
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis Econometrie en Operationele Research

A comparative analysis of drone usage in parcel

delivery

K.P.H. Hofstra (620775)

Supervisor: P.J. Correia Duarte

Second assessor: P. Bouman

Date final version: 1st July 2024

Abstract

In recent years, drones have greatly risen in popularity due to their ability to fly at

high speeds with low cost. One application for drones that has recently garnered significant

attention is the delivery of goods.

This paper studies a Multi-visit Vehicle Routing Problem with Drones (Mv-VRP-D),

where multiple trucks assisted by multiple drones capable of multiple visits in a single flight

are used to deliver packages to a set of customers. Because the problem is NP-Hard in

nature, we propose an Adaptive Large Neighbourhood Search (ALNS) metaheuristic based

on Sacramento et al. (2019) to find solutions to this problem. We assesses cost savings from

problems incorporating multi-visit drones and multiple drones, compared to the Vehicle

Routing Problem with Drones (VRP-D).

Using realistic parameters, we find considerable savings for multi-visit problems, multiple

drone problems, and problems containing both. Sensitivity analysis highlights the significant

role of drone capacity in cost savings, while drone endurance is less critical. Further analysis

shows minimal additional savings from using a large number of drones with major savings

already achievable by allowing two deliveries per drone flight.

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.

1 Introduction

It has been over a decade since Amazon first proposed the use of Unmanned Aerial Vehicles

(UAVs), more commonly known as drones, for package delivery. Since this moment, interest

in these vehicles has only increased. Now, several organisations have launched delivery services

that use drones, with market-leader Zipline having already done close to a million deliveries

(Papandreou, 2024). Drones are particularly appealing for their ability to reach high speeds

using relatively little energy. This makes them faster and more cost-effective, and they emit

fewer greenhouse gases compared to traditional last-mile delivery vehicles like trucks. This

combination of speed, efficiency, and environmental friendliness positions drones as a promising

addition to the delivery sector, with even more advantages for delivery to difficult-to-reach

locations.

Designing the hardware and software for delivery drones presents numerous challenges. In

addition to these technical difficulties, tight regulations for the commercial use of drones pose

significant obstacles. The Federal Aviation Administration (FAA), which oversees all civilian

aviation in the United States, enforces rules such as a limit on the weight of drones and their

maximum flight altitude. One of the most restrictive regulations is the requirement for drones

to remain within the operator’s visual line of sight. However, several companies have received

FAA approval to operate small drones beyond the visual line of sight (Palmer, 2020), paving the

way for more advanced delivery operations.

Although drones have several advantages over traditional last-mile delivery vehicles, there

are two significant disadvantages for parcel delivery applications: their range and their weight

capacity. Small drones can only operate for a short amount of time before needing to recharge,

limiting their range around a launch location. Additionally, drones cannot carry much weight,

making them unsuitable for delivering heavy parcels. Because of these limitations, this paper

studies a problem where drones do not operate independently but cooperate with trucks, using

the strengths of both vehicles to their advantage.

The first paper studying a problem involving drone-assisted delivery trucks was by Murray

& Chu (2015). The paper extends the Traveling Salesman Problem (TSP) to include drones,

resulting in the Flying Sidekick Traveling Salesman Problem (FSTSP). The paper presents a

model for a single truck that cooperates with a drone. Both vehicles can deliver packages

simultaneously, and the drone can use the truck as a base where it can drive along, get recharged,

or get a new package to deliver.

Current literature often models the delivery of packages using delivery trucks as a Vehicle

Routing Problem (VRP), an extension of the Traveling Salesman Problem (TSP) that involves

routing multiple trucks from and to a depot to serve a set of customers with the aim of minimising

costs. This paper builds on a broader version of the VRP, known as the Vehicle Routing Problem

with Drones (VRP-D), where this fleet of trucks is assisted by drones in a similar way as in the

FSTSP. Given the various implementations of drone usage in delivery scenarios, the primary

contribution of this paper is to determine the benefit of having drones perform multiple deliveries

without returning to a truck or depot in between and the benefit of having trucks carry multiple

drone. This analysis will help clarify how changes in drone deployment impact overall operational

efficiency.

1

Table 1: An overview of the problems discussed in the paper.

Single-visit Drone Multi-visit Drone

Single Drone VRP-D Mv-VRP-D
Multiple Drones VRP-MD Mv-VRP-D

The results of this analysis are crucial for businesses currently exploring drone delivery

options. Understanding the benefits of deploying multiple drones can guide organisations in

determining the optimal number of drones to use for efficient operations. Furthermore, on the

design side of delivery drones, assessing the effectiveness of multi-visit drones plays a critical

role in shaping design choices. Insights into the effect of multi-visits can influence critical design

parameters such as battery life, payload capacity, and durability, ultimately affecting the overall

utility and operational design of the drones. These factors combined can aid organisations to

optimise their investment in drone technology, ensuring it aligns with their operational needs

and maximises efficiency.

To address these problems, an Adaptive Large Neighbourhood Search (ALNS) metaheuristic

is implemented. The algorithm will be used to find solutions for four problems: The Vehicle

Routing Problem with Drones (VRP-D), the Multi-visit Vehicle Routing Problem with Drones

(Mv-VRP-D), the Vehicle Routing Problem with Multiple Drones (VRP-MD) and the Multi-

visit Vehicle Routing Problem with Multiple Drones (Mv-VRP-MD). How these problems relate

to each other can be seen in Table 1.

Results show that having drones perform multiple visits, on average, decreases costs by 13%

for large instances, with a majority of those savings being found by allowing two or three deliver-

ies per flight. Having trucks carry multiple drones decreases costs by about 5%. Combining the

two features together, saves 15% on average. Additionally, the drone capacity plays a significant

role in cost savings, particularly for multi-visit problems, while drone endurance needs to be

adjusted significantly to have an effect.

The remainder of this paper is structured as follows. Section 2 discusses related works

in current literature and their relevance to this study. In Section 3, a detailed description of

the problem is provided. The methodology is explained in Section 4. Numerical results are

presented in Section 5. Finally, conclusions are presented in Section 6, and a discussion is

provided in Section 7.

2 Literature Review

The use of UAV-assisted delivery trucks in parcel delivery was first proposed by Murray & Chu

(2015), who present the Flying Sidekick Traveling Salesman Problem (FSTSP). This formulation

adapts the traditional TSP by incorporating a drone to cooperate with a truck to perform

deliveries. The primary objective of the FSTSP is to minimise the total time required to service

all customers and ensure the return of both vehicles to the depot. Given that the FSTSP is a

NP-Hard problem, the paper addresses the challenge of solving non-trivially-sized instances by

employing a route and re-assign heuristic. This approach demonstrates significant time savings

over the conventional truck-only TSP model, showing the potential of UAVs to enhance delivery

2

systems.

A problem similar to the FSTSP, is the Traveling Salesman Problem with Drones (TSP-D)

discussed by Agatz et al. (2018). In this problem, the assumption is made that the travel time of

a drone between two locations is some factor times the travel time of the truck. This restriction

makes it possible to proof the maximum possible time savings from using a drone alongside

a delivery truck compared to the truck-only case. Several fast heuristics are presented that

achieve close to optimal solutions. Experiments show that substantial time savings are possible

compared to truck-only deliveries.

The multiple FSTSP (mFSTSP) presented by Murray & Raj (2020) expands the FSTSP by

allowing a single truck to coordinate with a fleet of drones. The objective of this problem is to

minimise the time required to deliver all packages and return all vehicles to the depot. Initially,

the problem is formulated as a MILP; however, due to computational complexity, a three-phased

heuristic approach is employed to solve non-trivially-sized instances. Their main findings include

that adding drones to an existing fleet tends to have diminishing marginal returns and that time

savings are greatest in instances with densely packed customers.

Building upon these concepts, the combination of multiple drones and multi-visit capabilities

into a single model is discussed in the literature as well ((Poikonen & Golden, 2020), (Luo et al.,

2021)). For their Multi-visit Traveling Salesman Problem with Multi-Drones (MTSP-MD), Luo

et al. (2021) design a multi-start tabu search (MSTS) algorithm to tackle medium- to large-sized

instances. Their computational results show significant cost reductions with the implementation

of multi-visits, multiple drones, and increased drone capacity.

Sacramento et al. (2019) present a problem with a fleet of trucks, each assisted by a single

drone. In their paper, they develop an Adaptive Large Neighbourhood Search (ALNS) meta-

heuristic to find solutions for their Vehicle Routing Problem with Drones (VRP-D) for instances

with up to 250 customers. This heuristic produces solutions with significant cost savings com-

pared to the truck-only case. Their sensitivity analysis reveals that drone endurance can be

reduced from the initial 30 minutes without significantly affecting the savings. Moreover, drone

speed does not substantially impact the objective costs, and increasing the payload capacity

beyond 5 kilograms does not result in considerable additional savings.

The paper presented by Wang et al. (2017) discusses a problem involving a fleet of trucks,

each assisted by a fleet of drones. The paper performs theoretical analysis to evaluate the

maximum savings that can be obtained as well as worst-case scenarios. The authors construct

theorems to set bounds on these savings. If we consider a situation with m trucks, each assisted

by up to two drones that are 50% faster than the trucks, they show that, in the best case, the

delivery completion time for this problem can be reduced by 75% with respect to the truck-only

case.

Another problem in the drone delivery literature is the Multiple Traveling Salesman Problem

with Drones (mTSPD), presented by Kitjacharoenchai et al. (2019). This problem involves a

fleet of trucks collaborating with a fleet of drones. different from the problem discussed in Wang

et al. (2017), each drone can cooperate with multiple trucks and operate independently. The

main objective is to minimise operational time, and solutions are generated using an Adaptive

Insertion algorithm (ADI). Compared to solutions for a problem similar to the one discussed in

3

Sacramento et al. (2019), on average, the mTSPD produces better results.

Finally, Masmoudi et al. (2022) discuss the Vehicle Routing Problem with Drones equipped

with multi-package payload compartments (VRP-D-MC). This problem involves a fleet of trucks

assisted by drones capable of performing multiple deliveries and traveling between trucks. Ad-

ditionally, packages have both a weight and a type, which restricts which vehicle can deliver

them. The objective of the problem is to maximise profit. The paper proposes an adaptive

multi-start simulated annealing (AMS-SA) metaheuristic to solve both the VRP-D-MC and the

VRP-D on which the problem is based. In their experiments, the AMS-SA outperforms current

state-of-the-art algorithms for the VRP-D. Furthermore, the VRP-D-MC shows an increase in

profit compared to the VRP-D.

In current literature, not many papers study a problem involving a fleet of trucks assisted by

multiple multi-visit drones. Among the papers discussed in this section, only Masmoudi et al.

(2022) address a problem with a similar structure. However, only a small portion of their exper-

iments focus on the comparison of problem with and wihout multi-visit drones. Additionally, no

comparison is made between problems with and without multiple drones per truck. Our paper

differs from Masmoudi et al. (2022) by specifically focusing on these features and modifying

them to observe the effects of different restrictions and assumptions.

3 Problem Description

The problem addressed in this paper is a complex optimisation challenge that combines tra-

ditional vehicle routing with the capabilities of drones. It involves finding the most efficient

routes for a fleet of capacitated drone-assisted trucks to deliver goods. The main objective is to

minimise total operational costs, which in our case consist only of the fuel and energy costs of

the trucks and drones, respectively.

In this problem, each delivery truck drives a route that starts and ends at the depot. These

trucks have a weight limit, as well as a maximum route duration. Along its route, a truck

visits customers to deliver packages. At each customer visit, a truck may choose to launch the

drones it is equipped with to make deliveries. During a drone operation, which will be called a

sortie, a drone is launched, visits customers to deliver packages, and returns to the truck at a

recovery location. A recovery will always be performed at a customer that is visited later than

the customer it was launched from, or at the depot. If the recovery location is the depot, the

drone does not need to return to the truck and will remain at the depot. While driving from

the launch location to the recovery location, the truck is allowed to make deliveries of its own

as well as launch and recover other drones. A solution to the problem can be seen as a set of

routes, each consisting of a truck route and a list of drones and their routes. In a solution, every

customer has to be serviced exactly once, by either a truck or a drone.

A drone operation is subject to several restrictions. Firstly, a drone can perform multiple

deliveries in a sortie, but the total weight of all parcels the drone carries can not exceed a

drone’s capacity, which is much less than the truck’s capacity. Additionally, there is a limit on

the total flight duration, which includes the launch, service, recovery and travel phases of the

sortie. Upon launch, the drone travels directly to the customers’ locations, delivers the parcels,

and then returns to the recovery location without pause. When a recovery is performed, the

4

recovered drone is able to be launched from the recovery location immediately. Each drone

operates independently of all others, meaning that the launch or recovery of a drone does not

impose restrictions on the launch or recovery of any other drone.

For this problem, some assumptions are made. Firstly, we assume the drones operate on the

same network as the trucks. Additionally, the cost of a drone flying from A to B is a fraction

α of the cost of a truck driving the same route, where α is less than 1. Another assumption

is that multiple drones can be launched and recovered in parallel. The duration of multiple

recoveries and launches will take the same amount of time as one recovery and one launch. The

final assumption is that once the drone is recovered, a fully charged battery is available and can

be replaced immediately, allowing for instant redeployment.

4 Methodology

In this section, a framework for an Adaptive Large Neighbourhood Search (ALNS) algorithm for

the Multi-visit Vehicle Routing Problem with Multi-Drones (Mv-VRP-MD) is presented. The

algorithm presented is based on the ALNS metaheuristic described by Sacramento et al. (2019).

They formulate the VRP-D, a sub-problem of the Mv-VRP-MD, where trucks are assisted by a

single drone capable of performing only one delivery per sortie. Besides the ALNS metaheuristic,

Sacramento et al. (2019) provide a mathematical formulation for the VRP-D, classifying it as

NP-Hard. Their attempts to solve this problem using a MIP formulation yielded results in a

reasonable time frame only for instances with up to 12 customers, for which the ALNS also found

optimal solutions. Since the Mv-VRP-MD is a generalisation of the VRP-D, similar results are

anticipated. Consequently, a mathematical formulation will not be considered here, and the

focus will be solely on the ALNS algorithm.

Since the ALNS will also be used to solve sub-problems of the Mv-VRP-D, some features of

the algorithm will be removed for problems that do not require them. These parts of algorithms

will be in red. As will be mentioned in the description of these algorithms, the red sections are

only included in a problem with multi-visit drones.

This section is structured as follows: First, the general framework of the ALNS algorithm is

defined in Section 4.1. Secondly, Section 4.2 presents the method used to find an initial solution.

Finally, 4.3 and 4.4 formulate the destroy and repair methods used in the ALNS, respectively.

4.1 Adaptive Large Neighbourhood Search

An ALNS algorithm is a type of heuristic that iteratively uses destroy and repair methods to

deconstruct and reconstruct a solution. A destroy method removes a number of customers from

the solution, which a repair method inserts back. Using a variety of destroy and repair methods,

each using different criteria for the removal and insertion of customers, provides diverse solutions,

which avoids getting trapped in local minima.

The selection of a destroy and repair method each iteration is done using the roulette wheel

selection principle. Each method has a weight that determines the probability that method is

selected. Let Ω− and Ω+ be the set of destroy and repair method respectively, and let ωr,i be

the weight of method r for iteration i. The probability to select method r for iteration i is equal

5

to
ωr,i∑

j∈Ω− ωj,i
, if r is a destroy method and equal to

ωr,i∑
j∈Ω+ ωj,i

if r is a repair method.

The weights are initialised equally, and the destroy methods remain that way. The weights

of the repair methods, however, are tuned depending on their performance during the ALNS.

When repair method r is selected, its weight is updated based on the performance parameter

Ψ. The value Ψ takes depends on the quality of the new found solution and is given below.

Ψ =



σ1 if the new solution is a global minimum,

σ2 if the new solution is not a global minimum, but better than the current solution,

σ3 if the new solution is worse than the current solution, but is accepted,

σ4 if the new solution is rejected.

(1)

With the use of Ψ and the reaction factor ρ ∈ (0, 1), the weights are updated as follows:

ωr,i+1 =

ρωr,i + (1− ρ)Ψ if repair method r is selected for iteration i,

ωr,i otherwise.
(2)

The probability to accept a solution is dependant on its cost. Let s represent the current solution,

st the proposed new solution, and c(·) the cost function. A new solution st is always accepted

if its costs are less than or equal to the costs of s. If st has higher costs than s, the acceptance

of st is determined probabilistically. The formula for the probability of acceptance is as follows:

e
c(s)−c(st)

T , (3)

where T is the current temperature. The temperature starts at the value Tinit and linearly

decreases to zero over time. Let telap be the elapsed time, and tmax denote the maximum

running time of the algorithm. The temperature at time telap is calculated as follows:

T = Tinit(1−
telap

tmax
). (4)

The algorithm starts with a high temperature to allow acceptance of solutions with lower ob-

jective values, making it easier to explore different solutions. During the ALNS, the temperature

linearly decreases towards zero, which limits acceptance to solutions that are not significantly

worse, helping to refine the final solution. Based on these definitions, the pseudo-code for the

ALNS algorithm is given in Algorithm 1. Additionally, The algorithms incorporates a maximum

number of iterations without improvement. When there has not been a new global minimum

for this number of iterations, the current solution is replaced by the best found solution and the

algorithm continues.

4.2 Initial Solution

The construction of the initial solution involves three phases. In the first phase, customers are

inserted into the solution using a Nearest Neighbour Algorithm. Each route begins at the depot,

and as long as the route’s capacity and maximum duration are not exceeded, the customer closest

to the last added customer is included in the route as a truck visit. If a route reaches one of its

6

Algorithm 1: ALNS Algorithm

Input:
Initial Temperature: Tinit,
Max iterations without improvement: noImprMax,
Time limit: tmax.

1 s← ConstructInitialSolution();
2 s∗ ← s;
3 noImpr ← 0;

4 while telap < tmax do
5 d(·)← chooseDestroy();
6 r(·)← chooseRepair();
7 st ← r(d(s)) ;

8 T ← Tinit(1− telap

tmax);

9 p← e
c(s)−c(st)

T ;
10 if Unif(0, 1) < p then
11 s← st;
12 noImpr ← 0;

13 end
14 if c(s) < c(s∗) then
15 s∗ ← s;
16 else
17 noImpr ← noImpr + 1;
18 if noImpr ≥ noImprMax then
19 s← s∗;
20 noImpr ← 0;

21 end

22 end
23 updateWeights();

24 end
25 return s∗;

limits and there are still customers left unassigned, a new route is initiated.

In the second phase, each route is enhanced through an iterated local search using three

methods: relocate moves, exchange moves, and 2-opt moves. For each method, any move that

reduces the objective value is executed until no further cost-reducing move can be found.

In the third and final phase, customers are inserted into the solution as drone customers.

Define D as the set of all customers with a demand smaller than the capacity of the drone,

QD. For each customer n ∈ D, the customer is removed from the current solution and is

attempted to be reinserted using the FindSortie(n, s, η) algorithm, described in Algorithm 2.

The algorithm returns the sortie containing n that decreases the costs the most, and ∅ if no

sortie can be found, that results in a solution with a cost lower than η. Both the construction of

a new sortie and the insertion into existing sorties are considered. Combining all three phases,

the pseudo-code of the construction of the initial solution is shown in Algorithm 3. In the

algorithm, AttemptDroneInsertions(s,N ′) uses Algorithm 2 to attempt the reinsertion of a

subset of customers N ′ into solution s as drone customers if the reinsertion results in a cost

decrease.

7

Algorithm 2: FindSortie(n, s, η) function for finding the best insertion for a customer,
using a drone, with respect to some threshold cost η. The red section (Lines 11-19) is
only included in a problem with multi-visit drones.

Input:
Customer to insert as drone-visit: n,
Solution without customer: s,
threshold: η,
maximum number of deliveries in a sortie: maxDeliveries

1 BestSortie← ∅;
2 for each Route in s do
3 if Capacity(Route) + qn < QT then
4 for available Launch l and compatible Recovery r do
5 Construct sortie p← (l, n, r);
6 if Duration(p) < e AND c(s) + Cost(p) < η then
7 BestSortie← p ;
8 η ← c(s) + Cost(p);

9 end

10 end
11 for each Sortie in Route do
12 if Capacity(Sortie) + qn < QD AND Deliveries(Sortie) < maxDeliveries

then
13 Construct sortie p as the best insertion of customer n in Sortie;
14 if Duration(p) < e AND c(s) + Cost(p)− Cost(Sortie) < η then
15 BestSortie← p;
16 η ← c(s) + sortieCost(p);

17 end

18 end

19 end

20 end

21 end
22 return BestSortie;

Algorithm 3: ConstructInitialSolution() algorithm, used to find a starting point for
the ALNS.

1 s← NearestNeighbour();
2 for each Route in sinit do
3 while cost-decreasing move is found do
4 RelocateMoves(s);
5 ExchangeMoves(s);
6 2OptMoves(s);

7 end

8 end
9 Construct D as the set of all customers with qn < QD;

10 while cost-decreasing move is found do
11 AttempBestDroneInsertions(s,D);
12 end
13 return s;

8

4.3 Destroy methods

In every iteration of the ALNS, the current solution is first deconstructed until at least β cus-

tomers are removed from the solution. For a solution with |N | customers, removal factor δ, lower

bound nmin and upper bound nmax, the number of removed customers β =min(max(nmin, δ|N |), nmax).

The parameter nmin is chosen to be a random number for each iterations to find varying solu-

tions for small instances. If β is too low, it might not be possible to escape local minima, if β

is too high, delicate improvements might not be found. There are two destroy methods, which

are defined in the subsections below.

4.3.1 Random destroy method

The first destroy method randomly selects customers from the solution until β customers are

removed. When a customer is selected, we first check if that customer is being serviced by a

truck or a drone. If it is a truck and the location does not serve as a launch or recovery, only

that customer is removed. If the location does serve as a launch and/or recovery for a drone

sortie, the sortie(s) are removed from the solution along with the selected customer. If it is a

drone, we remove only the customer from the solution. If this customer was the only delivery

within its sortie, the entire sortie is removed. It is possible that more than β customers are

removed if a removal corresponds to a truck visit that is a launch and/or recovery point for one

or more sorties.

4.3.2 Cluster destroy method

The second destroy method concentrates removal around a randomly selected focal customer,

nF . The customer is removed from the solution in the same way as described in Section 4.3.1 and

further removals are selected from customers around nF . A new removal is randomly selected

from the two customers closest to nF , until at least β customers are removed.

4.4 Repair methods

After a destroy method is applied to a solution, a repair method reinserts the set of removed

customers, D, back into the solution. Some methods aim to find the best solution, while others

focus on diversification. Each repair method ensures that the resulting solution is feasible,

making it a candidate for the best solution. As previously mentioned, the repair methods have

weights that are adjusted based on their performance during the algorithm, which constitutes

the adaptive part of the ALNS. This dynamic adjustment of weights ensures that more effective

repair methods are selected more frequently than those with lower performance. In the following

subsections, the four repair methods used in the ALNS are described.

4.4.1 Greedy repair method

The first repair method is the greedy repair method, which has three stages. In the initial stage,

all customers inD are reintroduced into the partial solution through the TruckBestInsertion(n, s)

algorithm, applied in a random order. This algorithm places customer n into the partial solution

9

s as a truck visit in a way that minimally increases costs, considering both existing routes and

the possibility of opening a new route to ensure a feasible insertion can be found.

The second phase involves drone delivery insertions. Initially, attempts are made to convert

current truck deliveries into drone deliveries. Subsequently, the same is done for existing drone

deliveries, to increase their efficiency.

Finally, a local search algorithm is executed with a probability of pLS . This probability

is calculated using a temperature TLS in a manner similar to the acceptance probability in

the ALNS algorithm. However, unlike the temperature there, which decreases over time, TLS

increases. This dynamic temperature ensures that the local search is primarily employed when

the repaired solution has a cost very close to or better than the cost of the current solution

at the start of the ALNS and is used more frequently as the time limit approaches. The local

search algorithm swaps drone deliveries between sorties if the exchange results in a cost reduction

and continues to do so until no further cost-decreasing exchanges are identified. Moreover, for

every launch and recovery location, there is an attempt to relocate it to an alternative location

that reduces the total costs. The exact formula that is used to calculate pLS , along with the

pseudo-code of the repair method, can be found in Algorithm 4.

Algorithm 4: Pseudo-code for the repair methodGreedyRepair(s), where s is a partial
solution. The red section (Lines 11-15) is only included in a problem with multi-visit
drones
Input:
Partial Solution: s,
time limit: tmax

cost of last accepted solution: ccurr
1 Construct D as that set of all customers not yet in s;
2 while D ̸= ∅ do
3 n← RandomCustomer(D);
4 D ← D \ {n};
5 TruckBestInsertion(n, s);

6 end
7 Construct NT as the set of all truck deliveries with qn < QD;
8 AttemptBestDroneInsertions(s,NT);
9 Construct ND as the set of all drone deliveries;

10 AttemptBestDroneInsertions(s,ND);

11 TLS ← γccurr(
telap

tmax);

12 pLS ← e
ccurr−c(s)

TLS ;
13 if Unif(0, 1) < pLS then
14 LocalSearchSorties(s);
15 end
16 return s;

4.4.2 Nearby-area repair method

The second repair method has a two-phased structure similar to the first two phases of the repair

method in Section 4.4.1, but uses different insertion criteria. In the first phase, the removed

customers D get randomly inserted as a truck visit in a feasible position in a ζ-mile range. If no

10

feasible position is found, a new route is opened for the inserted customer. Furthermore, in the

second phase, the drone insertion of truck customers is done by randomly selecting from the set

of feasible sorties that do not increase the cost of the solution by more than 10%. Because the

criteria for (re)insertion are relatively flexible, this repair method is unlikely to be extensively

used in instances containing a large number of customers, since the insertions will most likely

lead to high costs. However, its primary purpose is to generate variable solutions for smaller

instances.

4.4.3 Closest insertion repair method

The closest insertion repair method attempts to insert the removed customers D into one spe-

cific route, namely, the route the customer closest to n ∈ D is in. This is done using the

AttemptBestInsertion(n, r) function, which attempts to find the best insertion for the cus-

tomer n into route r considering both the use of trucks and drones. If no feasible insertion is

found, the customer is added to the set NG. Any customers in NG are then inserted into the

solution using the greedy repair method, as described in Algorithm 4.

4.4.4 Heavy insertion repair method

The final repair method, which is the heavy insertion repair method, adopts a heavy-first policy.

The method removes all customers from D which are too heavy to be used in a drone sortie

and adds them to a new set DH . The customers from DH are then inserted into the solution

using the TruckBestInsertion(n, s) function in a random order. The customers remaining in D

are inserted into the solution using the closest insertion repair method detailed in Section 4.4.3.

This approach ensures that customers who cannot be serviced by drones are efficiently inserted

into the truck route.

5 Results

This section presents the results for the ALNS metaheuristic discussed in Section 4 applied to four

problems: The Vehicle Routing Problem with Drones (VRP-D), the Multi-visit Vehicle Routing

Problem with Drones (Mv-VRP-D), the Vehicle Routing Problem with Multiple Drones (VRP-

MD) and the Multi-visit Vehicle Routing Problem with Multiple Drones (Mv-VRP-MD). First,

the parameter values used throughout this section are provided in Section 5.1. The instances

used for the experiments are defined in Section 5.2. General experiments are conducted in

Section 5.3, and sensitivity analyses for drone features are performed in Section 5.4. Finally,

Section 5.5 examines and evaluates the use of two drones for multiple drone problems and the

allowance of an unlimited number of visits for multi-visit problems.

All code was written in Java using IntelliJ IDEA 2021.3.4 (Edu). The code was executed

using an 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz, 2803 MHz, 4 core’s, 8 logical

processors.

11

Table 2: A summary of the parameters used for the implementation of the ALNS metaheuristic.

Parameter Notation Value

Truck capacity QT [1400− 100 ∗ drones] kg
Drone Capacity QD 5 kg
Maximum Route Duration h 8 h
Drone Endurance e 30 min
Truck Service Time ST T 2 min
Drone Service Time STD 1 min
Drone Launch Time DL 1 min
Drone Recovery Time DR 1 min
ALNS Initial Temperature factor T ∗

init 0.004
Reaction Factor ρ 0.9
Removal Factor δ 0.15
Local Search Sortie Scale Factor γ 0.03
Nearby Range ζ 5
Minimum Customers Removed nmin Random{1, 2, 3}
Maximum Customers Removed nmax 40
Fuel Price fp 1.13 e/L
Fuel Consumption fc 0.07 L/km
Miles Converter mc 1.61 km/mi
Drone Cost Factor α 0.10
Maximum running time tmax 5 min

5.1 Parameters

In this subsection, the values of the parameters defined in section 4 and some additional para-

meters are given. Table 2 summarises most parameter values. Unless mentioned otherwise, all

parameters are set to the same values used by Sacramento et al. (2019).

Due to the algorithm’s time-consuming nature, we set the local search sortie scale factor, so

that roughly 5-10% of local searches are accepted for larger instances. This adjustment helps

prevent the ALNS from spending most of its running time on this algorithm.

As described in Section 3, the cost of a solution consists solely by the fuel and energy

costs for trucks and drones, respectively. Let dij represent the Euclidean distance between two

locations i and j, measured in miles. The cost of driving from i to j with a truck is given by

cTij = fp ·fc ·mc ·dij . Conversely, the cost of covering the same route with a drone, cDij , is defined

as follows: cDij = α · cTij .
Next, we present and justify the values of additional parameters used in the ALNS. According

to Sacramento et al. (2019), the initial temperature for the ALNS, Tinit, is determined by

multiplying T ∗
init by the cost of the initial solution and adding 10% to this temperature for

small instances. However, our experiments with this temperature showed acceptance rates

significantly lower than those reported by Sacramento et al. (2019). Consequently, for an instance

with a set of customers N and an initial solution sinit, we define Tinit as follows: Tinit =

T ∗
init · c(sinit) · 2 ln

(
e4 200|N |

)
The results of using both initial temperatures are shown in Figure 1. While our temperature

still results in the acceptance of solutions with lower costs, it produces acceptance rates closer

12

Figure 1: Cost of the accepted and best solution in each iteration for the temperature suggested by
Sacramento et al. (2019) (left) and the temperature set by this paper (right). These results are obtained

by applying ALNS for the VRP-D for 10 seconds to instance 12.10.3.

to the desired outcomes than the temperature proposed by Sacramento et al. (2019).

Furthermore, all repair method weights are initialised to 1, and the performance parameters

σi are defined as follows: σ1 = 33, σ2 = 13, σ3 = 9, σ4 = 0. This setup ensures that repair

methods producing desirable outcomes will have their weights adjusted upwards. The maximum

number of iterations without improvement noImprMax = 1000. Given the greedy nature of

the methods used in the ALNS, this value is kept relatively low to avoid spending much time

exploring worse solutions.

5.2 Instances

The heuristics described in Section 4 are tested on instances of varying sizes. The instances

used are the same as discussed in Sacramento et al. (2019). They contain between 6 and 200

customers, on a grid of size 2d× 2d where d varies between 2.5 and 20 miles. The name of the

instances will be given as n.m.i, where n is the number of customers, m is the dimension of the

grid and i is the generic name of the instance.

The depot is always generated in the middle of the grid, at (0, 0). The customers’ x- and

y-coordinates are both drawn from a uniform distribution U(−d, d). The parcel weight of the

customer’s packages, further referred to as their demands, is drawn from the same distribution as

in Sacramento et al. (2019). They state that 86% of the packages they deliver are less than 2.27

kilograms. Furthermore, the maximum accepted package weight is assumed to be 68 kilograms.

Therefore, let qn be the demand of customer n, and let p ∼ U(0, 1), then,

qn(p) =

qn ∈ U(0, 2.27) if p < 0.86,

qn ∈ U(2.27, 68) otherwise.
(5)

5.3 Computational results

In the following section, the results obtained for the VRP-D, the Mv-VRP-D, the VRP-MD, and

the Mv-VRP-MD using the ALNS metaheuristic formulated in Section 4 and the parameters

described in Section 5.1 will be studied. For each instance, the ALNS metaheuristic is applied

three times for each problem, and the best objective values are kept. The performance of the

ALNS algorithm is evaluated based on the SMV, the SMD and the SMV-MD which are the

the savings achieved over the VRP-D, for the Mv-VRP-D, the VRP-MD and Mv-VRP-MD

13

Figure 2: Savings obtained over the VRP-D for the Mv-VRP-D (top left), VRP-MD (top right) and
Mv-VRP-MD (bottom left). The graph in the bottom right shows the average savings for each problem,

as a function of the number of customers. All values are obtained from table 4 in Appendix A.

respectively. These savings are defined in Equation 6.

SMV = 1− zMv−V RP−D

zV RP−D
, SMD = 1− zV RP−MD

zV RP−D
,SMV −MD = 1− zMv−V RP−MD

zV RP−D
, (6)

where zi is the cost of the best solution found by the ALNS algorithm for problem i. The

best-found objective values are given in Table 4 Appendix A. Figure 2 gives an overview of

the obtained savings and Figure 3 gives a visualisation of the obtained solutions, for instance

100.20.2, for each of the four problems.

Figure 2 (top left) shows the obtained savings for the Mv-VRP-D. We observe the largest

variation in savings in the smallest instances. This is expected because the placement of a few

customers can significantly influence the cost of a solution, while larger instances consistently

have both easy-to-service and hard-to-service customers. Most instances have savings above

10%, although some instances with a large number of customers in a small grid show smaller

improvements.

We anticipated that the multi-visit problem would find considerably more savings for in-

stances with tightly packed customers due to the opportunity to visit many customers in a

single sortie, which is not the case. This can be attributed to the fact that the drone’s endur-

ance is not the limiting factor for multi-visit sorties; rather, the drone’s capacity is. The analysis

to support this claim will be presented in Section 5.4.

Figure 2 (top right) shows the savings obtained for the VRP-MD. Similar to the Mv-VRP-

D, smaller instances exhibit a larger variation in improvements. However, the savings for the

VRP-MD are considerably lower compared to the Mv-VRP-D. Additionally, savings on average

seem to increase for instances with 200 customers.

Figure 2 (bottom left) presents the savings for the Mv-VRP-MD. The most notable ob-

servation is that the savings do not significantly exceed those obtained for the Mv-VRP-D.

14

Figure 3: Best known solution for an instance with 100 customers for the VRP-D (top left), Mv-VRP-D
(top right), VRP-MD (bottom left), Mv-VRP-MD (bottom right)

Additionally, the combination of multiple drones and multi-visit drones does not outperform the

sum of the savings of the two individual strategies.

Figure 2 (bottom right) provides a side-by-side comparison of the average savings for all

problems, as a function of the number of customers in an instance.

5.4 Sensitivity analysis

For the main analysis of this paper, we used drone parameters considered to be realistic. How-

ever, since there is currently no real-world experimentation of parcel delivery by drone-assisted

trucks, the values of these parameters remain uncertain. Therefore, it is important to study

their effects. Section 5.4.1 examines the influence of changing the drone endurance parameter,

while Section 5.4.2 investigates the impact of varying the capacity of drones.

The analysis in this section was performed by changing only the value of the parameter

stated, while keeping all other parameters set to the values described in Section 5.1. Results are

obtained by testing on all instances 100.30.X, 150.30.X, and 200.30.X. The runtime and number

of iterations are the same as those in Section 5.3.

15

Figure 4: On the left, the cost savings for various drone endurances for the VRP-D with respect to the
same problem with an endurance of 30 minutes are given. The right graph shows the savings over the

VRP-D for the three other problems as a function of drone endurance.

5.4.1 Drone endurance

Figure 4 (left), shows the average savings for the VRP-D using various drone endurances, with

respect to the VRP-D with an endurance of 30 minutes. Greater endurance does not signific-

antly impact the cost of the solution, nor does an adjustment to 20 minutes. However, further

reduction leads to a notable increase in costs.

The right graph in Figure 4 presents the average savings for the three other methods as a

function of drone endurance. For all three methods, no significant savings are obtained with a

drone endurance of 5 minutes. This outcome is expected, as only 2 minutes remain for flight if

we account for the launch, service, and recovery times. Constructing a sortie with more than 2

visits becomes impossible, and a sortie with exactly 2 visits would only leave room for 1 minute

of flight. Additionally, since so few sorties can be constructed, adding an extra drone does not

improve the cost of a solution either.

Average savings increase for 10 and 20 minutes of endurance and stagnate at 30 minutes.

This is in line with expectations, as additional drone endurance allows for more feasible sorties.

However, both for multi-visit drones and multiple drones, increasing the endurance from 20 to

30 minutes does not lead to more efficient routing by the ALNS.

Increasing the endurance further to 60 minutes greatly decreases the savings obtained for

multi-visit problems, while keeping the costs for the VRP-MD relatively stable. Since any

solution for a problem with an endurance of 30 minutes is also feasible for an endurance of 60

minutes, the results for multi-visit problems are unexpected. The most reasonable explanation

is that the ALNS does not perform as well in finding suitable multi-visit sorties when the drone

endurance is greater than necessary. These findings could also explain why savings are not

greater for instances with densely packed customers. For these instances, an endurance of 30

minutes could have the same effect as an endurance of 60 minutes has on the instances used in

this subsection.

5.4.2 Drone capacity

Figure 5 shows the average savings obtained for the VRP-D, using different drone capacities,

relative to the same problem with a drone capacity of 5 kilograms on the left. The average

savings obtained for the other problems over the VRP-D are shown in the graph on the right.

We observe that lowering the capacity to 2.5 kilograms and raising the capacity to 10 kilograms

16

Figure 5: On the left, the cost savings for various drone capacities for the VRP-D with respect to the
same problem with a capacity of 5 kilograms are given. The right graph shows the savings over the

VRP-D for the three other problems as a function of drone capacity.

does not significantly change the costs for the VRP-D. A drone capacity of 1 kilogram increases

costs by over 20%, while an unlimited capacity reduces costs by about 5%. This can be primarily

attributed to the way customer demand is constructed. On average, 86.0% of customers have

a demand of less than 2.5 kilograms, and 87.6% have a demand of less than 10 kilograms. For

an instance with 100 customers, this would mean only 1 or 2 additional customers that can be

serviced by a drone.

The pattern observed in the right graph of Figure 5 aligns with our expectations as well.

Since relatively few customers have a demand less than 1 kilogram, multiple drones can not be

effectively utilised using this drone capacity. Additionally, an even smaller number of customers

have summed demands less than 1 kilogram, making multi-visit sorties not advantageous either.

For greater capacities, savings for multi-visit problems steadily increase, as expected, due

to the ability to combine more customers in a single sortie. The average cost for VRP-MDs

remains roughly the same for capacities of 2.5, 5, and 10 kilograms, for the same reasons given

for the VRP-D. Similarly, further cost savings are observed when the drone capacity is set to

unlimited.

5.5 Analysis of multiple drones and multi-visits

During the experiments in Section 5.3, the number of drones in multiple drone problems and

the limit on the number of deliveries for a multi-visit drone were fixed. In this subsection,

these choices are motivated and adjusted to observe their influence. The runtime and number

of iterations are the same as those in Section 5.3. Results were obtained from experiments on

the instances in sec:appendixA named XX.XX.1 with 20 customers or above.

5.5.1 Number of drones per truck

Throughout the experiments, in problems involving trucks supported by multiple drones, only

two drones were utilised. This decision was based on preliminary findings indicating that de-

ploying more than two drones seldom results in significant improvements. To demonstrate this

effect, the results for configurations involving between 2 and 5 drones are displayed in Figure 6.

As can be seen in the figure, beyond instances with more than 50 customers, there is no clear

increase in savings when we allow more than two drones per truck. This paper considers two

possible explanations for this result.

17

Figure 6: Average cost savings of the VRP-MD with respect to the VRP-D for different number of
drone per truck, grouped by number of customers.

Firstly, because the drones add weight to the truck, the capacity constraint can be more

restrictive for multiple drone problems. For the size of the simulations, in cases with only a

single drone per truck, the demand constraint rarely makes an impact on the solution. Using

Monte Carlo simulation1 we can approximate the probability that the total weight of all packages

exceeds the capacity of the truck. For a set of customers N , that is, the probability P [
∑

i∈N qi >

QT]. For some values of |N | and QT , the results of the Monte Carlo simulations are given in

Table 3

Table 3: The estimated probability the total demand of all customers exceeds QT for various number of
customers (x-axis) and drones (y-axis) (%).

50 100 150 200

1 ≪0.001 <0.001 1.080 26.085
2 ≪0.001 0.007 3.721 44.343
3 ≪0.001 0.055 10.47347 64.615
4 ≪0.001 0.352 24.029 81.897
5 <0.001 1.823 44.699 92.969

If the total demand of all customers does not exceed the capacity of the truck, the constraint

would put no restriction on the solution, since all customer could theoretically be serviced by

the same truck. Table 3 shows that indeed the constraint rarely comes into play for scenarios

with less than 200 customers in single drone problems. As truck carry more drones it happens

more frequently.

The second explanation for this result, has to do with the computational complexity of

the problem. During experiments, the number of iterations in the allowed 5 minutes decreases

as more drones are added. This is mainly due to the fact, that additional drones significantly

increase the number of feasible launch and compatible recovery locations for sorties. The decrease

in iterations could lead to less optimised solutions.

5.5.2 Number of drone deliveries per sortie

In Section 5.3, cost savings were achieved by permitting drones to perform multiple deliveries

within a single sortie, constrained only by their capacity QD and maximum flying time e.

However, in practical applications, delivery drones would need to be specifically engineered

1Monte Carlo simulation is a method that approximates a statistical value by repeated random sampling. In
our case, this means sampling the weight of |N | customers and checking if the sum of their weights is more than
QD, approximating the probability that QD is exceeded by the demand of |N | customers.

18

Figure 7: Average cost savings for various limits of deliveries in a sortie, grouped by the number of
customers.

to handle such multi-visit deliveries. This section presents results for limiting the number of

deliveries a drone can make per sortie. Cost comparisons between these restricted multi-visit

deliveries and single-visit drone operations are presented in Figure 7.

The graph shows that major savings are obtained from allowing 2 visits per sortie for all

instance sizes, and almost all savings are achieved with 3 visits per sortie. In some instances

with a large number of customers, the ALNS finds lower costs with 3 visits per sortie compared

to the costs using unlimited visits. This suggests that the ALNS might be utilising unnecessarily

long sorties, and shorter sorties could potentially provide greater savings.

5.6 Performance on clustered instances

For all experiments in this section, instances with uniformly distributed customers on a grid were

used. In reality, it is more realistic for customers to be clustered, similar to neighbourhoods in

a city. Therefore, this subsection presents the results of the ALNS heuristic on the clustered

instances from Sacramento et al. (2019). The clusters were constructed by generating θ focal

points. Each customer is then assigned to one of these focal points, and their location relative to

the focal point is determined using a normal distribution with a standard deviation of 2 miles.

The ALNS was applied 5 times for each problem and for each instance. The results are given

in Table 5 in Appendix B.

The experiments show similar performance to instances with uniformly distributed custom-

ers. Average savings deviate at most 1.5 percentage points for all problems, compared to the

instances 150.30.X. Additionally, there is no evidence that the number of clusters influences the

obtained savings for any problem.

6 Conclusion

In this paper, we study the Multi-visit Vehicle Routing Problem with Drones (Mv-VRP-D) and

several of its sub-problems. The Mv-VRP-D is a problem in operations research involving parcel

delivery by multiple trucks, each assisted by multiple drones capable of performing multiple

deliveries in a single flight, known as a sortie. Given the NP-hard nature of the problem, we

propose an Adaptive Large Neighbourhood Search (ALNS) metaheuristic based on the algorithm

presented by Sacramento et al. (2019), to find solutions. The main objective of this paper is to

19

assess the cost savings achievable by allowing drones to perform multiple deliveries and having

multiple drones cooperate with each truck.

Using parameters considered realistic, we find that for instances with between 100 and 200

customers, the average obtained savings are 13% for the multi-visit problems, 5% for those

involving multiple drones, and 15% for the combination of both. Sensitivity analysis shows that

drone capacity plays a major role in cost savings for multi-visit problems, while drone endurance

is less influential. Throughout the experiments, two drones were used for problems including

multiple drones, and analysis on the number of drones indicates that adding more drones does

not significantly increase savings for instances containing a large number of customers. In the

same experiments, there was no limit on the number of deliveries per sortie, but further analysis

shows that the major savings can be achieved with two visits per sortie, and almost all savings

are realized with three visits per sortie.

7 Discussion

In this section, we critically assess the results and conclusions from this paper. Additionally,

some suggestions for future research are given.

Firstly, most results are obtained by running the ALNS metaheuristic for three iterations.

While more iterations could provide more reliable results, the time constraints of this paper did

not allow for it. To mitigate this, conclusions are based on averaging results for greater reliability.

Additionally, the use of constant drone endurance and cost per kilometer is not realistic. This

assumption may overestimate the savings for multi-visit problems because it does not account

for the increased weight of drones carrying more parcels. Similarly, the sensitivity analysis on

drone capacity might present a more optimistic view of savings when increasing capacity. Lastly,

additional parameter tuning can be performed. Currently, the ALNS for all problems is executed

using parameters similar to those in Sacramento et al. (2019). However, different parameters

could be optimized for the other problems, particularly for multi-visit applications.

For future research, a more realistic energy consumption model could be used instead of

constant endurance to find more accurate costs, particularly for multi-visit scenarios. Existing

drone literature employs energy drain functions that base energy consumption on the speed and

weight of a drone (Luo et al., 2021; Masmoudi et al., 2022; Murray & Raj, 2020). Another

suggestion is to adjust the number of drones in a truck dynamically while solving the problem.

Allowing the algorithm to determine this while creating solutions, would eliminate the need

for an assumption on the number of drones. Finally, exploring an adaptive approach for the

number of visits in a sortie could be beneficial. In some of our experiments, the ALNS found

better solutions when limiting the number of visits in a sortie to three instead of having no limit.

A promising implementation would be to start with a relatively low number of visits in a sortie

and gradually increase this value over time.

20

References

Agatz, N., Bouman, P. & Schmidt, M. (2018). Optimization approaches for the traveling

salesman problem with drone. Transportation Science, 52 (4), 965–981.

Kitjacharoenchai, P., Ventresca, M., Moshref-Javadi, M., Lee, S., Tanchoco, J. M. & Brunese,

P. A. (2019). Multiple traveling salesman problem with drones: Mathematical model and

heuristic approach. Computers & Industrial Engineering , 129 , 14–30.

Luo, Z., Poon, M., Zhang, Z., Liu, Z. & Lim, A. (2021). The multi-visit traveling salesman

problem with multi-drones. Transportation Research Part C: Emerging Technologies, 128 ,

103172.

Masmoudi, M. A., Mancini, S., Baldacci, R. & Kuo, Y.-H. (2022). Vehicle routing problems

with drones equipped with multi-package payload compartments. Transportation Research

Part E: Logistics and Transportation Review , 164 , 102757.

Murray, C. C. & Chu, A. G. (2015). The flying sidekick traveling salesman problem: Optimiza-

tion of drone-assisted parcel delivery. Transportation Research Part C: Emerging Technologies,

54 , 86–109.

Murray, C. C. & Raj, R. (2020). The multiple flying sidekicks traveling salesman problem: Parcel

delivery with multiple drones. Transportation Research Part C: Emerging Technologies, 110 ,

368–398.

Palmer, A. (2020). Amazon wins faa approval for prime air drone delivery fleet. Retrieved

13-05-2024, from https://www.cnbc.com/2020/08/31/amazon-prime-now-drone-delivery

-fleet-gets-faa-approval.html

Papandreou, T. (2024). Beyond hype: Drone delivery takes flight in 2024. Retrieved 13th of

May 2024, from https://www.forbes.com/sites/timothypapandreou/2024/03/13/beyond

-hype-drone-delivery-takes-flight-in-2024/?sh=7ed069245bb9

Poikonen, S. & Golden, B. (2020). Multi-visit drone routing problem. Computers & Operations

Research, 113 , 104802.

Sacramento, D., Pisinger, D. & Ropke, S. (2019). An adaptive large neighborhood search

metaheuristic for the vehicle routing problem with drones. Transportation Research Part C:

Emerging Technologies, 102 , 289–315.

Wang, X., Poikonen, S. & Golden, B. (2017). The vehicle routing problem with drones: several

worst-case results. Optimization Letters, 11 , 679–697.

21

https://www.cnbc.com/2020/08/31/amazon-prime-now-drone-delivery-fleet-gets-faa-approval.html
https://www.cnbc.com/2020/08/31/amazon-prime-now-drone-delivery-fleet-gets-faa-approval.html
https://www.forbes.com/sites/timothypapandreou/2024/03/13/beyond-hype-drone-delivery-takes-flight-in-2024/?sh=7ed069245bb9
https://www.forbes.com/sites/timothypapandreou/2024/03/13/beyond-hype-drone-delivery-takes-flight-in-2024/?sh=7ed069245bb9

A Table of main results

Table 4: Best-found objective values for all instances from Sacramento et al. (2019), using the ALNS
metaheuristic for the VRP-D, Mv-VRP-D, VRP-MD and Mv-VRP-MD. Additionally, the obtained

savings over the VRP-D are given for the three other problems.

Instance zV RP−D zMv−V RP−D zV RP−MD zMv−V RP−MD SMV SMD SMV-MD

6.5.1 1.0982 1.0086 1.0813 1.0086 8.16% 1.54% 8.16%
6.5.2 0.8422 0.6165 0.8176 0.6165 26.80% 2.92% 26.80%
6.5.3 1.2114 0.8362 1.1931 0.8362 30.97% 1.51% 30.97%
6.5.4 0.9460 0.7904 0.9105 0.7904 16.45% 3.75% 16.45%
6.10.1 2.4061 1.6145 1.8362 1.6145 32.90% 23.69% 32.90%
6.10.2 1.6793 0.9416 1.2847 0.9416 43.93% 23.50% 43.93%
6.10.3 1.3255 0.5650 1.0771 0.5650 57.38% 18.74% 57.38%
6.10.4 1.4431 0.8369 1.2419 0.8369 42.01% 13.94% 42.01%
6.20.1 2.6776 2.6776 2.1180 1.5408 0.00% 20.90% 42.46%
6.20.2 4.3196 4.0064 4.2179 4.0064 7.25% 2.35% 7.25%
6.20.3 3.8247 3.8247 3.7630 3.7630 0.00% 1.62% 1.62%
6.20.4 3.6787 3.6787 3.0380 3.0380 0.00% 17.42% 17.42%
10.5.1 1.6556 1.6353 1.6556 1.6323 1.23% 0.00% 1.41%
10.5.2 1.4519 0.7848 1.2603 0.7848 45.94% 13.19% 45.94%
10.5.3 1.4736 1.1043 1.3052 1.0863 25.06% 11.43% 26.28%
10.5.4 1.2849 0.8365 1.2261 0.8365 34.90% 4.57% 34.90%
10.10.1 2.3265 1.6188 1.8613 1.6188 30.42% 20.00% 30.42%
10.10.2 3.1586 2.7636 3.0546 2.7636 12.50% 3.29% 12.50%
10.10.3 2.5527 1.8607 2.1436 1.8574 27.11% 16.03% 27.24%
10.10.4 2.5393 1.7702 2.3005 1.7702 30.29% 9.41% 30.29%
10.20.1 4.4524 4.1855 4.3472 4.1329 6.00% 2.36% 7.18%
10.20.2 6.1678 5.2499 5.6575 4.8019 14.88% 8.27% 22.15%
10.20.3 4.5463 3.7222 4.1397 3.1906 18.13% 8.94% 29.82%
10.20.4 6.1536 4.6995 4.8040 4.4238 23.63% 21.93% 28.11%
12.5.1 1.3738 1.0284 1.2634 1.0284 25.14% 8.04% 25.14%
12.5.2 1.0590 0.4178 0.7956 0.3136 60.55% 24.87% 70.39%
12.5.3 1.4477 1.3282 1.4316 1.3264 8.25% 1.11% 8.38%
12.5.4 1.5810 1.1226 1.4456 1.1057 28.99% 8.56% 30.06%
12.10.1 2.6810 2.1301 2.5608 2.1291 20.55% 4.48% 20.59%
12.10.2 2.6842 2.2483 2.5652 2.2483 16.24% 4.43% 16.24%
12.10.3 2.8805 2.5845 2.8166 2.5845 10.27% 2.22% 10.27%
12.10.4 2.3142 1.9080 2.2448 1.9053 17.55% 3.00% 17.67%
12.20.1 5.7776 4.5407 5.0175 4.5407 21.41% 13.16% 21.41%
12.20.2 8.2725 8.1112 8.2508 8.1112 1.95% 0.26% 1.95%
12.20.3 4.1669 3.5377 4.1238 3.5377 15.10% 1.03% 15.10%
12.20.4 6.0886 5.0927 5.7769 4.9998 16.36% 5.12% 17.88%
20.5.1 1.7935 1.5233 1.7610 1.5163 15.06% 1.81% 15.45%
20.5.2 1.8221 1.7457 1.8166 1.7450 4.19% 0.30% 4.23%
20.5.3 1.4866 0.8667 1.4185 0.8241 41.70% 4.58% 44.57%
20.5.4 1.3789 0.8669 1.2280 0.8593 37.13% 10.95% 37.69%
20.10.1 3.2525 2.3361 3.0109 2.3339 28.18% 7.43% 28.25%
20.10.2 3.0894 1.9902 2.6919 1.6639 35.58% 12.87% 46.14%
20.10.3 3.7023 2.2830 3.5294 2.1499 38.33% 4.67% 41.93%
20.10.4 3.1966 2.5259 3.0376 2.5259 20.98% 4.98% 20.98%
20.20.1 7.3230 5.4461 6.7346 5.2178 25.63% 8.03% 28.75%
20.20.2 7.5394 5.3847 7.3732 5.3847 28.58% 2.20% 28.58%
20.20.3 7.4610 5.4971 6.7610 5.3140 26.32% 9.38% 28.78%
20.20.4 7.0133 6.3392 6.8868 6.3156 9.61% 1.80% 9.95%
50.10.1 5.8613 5.4142 5.8247 5.4045 7.63% 0.63% 7.79%
50.10.2 5.5849 5.1206 5.4991 5.1206 8.31% 1.54% 8.31%
50.10.3 5.4161 4.0102 5.0329 4.0319 25.96% 7.08% 25.56%
50.10.4 5.1405 3.8477 4.9995 3.7895 25.15% 2.74% 26.28%

(continued on next page)

22

Instance zV RP−D zMv−V RP−D zV RP−MD zMv−V RP−MD SMV SMD SMV-MD

50.20.1 10.2349 9.2878 10.1736 9.1944 9.25% 0.60% 10.17%
50.20.2 10.0561 8.6840 9.7439 8.6303 13.64% 3.10% 14.18%
50.20.3 10.5018 8.5990 10.1554 8.5338 18.12% 3.30% 18.74%
50.20.4 10.6641 8.3817 10.3458 8.3915 21.40% 2.99% 21.31%
50.30.1 15.7714 14.1152 15.5611 14.1152 10.50% 1.33% 10.50%
50.30.2 15.0148 13.2067 14.7591 13.0640 12.04% 1.70% 12.99%
50.30.3 16.3865 13.9102 15.7530 13.3142 15.11% 3.87% 18.75%
50.30.4 18.5973 16.7987 18.3909 16.8205 9.67% 1.11% 9.55%
50.40.1 20.0883 17.5430 19.3144 17.0101 12.67% 3.85% 15.32%
50.40.2 20.6253 18.9516 20.3786 18.4928 8.12% 1.20% 10.34%
50.40.3 22.6452 20.0285 21.7850 19.8612 11.56% 3.80% 12.29%
50.40.4 22.3371 20.6440 22.1249 19.1063 7.58% 0.95% 14.46%
100.10.1 6.9395 5.6401 6.5401 5.6666 18.73% 5.76% 18.34%
100.10.2 7.5477 6.5143 7.2819 6.3369 13.69% 3.52% 16.04%
100.10.3 7.2211 6.0090 6.8056 5.8422 16.79% 5.75% 19.09%
100.10.4 7.3656 6.8222 7.1845 6.9238 7.38% 2.46% 6.00%
100.20.1 14.0361 12.1159 13.2848 12.0960 13.68% 5.35% 13.82%
100.20.2 14.0245 12.2796 13.6091 11.6770 12.44% 2.96% 16.74%
100.20.3 13.5900 12.0394 13.3056 12.0686 11.41% 2.09% 11.20%
100.20.4 13.8588 11.1996 13.0352 11.2909 19.19% 5.94% 18.53%
100.30.1 22.4972 19.5488 20.8207 19.0543 13.11% 7.45% 15.30%
100.30.2 22.1884 18.5412 20.6709 18.0356 16.44% 6.84% 18.72%
100.30.3 23.5601 20.5243 21.7523 18.5209 12.89% 7.67% 21.39%
100.30.4 22.4013 16.9240 20.3362 16.3566 24.45% 9.22% 26.98%
100.40.1 28.8820 24.4356 27.9082 24.3691 15.40% 3.37% 15.63%
100.40.2 29.5612 25.8186 28.8585 25.6880 12.66% 2.38% 13.10%
100.40.3 28.3618 24.7343 27.6476 24.5880 12.79% 2.52% 13.31%
100.40.4 28.8516 24.5611 28.0988 23.2202 14.87% 2.61% 19.52%
150.10.1 8.6076 7.7248 8.2970 7.6808 10.26% 3.61% 10.77%
150.10.2 8.1718 7.5951 7.9727 7.5141 7.06% 2.44% 8.05%
150.10.3 8.4473 7.1005 8.0540 6.5721 15.94% 4.66% 22.20%
150.10.4 8.7842 8.2201 8.6225 8.0379 6.42% 1.84% 8.50%
150.20.1 17.2130 14.5145 16.1650 14.0462 15.68% 6.09% 18.40%
150.20.2 16.7368 15.1325 15.6400 15.0260 9.59% 6.55% 10.22%
150.20.3 17.3303 14.8286 16.2916 14.3625 14.44% 5.99% 17.12%
150.20.4 16.7161 14.3572 15.6679 13.7221 14.11% 6.27% 17.91%
150.30.1 25.5092 23.0703 24.5042 22.6989 9.56% 3.94% 11.02%
150.30.2 26.3238 23.3337 25.0368 23.3337 11.36% 4.89% 11.36%
150.30.3 25.0831 21.0142 24.0701 19.9792 16.22% 4.04% 20.35%
150.30.4 25.9407 23.3632 25.5130 23.3335 9.94% 1.65% 10.05%
150.40.1 33.2507 28.5811 32.0169 28.5811 14.04% 3.71% 14.04%
150.40.2 36.5743 31.7542 34.9963 31.0142 13.18% 4.31% 15.20%
150.40.3 35.7271 30.1642 34.8553 29.6337 15.57% 2.44% 17.06%
150.40.4 34.3110 28.3813 32.8230 28.4982 17.28% 4.34% 16.94%
200.10.1 9.8477 9.0982 9.0665 8.7889 7.61% 7.93% 10.75%
200.10.2 9.7517 9.5370 9.1685 8.1885 2.20% 5.98% 16.03%
200.10.3 9.8025 9.3394 9.3117 9.0230 4.72% 5.01% 7.95%
200.10.4 10.0382 8.9192 9.3611 8.6171 11.15% 6.75% 14.16%
200.20.1 20.8003 17.8441 19.3342 17.3703 14.21% 7.05% 16.49%
200.20.2 21.1237 19.7219 20.4086 19.4774 6.64% 3.39% 7.79%
200.20.3 20.1779 18.1415 19.2955 17.2857 10.09% 4.37% 14.33%
200.20.4 19.0809 17.6269 18.2530 17.5468 7.62% 4.34% 8.04%
200.30.1 29.9570 27.1262 28.9457 26.7190 9.45% 3.38% 10.81%
200.30.2 30.4966 25.2174 28.7089 24.5742 17.31% 5.86% 19.42%
200.30.3 30.9327 26.1044 28.9153 25.3244 15.61% 6.52% 18.13%
200.30.4 31.0803 27.6082 29.7456 26.9325 11.17% 4.29% 13.35%
200.40.1 41.5775 34.0992 37.4499 33.9551 17.99% 9.93% 18.33%
200.40.2 42.6046 37.0575 39.0837 34.1138 13.02% 8.26% 19.93%
200.40.3 42.2931 36.2851 39.6723 34.6319 14.21% 6.20% 18.11%
200.40.4 42.0798 32.0561 36.3795 30.4228 23.82% 13.55% 27.70%

23

B Table of results for clustered instances

Table 5: Best-found objective values for all clustered instances from Sacramento et al. (2019), using the
ALNS metaheuristic for the VRP-D, Mv-VRP-D, VRP-MD and Mv-VRP-MD. Additionally, the

obtained savings over the VRP-D are given for the three other problems.

Instance θ zV RP−D zMv−V RP−D zV RP−MD zMv−V RP−MD SMV SMD SMV-MD

150.30.c.01 1 7.2092 5.86335 6.7486 5.673760558 18.67% 6.39% 21.30%
150.30.c.02 4 17.576 15.5682 16.565 15.49727275 11.43% 5.75% 11.83%
150.30.c.03 5 19.132 17.469 19.006 17.45730844 8.69% 0.66% 8.75%
150.30.c.04 3 17.525 15.6075 16.793 15.30194166 10.94% 4.18% 12.69%
150.30.c.05 3 12.947 11.338 12.578 10.98491155 12.43% 2.85% 15.16%
150.30.c.06 2 11.79 10.6811 11.52 10.78469115 9.40% 2.29% 9.40%
150.30.c.07 2 10.205 9.07811 9.8146 8.867070408 11.04% 3.82% 13.11%
150.30.c.08 5 16.071 14.6082 14.339 13.42660808 9.10% 10.78% 16.46%
150.30.c.09 5 14.111 11.8816 12.089 10.85479773 15.80% 14.33% 23.08%
150.30.c.10 3 17.791 16.9897 16.902 16.66024849 4.50% 5.00% 6.36%

24

C Code

The code for this thesis was written in Java and is made up of 10 classes. There roll will be

explained in the order that is I deemed was most logical.

Firstly, the Node class is what defines a customer. Every node object has coordinates and a

demand. Methods in this class include, calculating the distance to other customers and checking

if a node is the depot.

The Instance class is used to define an instance. It contains the grid size, the number of

customers and the number of drones that can be utilised. Customers can be either randomly

generated, or added to the instance.

Next up is the Route class. In this class, all features of a route are stored. It contains the

route of the truck, route(s) of the drone(s) and the arrival times at all locations. Additionally,

parameter values with respect to the trucks and drones are set here. All methods that only

concern a single route are found here. Some methods include, the insertion of a customer, the

removal of a customer, checking the feasibility of adding a customer to the route and updating

all the arrival times at customers.

The Solution class holds all information to properly define a solution. It stores the Instance

object the solution is for, and all Route objects in the solution. The class contains a method to

calculate the cost of the solution and a method that returns the customers that are currently in

the solution. Additionally, the insertion methods are defined in this class as well as the drone

exchange algorithm, used in the local search for sorties.

The ALNS and MultiVisitALNS classes are separate classes that hold all functionality and

parameters of the ALNS algorithm for the single-visit and multi-visit drones, respectively. The

classes are split up, because the additional methods used in the Multi-visit problems were most

practical to implement using a different class. The methods in both classes are the same, with

the MultiVisitALNS including some additional methods. These methods include: The ALNS

algorithm, the destroy and repair methods, the construction algorithm for the initial solution

and the algorithm to find feasible sorties.

For three additional classes, we will mention their purpose shortly. The FileReader class is

used to read out the instances from Sacramento et al. (2019) from text files. The MonteCarlo

class is used to produce the Monte Carlo simulations of which the results are presented in

Table 3. Lastly, the Distributions Class holds methods related to the sampling of values from

distributions. Additionally, some methods to get statistical values are written here.

Finally, all runs are performed in the Main class. In this class, the methods to gather all

results are written. All lines that were used to obtain the results are still in this class, as

comments. The only results that can not be obtained from running any of these lines, are the

results for the sensitivity analysis. To get those, the drone features (endurance and capacity)

need to manually be adjusted in the Route class. Results can then be obtained by running the

getResults method for any instance.

25

	Introduction
	Literature Review
	Problem Description
	Methodology
	Adaptive Large Neighbourhood Search
	Initial Solution
	Destroy methods
	Random destroy method
	Cluster destroy method

	Repair methods
	Greedy repair method
	Nearby-area repair method
	Closest insertion repair method
	Heavy insertion repair method

	Results
	Parameters
	Instances
	Computational results
	Sensitivity analysis
	Drone endurance
	Drone capacity

	Analysis of multiple drones and multi-visits
	Number of drones per truck
	Number of drone deliveries per sortie

	Performance on clustered instances

	Conclusion
	Discussion

