, and NN constraints   Min-MU-IS-N 

13 Minimum-variance portfolio with MU, IS, and LW covariance estimator  Min-MU-IS-L 

Note. NN stands for non-negativity, LW for Ledoit-Wolf, and ‘with MU’ means that the MU constraints 

are used in forming the portfolio, and similarly, ‘with IS’ means that the IS constraints are used. Portfolio 

strategies are referred to by their abbreviations in this study. 
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Figure 2. Flowchart of methodology for computing weights before rebalancing   

 

 

Note. An asset’s weight before rebalancing refers to 𝑤𝑗,𝑡+ from equation (18). 
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Figure 3. Histogram of asset sensitivities to investor sentiment under the 25SBM dataset 

Note. These sensitivities are computed from regression equation (5), using data from the entire sample 

period from July 2001 to February 2024. 

 

Figure 4. Histogram of asset sensitivities to investor sentiment under the 17Ind dataset 
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Note. These sensitivities are computed from regression equation (5), using data from the entire sample 

period from July 2001 to February 2024. 

 

Figure 5. Histogram of asset sensitivities to macroeconomic uncertainty under the 25SBM dataset 

 

Note. These sensitivities are computed from regression equation (4), using data from the entire sample 

period from July 2001 to February 2024. Beta values on the x-axis are multiplied by 10−5. 
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Figure 6. Histogram of asset sensitivities to macroeconomic uncertainty under the 17Ind dataset 

Note. These sensitivities are computed from regression equation (4), using data from the entire sample 

period from July 2001 to February 2024.  

 

Table 4. Out-of-sample performance metrics for all portfolio strategies under the 25SBM dataset 

Portfolio Abbreviation   𝜇̂        𝜎̂2    NRP         MOAW    𝑆𝑅̂          TRN 

DEW    0.0088        0.0032   0.3585         0.0400   0.1370          0.0510 

Min-U    0.0121        0.0036   0.3632         0.3181   0.1838          0.5192 

Min-N    0.0083        0.0019***   0.3821         0.0000   0.1675         0.0537 

Min-L    0.0084        0.0017***   0.3868         0.1388   0.1791          0.2287 

Min-MU-U   0.0121        0.0035   0.3632         0.3117   0.1867          0.5172 

Min-MU-N   0.0121        0.0035   0.3632         0.3117   0.1866          0.5172 

Min-MU-L   0.0085        0.0017***   0.3868         0.1388   0.1803          0.2287 

Min-IS-U   0.0121        0.0036   0.3632         0.3181   0.1838          0.5192 

Min-IS-N   0.0121        0.0036   0.3632         0.3181   0.1838          0.5193 

Min-IS-L   0.0084        0.0017***   0.3868         0.1388   0.1791          0.2287 

Min-MU-IS-U   0.0121        0.0035   0.3632         0.3117   0.1866          0.5172 

Min-MU-IS-N   0.0078        0.0020***   0.3726         0.0000   0.1506          0.0489 

Min-MU-IS-L   0.0085        0.0017***   0.3868         0.1388   0.1803         0.2287 

Note. *p < 0.1, **p < 0.05, ***p < 0.01. Significance tests for 𝜇̂ and 𝜎̂2 assess significant differences in 

mean returns and return variance relative to the DEW. Portfolio abbreviations are explained in Table 1. 
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Table 5. Out-of-sample performance metrics for all portfolio strategies under the 17Ind dataset 

Portfolio Abbreviation   𝜇̂        𝜎̂2    NRP         MOAW    𝑆𝑅̂          TRN 

DEW    0.0096        0.0027   0.3679         0.0588   0.1658          0.0818 

Min-U    0.0099        0.0014***   0.3821         01469   0.2379          0.2378 

Min-N    0.0083        0.0012***   0.3585        0.0000   0.2082         0.0808 

Min-L    0.0091        0.0012***   0.3538        0.1105   0.2316         0.1751 

Min-MU-U   0.0102        0.0014***   0.3774         0.1502   0.2453         0.2383 

Min-MU-N   0.0102        0.0014***   0.3774        0.1502   0.2454         0.2384 

Min-MU-L   0.0093        0.0012***   0.3538        0.1122   0.2376         0.1776 

Min-IS-U   0.0099        0.0014***   0.3821         0.1469   0.2379         0.2378 

Min-IS-N   0.0099        0.0014***   0.3821        0.1469   0.2378         0.2378 

Min-IS-L   0.0091        0.0012***   0.3538         0.1105   0.2316         0.1751 

Min-MU-IS-U   0.0102        0.0014***   0.3774         0.1502   0.2353         0.2383 

Min-MU-IS-N   0.0085        0.0012***   0.3538        0.0000   0.2182         0.0797 

Min-MU-IS-L   0.0093        0.0012***   0.3538         0.1122   0.2376         0.1775 

Note. *p < 0.1, **p < 0.05, ***p < 0.01. Significance tests for 𝜇̂ and 𝜎̂2 assess significant differences in 

mean returns and return variance relative to the DEW. Portfolio abbreviations are explained in Table 1. 
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APPENDIX B  Optimization in Python 

Forming minimum-variance portfolios is a quadratic programming problem. This is because the objective 

function being minimized is portfolio variance, which is quadratic in nature, as can be inferred from 

equation (11). The quadratic programming problem here is represented by an objective function to 

minimize and one or more constraints to satisfy. 

 

Consequently, ‘cvxopt’, a Python library with optimization capabilities, is used to perform this study’s 

analysis in code. This library contains appropriate modules, specifically ‘solvers’, and functions, 

specifically ‘solvers.qp’, that can solve quadratic programming problems using numerical search 

algorithms. Such algorithms iteratively search for a solution, converging to a solution over time if one 

exists.  

 

Here, I present the quadratic programming problem of portfolio variance minimization in the notation that 

follows the arguments for the solvers.qp function, consistent with the published documentation of the 

cvxopt library. This can help in understanding the parts of the submitted code that are relevant to this 

function.  

 

          minimize       
1

2
𝑤′𝑃𝑤 + 𝑞′𝑤          (20) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 

𝐺𝑤 ≤ ℎ           (21) 

𝐴𝑤 = 𝑏            (22) 

 

As defined in the main section of this study, w is the N × 1 column vector of portfolio weights being solved 

for, wʹ is its transposed, 1 × N row vector, and P is the N × N sample covariance matrix, denoted in the 

main section as S. Note that 𝑞′𝑤 reflects the linear term for the objective function; however, since portfolio 

variance minimization does not have a linear term in the objective function, 𝑞′ is a 1 × N row vector of 

zeros. The constraints here are structured as matrix inequality and equality equations. G is an X × N matrix, 

h is an X × 1 column vector of entries for the inequality constraints’ upper bound values, and X is the 

number of separate constraints in the optimization problem. By way of example, imposing only non-

negativity constraints on each asset means that X equals N while imposing non-negativity, IS, and MU 

constraints means that X equals N + 2. Given that the only equality constraint imposed in every optimization 

strategy is that the portfolio weights have to sum to one, A is a 1 × N row vector of ones, and b is a 1 × 1 

matrix with the only entry being a one. 
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Appendix C  Robustness checks 

 

Table 6. Out-of-sample performance metrics for all portfolio strategies under the 25SBM dataset and a 

54-month estimation window 

Portfolio Abbreviation   𝜇̂        𝜎̂2    NRP         MOAW    𝑆𝑅̂          TRN 

DEW    0.0088        0.0031   0.3624         0.0400   0.1376          0.0534 

Min-U    0.0115        0.0026   0.3670        0.3406   0.2041          0.5283 

Min-N    0.0078        0.0019***   0.3532        0.0000   0.1546         0.0399 

Min-L    0.0083        0.0017***   0.3853        0.1438   0.1738          0.2226 

Min-MU-U   0.0114        0.0026   0.3670        0.3472   0.2034          0.5280 

Min-MU-N   0.0114        0.0026   0.3670        0.3472   0.2032          0.5279 

Min-MU-L   0.0082        0.0017***   0.3853        0.1432   0.1719          0.2228 

Min-IS-U   0.0115        0.0026   0.3670        0.3406   0.2041          0.5283 

Min-IS-N   0.0115        0.0026   0.3670        0.3406   0.2041          0.5283 

Min-IS-L   0.0083        0.0017***   0.3853        0.1438   0.1738          0.2226 

Min-MU-IS-U   0.0114        0.0026   0.3670        0.3473   0.2034          0.5280 

Min-MU-IS-N   0.0073        0.0020***   0.3532        0.0000   0.1387          0.0399 

Min-MU-IS-L   0.0082        0.0017***   0.3853        0.1429   0.1719          0.2228 

Note. *p < 0.1, **p < 0.05, ***p < 0.01. Significance tests for 𝜇̂ and 𝜎̂2 assess significant differences in 

mean returns and return variance relative to the DEW. Portfolio abbreviations are explained in Table 1. 
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Table 7. Out-of-sample performance metrics for all portfolio strategies under the 17Ind dataset and a 54-

month estimation window 

Portfolio Abbreviation   𝜇̂        𝜎̂2    NRP         MOAW    𝑆𝑅̂          TRN 

DEW    0.0096        0.0026   0.3774         0.0588   0.1667         0.0889 

Min-U    0.0091        0.0014***   0.3585        01606   0.2126         0.2555 

Min-N    0.0084        0.0012***   0.3726        0.0000   0.2090         0.0834 

Min-L    0.0090        0.0012***   0.3726        0.1065   0.2274         0.1862 

Min-MU-U   0.0091        0.0014***   0.3532        0.1610   0.2141         0.2565 

Min-MU-N   0.0092        0.0014***   0.3532        0.1613   0.2142         0.2565 

Min-MU-L   0.0091        0.0012***   0.3578        0.1076   0.2287         0.1878 

Min-IS-U   0.0093        0.0014***   0.3585        0.1613   0.2184         0.2558 

Min-IS-N   0.0093        0.0014***   0.3585        0.1613   0.2184         0.2558 

Min-IS-L   0.0091        0.0012***   0.3679        0.1068   0.2299         0.1862 

Min-MU-IS-U   0.0095        0.0014***   0.3532         0.1613   0.2206         0.2571 

Min-MU-IS-N   0.0085        0.0013***   0.3899        0.0000   0.2067         0.0824 

Min-MU-IS-L   0.0092        0.0012***   0.3578        0.1088   0.2320         0.1880 

Note. *p < 0.1, **p < 0.05, ***p < 0.01. Significance tests for 𝜇̂ and 𝜎̂2 assess significant differences in 

mean returns and return variance relative to the DEW. Portfolio abbreviations are explained in Table 1. 

 

Table 8. Out-of-sample performance metrics for all portfolio strategies under the 25SBM dataset and a 

66-month estimation window 

Portfolio Abbreviation   𝜇̂        𝜎̂2    NRP         MOAW    𝑆𝑅̂          TRN 

DEW    0.0085        0.0033   0.3641         0.0400   0.1331         0.0517 

Min-U    0.0108        0.0025*   0.3835        0.3155   0.1952         0.4771 

Min-N    0.0077        0.0019***   0.3835        0.0000   0.1560         0.0346 

Min-L    0.0085        0.0018***   0.3835        0.1389   0.1788         0.2259 

Min-MU-U   0.0086        0.0023***   0.3932        0.3154   0.1603          0.4772 

Min-MU-N   0.0086        0.0023***   0.3932        0.3154   0.1603         0.4771 

Min-MU-L   0.0078        0.0018***   0.3835        0.1382   0.1626         0.2262 

Min-IS-U   0.0108        0.0025*   0.3835        0.3155   0.1952         0.4771 

Min-IS-N   0.0108        0.0025*   0.3835        0.3155   0.1952         0.4771 

Min-IS-L   0.0085        0.0018***   0.3835        0.1389   0.1788         0.2259 

Min-MU-IS-U   0.0086        0.0023***   0.3932        0.3155   0.1603         0.4772 

Min-MU-IS-N   0.0073        0.0022***   0.3738        0.0000   0.1363         0.0413 

Min-MU-IS-L   0.0078        0.0018***   0.3835        0.1382   0.1627         0.2263 
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Note. *p < 0.1, **p < 0.05, ***p < 0.01. Significance tests for 𝜇̂ and 𝜎̂2 assess significant differences in 

mean returns and return variance relative to the DEW. Portfolio abbreviations are explained in Table 1. 

 

Table 9. Out-of-sample performance metrics for all portfolio strategies under the 17Ind dataset and a 66-

month estimation window 

Portfolio Abbreviation   𝜇̂        𝜎̂2    NRP         MOAW    𝑆𝑅̂          TRN 

DEW    0.0094        0.0027   0.3632        0.0588   0.1615         0.0869 

Min-U    0.0091        0.0014***   0.3726        01422   0.2209         0.2328 

Min-N    0.0083        0.0013***   0.3585        0.0000   0.2065         0.0836 

Min-L    0.0088        0.0012***   0.3585        0.1109   0.2249         0.1795 

Min-MU-U   0.0096        0.0015***   0.3786        0.1462   0.2202         0.2375 

Min-MU-N   0.0096        0.0015***   0.3786        0.1461   0.2203         0.2375 

Min-MU-L   0.0091        0.0013***   0.3641        0.1131   0.2244         0.1847 

Min-IS-U   0.0091        0.0014***   0.3726        0.1422   0.2209         0.2328 

Min-IS-N   0.0091        0.0014***   0.3726        0.1422   0.2209         0.2328 

Min-IS-L   0.0088        0.0012***   0.3585        0.1109   0.2249         0.1795 

Min-MU-IS-U   0.0096        0.0015***   0.3786        0.1462   0.2202         0.2375 

Min-MU-IS-N   0.0085        0.0013***   0.3739        0.0000   0.2138         0.0802 

Min-MU-IS-L   0.0091        0.0013***   0.3641        0.1131   0.2244         0.1847 

Note. *p < 0.1, **p < 0.05, ***p < 0.01. Significance tests for 𝜇̂ and 𝜎̂2 assess significant differences in 

mean returns and return variance relative to the DEW. Portfolio abbreviations are explained in Table 1. 

 

Table 10. Out-of-sample performance metrics for IS-incorporating strategies under the 25SBM dataset 

and the alternative IS proxy 

Portfolio Abbreviation   𝜇̂        𝜎̂2    NRP         MOAW    𝑆𝑅̂          TRN 

Min-IS-U   0.0121        0.0036   0.3632         0.3181   0.1838          0.5192 

Min-IS-N   0.0121        0.0036   0.3632         0.3181   0.1838          0.5193 

Min-IS-L   0.0084        0.0017***   0.3868         0.1388   0.1791          0.2287 

Min-MU-IS-U   0.0121        0.0035   0.3632         0.3117   0.1866         0.5172 

Min-MU-IS-N   0.0078        0.0020***   0.3726         0.0000   0.1506          0.0489 

Min-MU-IS-L   0.0085        0.0017***   0.3868         0.1388   0.1803          0.2287 

Note. *p < 0.1, **p < 0.05, ***p < 0.01. Significance tests for 𝜇̂ and 𝜎̂2 assess significant differences in 

mean returns and return variance relative to the DEW. Portfolio abbreviations are explained in Table 1. 
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Table 11. Out-of-sample performance metrics for IS-incorporating strategies under the 17Ind dataset and 

the alternative IS proxy 

Portfolio Abbreviation   𝜇̂        𝜎̂2    NRP         MOAW    𝑆𝑅̂          TRN 

Min-IS-U   0.0099        0.0014***   0.3821         0.1479   0.2384         0.2377 

Min-IS-N   0.0099        0.0014***   0.3821        0.1479   0.2383         0.2376 

Min-IS-L   0.0091        0.0012***   0.3538         0.1105   0.2316         0.1751 

Min-MU-IS-U   0.0102        0.0014***   0.3774         0.1502   0.2453         0.2383 

Min-MU-IS-N   0.0084        0.0012***   0.3585        0.0000   0.2152        0.0792 

Min-MU-IS-L   0.0093        0.0012***   0.3538         0.1122   0.2376        0.1775 

Note. *p < 0.1, **p < 0.05, ***p < 0.01. Significance tests for 𝜇̂ and 𝜎̂2 assess significant differences in 

mean returns and return variance relative to the DEW. Portfolio abbreviations are explained in Table 1. 

 

Table 12. Out-of-sample performance metrics for MU-incorporating or IS-incorporating strategies under 

the 25SBM dataset and the alternative regression specification 

Portfolio Abbreviation   𝜇̂        𝜎̂2    NRP         MOAW    𝑆𝑅̂          TRN 

DEW    0.0085        0.0032   0.3623         0.0400   0.1332         0.0510 

Min-MU-U   0.0108        0.0028   0.4010        0.3123   0.1860         0.4944 

Min-MU-N   0.0108        0.0028   0.4058        0.3124   0.1860         0.4944 

Min-MU-L   0.0087        0.0018***   0.3865         0.1488   0.1810         0.2255 

Min-IS-U   0.0105        0.0028   0.4010         0.3123   0.1804         0.4906 

Min-IS-N   0.0105        0.0028   0.4010        0.3123   0.1804         0.4906 

Min-IS-L   0.0084        0.0018***   0.3913         0.1461   0.1748         0.2232 

Min-MU-IS-U   0.0108        0.0028   0.4010        0.3123   0.1860         0.4944 

Min-MU-IS-N   0.0082        0.0021***   0.3671        0.0000   0.1555         0.0427 

Min-MU-IS-L   0.0087        0.0018***   0.3865         0.1488   0.1810         0.2255 

Note. *p < 0.1, **p < 0.05, ***p < 0.01. Significance tests for 𝜇̂ and 𝜎̂2 assess significant differences in 

mean returns and return variance relative to the DEW. Portfolio abbreviations are explained in Table 1. 

Alternative regression specifications are described in Chapter 6. The results for the DEW in this table relate 

to the shortened out-of-sample period of 207 months, which is consistent with the other strategies.  
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Table 13. Out-of-sample performance metrics for MU-incorporating or IS-incorporating strategies under 

the 17Ind dataset and the alternative regression specification 

Portfolio Abbreviation   𝜇̂        𝜎̂2    NRP         MOAW    𝑆𝑅̂          TRN 

DEW    0.0094        0.0027   0.3720         0.0588   0.1607         0.0828 

Min-MU-U   0.0095        0.0015***   0.3671        0.1579   0.2229         0.2309 

Min-MU-N   0.0095        0.0015***   0.3671        0.1579   0.2227         0.2309 

Min-MU-L   0.0091        0.0013***   0.3816        0.1091   0.2267         0.1719 

Min-IS-U   0.0094        0.0014***   0.3623         0.1571   0.2235         0.2294 

Min-IS-N   0.0094        0.0014***   0.3623        0.1572   0.2235         0.2294 

Min-IS-L   0.0090        0.0012***   0.3816         0.1078   0.2263         0.1701 

Min-MU-IS-U   0.0095        0.0015***   0.3671        0.1579   0.2228         0.2309 

Min-MU-IS-N   0.0076        0.0014***   0.3816        0.0000   0.1801         0.0703 

Min-MU-IS-L   0.0091        0.0013***   0.3816         0.1091   0.2267         0.1719 

Note. *p < 0.1, **p < 0.05, ***p < 0.01. Significance tests for 𝜇̂ and 𝜎̂2 assess significant differences in 

mean returns and return variance relative to the DEW. Portfolio abbreviations are explained in Table 1. 

Alternative regression specifications are described in Chapter 6. The results for the DEW in this table relate 

to the shortened out-of-sample period of 207 months, which is consistent with the other strategies. 

 


