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Abstract

Making accurate predictions of stock market returns is crucial for both risk manage-

ment and financial gains. Therefore, this paper evaluates the performance of the Partially

Protected Bayesian LASSO compared to other techniques and models capable of handling

high-dimensional data. One-quarter-ahead predictions are made using an expanding win-

dow to assess the performance of these models. Although the differences between the two

Bayesian LASSO models were small, the results show that the regular Bayesian LASSO

performed the best, demonstrating significant predictive ability over the Partially Protec-

ted Bayesian LASSO. The Partially Protected Bayesian LASSO still performed on par with

Support Vector Regression, Random Forest, and PCA-OLS models. These promising res-

ults highlight the potential of the Partially Protected Bayesian LASSO for future research.

Further investigation could focus on refining the selection of protected variables by making

them less prone to shrinkage or improving the prior distributions of the model.

1 Introduction

Accurately predicting stock market returns is crucial in various fields, including portfolio build-

ing, option pricing, and risk management. Sound decision-making in these areas can lead to

substantial profits for both individual and institutional investors. However, achieving accur-

ate predictions remains a challenging endeavor. This is especially the case because the stock

market is influenced by numerous macro economic variables such as central bank interest rates,

investors expectation, political events and other economic condition indicators(Sigo, 2018). As

a result, Big Data which is high-dimensional data from a variety of sources, can offer a solu-

tion by incorporating all this information and patterns when making predictions. Previously,

Big Data has been successfully applied in the finance and banking industry leading to various

improvements regarding customized solutions, fraud detection and risk management(Dulhare et

al., 2020). However, these high-dimensional datasets come with various challenges like overfit-

ting which negatively impacts the performance of the model with new data, as well as noise

and multicollinearity(Fan et al., 2014). Therefore, models that can successfully extract the most

information from these datasets and adequately address the aforementioned challenges, could

significantly improve the forecasts of stock market returns.

The Partially Protected LASSO(Yaman et al., 2024) is a model that can address these chal-

lenges, by selecting the most important and relevant predictors, thereby reducing the sensitivity

to noise in the data. Furthermore, it is also easier to interpret by shrinking the total number

of predictors in high-dimensional datasets. This model was initially introduced because Yaman

et al. (2024) wanted to bridge theory and forecast accuracy in the political science by ’pro-

tecting’ theoretical significant variables in the political science when making predictions. The

protection is achieved by making the theoretically significant variables less prone to shrinkage

compared to others, leading to bigger coefficients for these variables. For forecasting stock mar-

ket returns, this model serves as a interesting and novel technique, by ’protecting’ variables that

have demonstrated strong out-of-sample performance. Exploring new techniques for forecasting

stock returns is particularly important, as stock returns include a significant portion of unpre-

dictability where even the best forecasting models are only able to explain a small part of stock

returns (D. Rapach & Zhou, 2013). Therefore, finding potentially good models and methods for
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predicting stock market returns will be a great addition to the existing literature.

In the first part of this thesis, the method of Yaman et al. (2024) is replicated using the

American National Election Study (ANES) dataset which is a public opinion survey about voting

behavior in the US. In this survey participants were asked to rate the feelings toward political

leaders from 0 to 100, referred to as the feeling thermometer. The thermometer value of Joe

Biden will serve as the target variable. The aim of Yaman et al. (2024) was to asses the trade-off

involved in protecting theoretically important variables from shrinkage. The replication results

show that the Partially Protected Bayesian LASSO successfully makes the protected variables

less prone to shrinkage compared to a Bayesian LASSO that shrinks variables indiscriminately

while only slightly decreasing in predictive performance. These results are consistent with the

findings of the original paper. This thesis then extends the study by the following research

question:

Research Question

Does the Partially protected LASSO improve forecasting performance of existing stock market

return models using high-dimensional data?

To answer this, a dataset consisting of 98 variables, including financial indicators, macroeconomic

data and technical indicators is used to predict the S&P 500 stock market returns. The Bayesian

LASSO is then compared to other models that have demonstrated strong performance in pre-

dicting stock market returns with high-dimensional data. The empirical results show that the

regular Bayesian LASSO performed the best, showing significant predictive ability over the Par-

tially Protected LASSO. However, the Partially Protected Bayesian LASSO has equal predictive

ability with the two machine learning models (Random Forest and Support Vector Regression)

and PCA-OLS. Additionally, all these models demonstrated a significant ability to predict the

sign and generate excess returns of the S&P 500. However, the Bayesian LASSO models have a

major advantage over other models and techniques capable of handling high-dimensional data-

sets, as it retains the interpretability of the model coefficients and comprehends the significance

of variables in making accurate predictions.

The remainder of this paper is organized as follows. First, in Section 2 the literature is

introduced. Then, in Sections 3 and 4, the data and the pre-processing of the replication

and extension parts will be described. Section 5 will be dedicated to the methodology and

performance measures. The results are reported in Section 6. Lastly, a conclusion will be given

in Section 9.

2 Literature

Over the years, many researchers have tried to make accurate predictions of stock market re-

turns, especially much emphasis has been given to identify the best predictors. However, most

bivariate OLS models fail to beat the historical average forecast(Welch & Goyal, 2008). This

problem remains even when all predictors are included in a multiple linear regression model for

forecasting. This is likely due to overfitting and having too many parameters, which often leads

to poor out-of-sample predictions. Fortunately, there has been an increasing number of liter-
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ature on models and techniques that address these problems and can handle high dimensional

data in predicting stock market returns.

The LASSO regularization method from Tibshirani (1996) is one of such methods. Chinco

et al. (2019) uses the LASSO to make one-minute-ahead forecasts of stock returns with high-

dimensional data. The LASSO enhances both the in-sample fit and Sharpe-ratios. The strength

of the LASSO lies in its ability to create a parsimonious and selecting the most important vari-

ables from high-dimensional data, contributing to better out-of-sample predictions. This advant-

age is further emphasized by other papers that forecast stock market returns using LASSO(Feng

et al., 2020)(Dai et al., 2022). The Bayesian LASSO however, has not been widely applied in

predicting stock market returns despite the advantages over the regular LASSO model. This

model provides better model interpretation and it incorporates prior beliefs, which can be ad-

vantageous in the presence of multicollinearity(Park & Casella, 2008).

In addition to overfitting and overparametrization, is the presence of non-linearities in stock

market returns(Enke & Thawornwong, 2005). Models that can adequately incorporate these non-

linearities could significantly improve forecasting performance. Vijh et al. (2020) have shown

that machine learning models excel at capturing hidden patterns and non-linear relationships

in high-dimensional data. Among these, the Support Vector Machine (SVM)(Vapnik, 2013) is

commonly used. Huang et al. (2005) reviews several methods to predict the Nikkei 225 Index

stock market index, finding that the Support Vector Machine (SVM) model beats the Linear

Discriminant Analysis, Quadratic Discriminant Analysis and Neural Networks models. The good

performance of the SVM model is due its ability to prevent overfitting and the SVM solution is

always unique and optimal, in contrast with other machine learning models like neural networks

which involves solving more complicated mathematical problems that can lead to suboptimal

solutions.

Random Forest(RF)(Breiman, 2001) is another machine learning model frequently used.

Given the noisy and fluctuation prone nature of stock market returns, the RF model, which

uses ensemble methods to smooth out noise, serves as a suitable model for forecasting stock

market returns. Akyildirim et al. (2022) compares various methods, including the Random

Forest, on high-frequency data of 27 blue-chip stocks traded on the Istanbul Stock Exchange

to forecast the sign and change of percentage, finding that the Random Forest performed the

best. It outperformed artificial neural networks, k-nearest neighbors, logistic regression, Näıve

Bayes and extreme gradient boosting classifier. This success is large due to the ability of the

Random Forests to capture complex non-linear relationships between predictors, which might be

missed by linear models such as logistic regression. Furthermore, most machine learning models

are highly sensitive to hyperparameter changes but Probst et al. (2019) show that the effect of

hyperparameter tuning is smaller for the RF model.

Moreover, D. Rapach & Zhou (2013) highlight the use of dimension reductions techniques,

which summarizes the information contained in a large number of individual predictors. Prin-

cipal Component Analysis (PCA) has proven to produce consistent estimators (Bai, 2003) (Stock

& Watson, 2006). PCA not only extracts the most important information from the predictors

but also prevents overfitting and multicollinearity, as the predictors produced by PCA are uncor-

related. These properties make PCA one of the best methods for dealing with high-dimensional
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datasets. Ludvigson & Ng (2007) successfully applied PCA on a large dataset of 209 macroe-

conomic and 172 financial indicators which not only led to good in-sample performance but

also significant out-of-sample forecasting of stock market returns. Similarly, Neely et al. (2014)

applied PCA to a combination of 14 macroeconomic and 14 technical indicators, finding that

the predictors constructed from this method performed the best when forecasting the US equity

premium. These previous studies have mainly focused on applying PCA in combination with a

linear regression which leaves room to study the effectiveness on non-linear models like machine

learning models.

3 Data replication

The dataset from the American National Election Study (ANES) 2020 is used for the replication,

just as in Yaman et al. (2024). In this survey participants were asked to rate the feelings toward

political leader from 0 to 100 referred to as the feeling thermometer. The thermometer value of

Joe Biden is the target variable for the replication part.

While traditional research often relies on theoretically agreed-upon variables like race and

income to make predictions, recent literature focuses more on forecasting vote results without

necessarily considering the theoretical relevance of these variables. The goal of Yaman et al.

(2024) was to bridge these two approaches. In this paper, the variables identified by Argyle

et al. (2023) are chosen to be protected. It contains variables related to ethnicity, gender, age,

ideology, income and being evangelical or not.

The first step in preprocessing the ANES dataset is that only the pre-election variables

will be used, thereby excluding the post-election variables. Then the missing observations and

invalid responses of the survey takers are converted to NA values. Variables with more than 60%

missing observations and those that have a variance of less than one are removed. Additionally,

observations from the dataset are entirely removed from the dataset if they contain missing

values for the target variable, Joe Biden’s feeling thermometer. To address the remaining NA

values, the Multivariate Imputation by Chained Equations (MICE) procedure in R is applied.

This approach creates multiple imputed values for each missing entry, considering other variables

and incorporating the uncertainty associated with the missing data. After preprocessing, the

data consists of 449 columns and 8060 observations. Of this dataset, 70% of the data will be

used for training the models and the remaining 30% to test.

4 Data extension

The dataset for the extension consists of 98 variables, which are macroeconomic variables related

to the USA; technical indicator variables constructed based on leverage, volume, and volatility

clustering (Liu & Pan, 2020); and several financial indicators. The target variable is the quarterly

log returns of the S&P 500 price index, calculated using the formula rt = ln
(

Pt
Pt−1

)
. Since, not

all variables were available on a quarterly bases, the daily or monthly variables were aggregated

by summation or averaging over the quarter. All of the variables span from 1990Q1 to 2020Q3.

A full list of all the variables and their sources can be found in Table 5 in Appendix B.
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As mentioned in the literature section, most variables fail to beat the historical average.

Fortunately, there have been several variables that have shown good out-of-sample performance.

Those are the purchasing managers index, yield curve rates and interest rate(McMillan, 2021),

the T-bill rate(Qiu et al., 2016) and the S&P GSCI Commodity total return index(Black et

al., 2014). The data is preprocessed by testing for stationarity, linear trend stationarity, and

quadratic trend stationarity using an augmented Dickey-Fuller (ADF). Variables containing a

trend, are detrended and when the variable has a unit root, the first difference was taken. No

observations were imputed, as only variables spanning from 1990Q1 to 2020Q3 were selected.

5 Methodology

In this section, the proposed methods will be introduced. It starts with a discussion of the

original LASSO Tibshirani (1996). Following this, the Bayesian LASSO and the use of priors in

this paper will be discussed. After that, the benchmark models will be explained. Lastly, the

performance metrics used in this paper are described.

5.1 Targeted predictors

Maintaining the best characteristics of the high-dimensional dataset while introducing a sparse

structure by performing variable selection beforehand is suggested by Bai & Ng (2008). This is

important because not all predictors are important for predicting stock market returns and could

even introduce noise, thereby worsening the forecast. Therefore, the Elastic Net developed by

Zou & Hastie (2005) is chosen as the variable selection method because of its good performance

when predictors are highly correlated and will be used on the variables that are not chosen to

be protected. Elastic Net incorporates both the LASSO(L1) and Ridge(L2) regression penalty

terms, formulated in Equation 1. α is the weight between the L1 and L2 penalty terms. The

Ridge penalty decreases the magnitude of the coefficient and the LASSO penalty can set them

to zero, thereby providing variable selection. Following Bai & Ng (2008) α = 0.5 and tune λ

such that ten predictors are chosen. Thus, the final dataset will comprise of these ten predictors

and the protected variables.

β̂EN = argmin
β

[
RSS + λ

(
(1− α)

1

2
∥β∥22 + α∥β∥1

)]
, (1)

5.2 LASSO

Equation 2 shows the formulation of the LASSO coefficients β. The first part is the residual

sum of squares (RSS) which is the same as an ordinary least squares estimator. The second

part is the L1 norm, which shrinks the coefficients towards zero. The higher the value of λ

the more sparsity in the model you get. Furthermore, a λ = 0 gives you the OLS estimator.

There are methods for regularization models such as LASSO and Elastic Net to get an estimate

of the coefficients standard errors, which are not shrunk to zero. However, for variables with

coefficients set to zero, there has yet to be a method to get reliable estimates. This is exactly

what the Bayesian LASSO can solve which in return gives a better insight into the importance

of the variables.
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β̂LASSO =

n∑
i=1

yi −
∑
j

xij β̂j

2

+ λ

p∑
j=1

|β̂j | (2)

5.2.1 Bayesian LASSO

The Bayesian models make use of prior distributions on the coefficients, treating them as ran-

dom variables, rather than fixed values. Furthermore, many Bayesian models rely on methods

like a Gibbs sampler, a type of Monte Carlo Markov Chain (MCMC), to derive the posterior

distribution: P (θ | x, y) = P (x,y|θ)·P (θ)
P (x,y) ∝ P (x, y | θ) · P (θ). This method numerically approx-

imates the posterior distribution by creating a sequence of samples using a Markov chain when

direct sampling is not feasible. The Bayesian LASSO introduced by Park & Casella (2008) also

applies these principles. In this model a prior distribution is placed on the coefficients β more

specifically, the Laplacian distribution is assigned to the coefficients, which acts like the L1 pen-

alty term of the LASSO to introduce shrinkage. Yaman et al. (2024) showed an example of a

Bayesian LASSO with a conditional Laplace prior specification, which can be seen in Equations

3.
βj | τ2j , σ2 ∼ N

(
0, σ2τ2j

)
π
(
σ2

)
= 1/σ2

τ2j

∣∣∣∣λ2 ∼ Exponential

(
λ2

2

)
, for j = 1, . . . , p,

λ2 ∼ Γ(1, 0.1).

(3)

The conditional Laplace prior, combined with an uninformative prior on σ2, ensures that the

posterior is unimodal. If this were not the case, it would slow down the convergence of the

Gibbs sampler. This property ensures that the posterior coefficients of the β are interpretable

by means of the standard errors. Additionally, the inclusion of the intermediate parameter τ

simplifies the sampling from the posterior distribution, thereby also improving the convergence

of the Gibbs sampler. Moreover, integrating τ2j out, yields the desired Laplacian prior:

βj | λ, σ ∼ L
(
0,

σ

λ

)
, for j = 1, . . . , p

To get the Partially-Protected Bayesian LASSO, the specifications below are used. X denotes

a matrix of predictors that are standardized. β is a vector with coefficients of the predictors and

σ2 are the residual variances. λ2 performs as the L1 penalty term with τ2 as the intermediate

parameter, n is the number of observations in the dataset and p is the number of predictors.

Y = Xβ + ϵ

ϵi ∼ N
(
0, σ2

)
, i = 1, . . . , n

βj ∼ N
(
0, τ2j σ

2
)
, j = 1, . . . , p.

Equations 4, 5, 6 and 7 describe the distributions of the hyperparameters. σ2 is assigned a

uniform distribution and λ2 a gamma distribution. The τ parameters are split into two categories

to differentiate between protected variables τ2protected and non-protected variables τ2non-protected.

The distribution of τ2protected is chosen to have a distribution that is less concentrated around
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zero, which should lead to bigger β′s and thus giving more importance to the protected variables.

Note that when every variable is in the protected group, the Bayesian LASSO turns into a regular

Bayesian linear regression. To assess the trade-off between theoretical relevance and prediction

accuracy, this Bayesian linear regression and the Bayesian LASSO without protection will be

assessed.

τ2non-protected ∼ exp

(
λ2

2

)
(4)

τ2protected ∼ Γ(1, 1) (5)

σ2 ∼ U(0.1, 10) (6)

λ2 ∼ Γ(1, 0.1) (7)

5.3 ARMA-(X)

The ARMA model(Heij et al., 2004) is a widely used time series model for forecasting. It

consists of an auto-regression part (AR(p)) that captures the relationship between the current

observation and the lagged observation. Secondly, it incorporates a moving average component

MA(q) which depends on the dependencies of the current observation and past residual errors.

Additionally, the model can be extended by including covariates, turning it into an ARMA-X

model(Wang & Jain, 2003). To tune the parameters, the AIC is used with (p,q = 1,2,3,4)

where the model with the smallest AIC and thus the best fit is chosen. In Equation 8 the full

mathematical description of this model is formulated.

yt = c+

P∑
p=1

αpyt−p +

Q∑
q=1

θqϵt−q +

M∑
m=1

βmxm,t−1 + ϵt (8)

5.4 OLS

Typically, a standard linear regression for predictions is formulated, as in Equation 9 where rt

now denotes the log returns and xi,t a predictor at time t.

rt+1 = αi +

K∑
k=1

βi,kxi,t,k + ϵi,t+1 (9)

To construct predictors using Principal Component Analysis(PCA), the original predictors xi,t,k

are transformed into orthogonal components which are linear combinations of the original pre-

dictors. The principal components (PC) created from this, are ordered by the amount of variance

they explain in the data. This offers a method for easily monitoring the significant correlations

among multiple predictors of future returns that are uncorrelated with each other.

There are various methods for determining the number of principal components to retain,

though no single optimal solution exists. In this thesis, the components are chosen based on

the scree plot and Kaiser’s Criterion, which suggests that PC’s with eigenvalues larger than one

should be chosen. Based on this criterion, it is determined to retain the first five components.
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The regression with these predictors are then formulated as in Equation 10. Graph 2 in Appendix

C shows a plot with the methods used to determine the number of factors.

rt+1 = αi +

q∑
j=1

βjPCt,j + ϵt+1 (10)

For the OLS regression models, the Newey-West (NW) standard errors Newey & West (1986)

are applied, which is a Heteroskedasticity and Autocorrelation Consistent (HAC) estimator. This

can be particularly useful when predicting stock market returns because of momentum effects,

where past returns can predict future returns, leading to autocorrelation. Furthermore, volatility

clustering, which is a stylized fact of returns, can lead to heteroskedasticity.

5.5 Random Forest

The Random Forest(Breiman, 2001) makes use of multiple regression trees. Each regression tree

is a simple model that makes predictions by recursively splitting the covariates into subsets,

forming a tree-like structure. The predictions of multiple decision trees are then combined and

averaged, which reduces the noise in the predictions of individual regression trees.

Randomization happens in two ways to reduce the variance and prevent overfitting. Initially,

the regression tree selects a random subsample of the covariates at each node. The algorithm

then determines the best split. It will continue until it meets a stopping criteria, such as the

maximum depth of the tree or the minimum number of samples needed for splitting. Secondly,

the RF model utilises a technique called bagging, which involves generating multiple bootstrap

samples from the original dataset. Bootstrapping means training each regression tree on a

different subsample of the data, where each subsample is created by randomly selecting data

points. After fitting the regression trees on these bootstrap samples, bagging takes the average

of their predictions to make the final prediction.

5.6 Support Vector Regression

The Support Vector Regression of Vapnik et al. (1997) works by identifying the best-fitting

tube that approximates a continuous-valued function to balance between model simplicity and

prediction accuracy. It starts off by introducing a symmetric convex ϵ-insensitive loss function

that applies equal penalties to both overestimations and underestimations to minimize deviations

within a set margin (ϵ). The goal is to identify the flattest tube that contains the majority

of training data points. This is achieved by solving this convex optimization problem using

numerical optimization techniques.

5.7 Hyperparameter tuning

Tuning the hyperparameters of machine learning models is crucial and can significantly impact

the performance of the model(Probst et al. (2019), Van Rijn & Hutter (2018)). As a result, a

grid search will be used to perform parameter tuning, which is one of the most commonly used

methods (Bergstra & Bengio, 2012). Additionally, before each prediction, the machine learning

models will be trained on k-fold cross validation. K-fold cross validation splits the data into
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k-folds and chooses one fold for testing k − 1 folds for training. This will be repeated until all

folds have been used for testing. Traditionally, the folds are randomly shuffled but to preserve

the temporal order of the time series, a blocked cross validation(Cerqueira et al., 2017) is used

in this paper. The hyperparameters of the SVR and RF models that are optimised in this thesis

are in Table 6 and 7 of Appendix C.

5.8 Performance Measures

To evaluate the performance of the regressions between models, several different metrics are

used. The first is the Root Mean Squared Error (RMSE) which is the square root of the average

of the squared errors. The RMSE punishes large errors harder, therefore can be sensitive to

outliers. The Mean Absolute Error (MAE) is the average of the absolute value of the errors. It

is thus less sensitive to outliers. Both are the same unit as the target variable which makes it

easier to interpret.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (11)

MAE =
1

n

n∑
i=1

|yi − ŷi|, (12)

Additionally, the out-of-sample R2 (Campbell & Thompson, 2008) defined in Equation 13.

Here ŷht represents the h-step ahead forecast, yht is the actual value and yht is the mean average

forecast. This widely used performance measure serves as a comparison of a model’s performance

against the historical average. The range of the R2
OoS,h is between (−∞, 1], where negative values

indicate that the model performs worse than a historical average.

R2
OoS,h = 1−

∑
t(y

h
t − ŷht )

2∑
t(y

h
t − yht )

2
, (13)

5.8.1 AG and PT test

The above-mentioned performance measures focus on reducing a loss function rather than achiev-

ing a significant effect in terms of maximizing profits. When trading with options and for

short sellers, it is crucial that the sign of the prediction is correct to make informed decisions.

Therefore, a Pesaran-Timmermann (PT) test(Pesaran & Timmermann, 1992) is applied to test

whether the model can significantly predict the direction of returns. Moreover, even if an in-

vestor can accurately forecast the market’s movement, it does not guarantee that they will make

more profits. This is because errors in predicting the market’s direction can lead to a higher

magnitude of returns than when no errors occur(Skouras, 2000). Consequently, the Anatolyev-

Granger(AG) test was developed by Anatolyev & Gerko (2005) to test for excess profitability.

Both the PT and AG tests have an asymptotic distribution of N (0, 1) under the null and can

be obtained by the dac test() function in R.
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5.8.2 Minzer-Zarnowitz

Another way of testing the performance of the models is by way of a Minzer-Zarnowitz regres-

sion(Mincer & Zarnowitz, 1969), given by Equation 14. In this regression yt represents the vector

of actual values and ŷt a vector of the predictions. The joint hypothesis of α = 0 and β = 1 is

tested by means of a Wald test. The null of this test assumes an unbiased and efficient forecast

against the alternative that it is not. This test is performed using R’s minzar test() function.

yt = αi + βŷt + ϵt, (14)

5.8.3 Diebold-Mariano

A Diebold-Mariano test (Diebold & Mariano, 2002) is used to determine whether the differences

in predictive ability between models are significant. Typically, a Diebold-Mariano test statistic

is formulated as shown in Equation 15, where d̄ is the average loss differential. In this thesis,

the mean squared errors will be used as the loss function. V̂ is the variance of d̄.

DM =
d̄√
V̂ (d̄)

, (15)

In the traditional DM test, all observations are treated as equal. However, for stock market

returns, it can be sensible to put more weight on the negative returns. This approach aligns with

behavioral finance theory, which suggests that investors suffer from loss aversion(Novemsky &

Kahneman, 2005), meaning that they are more sensitive to losses than to gains, and it is also

crucial from the perspective of risk management. To address this, Van Dijk & Franses (2003)

made an adjustment to the DM-test by weighing the loss differentials by a function w(ωt).

Specifically, wLT (xt) = 1 − Φ(yt), where Φ(·) is the cumulative distribution function of yt, is

used to assign more weight to negative returns. As a result, the weighted Diebold-Mariano (W-

DM) test becomes W-DM = d̄w√
V̂ (d̄w)

. However, the DM test statistic can be oversized in small

samples. Therefore, an adjustment is made to obtain the modified weighted Diebold-Mariano

(MW-DM) test statistic, as shown in Equation 16. P denotes the number of out-of-sample

observations and h represents the forecast horizon. Both the DM-test and the MW-DM test will

have the Partially Protected Bayesian LASSO as the benchmark with a null of equal predictive

ability against the alternative that the Partially Protected LASSO is better.

MW-DM =

√
P + 1− 2h+ h(h− 1)/P

P
W-DM. (16)

6 Results

This section will present the results from both the replication and the extension of this thesis. For

the replication part, the performance of the Partially Protected Bayesian LASSO is evaluated in

terms of out-of-sample performance, model fit and most importantly, its the ability to protect

certain variables from shrinkage. Then, in the extension part, the Partially Protected LASSO is

compared to several other models and techniques capable of handling high-dimensional datasets
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for predicting S&P 500 returns. Moreover, the ability to create profits and the performance

during recession and expansion periods will be examined.

7 Results replication

Figure 1 presents the posterior mean coefficients (β) of the three models, along with their 95%

confidence interval of the protected variables. Dummy variables were created for the variables

race and gender to separate their categories. In line with, Yaman et al. (2024) the category

’multiple race’ is excluded from the protected variables, resulting in its coefficient being shrunk to

zero, just as in the original paper. The category female was removed for identifiability. Observing

this figure reveals that the partially protected model effectively shifts the mean coefficients(β)

further away from zero. This outcome aligns with the original paper, indicating that the partially

protected model effectively reduces the shrinkage compared to the no-protection model. The

fully protected model results in mean β′s being the furthest away from zero, which is not

surprising since it introduces the least shrinkage. The protection of a variable ensures that there

is a marginal posterior distribution for the coefficients but as it can be seen from the figure, it

does not exclude zero from the interval. All these results are in line with Yaman et al. (2024).

When comparing the mean β coefficients in this thesis to those in the original paper (Figure 3

in the appendix), some differences can be seen. Two main reasons could explain the observed

differences. First, after preprocessing, the dataset of Yaman et al. (2024) contained 385 columns,

whereas this paper has 449 columns. This can significantly impact the coefficients of the model,

as more predictors lead to more parameters to estimate, resulting in different regularization

and thus different β coefficients. Secondly, the MICE imputations involves a certain amount

of randomness. Different seeds and iterations can produce varying imputed values, leading to

different β coefficients.
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Figure 1: The posterior mean coefficients of the protected variables with 95% credible intervals for the
three different models when predicting the feelings thermometer values of Joe Biden.

Table 1 shows the prediction measures for the model fit and out-of-sample predictions. The

no protection model has the best fit and out-of-sample performance based on the BIC and MSE,

while the partially protected model is not far behind based on these measures. In contrast, the

full protection model, which offers the most protection to the variables, performs the worst.

Based on Table 1, the same conclusions are drawn as in Yaman et al. (2024). However, the

performance metrics differ slightly from the original paper, as shown in Table 8 of the appendix.

Across all three models, the MSE increases by approximately 7%, while the BIC decreases by

roughly 17%. The worsening MSE results could be attributed to the MICE imputations, which

involve a certain amount of randomness, potentially leading to less accurate imputations in this

thesis. Furthermore, consistent with previous research (Bai & Ng, 2008), having more predictors

does not necessarily make a (high-dimensional) dataset more informative and can lead to more

noise, thereby worsening forecasting performance. The BIC values appear to improve compared

to Yaman et al. (2024), likely because the dataset in this study led to a better model fit. However,

a better fit does not guarantee improved forecasting performance, as can be seen from the MSE

values.

The paper of Yaman et al. (2024) primarily focused on the ability of the Partially Protected

LASSO to protect theoretically important variables from shrinkage. In terms of assessing the

model’s predictive capabilities, no definitive conclusions can be drawn, as a small or big difference

in performance heavily depends on the target variable. Moreover, there were no tests of whether
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the differences in predictive ability were significant. However, these results and the Partially

Protected LASSO do serve as a great stepping stone to test the model in various areas, such as

finance. This is exactly what will happen in the following sections, where the Partially Protected

Bayesian LASSO is used to forecast stock market returns.

Table 1: Comparison of the models in terms of BIC and MSE

Metric Partial Protection No Protection Full Protection

BIC 66272.3702 66291.20905 66209.26983

MSE Train 993.9151 992.84540 998.77920

MSE Test 985.8867 984.56840 993.18050

8 Results extension

This research primarily aims to examine the predictive ability of the Partially protected LASSO

against other models described in Section 5. In continuation of the previous research such as

those by Campbell & Thompson (2008) and D. E. Rapach et al. (2010), a recursive (expanding)

estimation window is utilised for the out-of-sample prediction, where the first 40% of the dataset

formed the initial training set.

Table 2 presents the results for several metrics: the RMSE, Minzer-Zarnowitz (MZ), the

Diebold-Mariano (DM) and the Modified-Weighted Diebold-Mariano (MW-DM) tests. For the

DM tests, the null hypothesis is that the predictive ability of the models is equal, with the

alternative being that the protected model performs better in predicting stock market returns.

The RMSE penalizes larger errors harder, meaning models with lower RMSE indicate a

reduction of risk on large, unexpected losses for the investor. Conversely, the MAE punishes

errors equally giving a more general overview of the model’s prediction accuracy of stock market

returns. While these two measures focus on prediction errors, the out-of-sample R2 evaluates

the performance of the model on new data and the ability of the model to capture the underlying

trends and patterns of stock market returns. The results of these three measures lead to the

same rankings of the models, thus Table 2 only shows the RMSE but the MAE and R2 are still

displayed in Table 9 of the appendix. Additionally, the RMSE values are standardized using

the protected model as the benchmark, with values smaller than 1.000 indicating improved

performance relative to the benchmark.
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Table 2: Performance measures for predicting the S&P 500 returns

Model RMSE MZ p-value DM p-value MWDM p-value

Historical 1.322 0.073 0.008 0.009

AR 1.360 0.001 0.006 0.007

Protected 1.000 0.976

Non-protected 0.969 0.625 0.953 0.930

SVR 1.124 0.555 0.122 0.127

RF 1.084 0.712 0.139 0.146

ARIMA 1.381 0.007 0.004 0.004

ARIMA-X 1.311 0.000 0.088 0.085

OLS 1.881 0.000 0.000 0.000

PCA-OLS 1.003 0.017 0.481 0.583

PCA-RF 1.152 0.222 0.076 0.090

Note. This table presents the RMSE and p-values for the Minzer-Zarnowitz

(MZ), Diebold-Mariano (DM), and Modified-Weighted Diebold-Mariano

(MW-DM) tests for various predictive models. The null hypothesis for the

DM tests is that the predictive ability of the models is equal, with the altern-

ative being that the protected model performs better.

Based the RMSE, the no-protection model performs the best with a value of 0.969, indicating

3.1% improvement compared to the benchmark. When evaluating the p-values of the DM and

MW-DM tests, the null of equal predictive ability is not rejected. However, the high p-values

of 0.953 and 0.930 suggest it is worth testing whether the no-protection model significantly

outperforms the protected model. This test results in a DM statistic of 1.694 with a p-values of

0.0473, indicating that the no-protection model has indeed significantly better predictive ability

at a 5% significance level. An OLS model that incorporates all predictors to make forecasts

performs the worst, with a RMSE that is 88.1% worse than the benchmark. However, when

combined with the PCA method, it becomes the best model after Bayesian LASSO models, with

a RMSE that is only 0.30% worse than the protected model. It is even the case that there is no

significant difference in predictive ability compared to the protected model. This result aligns

with previous literature, likely due to the prevention of overfitting by reducing the noise in the

data and creating a more parsimonious model(D. Rapach & Zhou, 2013). The machine learning

models, Random Forest and Support Vector Regression, also perform relatively well, despite

having 8.4% and 12.4% worse RMSE than the protected model but the difference in performance

is not significant based on the DM tests. An interesting result is that the Random Forest model

utilising the factors extracted from PCA performs worse than the original RF model, so much so

that the difference between the protected model becomes significant. One possible explanation

is that while the PCA factors successfully extract the most important information from the

variables, they also remove the model’s ability to learn from hidden patterns in the features.

The models that solely rely on the time series of the S&P 500 returns, historical average, AR

and ARIMA, are the worst models, with RMSE values approximate 30% worse compared to the
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benchmark. The performance of the ARIMA does seem to improve when covariates are added to

the model, highlighting the additional value of the covariates used in this thesis but its predictive

ability is still significantly worse than the protected model. Based on these results, no conclusion

can be drawn about the performance of linear and non-linear models, as the Bayesian LASSO

models are performing the best but do not significantly differ from the non-linear models.

When examining the p-values of the Minzer-Zarnowitz (MZ) test, which tests the null hy-

pothesis of an unbiased and efficient forecast, the Bayesian LASSO models and the machine

learning models do not reject the null hypothesis, with p-values well above 10%. However, for

the PCA-OLS model, the MZ null hypothesis can be rejected at the 5% significance level, despite

being one of the best models based on RMSE, MAE, and R2. A possible explanation for this is

that the model consistently overestimates or underestimates the returns of the S&P 500. If these

biases are sufficiently small, it is still possible to achieve good performance metrics despite these

systematic errors. Figure 4 supports this, as the residual plot shows most errors concentrated

around zero. Additionally, the intercept of 0.0187 and slope of 1.15638 in the MZ regression

indicate that the PCA-OLS model tends to predict lower returns when the actual returns are

increasing and predict higher returns when bigger negative returns occur.

8.1 Profitability tests

In Table 3, the results of the PT test and AG test are displayed. The table also includes accuracy,

which is the proportion of times the model correctly predicted the direction, a crucial metric

for short sellers aiming to ensure profitability by capitalizing on price declines and for investors

seeking to mitigate losses through timely portfolio adjustments.

The protected and no-protection models perform the best in terms of accuracy, with scores of

0.784 and 0.797, respectively. Additionally, the ranking of the best performers based on accuracy

aligns closely with those based on RMSE, MAE, and out-of-sample R2. One notable exception

is the PCA-OLS model, which ranks among the worst in terms of accuracy. These differences in

accuracy were further examined using a PT test, with a null hypothesis of no sign predictability.

This test revealed that all models, except the ARIMA and AR models, exhibit significant sign

predictability at the 1% significance level. Although the ARIMA and AR models have the lowest

accuracy, the difference is less than 2% compared to the PCA-OLS model. Despite the small

deviation, the PT test outcome differs because it considers more than just the accuracy of the

predictions. The PT test also looks at the patterns of the predictions; if correct predictions are

clustered in certain periods and incorrect predictions too, then this might affect the outcome of

the test.

Similar conclusions can be drawn from the AG test, which has a null hypothesis of no excess

returns. Given the similarities between the two tests, this is not surprising. One important note

about the AG test is that even if the null hypothesis is rejected, it does not guarantee excess

returns in practice. The test does not account for transaction costs and other trading frictions,

which could lead to drastically different results.
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Table 3: Profitability tests results

Model PT stat PT p-value AG stat AG p-value Accuracy

AR -0.638 0.738 -1.526 0.936 0.703

Protected 4.192 0.000 5.134 0.000 0.784

Non-protected 4.406 0.000 5.165 0.000 0.797

SVR 3.418 0.000 3.263 0.001 0.730

RF 3.838 0.000 4.108 0.000 0.770

ARIMA 0.601 0.274 0.636 0.262 0.703

ARIMA-X 3.601 0.000 3.860 0.000 0.743

OLS 3.560 0.000 4.229 0.000 0.784

PCA-OLS 3.626 0.000 4.019 0.000 0.716

PCA-RF 3.418 0.000 3.325 0.000 0.730

Note. This table presents the PT statistic and p-value, AG statistic and p-value,

and accuracy for different models. The PT test has a null hypothesis of no

sign predictability, and the AG test has a null hypothesis of no excess returns.

Accuracy represents the proportion of times the model correctly predicted the

direction of stock market returns.

8.2 Recession vs Expansion

In Table 4, the RMSE of the models in periods of recession and expansion are displayed along

with their Diebold-Mariano(DM) test p-values. The periods of recession and expansion are

defined by the National Bureau of Economic Research (NBER). The RMSE values are stand-

ardized using the protected model as the benchmark, with values smaller than 1.000 indicating

improved performance. Furthermore, the DM test in this table has a null hypothesis of equal

predictive ability compared to the protected model against the alternative that the protected

model is better for predicting stock market returns.

The best model is once again the no-protection model, improving the performance by 2.8%

and 4.2% compared to the RMSE of the benchmark in periods of expansion and recession. The

performance of the models in periods of expansion seems to closely follow the results over the

whole sample. One difference is that the Support Vector Regression performs better than the

Random Forest and PCA-OLS during expansion phases, with RMSE just 2.3% worse than the

benchmark. However, the null hypothesis of equal predictive ability with the benchmark is not

rejected for all three models, with p-values ranging from 0.185 to 0.333. During recessions,

the ARIMA-X model performs relatively well, surpassed only by the Bayesian LASSO models

and PCA-OLS. Unlike its overall sample performance, the ARIMA-X model demonstrates equal

predictive ability with the protected model during recessions, as indicated by a DM test p-

value of 0.192. This suggests that ARIMA-X can a good model for investors during recessions.

Furthermore, during recessions, PCA-OLS achieves the best RMSE for predicting S&P 500

returns, improving this metric by 16.5% compared to the benchmark. However, an additional

DM test shows that PCA-OLS does not have significantly better forecasting ability than the

protected model during recessions, with a DM statistic of 1.1384 and a p-value of 0.1462. It is
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important to note that the recession periods analyzed consist of only eight quarters: 2007Q4

to 2009Q2 and 2020Q1. Consequently, one prediction can significantly skew the results. To

address this, studentized residuals were used to test for significant outliers. Tables 10 and 11

in the appendix show that most models contain at least two or three significant outliers during

these recession periods. In particular 2020Q1 seems difficult to predict which is not surprising

given the sudden emergence of COVID-19.

Table 4: Model Performance in Recession and Expansion Periods

Model RMSE (Recession) RMSE (Expansion) DM-Recession DM-Expansion

Historical 1.759 1.165 0.037 0.042

AR 1.834 1.188 0.028 0.045

Protected 1.000 1.000

Non-protected 0.958 0.972 0.747 0.948

SVR 1.416 1.023 0.154 0.333

RF 1.142 1.066 0.282 0.185

ARIMA 1.765 1.247 0.032 0.027

ARIMA-X 1.121 1.362 0.192 0.105

OLS 1.954 1.860 0.006 0.000

PCA-OLS 0.835 1.046 0.854 0.212

PCA-RF 1.152 1.153 0.303 0.089

Note. This table presents the RMSE of the models during periods of recession and expansion. The

DM-Recession and DM-Expansion show the Diebold-Mariano test p-values for recession and expansion

periods. The null hypothesis for the DM test is equal predictive ability compared to the protected

model, with the alternative hypothesis being that the protected model performs better.

9 Conclusion

Predicting stock market returns is a very effective method for managing risk and portfolio

building. Because many current variables and forecasting models explaining only a small part

of stock market returns, it remains of great interest to both academics and investors to identify

the best models and techniques. The aim of this study is to compare the model introduced by

Yaman et al. (2024) to other methods using high-dimensional data and assess whether it leads

to significant improvements. Based on performance metrics, the Partially Protected Bayesian

LASSO is the second-best performer after the regular Bayesian LASSO. Although the differences

between these two models are small, there is still a significant difference in forecasting ability.

The machine learning models (Random Forest and Support Vector Regression) and the PCA-

OLS models performed well, despite having worse values for the performance measures, they

did not show a significant difference in forecasting ability compared to the Partially Protected

LASSO. The PCA-OLS model, however, is biased and inefficient, potentially underestimating

risks and failing to capture important market dynamics. Despite these issues, PCA-OLS still

shows significant ability to predict the sign and create excess returns, but investors should
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consider these limitations if they would use this model. Thus, the Partially Protected Bayesian

LASSO fails to beat the regular Bayesian LASSO, PCA-OLS and the machine learning models

but it does add a model in the literature with competitive forecasting ability for stock market

returns in the presence of high dimensional data. Furthermore, while PCA creates predictors

that capture the most variance in the data it removes the ability to interpret the contribution

of individual variables in the original dataset and machine learning models lack the capacity

to evaluate model parameters and comprehend the significance of variables in making correct

predictions, known as the black box paradigm. The clear advantage of the Partially protected

LASSO is that the coefficients of the variables are very easy to interpret by means of the posterior

coefficients while keeping the original dataset intact.

There are several ways to enhance the performance of the Partially Protected LASSO for

predicting stock market returns, particularly in the selection of variables included in the model.

Given the volatile nature of the stock market, it may not be optimal to protect the same variables

throughout the entire period. Evidence from Paye & Timmermann (2006) indicates structural

breaks in the coefficients of predictors for stock market returns, suggesting that incorporat-

ing these breaks into the Partially Protected LASSO could significantly improve performance.

Additionally, while previous studies have demonstrated strong out-of-sample performance for

protected variables used in this thesis, the effectiveness is heavily influenced by the type of fore-

casting window. The performance of these variables will also vary depending on the country and

out-of-sample period examined. For the S&P 500 index returns, selecting variables is particu-

larly challenging due to the significant fluctuations in the index’s industry weight over time, as

illustrated in Table 12 in the appendix. Therefore, the performance of the Partially Protected

LASSO cannot be generalized for all stock market returns.

Another important factor is the choice of prior distribution in the Bayesian model. Proper

selection of these prior distributions ensures effective regularization. The Bayesian LASSO

employs a prior distribution to address the issue of multicollinearity by shrinking the coefficients,

leading to more stable estimates. However, the model may fail to converge if the shrinkage is

insufficient. Overall, this paper introduces a novel and transparent model that can provide

valuable insights for decision-making in this field.
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A Programming code and Data

For the replication the final dataset used is named ”updated data” in the ”code thesis” zip file.

The protected variables have the following names in the datafile: ”ideology”, ”church attendance”,

”evangelical”, ”age”, ”education”, ”income”, ”race white”, ”race black”, ”race hispanic”, ”race asian”,

”race native”, ”gender male”. The code for the models can be found in the map ”replication

code” also within the zip. This code for the models was provided by Yaman et al. (2024) and

is publicly available on Github1. Lastly, the MICE imputations were done with the following

settings: mice(dataframe , m=1, method=’cart’, maxit=15, seed=500)

For the extension the final dataset is named ”extension dataset” and the dataset with the pre-

dictors formed from PCA are called ”pca first 5 factors”. The protected variable have the follow-

ing names: ”purchasing managers index”, ”interest rate”, ”log commodity”, ”us treasury bill rate 3 month”,

1https://github.com/selimyaman/protectR
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”three mo yield curve”, ”six mo yield curve”, ”one yr yield curve”, ”five yr yield curve”. The

for the Bayesian LASSO models the R file ”lasso for predictions” is used. Some code was added

to this code to be able to make one-step-ahead predictions over a expanding window but the

core of the code is still the same as Yaman et al. (2024).

B Data

Table 5: The data used for the extension with their variable names, type and sources

Variable Type Source

Log Returns Target kaggle.com2

US GDP CONA Macroeconomical Datastream

US PERSONAL

CONSUMPTION

EXPENDITURES CONA

Macroeconomical Datastream

US GOVERNMENT

CONSUMPTION and

INVESTMENT CONA

Macroeconomical Datastream

US PRIVATE DOMESTIC

FIXED INVESTMENT

CURA

Macroeconomical Datastream

US CHANGE IN PRIVATE

INVENTORIES CONA

Macroeconomical Datastream

US EXPORTS OF GOODS

and SERVICES CONA

Macroeconomical Datastream

US IMPORTS OF GOODS

and SERVICES CONA

Macroeconomical Datastream

US GNP CONA Macroeconomical Datastream

US IPD OF GDP Macroeconomical Datastream

US CHAIN-TYPE PRICE

INDEX OF GDP

Macroeconomical Datastream

US THE CONFERENCE

BOARD LEADING

ECONOMIC INDICATORS

INDEX

Macroeconomical Datastream

US CURRENT ACCOUNT

BALANCE CURA

Macroeconomical Datastream

Continued on next page

2https://www.kaggle.com/datasets/henryhan117/sp-500-historical-data/data
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Table 5 continued from previous page

Variable Type Source

US GOODS and SERVICES

BALANCE ON A

BALANCE OF

PAYMENTS BASIS CURA

Macroeconomical Datastream

US CAPITAL AND

FINANCIAL ACCOUNT

BALANCE CURA

Macroeconomical Datastream

US FOREIGN RESERVE

ASSETS CURN

Macroeconomical Datastream

US EXPORTS F.A.S.

CURA

Macroeconomical Datastream

US IMPORTS F.A.S.

CURA

Macroeconomical Datastream

US VISIBLE TRADE

BALANCE CURA

Macroeconomical Datastream

US MONETARY BASE

CURN

Macroeconomical Datastream

US MONEY SUPPLY M1

CURN

Macroeconomical Datastream

US MONEY SUPPLY M2

CONA

Macroeconomical Datastream

US FEDERAL FUNDS

TARGET RATE

Macroeconomical Datastream

US TREASURY BILL

RATE - 3 MONTH

Macroeconomical Datastream

US INTERBANK RATE - 3

MONTH

Macroeconomical Datastream

US PRIME RATE

CHARGED BY BANKS

Macroeconomical Datastream

US TREASURY YIELD

ADJUSTED TO

CONSTANT MATURITY -

20 YEAR

Macroeconomical Datastream

US DOW JONES

INDUSTRIALS SHARE

PRICE INDEX

Macroeconomical Datastream

US FEDERAL

GOVERNMENT BUDGET

BALANCE CURN

Macroeconomical Datastream

Continued on next page
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Table 5 continued from previous page

Variable Type Source

US PUBLIC DEBT

OUTSTANDING CURN

Macroeconomical Datastream

US TOTAL TREASURY

SECURITIES

OUTSTANDING (PUBLIC

DEBT) CURN

Macroeconomical Datastream

US FOREIGN NET LONG

TERM FLOWS IN

SECURITIES CURN

Macroeconomical Datastream

US CONSUMER CREDIT

OUTSTANDING CURA

Macroeconomical Datastream

US CONSUMER

CONFIDENCE INDEX

Macroeconomical Datastream

US NEW PASSENGER

CARS - TOTAL

REGISTRATIONS

Macroeconomical Datastream

US SALES OF NEW ONE

FAMILY HOUSES

Macroeconomical Datastream

US EXISTING HOME

SALES: SINGLE-FAMILY

and CONDO

Macroeconomical Datastream

US NATIONAL

ASSOCIATION OF HOME

BUILDERS HOUSING

MARKET INDEX

Macroeconomical Datastream

US PERSONAL INCOME

CURA

Macroeconomical Datastream

US PERSONAL SAVING

AS percentage OF

DISPOSABLE PERSONAL

INCOME

Macroeconomical Datastream

US DISPOSABLE

PERSONAL INCOME

CURA

Macroeconomical Datastream

US PERSONAL

CONSUMPTION

EXPENDITURES CURA.1

Macroeconomical Datastream

US POPULATION Macroeconomical Datastream

Continued on next page
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Table 5 continued from previous page

Variable Type Source

NONFARM INDUSTRIES

TOTAL

Macroeconomical Datastream

US UNEMPLOYMENT

RATE

Macroeconomical Datastream

TOTAL PRIVATE CURA Macroeconomical Datastream

MANUFACTURING

CURN

Macroeconomical Datastream

TOTAL PRIVATE VOLA Macroeconomical Datastream

US OUTPUT PER HOUR

OF ALL PERSONS

Macroeconomical Datastream

US UNIT LABOR COSTS Macroeconomical Datastream

US OUTPUT PER HOUR

OF ALL PERSONS

NONFARM BUSINESS

Macroeconomical Datastream

US UNIT LABOR COSTS -

NONFARM BUSINESS

SECTOR

Macroeconomical Datastream

COMP FOR CIVIL

WRKRS

Macroeconomical Datastream

US CAPACITY

UTILIZATION RATE

Macroeconomical Datastream

LOANS and LEASES IN

BANK CREDIT CURA

Macroeconomical Datastream

COMMERCIAL and

INDUSTRIAL LOANS

CURA

Macroeconomical Datastream

PURCHASING

MANAGERS INDEX

Macroeconomical Datastream

PURCHASING MANAGER

BUSINESS BAROMETER

Macroeconomical Datastream

GENL BUS ACTIV Macroeconomical Datastream

US INDUSTRIAL

PRODUCTION

Macroeconomical Datastream

US NEW PRIVATE

HOUSING UNITS

STARTED

Macroeconomical Datastream

US NEW PRIVATE

HOUSING UNITS

Macroeconomical Datastream

Continued on next page
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Table 5 continued from previous page

Variable Type Source

US HOUSING

AUTHORIZED

Macroeconomical Datastream

US CONSTRUCTION

EXPENDITURES

Macroeconomical Datastream

US CORPORATE

PROFITS WITH IVA

Macroeconomical Datastream

US BANKRUPTCY

FILINGS

Macroeconomical Datastream

US CPI ALL URBAN Macroeconomical Datastream

US CPI ALL ITEMS LESS

FOOD and ENERGY

Macroeconomical Datastream

PRICE INDEX FOR

PERSONAL CON-

SMPTN.EXPENDITURE

Macroeconomical Datastream

PRICE INDEX FOR PCE

LESS FOOD and ENERGY

Macroeconomical Datastream

US export ALL

COMMODITIES

Macroeconomical Datastream

US import ALL

COMMODITIES

Macroeconomical Datastream

US TERMS OF TRADE Macroeconomical Datastream

three Mo yield curve Macroeconomical U.S. Department of the Treasury

six Mo yield curve Macroeconomical U.S. Department of the Treasury

one Yr yield curve Macroeconomical U.S. Department of the Treasury

two Yr yield curve Macroeconomical U.S. Department of the Treasury

three Yr yield curve Macroeconomical U.S. Department of the Treasury

five Yr yield curve Macroeconomical U.S. Department of the Treasury

seven Yr yield curve Macroeconomical U.S. Department of the Treasury

ten Yr yield curve Macroeconomical U.S. Department of the Treasury

PE ratio Financial multpl.com3

dividend yield Financial multpl.com4

earning yield Financial multpl.com5

VAR t 1 Technical Constructed as in Liu & Pan (2020)

VAR t 2 Technical Constructed as in Liu & Pan (2020)

VAR t 3 Technical Constructed as in Liu & Pan (2020)

VAR t 4 Technical Constructed as in Liu & Pan (2020)

Continued on next page

3https://www.multpl.com/s-p-500-pe-ratio/table/by-month
4https://www.multpl.com/s-p-500-dividend-yield/table/by-month
5https://www.multpl.com/s-p-500-earnings-yield/table/by-month
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Table 5 continued from previous page

Variable Type Source

VOLM t(1) Technical Constructed as in Liu & Pan (2020)

VOLM t(2) Technical Constructed as in Liu & Pan (2020)

VOLM t(3) Technical Constructed as in Liu & Pan (2020)

VOLM t(4) Technical Constructed as in Liu & Pan (2020)

LV t(1) Technical Constructed as in Liu & Pan (2020)

LV t(2) Technical Constructed as in Liu & Pan (2020)

LV t(3) Technical Constructed as in Liu & Pan (2020)

LV t(4) Technical Constructed as in Liu & Pan (2020)

interest rate Macroeconomical Bank for International Settlements

log commodity price index Financial investing.com6

C Methodology

Figure 2: PCA results. The left panel displays the explained variance ratio for each principal component,
including the cumulative explained variance (shown by a line) and the individual explained variance
(represented by bars). The scree plot, shown on the right side, shows the eigenvalues of the principal
components. The red dashed line indicates the Kaiser criteria, which signifies components with eigenvalues
above 1.
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Table 6: Hyperparameter grid for Random Forest

Parameter Values Description

n estimators [100, 200, 300, 800, 1000, 1500] Number of trees in the forest.

max depth [None, 10, 20, 40, 60, 80, 100] Maximum depth of the tree.

min samples split [2, 5, 10] Minimum number of samples required to split
an internal node.

min samples leaf [1, 2, 4] Minimum number of samples required to be at
a leaf node.

bootstrap [True, False] Whether bootstrap samples are used when
building trees.

Table 7: Hyperparameter grid for SVR

Parameter Values Description

C [0.1, 1, 10, 20, 50, 100] Regularization parameter.

gamma [’scale’, ’auto’, 0.001,
0.01, 0.1, 1]

Kernel coefficient for ’rbf’.

epsilon [0.001, 0.01, 0.1, 0.2,
0.5, 1]

Epsilon in the epsilon-SVR model.

6https://www.investing.com/indices/sp-gsci-commodity-total-return-historical-data
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D Results

Figure 3: The posterior mean coefficients of the protected variables across the three different models as
in Yaman et al. (2024).

Note: The error bars represent the 95% credible intervals for the posterior mean estimates.

Table 8: MSE and BIC values from the paper of Yaman et al. (2024)

Model MSE Training MSE Testing BIC

No Protection 906.33 915.31 79482.38

Partial Protection 910.07 918.98 80108.71

Full Protection 922.42 929.74 81657.27
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Table 9: MAE and out-of-sample R2 of the models when predicting the S&P 500 return

Model R2 MAE

Historical -0.014 0.059

AR -0.074 0.060

Protected 0.420 0.045

Non-protected 0.455 0.043

SVR 0.267 0.052

RF 0.318 0.049

ARIMA -0.106 0.061

ARIMA-X 0.002 0.055

OLS -1.054 0.094

PCA-OLS 0.417 0.048

PCA-RF 0.229 0.053

Figure 4: The residuals of the PCA-OLS model with the dots representing the residuals of the model

D.1 Studentized residuals

The studentized residuals(Weisberg, 2005) are calculated using the formula in Equation 17. ei

are the residuals of obervation i. σ̂(i) the standard error of these residuals calculated as in

Equation 18 with n the number of observations and p the numbers of predictors. Lastly, hii is

the i-th diagonal element of the hat matrix X(XTX)−1XT . The distribution under the null is a

student t distribution with n-k-1 degrees of freedom. Rejecting this null indicates a significant

outlier.

ti =
ei

σ̂(i)
√
1− hii

(17)
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σ̂2 =
1

n− k

n∑
i=1

e2i (18)

Table 10: Studentized Residuals with P-values (Part 1)

Date A
R
IM

A

A
R
IM

A
X

H
is
to
ri
ca
l

N
oP

ro
te
c

O
L
S

O
L
S
P
C
A

2007-10-01 -0.65 (0.52) -1.59 (0.12) -0.81 (0.42) -1.30 (0.20) -2.40 (0.02) -0.53 (0.60)

2008-01-01 -1.77 (0.08) -1.17 (0.25) -2.04 (0.05) -1.52 (0.13) -1.87 (0.07) -0.28 (0.78)

2008-04-01 -0.69 (0.49) -2.49 (0.02) -0.75 (0.46) -1.72 (0.09) -2.52 (0.01) -0.59 (0.56)

2008-07-01 -1.12 (0.27) -0.67 (0.50) -1.67 (0.10) -0.49 (0.62) -1.41 (0.17) -0.07 (0.95)

2008-10-01 -3.78 (0.00) -1.15 (0.25) -4.49 (0.00) -2.47 (0.02) -1.70 (0.09) -1.90 (0.06)

2009-01-01 -2.02 (0.05) 0.71 (0.48) -2.07 (0.04) -1.04 (0.30) -0.43 (0.67) -1.25 (0.21)

2009-04-01 2.80 (0.01) -0.14 (0.89) 1.80 (0.08) 0.41 (0.68) -0.79 (0.43) 1.37 (0.18)

2020-01-01 -3.23 (0.00) -2.24 (0.03) -3.37 (0.00) -3.14 (0.00) -2.20 (0.03) -2.35 (0.02)

Note. Values in bold indicate p-

values that are significant at the

5% level.

Table 11: Studentized Residuals with P-values (Part 2)

Date P
ro
te
c

R
F

R
F
P
C
A

S
V
R

A
R

2007-10-01 -1.58 (0.12) -1.13 (0.26) 0.23 (0.82) -1.30 (0.20) -0.79 (0.44)

2008-01-01 -1.81 (0.08) -0.10 (0.92) -0.12 (0.90) -1.73 (0.09) -1.98 (0.05)

2008-04-01 -2.20 (0.03) -1.07 (0.29) -0.81 (0.42) -0.73 (0.47) -0.73 (0.47)

2008-07-01 -0.66 (0.51) -0.26 (0.80) -0.06 (0.95) -0.63 (0.53) -1.62 (0.11)

2008-10-01 -2.21 (0.03) -3.92 (0.00) -2.09 (0.04) -5.08 (0.00) -4.36 (0.00)

2009-01-01 -0.50 (0.62) -0.38 (0.70) -2.35 (0.02) -0.84 (0.40) -2.01 (0.05)

2009-04-01 0.30 (0.77) 1.45 (0.15) 2.34 (0.02) 1.68 (0.10) 2.49 (0.02)

2020-01-01 -2.92 (0.01) -3.00 (0.00) -1.87 (0.07) -2.93 (0.01) -3.28 (0.00)

Note. Values in bold indicate p-

values that are significant at the

5% level.
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E Conclusion

Table 12: Sector Allocations in Percentages of the S&P 500 indexa

Sector July 2023 2013 2003 Median

Communication Services 9% 38% 5% 15%

Consumer Discretionary 11% 6% 6% 7%

Consumer Staples 7% 7% 12% 8%

Energy 4% 6% 7% 7%

Financials 13% 11% 20% 13%

Health Care 13% 9% 15% 12%

Industrials 8% 7% 12% 8%

Information Technology 27% 11% 17% 16%

Materials 2% 2% 2% 2%

Real Estate 2% 2% 1% 2%

Utilities 2% 2% 3% 3%

Grand Total 100% 100% 100% 100%

ahttps://einvestingforbeginners.com/historical-sp-500-industry-weights-20-years/
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