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Abstract

Kidney transplants are life-saving surgeries that require a person to donate their kidney to

the patient. However, the donor’s kidney is often not compatible with that of the patient. For

this reason, Kidney Exchange Programs were created where incompatible patient-donor pairs

are pooled together and matched with others to exchange kidneys between pairs. However,

finding the maximum amount of matches possible within this pool of pairs is an NP-complete

problem, and exactly solving the problem to optimality quickly becomes infeasible as the size

of the pool of pairs grows. Increasing the size of these pools increases the number of possible

transplantations, so developing new exact Mixed Integer Linear Programming formulations

of the problem that can decrease solving time is an active area of research. Two of these

formulations are reproduced and evaluated, after which a matheuristic algorithm is proposed

that creates heuristic solutions to be used as warm-start solutions for any current and future

formulation of the problem. A warm-start is a sub-optimal solution that is supplied to

an MILP solver to reduce solving time. When constructing the matheuristic algorithm, a

modular approach is taken that includes the use of a Greedy matheuristic and a dynamic

randomized Local Search algorithm. Computational tests show that providing the warm-

starts to an exact solver allows it to find optimal and near-optimal solutions for pools that

are up to thrice as big as the largest pool currently solvable with the two reproduced exact

formulations.
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1 Introduction

For people suffering from kidney failure, a kidney transplantation is the only option for long-

term survival. If a patient can find a person willing to donate a kidney, that kidney must also

be compatible with the patients blood group and immune system. Often patients have a donor

but they are not compatible. For these situations many countries have set up Kidney Exchange

Program, where incompatible pairs of patients and donors are matched with other pairs to ex-

change their kidneys and make more transplantations possible (Constantino, Klimentova, Viana

& Rais, 2013). This exchange can be performed in a way where two pairs trade kidneys, but

by increasing the amount of pairs considered for an exchange more possibilities for exchanging

are created. A cycle of pairs can be created where each pair donates a kidney to the next pair

in the cycle. Finding these cycles in the pool of pairs participating in a kidney exchange pro-

gram allows for more kidneys to be donated and more lives to be saved. (Abraham, Blum &

Sandholm, 2007)

Kidney exchange programs keep track of a pool of pairs that needs to be matched and

perform a matching at regular time intervals where they try to match pairs by finding as many

of these cycles as possible.

Transplantations in such cyclic exchanges are performed simultaneously to prevent situations

where a pair donates a kidney but the donor of the kidney they would receive becomes unable

to donate, either willingly or unwillingly. Logistical constraints only allow for a limited number

of surgeries to be performed simultaneously, so a limit is often placed on the length of exchange

cycles.

The problem of matching as many pairs as possible by finding cycles with a limited length

in the pool of pairs is called the k-cycle Kidney Exchange Problem (KEP), where k is the

maximum cycle size allowed. For k = 2 the problem is solvable in polynomial time, but for

k ≥ 3 the problem is known to be NP-hard, meaning that as the number of pairs in the pool
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increases, it quickly becomes difficult to solve exactly in a reasonable amount of time (Abraham

et al., 2007). Increasing the pool size solvable to optimality is an ongoing area of research with

clear practical applications. Combining disjoint pools of patient-donor pairs allows for matches

from one pool to the other, and these new matches are likely to allow the combined pool to

match more pairs than if the pools are separate. Multiple European countries currently run

independent kidney exchange programs (Constantino et al., 2013) and increasing the solvable

pool size is one of the steps that have to be made in order for these programmes to merge, which

is something that is actively being discussed (Biró et al., 2019).

The concept of a kidney exchange program exchange program was first proposed by Wallis,

Samy, Roth and Rees (2011) has been actively studied since. Abraham et al. (2007) formulated

the k-cycle KEP in two ways using Mixed Integer Linear Programming (MILP) where the

objective is to maximize the number of matches: the Cycle formulation, which is a set covering

formulation where every possible cycle has a decision variable, and the Edge formulation, where

the problem is solved using graph theory. Donor-patient pairs are the vertices in a directed

graph and they are connected to another node if they can donate to that pair.

Real-world kidney exchange programs often have more complex objectives that include con-

siderations such as prioritizing patients who need a kidney more urgently or minimizing the

chance kidneys being rejected by patients’ immune systems, but maximizing the number of

transplantations is always one of the primary objectives (Mak-Hau, n.d.). As such, improving

exact formulations of the k-cycle KEP where the only objective is to maximize the number of

transplantations is an active area of research. At the moment of writing the formulation that

solves instances of realistic data the fastest is the Edge formulation-based. For the basic k-cycle

KEP it outperforms previous formulations in terms of solving times and the maximum size of

the pool of pairs it can solve to optimality in reasonable time. Importantly, the linear relaxation

of this formulation is also tight, meaning no other formulation’s relaxation sets a lower upper

bound on the optimal number of solvable matches (Constantino et al., 2013).

Instead of finding a better exact formulation, this paper provides a different way to increase

the number of transplantations by providing a way to find warm-start solutions for any current

or future formulation. A warm-start solution is a sub-optimal solution to an MILP problem that

can be used to reduce the solving time. Depending on the way the problem is solved or which

solving software is used, a warm-start solution will be used in different ways, and commercial

solvers like GUROBI often do not give details on their proprietary methods. However, the most

common way of solving MILP problems is by using branching methods (Clausen, 2003) for which

a warm-start solution can significantly reduce solving times (Huang et al., 2021).

To find these warm-start solutions we propose a modular matheuristic algorithm. It is

modular in the sense that it consists of multiple independent parts that could be improved or

replaced, and it is a matheuristic algorithm in the sense that it uses mathematical programming

techniques to find a heuristic solution. The matheuristic algorithm uses an exact formulation

of the k-cycle KEP at one point to solve smaller sub-problems, but it is implemented in a way

where that formulation can be replaced by any current or future exact formulation so that

the algorithm can adapt to new developments in exact formulations of the problem. Every

formulation has a limit on how large of a pool it can solve to optimality in reasonable time,
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and the goal for this matheuristic algorithm is to increase that limit by shortening solving times

through use of a high objective value warm-start solution.

Two formulations from a paper by Constantino et al. (2013) are reproduced to evaluate the

effect of warm-starts on different exact formulations of the k-cycle KEP. These are the Cycle

Formulation, and the newly proposed Extended Edge formulation, which is a compact version

of the Edge formulation by Abraham et al. (2007).

This paper first gives an exact description of the problem and introduce notation. Afterwards

the general structure of the matheuristic algorithm is laid out and each part is explained in

detail. Lastly, numerical experiments are performed to evaluate its performance and the results

are discussed.

2 Problem Description

To define the k-cycle KEP we use a graph theory-based formulation of the problem using by

Constantino et al. (2013).

Let G(V,A) be a directed graph where patient-donor pairs that participate in the exchange

program are represented by vertices V = 1, ..., |V |. Possible matches are respresented by arcs

between these vertices. The set of arcs A contains arc (i, j) if the donor of vertex i can donate

to the patient of vertex j. The objective is to maximize the total number of transplants, so the

Kidney Exchange Problem is defined as finding a set of vertex-disjoint cycles having length at

most k in G(V,A) that contains the maximum amount of vertices.

For the rest of this paper the patient-donor pairs will be referred to as vertices, and these

vertices are considered matched if they are in a cycle with a length of at most k.

As mentioned by Delorme, Garćıa et al. (2023), the Dutch KEP limits cycles to include at

most four donors, and the UKLKSS limits cycles to three donors. Increasing the value of k

results in longer solving times (Mak-Hau, n.d.) but does not significantly increase the number

of matches for k > 4 (Abraham et al., 2007). For these reasons and for the sake of conciseness

we will only consider the KEP for k = 4 in this paper.

3 Methodology

This section first discussed the reproduction of the formulations by Constantino et al. (2013).

Afterwards, an extension to that paper in the form of a heuristic algorithm is laid out. The

algorithm is comprised of various sub-steps, so a general overview is given before the individual

parts are explained in detail.

3.1 Reproduction

The goal of the matheuristic algorithm proposed in this paper is to create high quality solutions

that can be used as warm-starts when solving exact formulations of the k-cycle KEP. To evaluate

these solution’s performance as warm starts we reproduced two exact formulations from a paper

by Constantino et al. (2013). The paper contains four formulation, and we chose to reproduce

the Cycle and Extended Edge (EE) formulations since these were the two best performing
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formulations in the paper’s initial small-scale testing and were thus tested with large data sets

that better reflect reality. Another reason why these two formulations are reproduced is that

they represent the two types of exact formulations of the KEP. Cycle-based formulations see the

problem as a collection of all possible cycles from which the best combination must be chosen,

and Edge-based formulations see the problem as a graph where vertices representing the pairs

must be linked by activating arcs representing a match between two pairs. The full formulations

will not be repeated in this paper for the sake of brevity. For this we refer the reader to the

work by Constantino et al. (2013).

These two implementations are later also considered for a step in the matheuristic algorithm

where an exact formulation is needed to solve a sub-problem. The computational results and

findings on the reproduction can be seen in Sections 4.1 and 4.2.

3.2 Matheuristic Algorithm Overview

We first give an overview of the structure of the algorithm. Detailed explanations of the sub-steps

and terminology are done in specific sections for each sub-step.

The algorithm consists of two major parts:

First, it finds an initial solution by combining two methods for creating feasible solution

that are time efficient but do not produce high quality solutions by themselves. It begins by

performing a pairwise matching, which finds the optimal objective value for k = 2. Then, an

ILP model finds a 2-cycle solution with this objective value and optimal characteristics for the

next step, in which this solution is improved using a randomized greedy heuristic.

The second part is a dynamic random local search matheuristic that uses the initial solution

from the previous part as a starting point. It iteratively tries to find better solutions by creating

a neighbourhood around the current solution and moving to the best neighbouring solution.

The neighbours are created by randomly destroying cycles in the current solution and solving

the k-cycle KEP for these freed vertices and previously unmatched vertices. The KEP for this

sub-set of all pairs is solved exactly. If the search becomes stuck in a local optimum or a plateau

the number of cycles that are destroyed is increased to widen the search. This search is halted

if a theoretical upper bound is reached. There are multiple of these upper bounds and they can

be calculated independently of the local search.

This improved solution found by the local search can now be used as a warm-start solution

for an exact formulation of the k-cycle KEP.

3.3 Pre-processing

Depending on the origin of a data instance for the KEP, it is possible that not every patient-

donor pair in the pool can be matched. For a pair to be matched in a cycle it must donate and

receive a kidney. As such every pair in V that can either only donate or only receive will be

removed from the set. It is possible that this removal causes another pair to lose their ability

to either donate or receive if the removed pair was their only match. As such the process of

removal must be repeatedly performed until every pair left can donate and receive.
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3.4 Maximum Pairwise Matching

The first step of constructing the initial solution is finding something called the maximum

pairwise matching. The KEP with a cycle length capped at k is known to be NP-Hard for

values of k ≥ 3. However, for k = 2 the problem reduces to a maximum matching problem

(Abraham et al., 2007). The solution of this problem is thus called the maximum pairwise

matching and it is feasible for any k-cycle KEP on the same problem instance since the set of

all possible 2-cycles is a subset of all possible k-cycles when k > 2. The problem can be solved

in polynomial time using Edwards’ Blossom algorithm (Edmonds, 1965).

3.5 Greedy Randomized Heuristic

The solution found using maximum pairwise matching is improved using a Greedy Randomized

algorithm.

Greedy algorithms are a class of widely used problem-solving matheuristics that iteratively

build a solution by always taking the optimal local step. One way of applying this technique to

the KEP is to build a solution by iteratively picking the ”best” cycle available. The question

here is what defines the ”best” cycle at a given point. Several methods are devised to define

this:

3.5.1 Cycle Scoring Methods

What is needed to effectively use a greedy algorithm is a way to know what makes a cycle more

likely to be in an optimal solution. Multiple methods to determine what differentiates ”good”

cycles found in optimal solutions from the set of all possible cycles are proposed. These all make

use of a scoring system.

Each donor and patient are assigned a score on (0, 1] that indicates the fraction of others

they can donate to/receive from. A person with a low score is thus harder to match and vice

versa. A match between a donor and a patient with two low scores is desirable, since it takes

two hard to match people out of consideration while minimally lowering the chance for others

to find a match. This idea can be extended to cycles, where score of a cycle is a function of the

scores of the matches it consists of.

Three ways of determining the score of a match between a donor and patient are considered:

• taking the sum of the donor and patient’s scores,

• taking the product of their scores, and

• taking the maximum of both scores.

Two ways of combining the scores of matches to create scores of cycles are considered:

• taking the sum of the scores of inidvidual matches in the cycle, and

• taking the average of the scores of inidvidual matches in the cycle.

The six possible combinations of scoring matches and cycles each rank cycles in a different

way. The methods are compared in Section 4.4.3, and best performing method chosen for the

computational results of the next step of the algorithm.

6



3.5.2 Creating a Starting Point for the Greedy Algorithm

After the maximum objective value through pairwise matching is found and the method of as-

signing scores to cycles is known, a starting solution for the Greedy algorithm is found. This is

done by exactly solving an MILP model that finds a pairwise matching with the same number of

matches as the maximum found earlier, but with objective of minimize the scores of the cycles

in that pairwise matching. This exact mixed integer linear programming model is based on the

Cycle formulation as described in (Constantino et al., 2013).

Given a graph G as described in Section 2, let C be the set of all possible cycles with length 2.

We assume that a cycle is a set of arcs. Define a variable zc for each cycle c ∈ C:

zc =

1, if cycle c is selected to for the exchange

1, otherwise
(1)

Denote by V (c) ⊆ V the set of vertices which belong to cycle c. Let sc be the score of cycle c,

and let M be the objective value of the maximum pairwise matching. The model can then be

written as follows:

minimize:
∑

c∈C(k)

sczc

subject to:
∑

c:i∈V (c)

zc ≤ 1, ∀i ∈ V

∑
c∈C

zc = M,

zc ∈ {0, 1}, c ∈ C(k)

The idea is that finding a maximum pairwise matching with the lowest cycle scores removes hard

to match vertices from consideration and leaves vertices with high scores unmatched, allowing the

greedy heuristic to make more matches. The greedy algorithm takes these unmatched vertices

as input and tries to find as many additional matches as possible.

The reason that the Greedy algorithm is applied to the vertices left unmatched by this

score-optimized maximum pairing is that the Greedy algorithm needs to find all cycles possible

with the given vertices to rank them. Finding all cycles for the complete set of vertices quickly

becomes impractical as the pool size increases, both because of memory constraints and the

amount of time it takes.

3.5.3 Greedy Algorithm Definition

For a given method of defining cycle scores and a set of unmatched vertices, the algorithm for

the Greedy Randomized Heuristic is defined as follows:

The algorithm starts by finding all possible cycles with the unmatched vertices and ranks

them based on their score in ascending order. A solution is defined as a set of cycles with disjoint

vertices, and the algorithm keeps track of the best solution found so far. The best solution is

initialized as an empty set of cycles. It also initializes an empty set of all solutions found so far.
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After these initializations the following steps are repeated until a user-set time limit is reached:

A new current solution is initialized as an empty set of cycles. A selection of vertices is made

by iterating over all possible cycles in ascending order. A cycle is selected if none of its vertices

are in the cycles of the current solution, except if selecting this cycle can only create solutions

that have already been found. This selection process continues until λ cycles have been selected

or the end of the list of cycles is reached. The algorithm then randomly picks one of the selected

cycles, adds it to the current solution, and repeats the selection process. This continues until

the selection can not find any more cycles with vertices that are not in the current solution. At

that point the completed solution is added to the list of found solutions, and if the objective

value is better than that of the best solution found so far it becomes the new best solution.

The technique of choosing the next addition to a solution randomly from the best λ options

was introduced by Hart and Shogan (1987).

3.6 Dynamic Random Local Search

The final part of the overall algorithm is a Dynamic Random Local Search matheuristic. Local

Search Matheuristics are a common method of finding high objective value solutions to MILP

problems that are hard to solve exactly (Kleinberg & Tardos, 2005). They work by altering a

solution in small ways to create a set of solutions that are similar to the current solution. This

set is called a neighbourhood. The matheuristic then takes the neighbouring solution with the

highest objective value and uses it as a new starting solution to repeat the process. The idea is

that slight variations of a solution with a high objective value will have objective values that are

close to that high value, with some hopefully improving upon it. By repeating the process of

taking the best solution and slightly altering it the algorithm moves towards increasingly better

solutions. The output of the algorithm is the best solution it encountered. The Local Search

matheuristic proposed in this paper creates a neighbourhood by semi-randomly destroying cycles

in the current solution.

3.6.1 Algorithm

The matheuristic starts by taking an initial solution provided by the first part of the overall

algorithm and solving the k-cycle KEP exactly for all vertices it left unmatched. Any exact

formulation of the k-cycle KEP can be used for this step, but the formulation that is solved

the quickest is obviously preferred. The solution of this sub-problem is a set of cycles that are

disjoint from the cycles in the initial solution, so the two solutions can be combined. Variables

representing the current solution and best solution found so far are initialized, and their starting

values are set to this combined solution.

The algorithm then iteratively tries to find better solution. In every iteration it creates one

neighbour for every cycle in the current solution by destroying that cycle and σ random others.

The vertices that made up the destroyed cycles are added back to the pool of unmatched vertices,

after which the k-cycle KEP is solved for just this pool. Any exact formulation of the k-cycle

KEP can be used for this step, but the formulation that is solved the quickest should be used to

increase the number of iterations within the given time limit. The cycles of the optimal solution

to this sub-problem plus the cycles in the current solution that were not destroyed then form a
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neighbouring solution. The neighbour with the highest objective value is chosen as the current

solution for the next iteration. If this solution has a higher objective value than the previous

best solution it is stored. This algorithm iterates until a user-set time limit is reached or until

a solution with an objective value equal to an upper bound on the problem is found.

The reason for creating one neighbour per cycle in the current solution and destroying that

cycle is that it takes away some randomness from the process. In this way every cycle is at

least destroyed once per neighbourhood which creates a more even spread around the current

solution. This reduces the chance of having bad luck and missing that one cycle that would lead

to an improvement.

Parameter σ starts with a value of α and is increased by α if τ subsequent iterations have

not found a solution with a higher objective value than the previous best. Here α and τ are

user-set parameters.

3.6.2 Upper Bounds

Because the matheuristic can stop once an upper bound on the objective value has been reached,

it is useful to find one that is as low as possible. There are several options that vary in the time

needed to compute them and how tight they are to the optimal solution of the k-cycle KEP.

Three options for upper bounds are considered in this paper.

One upper bound is the optimal objective value to a relaxation of the k-cycle KEP where

k → ∞. This problem is solvable in polynomial time (Abraham et al., 2007). This upper bound

will be referred to as the unlimited-k bound.

The other two upper bounds are given by the optimal values of the linear relaxations of

the Cycle and Extended Edge formulations. Constantino et al. (2013) prove that the linear

relaxation of the Cycle formulation always gives an upper bound that is lower than or equal to

that of other exact formulations. However, the Cycle formulation has an exponentially increasing

amount of variables as the pool size increases, whereas the EE formulation is compact in its

number of variables (Constantino et al., 2013). This suggests that solving the linear relaxation

in reasonable time is possible for larger pool sizes with the EE formulation than with the Cycle

formulation.

3.7 Use as a Warm-Start

The solution produced is feasible for any formulation of the k-cycle KEP, which means it provides

a lower bound on the objective value and a starting solution for solvers. Providing a lower bound

to a solver that uses any kind of branching like branch-and-bound, branch-and-price, or branch-

and-cut can significantly reduce solving time as branches of the search can be pruned (Huang et

al., 2021). It can also be used as a starting point for other heuristics. If the solution produced

by this algorithm is equal to the optimal value of the linear relaxation of a formulation, solving

the unrelaxed model can be skipped entirely.
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4 Results

Just like the methodology this section is structured into two main sections. The first concerns

the results of the reproduction, and the second concerns the results of the heuristic algorithm.

4.1 Reproduction Results

The Cycle and Extended Edge formulations of the KEP are implemented and used to perform

the same numerical experiments as in the work by Constantino et al. (2013). The results of

these experiments are compared to those in the original paper and any findings are discussed.

4.1.1 Data

For the sake of acurracy the same four types of data as in the reproduced paper are used to test

the formulations. The first is blood-test type data (Saidman, Roth, Sönmez, Ünver & Delmonico,

2006), made publicly available by Dickerson, Procaccia and Sandholm (2012). The other three

types of data are obtained by using a data generation process proposed in the reproduced paper.

4.1.2 Computational Results

The computational results are shown in the same format as in the original paper for ease of

comparison. These computations and all other computations in this paper were performed

using the commercial Gurobi solver on a Java Virtual Machine with 16GB of RAM and a AMD

Ryzen 7 3700X processor overclocked to 4.10 GHz. In the original paper the computations are

done using a single core of a Quad-Core Intel Xeon processor at 2.66 GHz, with 16GB of RAM.

The table 1 contains results for the Cycle and EEF reproductions. For every combination of

k and n, or one row in the table, 10 instances were generated. Column n denotes the amount of

pairs in the data instances and column k denotes the maximum length of a cycle. Results are

only shown for data instance sizes where at least on of the Just as in the original paper the C

(Cycle) section has the following columns:

• tc, the average time it took to find all cycles in the graph per data instance

• T , the average solving time

• #opt, the number of instances solved to optimality within The time limit of 1800 seconds.

The number in parentheses shows the amount of instances that could be created within

memory constraints. A blank value means all 10 instances were solved to optimality.

• gap, the average LP gap achieved by a particular formulation, is defined as UB−Opt
UB ∗100%

where UB is the upper bound found by solving the linear relaxation of the formulation,

and Opt is the optimal value found using the unrelaxed formulation.

4.2 Reproduction Findings

The main conclusions of the original paper stemmed from solving large instances of four different

types of data with both formulations, where it was found that the Cycle formulation dominated
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Table 1: Computational Results of the Reproduction
n k C EE C EE

t c T #opt gap T gap t c T #opt gap T gap

Blood-type test Medium density test instances
16 3 0 0 0.0 0 0.1 0 0 0.1 0 0.0
32 0 0 0.0 0 0.0 0 0 0.0 0 0.0
64 0 0 0.0 0.1 0.0 0 0.1 0.0 1.0 0.0
128 0 0.1 0.0 0.5 0.1 0 0.9 0.0 23.2 0.0
256 0.1 1.0 0.0 16.3 0.1 0.9 23.0 0.0 - -
512 1.3 7.3 0.0 - - 12.9 207.4 0.0 - -
1024 16.7 97.3 0.0 - - 154.0 782.6 7 (9) 0.0 - -
2048 224.7 1225.5 8 (10) 0.0 - - -* -* - - -

16 4 0 0 0.0 0 0.1 0.1 0 0.0 0.2 0.0
32 0 0 0.0 0 0.0 0 0.1 0.0 0.2 0.0
64 0 0 0.0 0.4 0.0 0.1 3.5 0.0 4.4 0.0
128 0 1.6 0.0 12.6 0.0 7.7 139.1 0.0 338.4 0.0
256 4.8 57.5 0.0 - - -* -* - - -
512 95.0 1612.5 1 (1) 0.0 - -

16 5 0 0 0.0 0 0.0 0 0.1 0.0 0 0.0
32 0 0 0.0 0.1 0.0 0 3.8 0.0 0 0.0
64 0.1 1.1 0.0 1.6 0.1 6.3 183.5 0.0 3.6 0.0
128 3.6 49.2 0.0 96.3 0.0 -* -* - - -

16 6 0 0 0.0 0 0.0 0 0.1 0.0 0 0.0
32 0 0.2 0.0 0.1 0.0 2.3 81.8 0.0 0.2 0.0
64 0.5 11 0.0 1.7 0.0 -* -* - - -

Low density test instances High density test instances
16 3 0.1 1.2 0.0 0 0.0 0 0 0.0 0 0.0
32 0 0.1 0.2 0 0.0 0 0.1 0.0 0 0.0
64 0 0.0 0.0 0.2 0.0 0.0 0.1 0.0 2.0 0.0
128 0 0.0 0.0 1.2 0.0 0.4 4.0 0.0 60.6 0.0
256 0 1.7 0.0 29.4 0.0 2.3 23.4 0.0 - -
512 0.8 19.4 0.0 - - 33.0 264.2 0.0 - -
1024 11.9 167.5 0.0 - - -* -* -* - -
2048 205.3 1360.1 1 (2) 0.0 - -

16 4 0.0 0.0 0.1 0.0 0.2 0 0 0.0 0 0.0
32 0 0.1 0.0 0.1 0.0 0.1 0.4 0.0 0.4 0.0
64 0 0.3 0.0 0.6 0.0 0.6 10.2 0.0 3.6 0.0
128 0 5.3 0.0 61.2 0.0 16.6 257.6 0.0 134.8 0.0
256 3.4 78.1 0.0 - - -* -* -* -* -*
512 82.9 1235.0 9 (10) - -

16 5 0 0 0.0 0 0.14 0.0 0.1 0.0 0 0.0
32 0 0 0.0 0.2 0.0 0.5 11.1 0.0 0.4 0.0
64 0 2.1 0.0 7.0 0.0 -* -* -* 3.8 0.0
128 2.3 106.2 0.0 186.6 0.0 -* -* -* -* -*

16 6 0 0 0.1 0 0.2 0 0.4 0.0 0 0.0
32 0 0.3 0.0 0.4 0.0 9.8 82.2 0.0 0 0.0
64 0.6 31.6 0.0 4.6 0.0 -* -* -* -* -*

* Solving failed because of memory constraints instead of the limit on running time
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the EEF in the blood-type and low density test instances, except when k = 6, and that the EEF

proved superior for medium and high density data with k > 3. These conclusions will now be

reviewed given the reproduced test results.

4.2.1 Effect of Different Methods for Cycle Detection

When comparing our results to those in the original paper, the first thing that stands out is the

significantly smaller amount of time it took to find all cycles in the reproduction compared to

the time it took in the original paper by Constantino et al. (2013). Solving the Cycle formulation

first requires finding every possible cycle with a length of at most k. In the reproduction an

adaptation of Johnson’s Algorithm (Johnson, 1975) is used. Johnson’s Algorithm finds all simple

cycles of any length in a directed graph in O(((|V |+ |E|)|C|) time, where |C| is the number of

possible cycles. Hawick and James (2008) adapted this algorithm to only find cycles of length

k or less. The Java code used to implement this algorithm was code made publicly available by

Michail, Kinable, Naveh and Sichi (2020). In the original paper it is not said which method or

algorithm is used to find all cycles, but the computational results in Table 1 seem to show that

the algorithm by Hawick and James used in this paper is faster, as finding all possible cycles

often takes orders of magnitude more time to find in the original paper, especially for high values

of k. For example, when using blood-test type instances of size 64 the time it took 0.5 seconds

on average to find all 6-cycles in our reproduction. In the paper by Constantino et al. (2013),

finding all 6-cycles took 370 seconds on average for the same data type and instances of size 70,

an increase by a factor of around 700. The same comparison for 3-cycles and instance sizes of

1024 and 1000 results in a smaller increase of a factor of around 20.

The authors also did not attempt to solve instances with more than 3 million cycles, noting

that:“the number of paths associated with the edge formulation increases sharply for larger values

of k”. It is not mentioned why these instances were not studied. Most likely it was because

of memory constraints or because the time it took to find that many cycles exceeded a certain

time limit.

Our results offer some insights on this. Larger instances than those in the original paper were

solved with the Cycle formulation for every combination of data type and k. Instances containing

up to 49 million cycles were solved to optimality. This was done with the same amount of RAM

as used in the original paper, suggesting that a time limit, not a lack of available memory, was

the reason for not studying larger data instances. Then, it is likely that the use of an inefficient

method to find all possible cycles was the bottleneck for studying larger instances with the Cycle

formulation in the original paper.

4.2.2 Solving Times

Looking at the solving times of the actual Integer Programming models once the cycles have been

found, we see that the difference in solving time is considerably smaller, with the solving times

being roughly between two and ten times as long in the original paper. Unlike the difference in

time for finding cycles, this difference is small enough that it could be caused by the difference

in GPU frequency (2.2 GHz vs. 4.15 GHz), the use of multiple CPU cores, and/or advances in

solver software in the eleven years since the paper was published.
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4.2.3 Revisiting the Conclusions

The main conclusion of the original paper was that the Cycle formulation outperforms the EEF

for blood-type and low density data instances when k < 6, and for medium and high density

data instances when k < 5.

With the improved cycle detection algorithm the Cycle formulation outperforms the EEF

even more in regards to solving time and solvable instance size for blood-type and low density

instances, but it is still inferior for k = 6. For the medium and high density tests the EEF is now

only the clear best option when k > 4, instead of k > 3. It should be noted however that every

one of the Cycle tests that failed did so because of memory constraints, and that the memory

used for the tests was relatively low for simulation standards.

A potential reason for the EEF ’s outperformance at high values of k could be that with the

Cycle formulation the amount of cycles and by extension the amount variables grow exponen-

tially in k, causing memory issues. As seen in the results of this reproduction, this limits k and

the size of the donor pool that can be solved in reasonable time with the Cycle formulation. The

EEF does not have this issue. It creates at most |V | copies of the original graph, and in those

graphs, edges are only included if there is a cycle that contains that edge and the index-vertex.

Since an edge can only be included once in a graph, the number of edges per graph-copy is at

most |V 2| edges in the worst case scenario where every vertex is connected to every other vertex.

Since there is a constant amount of variables and restrictions per edge added, this results in a

memory complexity of O(|V |3) which is independent of k.

So while the Cycle formulation is faster for low values of k and low-density data instances,

the sharp increase in the number of possible cycles for higher density data and higher values of

k make it ineffective under those conditions. The EEF is slower in most cases, including the

cases that are most representative of real-world data where k ≤ 4 and density is lower, but its

memory properties make it usable for larger instance sizes.

4.2.4 Use for Local Search Sub-Problem

The reproduced results give us two main take-aways for the formulations’ use in the Local

Search step of the matheuristic algorithm. The first is that the Cycle Formulation quickly

becomes ineffective as instance sizes grow because of memory constraints. When k is set to 4

and the lowest density data is chosen, it can solve data instances containing up to 512 pairs.

The second take-away is that when the Cycle Formulation can be used, it is faster than the

EEF when solving the KEP regardless of data instance density for the cycle lengths considered

in this paper, i.e, k ≤ 4.

The reproduction data 1 displays these findings: for almost all data types and values of k ≤ 4

the solving time of the EEF was the limiting factor on pool size. In contrast, the expanding the

pool size of the Cycle formulation was limited by memory constraints for every data instance

and value of k.

These results suggest that the Cycle formulation should be used in the Local Search step for

as long as possible within memory constraints.
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4.3 Matheuristic Algorithm Data

Accessing real Kidney Exchange program data is often difficult because of its medical and thus

confidential nature, so over the years multiple data instance generators have been developed to

accurately simulate real world Kidney Exchange data.

According to a literature survey by Mak-Hau (n.d.) the Saidman-generator (Saidman et al.,

2006) is often used. It uses distributions of relevant patient traits like blood-type and panel

antibody reactivity, and also includes the probability of husband-wife donor pairs, who have a

higher chance of being a match than a random pair. Recently, Delorme et al. (2022) examined

instances created by the Saidman-generator provided by Dickerson et al. (2012) and found that

they “differ from real-world instances in a range of parameters (such as edge density of the graph

of potential kidney exchanges)”. Using these observations they find that optimal solutions to

Saidman-generated data instances always have an objective value equal to the lowest of three

specific upper bounds. A matheuristic to quickly find these bounds is provided, making solving

the problem by MILP programming unnecessary. Using data from the UK Living Kidney Sharing

Scheme they devise a way of generating instances that more accurately represent real world data

(”delorme-generator”), and they ”confirm that [their] new upper bounds are not tight on these

instances, meaning that our matheuristic does not provide a guarantee of optimality anymore,

as is usually required in a KEP”.

As such, the data instances used in this thesis will be those generated by way of (Delorme

et al., 2022). One of the authors also provides an online generator for these data instances

(https://wpettersson.github.io/kidney-webapp//generator). As recommended in the paper, all

instances are generated with the following pre-set settings found at the bottom of the web-page:

• Use donor blood-group distributions from paper, determined by patient blood group

• Use SplitPRA values for determining cPRA

• Use BandXMatch-PRA0 to determine compatibility

Additionally, tuning was enabled for instances of size 1000 for 100 iterations on blood groups

and cPRA distributions but not on the number of donors per patient.

For every instance size ten instances were generated.

4.4 Results for the Matheuristic Algorithm

Before getting computational results on the whole matheuristic algorithm, the various parts are

tested to determine which parameter values and other settings perform best.

4.4.1 Pre-processing

When generating problem instances using the delorme-generator it was found that in all instances

a number of vertices could not be matched, and these vertices were removed by the pre-processing

step. The average number of removed vertices was around 25% of vertices for all instance sizes.

The pre-processing step took less than 0.1 seconds for all instances.
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4.4.2 Pairwise Matching Results

The maximum pairwise matching problem described in Section 3.4 was solved using the pre-

processed data. The average time to needed to find the maximum pairwise matching was less

than 0.05 seconds for every instance size. The performance of this step is measured by the

amount of vertices it can match from the pool of matchable vertices. The average percentage of

matchable vertices it matched over the 10 instances per instance size is shown in Table 4.4.3.

4.4.3 Greedy Algorithm Results

As described in Section 3.5, a way of ranking cycles must be chosen before the Greedy algorithm

can improve upon the pairwise matching. The six proposed methods for assigning scores to

cycles were tested. Through trial and error testing it was found that the best method was to

determine the score of matches by taking the product of the donor and patient’s scores, and

then setting the score of a cycle to the average of the scores of its matches. For all values of λ

this method matched the most vertices, and the most vertices were matched overall for = 50. It

was also found that running the Greedy algorithm for longer than a minute did not significantly

improve the best objective value. This is a positive result since the intended function of the

Greedy algorithm is to quickly generate a decent solution which can then be improved by the

slower Local Search algorithm.

Once a scoring method is chosen the step between the pairwise matching and the Greedy

algorithm described in Section 3.5.2 can be performed. It finds a pairwise matching with the

maximum objective value such that the sum of the scores of the cycles in the solution is min-

imized. The Greedy algorithm is then applied to the vertices that are not matched in this

solution. For every instance size Table 4.4.3 shows the average number of vertices matched

by the maximum pairwise matching and the average number of vertices the Greedy algorithm

matched when it was performed afterwards. The table also shows the average number of vertices

matched per instance size if the Greedy algorithm is applied on the data before a portion of it

is matched by the pairwise matching.

Table 2: The percentage of vertices matched by pairwise and/or Greedy matching
Instance size 1000 1250 1500 1750 2000 2250 2500 2750 3000

Pairwise matching % 37.0 38.4 39.9 41.7 42.1 42.7 41.6 45.1 46.2
Greedy % after pairwise 6.4 6.1 4.8 4.8 5.0 4.7 4.3 4.1 3.5
Pairwise & Greedy % 43.3 44.5 44.7 46.5 47.1 47.4 45.9 49.2 49.6
Only Greedy matching % 52.4 54.4 - - - - - - -

We see that the percentage of vertices matched by the pairwise matching slowly increases

towards 50% as the instance size increases, and that the percentage of additional vertices matched

by the Greedy algorithm seems to be decreasing as instance sizes grow.

Looking at the number of vertices matched when only using the greedy algorithm we see that

it finds better solutions than by combining the pairwise matching and the Greedy algorithm on

average but that it hits the memory limit for instance sizes above 1500, and is thus not usable

to increase the pool size.
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4.4.4 Local Search and Warm-Start Results

Using the found initial solutions we create improved solutions using the Local Search matheur-

istic algorithm. The value of these solutions as a warm-start solution to exact formulations of

the k-cycle KEP was then evaluated.

Before being able to run the Local Search Matheuristic, we must choose an exact formulation

of the k-cycle KEP to solve the sub-problems that create neighbouring solutions and choose

parameters α and τ . For this paper we implemented the Cycle and Extended Edge formulations.

Delorme, Manlove and Smeets (2023) performed experiments where the vertices are ranked in

the match-matrix based on their degree, and found that the EE formulation can be improved by

sorting the vertices either ascendingly or descendingly. We tested the four options on delorme-

generator data and found that the Cycle formulation was solved the fastest. Testing these

formulations was done with the GUROBI solver’s default parameters. Out of the three possible

variants of the Extended Edge formulation, the Extended Edge formulation with vertices ordered

in descending order (EE-D) was solved the fastest. As such, the Cycle formulation will be used

to solve the sub-problems in the Local Search algorithm, and the final solutions will be evaluated

as warm-starts for both the Cycle and EE-D formulations. Trial-and-error tests showed that

the Local Search performed best when α = 5 and τ = 3 so these parameter values will be used.

The largest instance size that any of the formulations could solve was 1000, so this will be used

as the starting instance size when testing the matheuristic algorithm.

Table 4.4.4 shows the results of running the complete matheuristic algorithm and using

the produced solutions as warm-start solutions for the Cycle and EE-D formulations. The

three upper bounds mentioned in Section 3.6.2 are also calculated. If a solution found by the

matheuristic algorithm reached one of these bounds is was optimal by definition. Else, its

optimality must be proven in the last step of the test when the exact formulations are solved.

The tests were performed on ten instances per instance size, and when solving the formula-

tions with a warm-start the GUROBI solver’s default settings were used except that for settings

concerning heuristics. By, default the solver will try to find a heuristic solution as a lower bound

before starting the solve. These lower bounds were found to be of poor quality compared to the

matheuristic algorithm and as such this setting was turned off to save time. The time limit set

on finding an initial solution using pairwise matching and the Greedy algorithm was set to 60

seconds, and the time limit set on the Local Search algorithm was 1800 seconds. Afterwards,

the Cycle and EE-D were given 1800 seconds to solve the k-cycle KEP using these warm-starts.

One important finding that influenced the way the results are displayed needs to be addressed

first. It was found that for every tested instance size the warm-start solution was not improved by

the two exact formulations. However, it was also found that for most instances the matheuristic

algorithm reached the optimal value by itself, which is confirmed when the solution reaches an

upper bound. So while the exact formulations did not improve any solutions, only solving their

relaxations was often enough to prove optimality. If the linear relaxations can not be found

within 1800 seconds, and the matheuristic solution does not reach the upper bound found by

solving the KEP for unlimited k, it is unknown whether the the solution is optimal.

For every instance size n the columns of Table () are divided in four groups in the following

way:
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• The Matheuristic category has three columns: opt shows the number of times the math-

euristic algorithm reached an upper bound and thus found optimal an optimal solution.

Tmax shows the average time in seconds that the algorithm needed to reach the maximum

in those cases. For instances where optimality is not proven because algorithm did not

reach an upper bound, column gap shows the average distance of the algorithms best found

solution value to the lowest upper bound.

• The Unlimited-k category concerns the unlimited-k upper bound. Column opt shows how

many times the unlimited-k upper bound was equal to the optimal objective value, out

of the times the optimal value was found. For the cases where the optimal value was

not found, column lowest shows how many times the unlimited-k bound was equal to the

lowest found upper bound.

• The EE-D category concerns the bound found by solving the linear relaxation of the

Extended-Edge formulation with vertices ordered in descending order. Column found

shows how many times the linear relaxation was able to be solved within time and memory

limits, and Tmax shows the average time needed in seconds. Column opt shows the number

of times the bounds were equal to the optimal objective values, out of the times both the

upper bound and the optimal value were found. 0he Cycle category is the same as the

EE-D category except that the linear relaxation of the Cycle formulation is solved instead.

Matheuristic Unlimited-k EE-D relaxation Cycle relaxation
n opt Tmax avg gap opt lowest found Tmax found Tmax

1000 10 410.0 - 5/10 5/10 10 40.1 10 71.8
1250 10 429.2 - 6/10 6/10 10 86.7 10 132.0
1500 9 423.6 1.0 6/9 7/10 10 201.1 10 496.5
1750 10 677.6 - 8/10 8/10 10 396.3 4 805.7
2000 7 763.3 1.34 7/7 9/10 10 1335.5 0 -
2250 8 935.8 1.0 8/8 10/10 10 1335.5
2500 7 874.9 1.0 7/7 8/8 8 1239.3
2750 3 1095.0 1.3 3/3 -/- 0 -
3000 7 1282.7 2.0 7/7 -/- 0 -

Table 3: Numerical results of using the warm-start solution for the Cycle and EE-D formulations

Starting from the largest instance size that exact formulations can solve without a warm

start, the instance size was increased until the relaxations of the EE-D and Cycle formulations

could not be calculated within 1800 seconds anymore.

When running the matheuristic algorithm for 1800 seconds we see that it reaches an optimal

solution for a majority of instances. Furthermore, for the rest of the solutions it found it was

not proven that they were sub-optimal. The exact formulations were unable to improve or

confirm the (sub-)optimality of any warm-start solution that had an objective value lower than

the solution of their linear relaxation. The exact formulations functioned more as a kind of

“check”, since optimality was only confirmed when the matheuristic already reached an upper

bound by itself.

We also see that the Cycle formulation quickly fails because of memory constraints. As

mentioned in Section 3.6.2, the Cycle formulation’s linear relaxation always provides equal or
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lower upper bounds than that of the EE formulation. More matheuristic solution could be shown

to be optimal if a formulation is used that is as tight as the Cycle formulation, but does not

have memory problems.

Another interesting finding is that the unlimited-k upper bound was either equal to the

upper bounds set by the linear relaxations of the exact formulation or higher by exactly 1, while

being much easier to find as shown earlier in this section. Column lowest in Table (??) shows

that the unlimited-k bound is the equal to the lowest bound for a majority of instances.

In general these are positive results. Optimal solutions or solutions that are very close to it

are found for instance sizes that are up to three times as large as the largest instance size that

the exact formulations can solve on their own within the same amount of time.

5 Conclusion

In this paper we proposed a modular matheuristic algorithm to find warm-start solutions for

exact formulations of the k-cycle KEP and performed numerical experiments. The matheuristic

algorithm consists of two major parts: first an initial solution is created by improving an easily

findable solution to a restricted version of the problem using a fast-working Greedy algorithm.

This initial solution is then used as the starting point for a dynamic randomized Local Search

algorithm that makes use of an exact formulation of the problem to solve sub-problems. The

use of these solutions as warm-starts was tested with reproductions of the Cycle and Extended

Edge formulations by Constantino et al. (2013).

The goal of the algorithm was to provide warm-start solutions to exact formulations such

that they could solve larger problem instances in reasonable time than they could without using

the warm-start solutions. In this regard our matheuristic algorithm partly succeeded. Optimal

or near-optimal solutions were found by the algorithm for instances that were up to three times

as large as the largest instance size that is solvable to optimality using the exact formulations.

However, the exact algorithms were only able to confirm the optimality of warm-start solutions.

If a warm-start solution was not already optimal by itself the exact formulations could not use

the warm-start to find a solution with a higher objective value.

The modular structure of the matheuristic algorithm was devised with the intention that it

allows for gradual improvement through future research, and here we provide some suggestions.

The Greedy algorithm can be improved by researching better ways for it to rank cycles and

by performing in-depth analysis of its user-set parameters instead of the trial-and-error tests

performed for the results of this paper. The Local Search algorithm could also benefit from more

extensive parameter analysis, but most importantly it should be tested with more recent and

faster-solving formulations of the k-cycle KEP, since its iteration time is largely determined by

how quickly k-cycle KEP sub-problems are solved. Lastly, this algorithm could be evaluated for

use with more complex and realistic versions of the KEP, like the KEP with multiple hierarchical

objectives, or the KEP with altruistic donors.
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6 Code and Data Instances

The source code that was used to find all numerical results in this paper and the data instances

used are available at https://github.com/denzlin/BaThesis.
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van der Klundert, J. (2019, July). Building kidney exchange programmes in europe—an

overview of exchange practice and activities. Transplantation, 103 (7), 1514-1522. doi:

10.1097/TP.0000000000002432

Clausen, J. (2003). Branch and bound algorithms-principles and examples.. Retrieved from

https://api.semanticscholar.org/CorpusID:16580792

Constantino, M., Klimentova, X., Viana, A. & Rais, A. (2013). New insights on integer-

programming models for the kidney exchange problem. European Journal of Operational

Research, 231 (1), 57-68. Retrieved from https://www.sciencedirect.com/science/

article/pii/S0377221713004244 doi: https://doi.org/10.1016/j.ejor.2013.05.025
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