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Abstract

The Kidney Exchange Problem (KEP) involves finding a packing of cardinality con-

strained cycles in a graph. Previous MIP formulation have a quadratic or exponential num-

ber of variables or constraints. In this work we propose a formulation with a quadratic

number of variables and constraints, inspired by the Miller–Tucker–Zemlin formulation for

the traveling salesman problem. We find this MTZ-like formulation has advantages over the

previous ones when the problem size is large in either the number of nodes or the maximum

cardinality.
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1 Introduction

When someone needs a kidney transplant, they may be able to find a live donor who is willing

to donate one of theirs to help the patient. A donor and patient need to match on blood type

and tissue type (HLA). Unless the patient and donor are identical twins, there is a chance they

do not match.

In some countries, like the Netherlands and the USA, so called kidney exchange programs

are set up. When a patient does not have a compatible donor, they may receive a kidney from

another patient’s donor, if that patient in turn is guaranteed a kidney. The simplest case is

when patient A is compatible with donor B and patient B is compatible with donor A. In that

case they could exchange kidneys to help both patients.

The Kidney Exchange Problem (KEP), as described in Abraham, Blum and Sandholm

(2007), is a problem dealing with ”the double coincidence of wants”: how to guarantee every

patient whose donor is ’used’ will also receive a kidney at the same time. Assuming there are no

altruistic donors, donors who are not trying to help a specific patient, eventually you will end

up with a cycle of patient-donor pairs.

If a patient receives a kidney before their donor donates one, there is a risk the donor backs

out, as they are not legally bound to donate. As hospitals have only limited room to perform

simultaneous transplants in, these cycles must be limited to a size k. If k = 2, the problem is

a pairwise compatibility matching and the maximum cardinality matching algorithm can create

the greatest number of exchanges in polynomial time (Edmonds, 1965). However when k ≥ 3,

the problem is known to be NP-hard (Abraham et al., 2007).

With altruistic donors the consequences of a donor backing out are greatly reduced. An

altruistic donor does not have an associated patient and therefor there is no need to create

cycles. When an altruistic donor donates to patient A, later their associated donor A can

donate to patient B and donor B to patient C, etc. Should some donor back out after the

donation to their associated patient, there will be no patient left wanting.

This paper introduces a MTZ-like formulation for the KEP. In comparison to earlier formu-

lations, it has fewer variables and constraints; both are O(n2). This new formulation is then

compared to the Cycle formulation and the Extended Edge formulation, as those were found by

Constantino, Klimentova, Viana and Rais (2013) to be dominant for at least one set of simula-

tions. Since the Arc formulation also has O(n2) number of variables, it will also be compared

against the MTZ-like formulation.

The rest of this paper is organized as follows. After this introduction, Section 2 will contain a

literature review. Then Section 3 will describe the problem in more detail followed by Section 4

which will describe the various formulations. In Section 5 the settings of the computational

analysis will be described, followed by the results of each formulation and a comparison between

the various formulations. Finally Section 6 provides some conclusions and suggestions for future

research.
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2 Literature Review

Roth, Sönmez and Ünver (2007) proposed two MIP formulations to solve the KEP. The Cycle

formulation creates a set of all possible cycles and then selects the best combination of cycles

using a set packing formulation. The Arc formulation selects arcs with constraints guaranteeing

every pair that donates also receives a kidney and that there exists no path of arcs of length k or

greater. The Cycle formulation has an exponential number of variables and the Arc formulation

an exponential number of constraints.

Constantino et al. (2013) introduces two polynomial sized formulations (Edge Assignment

and Extended Edge) for the KEP and compares those against the two exponential formulations.

This paper will reproduce their results and compare them with a new formulation.

The Cycle formulation is a set packing formulation which has great performance, if you

can get all the sets (cycles) in memory. For larger problems this is not possible and column

generation schemes have been developed to get around this. Klimentova, Alvelos and Viana

(2014) proposed one example of such a column generation approach and found it to solve the

problem with much less computational effort.

A different research direction is the inclusion of altruistic donors. For example Mak-Hau

(2017) proposed extensions to the formulations of Roth et al. (2007) and Constantino et al.

(2013) to find exchanges that include so called altruistic chains; chains starting with altruistic

donors.

3 Problem Description

Graph theory can be used to represent the KEP. Let there be n patient-donor pairs and let

G(V,A) be a directed graph with V = {1, . . . , n} representing each pair and set A ⊆ {1, . . . , n}2

representing the compatibilities between pairs. Let (i, j) ∈ A if patient i is compatible with

donor j and if not, (i, j) /∈ A. Lastly let wij represent the weight of arc (i, j), with wij = 1 if

the goal is to maximize the number of transplants.

Figure 1 Shows an example of a graph G with |V | = 5 pairs and |A| = 10. In this example

donor 1 is compatible with patient 3, but donor 3 not with patient 1, while pairs 1 and 2 are

mutually compatible.

Figure 1: Example of a graph G.
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If the goal is to maximum the number of transplants, Figure 2 shows two possible solutions

for k = 3 where all patients receive a kidney. For k = 4 the same optimal solutions remain, but

for k = 5 several 5-cycle alternative solutions exist.
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Figure 2: 2 optimal solution, for k ≥ 3, each with 2 cycles.
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Since there is no requirement to help all patients, Figure 3 shows two possible valid solutions

when k ≥ 4. Should the arcs be weighted, it is possible one of these solutions provides a better

objective value than either of the solutions in Figure 2.

Figure 3: 2 valid solution for k ≥ 4.
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4 KEP Formulations

First the exponential Arc and Cycle formulations from Roth et al. (2007) are described, fol-

lowed by the Extended Edge formulation from Constantino et al. (2013). Lastly the MTZ-like

formulation is introduced.

4.1 Arc Formulation

The idea of the Arc formulation is that any cycle with a length of at most k does not contain a

path with k + 1 distinct nodes and therefor to disallow all such paths.

The way this is realized is by only allowing k − 1 arcs from any such path to be selected at

any one time. Given that such a path contains k + 1 distinct nodes, when selecting k − 1 arcs

one has ’selected’ no less than k distinct nodes, the maximum allowed for a cycle.

Introduce variable xij ∈ B, ∀(i, j) ∈ A, which is 1 if arc (i, j) is selected and 0 otherwise.
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The Arc formulation can then be written as:

Maximize
∑

(i,j)∈A

wijxij (1)

s.t.
∑

j:(i,j)∈A

xij =
∑

j:(j,i)∈A

xji, ∀i ∈ V (2)

∑
j:(i,j)∈A

xij ≤ 1, ∀i ∈ V (3)

∑
1≤p≤k

xipip+1 ≤ k − 1 ∀paths(i1, . . . , ik+1) (4)

xij ∈ B. ∀(i, j) ∈ A (5)

The objective function represented by Equation (1) is the weighted sum of all selected arcs.

Equation (2) ensures that if a donor from a pair donates, then the corresponding patient of that

pair gets donated to. Equation (3) restricts the number of donations to 1 kidney per donor.

Lastly, Equation (4) represents the main idea of this formulation.

All paths are generated as follows: ∀v ∈ V , call GeneratePaths(A, [v]) defined in Al-

gorithm 1 and combine the results.

Algorithm 1: Arc formulation path generation

GeneratePaths(arcs, path) begin
if |path| = k + 1 then

yield path
else

i← path.last
for j ∈ V \ path do

if (i, j) ∈ arcs then
yield all GeneratePaths(arcs, [path, j])

end

end

end

end

For the row generation, the same function is used, except the realized arcs xij are used

instead of all arcs A.

4.2 Cycle Formulation

The idea of the Cycle formulation is to transform the KEP into a set packing problem. Let

C(k) be the set of all cycles in G with length at most k. Furthermore let V (c) ⊆ V be the set

of nodes in cycle c ∈ C(k) and w(c) =
∑

(i,j)∈c

wij .

Introduce variable zc ∈ B, which is 1 if cycle c is selected and 0 otherwise. The Cycle
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formulation can then be written as:

Maximize
∑

c∈C(k)

w(c)zc (6)

s.t.
∑

c:i∈V (c)

zc ≤ 1, ∀i ∈ V (7)

zc ∈ B. ∀c ∈ C(k) (8)

The objective function represented by Equation (6) is the weighted sum of all selected cycles.

Equation (7) ensures that a node i can occur at most once between all selected cycles.

4.3 Extended Edge Formulation

The basic idea of the Extended Edge formulation is to duplicate the graph multiple times, let

each of those duplicates contain their own independent cycles and then limit the number of

selected edges per graph to k.

Constantino et al. (2013) calls each of those duplicates a layer l ∈ L ⊆ {1, . . . , |V |} and

defines V l ⊆ V , and Al ⊆ A. The reason for the definitions of L, V l and Al will be described

later, for now consider them equal to their super sets. Furthermore introduce xlij ∈ B∀(i, j) ∈ Al,

which is a variable that describes whether an arc (i, j) is selected on layer l.

The Extended Edge formulation can then be written as:

Maximize
∑
l∈L

∑
(i,j)∈Al

wijx
l
ij (9)

s.t.
∑

j:(i,j)∈Al

xlij =
∑

j:(j,i)∈Al

xlji, ∀i ∈ V l,∀l ∈ L (10)

∑
l∈L

∑
j:(i,j)∈Al

xlij ≤ 1, ∀i ∈ V (11)

∑
(i,j)∈Al

xlij ≤ k, ∀l ∈ L (12)

∑
j:(i,j)∈Al

xlij ≤
∑

j:(l,j)∈Al

xllj , ∀i ∈ V l,∀l ∈ L (13)

xlij ∈ B. ∀(i, j) ∈ Al,∀l ∈ L (14)

The objective function of Equation (9) is the weighted sum of all selected edges, over all

layers. Equation (10) ensures that if a donor from a pair donates, the the corresponding patient

of that pair gets donated to on the same layer. Equation (11) restricts the number of donations

to 1 kidney per donor. Equation (12) restricts the number of selected edges per layer to the

maximum cycle size k. Note how Equation (10) implies a selected edge will be part of a cycle

on the same layer, but there are no restrictions on the number of cycles per layer.

A naive formulation has a large amount of symmetry and Equation (13) is the first part of

limiting this symmetry. It makes sure layer l can only be used to select edges if at least some

edge (i, j) is selected for which i = l.

Further elimination of symmetry is accomplished by the exact definition of L, V l and Al.
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The idea is to introduce the rule that some cycle c can be selected on layer l if and only if

l = min{i ∈ c}. The first implication is that no node i < l can be part of a cycle on layer l and

therefor all such nodes and their edges can be eliminated for that layer: V l = {l, . . . , |V |} and
Al = {(i, j) ∈ A|i, j ∈ V l}.

Further reduction of the formulation is accomplished by eliminating unreachable edges (i, j).

If no cycle of at most k nodes exists that contains both node l and some edge (i, j) i > l, j > l,

then such edge can be removed from Al. Let dij be the shortest distance from node i to j in

terms of the number of edges. Then for any edge (i, j), if dli + 1 + djl > k then there exists

no cycle that contains both node l and edge (i, j) and thus can be removed from Al. The final

definition of Al = {(i, j) ∈ A | i, j ∈ V l ∧ dli + 1 + djl ≤ k}.
If for any node i all edges (i, j), j ≥ l or all edges (j, i), j ≥ l can be eliminated from Al in

this manner, then i can be removed from V l. If V l = ∅, which also implies Al = ∅, then layer

l can be removed from L.
In the end the rule that some cycle c can be selected on layer l if and only if l = min{i ∈ c}

can’t be completely guaranteed. As k increases, it becomes more likely that multiple edges

are allowed on layer l, such that they each could be part of a cycle with node l and together

form an ’impostor’ cycle that does not contain node l. Then if some cycle exists that satisfies

Equation (13), this ’impostor’ could be selected on layer l as well. For example when k = 5, all

edges of Figure 1 from the problem description can be part of a 5-cycle that contains node 5.

Therefor layer 1 will contain all edges and either solution from Figure 2 can be selected in layer

1 as that would violate none of the constraints.

The definition in this section contains some minor simplifications from the definition in

Constantino et al. (2013). First, Equation (11) is defined over i ∈
⋃

l∈L V l, instead of i ∈ V ,

which would skip the rare node that can not be part of any k-cycle.

Second, whereas this thesis uses dij to calculate the distance between two nodes, Constantino

et al. (2013) uses the more precise dlij , which only considers paths whose edges are all in Al. The

more coarse grained dij could allow unreachable nodes if the shortest distance between i and j

cross some node excluded from some layer. However, as the density of the edges increases this

problem becomes less likely and as the total number of nodes increases this problem becomes

less pronounced.

4.4 MTZ-like Formulation

Start with the variables xij ∈ B which identifies whether arc (i, j) is used. The basic idea behind

this MTZ-like formulation is to assign each node in a cycle a unique natural number u and then

constrain u ≤ k. As with the Miller–Tucker–Zemlin (MTZ) formulation, a simple way to enforce

uniqueness is to make u ordered within a cycle; xij = 1 =⇒ ui < uj , except for some node j

which is designated as a ’depot’.

To be able to identify this depot, two additional variables per node are introduced; yi =

1, . . . , n, that identifies which cycle a node i is a part of; and zi ∈ B, that indicates whether

node i is the ’depot’.
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The pseudo-MIP formulation is then given by:

Maximize
∑

(i,j)∈A

wijxij (15)

s.t.
∑

j:(i,j)∈A

xij =
∑

j:(j,i)∈A

xji, ∀i ∈ V (16)

∑
j:(i,j)∈A

xij ≤ 1, ∀i ∈ V (17)

xij = 1 =⇒ yi = yj , ∀(i, j) ∈ A (18)

yi ̸= i =⇒ zi = 0, ∀i ∈ V (19)

xij = 1 =⇒ ui + 1 ≤ uj ∨ zi = 1. ∀(i, j) ∈ A (20)

The objective function and Equations (16) and (17) are the standard KEP constraints, as

also seen in the Arc formulation. Equation (18) ensures that if donor i donates to patient j, then

both must be in the same cycle. Equation (19) makes sure only one node per cycle is considered

the depot, as at most one node can have the same index as the cycle. Finally, Equation (20)

ensures that for each connected arc (i, j) either node i has a greater order than node j, or that

node i is the depot node in the cycle.

This formulation contains up-to-k-fold symmetry per cycle; each of the nodes in a cycle could

be assigned the ’depot’. To prevent such symmetry, the insight from Constantino et al. (2013)

can be adapted; only the node with he greatest index in a cycle can be the depot. For this, let

yi ≥ i. Equation (19) can then also be simplified to yi > i =⇒ zi = 0.

Equation (18) can be transformed into the linear inequalities yi − yj ≤ (n− j)(1− xij) and

yj − yi ≤ (n− i)(1− xij). Equation (19) can become the linear inequality yi ≤ n− (n− i)zi and

Equation (20) can be transformed into ui + 1− uj ≤ k(1− xij + zi).

The final MIP formulation then becomes:

Maximize
∑

(i,j)∈A

wijxij

s.t.
∑

j:(i,j)∈A

xij =
∑

j:(j,i)∈A

xji, ∀i ∈ V

∑
j:(i,j)∈A

xij ≤ 1, ∀i ∈ V

yi − yj ≤ (n− j)(1− xij), ∀(i, j) ∈ A

yj − yi ≤ (n− i)(1− xij), ∀(i, j) ∈ A

yi ≤ n− (n− i)zi, ∀i ∈ V

ui + 1− uj ≤ k(1− xij + zi, ∀(i, j) ∈ A

xij ∈ B, ∀(i, j) ∈ A

ui ∈ {i, . . . , n}, ∀i ∈ V

zi ∈ B. ∀i ∈ V

As |A| ≤ n2, both the number of variables and the number of constraints is O(n2). Tech-
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nically ui requires size O(log n) to be represented. Practically MIP solvers will use IEEE 754

floating point numbers to represent variables, which in the 32-bit variant can store integers up

to 224 = 16, 777, 216 without loss of fidelity.

5 Computational Analysis

To empirically test the different formulations, they have been implemented and run for a variety

of configurations. First the environment and tested configurations will be described, followed

by the results per formulation and this section will close with a comparison of all formulations.

5.1 Environment and Configurations

All formulations were implemented and run using C#/.Net 8.0 and Gurobi 11.02. The computer

had an AMD Ryzen™ 9 7950X3D CPU containing 16 cores with a base clock speed of 4.2 GHz

and 128 GB of DDR5 RAM.

Every combination of the following settings was run: formulation is Arc (with row gener-

ation), Cycle, Extended Edge or MTZ-like; number of patient-donor pairs n = 50, 100, 200;

compatibility density d = 0.1, 0.2, 0.5, 0.8; max cycle size k = 3, 4, 5, 6, 10, 15, 20; with w = 1 or

w ∼ Unif(0, 1) (weighted arcs). When a certain configuration could not be run due to an out

of memory error, a similar configuration with a greater n or greater d was not attempted. For

the Cycle and and MTZ-like formulations, these tests were extended with n = 500, 1000.

For each configuration, a new program was launched to prevent any influence from previous

runs, like JIT optimizations or memory leaks. Each run spawned 10 threads that each ran one

single-threaded instance simultaneously. Appendix B.1 provides more details on this program.

Every instance is generated in a reproducible way such that different formulations are tested

using the exact same instance. Furthermore for a given seed, a smaller instance is a strict

subproblem of a larger instance. For example a graph A0.2 for a problem with density 0.2 is a

subgraph of A0.5 for density 0.5. Likewise a graph A50 for N = 50 is a subgraph of A100 for

N = 100. More details can be found in Appendix A.

Measurement of the setup time starts from the moment an instance is generated until hand-

off to the Gurobi solver occurs. The running time is taken as reported by the solver.

In total 7500 instances ran without failure, of which 1680 were the Arc formulation (with

row generation), 780 the Cycle, 1680 the Extended Edge, and 3360 the MTZ-like formulation.

The next four subsections provide individual results for each formulation, then section 5.6

provides comparisons between formulations. For each formulation the running times in seconds

and remaining LP gap in percentage are reported. The running time is the average of all 10

runs. The LP gap is the average of the results with a gap > 0. The LP gap is the result of the

formula (UB − Opt)/Opt, where UB is the upper bound of the LP relaxation and Opt is the

objective value of the best found solution. Should at least 9 instances have a running time of

1800 seconds the running time is omitted and the mean LP gap of all ten instances is reported.

Tip: the sections for formulation results are positioned in the same location on the page to

make it easy to compare them. Those sections also link to each other in such a way that any two

formulations can be compared by repeatedly following a reference without moving your cursor.
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5.2 Arc

See also Section 5.3 for Cycle, Section 5.4 for Edge and Section 5.5 for MTZ results.
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Table 1: Running times (seconds)/LP gap (%) of Arc formulation (row generation)

w = 1 w ∼ Unif(0, 1)
n k d = 0.1 0.2 0.5 0.8 0.1 0.2 0.5 0.8

50

3 93 191 153 0 47 /10.5 /6.0 /4.1
4 887 447 3 0 656/0.7 /6.5 /4.4 /2, 8
5 410 197 0 0 579/1.2 /4.4 /2.8 /3.3
6 50 56 0 0 327 1498/1.3 1597/0.8 1398/0.3

10 1 0 0 0 4 16 16 12
15 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0

100

3 /74.3 /20.6 39.4 − /33.5 /27.5 /12.9 /12.1
4 − /20.6 41.0 − /19.2 /12.3 /9.2 /0.9
5 /86.1 /20.6 132410.3 862 /13.5 /9.4 /19.0 −
6 /99.2 /20.6 386 226 /20.0 /18.6 /65.0 −

10 /45.7 /9.6 2 8 /92.0 /80.6 /59.2 /50.2a

15 515/0.7 12 0 0 1625/15.5 /12.1 1668/2.0 1559/0.7
20 1 1 0 0 57 291 335 325

200

3 /45.7 /10.5 − − /52.5 /42.0 − −
4 /45.7 /10.5 − − /45.5 /48.6 − −
5 /45.7 /10.5 − − /48.8 /28.8 − −
6 /45.7 /10.5 − − /49.5 /64.8 − −

10 /45.7 /10.5 − − − − − −
15 /45.7 /10.5 892 120 − − − −
20 /41.3 /2.3 94 70 − /72.5 − −

− average LP gap ≥ 100%. a 1 instances had no result.
Running time omitted if =1800 for all instances.

Solutions are found quicker as k increases. One explanation is that those solutions are

closer to the optimal solution with an unrestricted cycle length and therefor would require fewer

constraints to be generated. The only exception is k = 3 which is sometimes faster than k ≥ 4.

For higher densities, there appears to be a bifurcation of results. Either the solution is found

much faster than with lower densities, or no solution is found at all.

Out of 840 results for w = 1, 84 found no solution and 289 did not find the optimal solution

within 1800 seconds. Of those, 31 had a LP gap > 2, 53 a gap > 1 and 89 a gap > 0.5. Curiously,

the largest gap for density 0.2 is 0.28, while the other densities each have multiple gaps > 1.
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5.3 Cycle

See also Section 5.2 for Arc, Section 5.5 for MTZ and Section 5.4 for Edge results.
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Table 2: Running times (seconds)/LP gap (%) of Cycle formulation

w = 1 w ∼ Unif(0, 1)
n k d = 0.1 0.2 0.5 0.8 0.1 0.2 0.5 0.8

50

3 0 0 0 0 0 0 0 0
4 0 0 0 4 0 0 1 7
5 0 0 30 143 0 0 54 227
6 0 2 − − 0 4 − −
10 28 − − − 17 − − −
15 − − − − − − − −
20 − − − − − − − −

100

3 0 0 0 0 0 0 1 3
4 0 0 22 130 1 6 59 362
5 1 22 − − 13 67 − −
6 5 − − − 96 − − −
10 − − − − − − − −
15 − − − − − − − −
20 − − − − − − − −

200

3 0 0 5 14 10 26 23 57
4 3 30 − − 1431 1733/0.4 − −
5 43 − − − /2.2 − − −
6 − − − − − − − −
10 − − − − − − − −
15 − − − − − − − −
20 − − − − − − − −

500
3 4 15 166 − /0.5 /0.4 /0.3 −
4 144 − − − /2.7 − − −

1000 3 65 221 − − /1.2 /0.9 − −
− run did not complete due to running out of memory.
Running time omitted if = 1800 for all instances.

As expected due to the exponential number of variables, with an average RAM of 12-13 GB

per instance, the Cycle formulation has a limited number of supported configurations.

For w = 1 and configurations that don’t run out of memory, the Cycle formulation finds a

solution in minutes.

Out of 780 runs without an error, 85 were cut off after 1800 seconds. Of those, 11 had a LP

gap > 0.025, with the largest being 0.033.
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5.4 Extended Edge

See also Section 5.5 for MTZ, Section 5.2 for Arc and Section 5.3 for Cycle results.
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Table 3: Running times (seconds)/LP gap (%) of Extended Edge formulation

w = 1 w ∼ Unif(0, 1)
n k d = 0.1 0.2 0.5 0.8 0.1 0.2 0.5 0.8

50

3 0 0 0 1 0 0 0 14
4 0 0 1 2 0 2 65 262
5 0 0 1 2 0 72 278 311
6 1 1 1 1 3 102 144 172
10 1 0 0 0 10 25 24 23
15 0 0 0 0 1 3 5 3
20 0 0 0 0 1 1 1 1

100

3 0 0 5 25 0 1 27 1460/0.3
4 1 7 44 131 14 829/0.5 /3.4 /4.1
5 22 86 56 88 1477/1.3 /7.3 /5.9 /3.7
6 106 78 44 75 /4.2 /7.4 /4.1 /4.5
10 31 31 33 41 /2.4 /2.7 /1.4 /1.0
15 14 19 16 37 1617/0.3 /0.7 /0.2 /0.2
20 14 14 12 39 463 1134 1349 1495

200

3 0 3 202 − 23 212 /1.1 −
4 61 675 − − /2.2 /4.4 /49.5 −
5 1798/1.8 /9.2 − − /17.4 /32.9 − −
6 1641/2.0 1707/4.9 − − /39.4 /41.5 − −
10 1044/0.5 1425/2.7 − − /34.5 /23.2 − −
15 1230/0.9 1588/1.8 − − /22.6 /9.0 − −
20 762 1421/2.0 − − /7.7 /5.8 − −

− average LP gap ≥ 100%.
Running time omitted if =1800 for all instances.

The results form a sort of triangle. The highest running times are around k = 6, 10 and

higher densities. The lower running times for small k are probably due to the filtering out of

unreachable nodes leaving a smaller problem space. For large k the explanation is probably the

solution approaching the best solution for unrestricted k, thereby making the problem ’easier’.

Interesting to note is the sometimes enormous LP gaps in the found solutions. For n = 200,

28 instances had a gap > 3 and all of those gaps were in the range [14692, 40706].

The configuration n = 200, k = 4 is one where all instances of w = 1 had a higher LP gap

than same seeds with w ∼ Unif(0, 1), in all cases being more than double.
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5.5 MTZ-like

See also Section 5.4 for Edge, Section 5.3 for Cycle and Section 5.2 for Arc results.
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Table 4: Running times (seconds)/LP gap (%) of MTZ-like formulation

w = 1 w ∼ Unif(0, 1)
n k d = 0.1 0.2 0.5 0.8 0.1 0.2 0.5 0.8

50

3 256 10 2 2 64 /13.1 /6.9 /4.9
4 1736/6.6 3 1 1 1685/8.6 /10.6 /4.7 /3.3
5 576/5.0 1 1 1 1488/6.0 /7.1 /3.1 /1.8
6 14 1 0 0 1206/3.2 /3.0 /1.9 1730/1.0
10 1 1 0 0 50 78 91 79
15 0 0 0 0 1 2 3 3
20 0 0 0 0 0 0 1 1

100

3 /5.7 29 17 2 /34.6 /18.9 /10.3 /6.6
4 1244/2.0 16 19 0 /22.0 /12.9 /7.1 /5.4
5 357/1.0 12 18 1 /15.6 /9.8 /5.9 /4.0
6 38 10 9 1 /13.7 /7.7 /4.7 /3.3
10 73 12 5 0 /4.0 /3.5 /3.2 /2.1
15 28 10 2 0 1687/0.9 /1.0 /0.4 1706/0.3
20 23 11 2 0 218 360 618 912

200

3 1521/0.9 171 97 37 /32.3 /21.7 /13.0 /7.3
4 439 169 50 22 /25.6 /18.1 /9.9 /5.9
5 223 237 19 17 /22.5 /15.6 /8.1 /4.5
6 205 184 17 17 /19.4 /14.2 /7.5 /4.1
10 161 158 7 10 /12.2 /11.5 /5.4 /3.2
15 169 175 8 7 /7.6 /10.0 /4.9 /2.8
20 237 125 6 10 /5.3 /3.7 /1.2 /0.7

500

3 /3.8 /6.3 1707/0.5 884/0.2 /48.0 /36.8 /35.5 /34.3
4 /3.3 /3.3 1677/0.3 810/0.6 /41.9 /28.6 /19.3 /25.7
5 /3.8 /2.3 882 269 /38.4 /26.0 /14.1 /26.5
6 /3.7 /1.7 1429/0.2 226 /36.4 /23.4 /15.1 /26.6
10 /3.5 /1.4 220 48 /37.1 /21.6 /13.1 /25.2
15 /3.3 1741/1.3 119 55 /35.9 /16.9 /13.9 /23.5
20 /4.4 1108/0.5 63 30 /34.0 /16.9 /15.4 /20.7
30 /4.2 123 47 30 /35.1 /15.3 /14.1 /20.0
40 /3.5 57 56 31 /34.9 /13.9 /12.8 /18.6
50 /3.3 41 53 30 /35.3 /13.1 /9.3 /17.8

− average LP gap ≥ 100%.
Running time omitted if =1800 for all instances.
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Table 5: Running times (seconds)/LP gap (%) of MTZ-like formulation (continued)

w = 1 w ∼ Unif(0, 1)
n k d = 0.1 0.2 0.5 0.8 0.1 0.2 0.5 0.8

1000

3 − /75.8 /86.3 /50.2 − − − −
4 − /54.6 /70.1 /28.6 − − − −
5 /77.9 /47.5 /39.9 /28.0 − − − −
6 /80.0 /38.5 /20.8 /33.8 − − − −

10 /61.4 /34.2 /20.8 1448/36.0 − − − −
15 /58.8 /29.5 1634/29.3 1544/27.1 /93.9 − − −
20 /56.4 /35.2 1195/76.9 1130/15.0 /82.6 /87.7 − −
40 /61.7 1716/36.7 1190/20.9 1144/7.0 /68.0 /65.5 − −
60 /62.3 1632/36.8 1343/0.3 665/0.2 /54.6 /53.9 − −
80 /52.9 814/20.0 1075/0.4 911/0.2 /51.0 /50.6 − −
100 /69.5 905/12.0 915/0.5 720/0.4 /48.6 /42.9 − −

− average LP gap ≥ 100%.
Running time omitted if =1800 for all instances.

The MTZ-like formulation generally finds a solution quicker as k increases. For w = 1,

solutions are also found quicker as the density goes up.

All configurations for n = 50, 100, 200, 500 and wij = 1 were run, for 1120 instances in total.

Of those instances, 184 were cut off after 1800 seconds. Of those 184 instances, 28 results had

a LP gap > 0.05 and 2 had a gap > 0.1.

All 560 configurations for w ∼ Unif(0, 1) and n = 50, 100 were run. Of those instances, 377

were cut off after 1800 seconds. Of those 377 instances, 199 had a LP gap > 0.05, 88 results

had a gap > 0.1 and 20 had a gap > 0.2. All of those 20 involved n = 100 with either k = 3,

d = 0.1 or both.

Probably the strangest result is the fact that n = 200, d = 0.1, w = 1 outperforms n = 100.

A likely explanation is the limited number of optimal solutions for n = 100. For example for

k = 3, only 5 instances have an optimal value of 100.

This would provide an additional observation for the idea that the MTZ-like formulation

benefits from more possible optimal solutions. In practically all cases, as the density increases

or when k is larger, the running time decreases.

The results for n = 1000 start to show the limitations of the MTZ-like formulation. Even

when using k = 1000, no feasible solutions for higher densities can be found in 1800 seconds,

even though the Arc formulation with ’row generation’ can find the optimal solution in 2 seconds

(results for k = 1000 are not included in this document).

5.6 Comparison

Table 6 gives an overview of the best performing formulation for each problem configuration.

Best is determined by comparing the worst performing instance for each formulation. In some

cases that means even though the average time or LP gap of a formulation might be worse than

another, but due to the variance in performance it could still end up to be considered as better.

In case the worst performance of multiple formulations are (almost) equal, they are all included

in alphabetical order. Two instances are considered almost equal if their total running times

differ less than 10% or 1 second, whichever is greater, or if the LP gaps are less than 10% apart.
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Table 6: Best worst-performing instance

w = 1 w ∼ Unif(0, 1)
n k d = 0.1 0.2 0.5 0.8 0.1 0.2 0.5 0.8

50

3 c/ee c/ee c/ee c/ee c/ee c/ee c/ee c
4 c/ee c/ee c ar c/ee c c c
5 c/ee c/ee ar ar c/ee c c c
6 c m ar/ee/m ar/ee/m c c ee ee
10 ee/m ar/ee/m ar/ee/m ar/m ar ar ar ar/ee
15 ar/ee/m ar/ee/m ar/ee/m ar/ee/m ar ar ar ar
20 ar/ee/m ar/ee/m ar/ee/m ar/ee/m ar/ee/m ar/m ar ar

100

3 c/ee c/ee c c c/ee c/ c c
4 c c m m c c c c
5 c m m m c c m ee/m
6 c m m m c ee ee/m m
10 ee m ar m ee ee ee ee
15 ee m ar m ar ee ee ee/m
20 ar ar ar ar/m ar ar/m ar ar

200

3 c/ee c c c c c c c
4 c c m m c c m m
5 c m m m c m m m
6 m m m m m m m m
10 m m m m m m m m
15 m m m m m m m m
20 m m m m m m m m

ar: Arc (with Row generation) c: Cycle
ee: Extended Edge m: MTZ-like

When looking at the upper bounds (UB) of the LP relaxation, it seems as thought they

are generally speaking close together. For example for the configuration n = 100, d = 0.5k =

4, w ∼ Unif(0, ), where the Cycle formulation found an exact solution, all formulations have an

upper bound within 2.5% of the exact solution. This goes even for the Arc formulation, with its

average gap of 92%.

The Extended Edge formulation seems to give lower UBs in general. For example for n =

200, d = 0.2k = 6, w ∼ Unif(0, ) and the same seeds, every UB is lower than the UB of the MTZ

formulation, though the difference is always smaller than 0.1%. This is despite the average LP

gap of MTZ being 14.2% compared to 41.5% of Extended Edge.

There appears to be one exceptions to this observations, the gaps > 3 for the Extended Edge

formulation, as mentioned in section 5.4. In those cases the UB can be more than a million.

6 Conclusion

For any problem that can fit in the memory requirements of the Cycle formulation, there is

barely a contest: use the Cycle formulation. Especially for weighted arcs, it provides superior

performance in terms of running time and LP gap. However, this means that for the 12-13 GB

RAM used in this test, when the number of patient-donor pairs grow, problems are limited to

k = 3 and/or densities d = 0.1.

When the Cycle formulation is not viable and arcs are not weighted, the MTZ-like formula-
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tion is probably a best choice. Although there are cases where the Extended Edge or the Arc

formulation performs better, the improvement is mostly minimal.

When arcs are weighted, the Extended Edge formulation generally performs better than the

MTZ formulation for smaller models (n = 50), while the MTZ formulation gains the upper hand

for larger models (n = 200). When k becomes large compared to n, when the solution starts to

resemble the optimal solution without restrictions, the Arc formulation is advantageous.

For future research, altruistic donor chains could be added to the MTZ-like formulation.

Mak-Hau (2017) has already proposed extensions for the Cycle and Extended Edge formula-

tions. In both cases MTZ-style constraints were added to support altruistic chains. It is likely

supporting altruistic chains would be an even better fit for the MTZ-like formulation from this

paper.

For the Cycle formulation various column generation schemes have been proposed. It could be

interesting to see how those perform on larger densities or larger cycle sizes, especially compared

to the MTZ-like formulation.
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A Instance Generation

This section describes the instance generation in more detail.

First the empty N ×N matrices A and w are created. Then, given a seed s and density d,

the matrices will be filled using the following algorithm:

Algorithm 2: A and w generation

rng ← createRNG(s)
for i← 1 to N do

for j ← 1 to i− 1 do
Ai,j ← (rng.Next() < d)
wi,j ← rng.Next()
Aj,i ← (rng.Next() < d)
wj,i ← rng.Next()

rng.Next() ∈ [0, 1) and will advance the state of rng, such that rng.next() ̸= rng.next().

Weights are always generated, even when they are not used to make sure the state of rng

stays consistent between instances with and without weights and therefor generate the exact

same values for A. To simplify the implementations of the formulations, w will be replaced by

a binary matrix if weights are not needed.

Since j ̸= i, matrices A and w will have all-zero diagonals. Since j < i, to fill an N × N

matrix, first the n× n matrix will be filled, ∀n < N .
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B Applications

For this paper the application Kep.Runner was developed. Kep.Runner runs one or more con-

figurations and writes the results to a file.

All code and the results of all runs can be found at https://github.com/patrickhuizinga/Kep

under commit 6201120b053f718c208c563b7773f47b6313ad00.

B.1 Kep.Runner

Usage: Kep.Runner form1 [form2..] [n n1..] [d d1..] [k k1..] [w] [t t1]

form1, the first formulation to run, is the only mandatory parameter. For every other

parameter the defaults are: n 10, d 0.2, k 3, w False and t 1

form options: cycle to run the Cycle formulation, edge to run the Extended Edge for-

mulation, mtz to run the MTZ-like formulation, arcPath to run the Arc formulation with all

constraints generated upfront, arcPathRowGen to run the Arc formulation with row generation.

n is an integer that configures the number of patient-donor pairs.

d is a real, 0.0 < d ≤ 1.0 that configures the probability of the compatibility between to

pairs.

k is an integer that configures the k parameter.

w is a boolean (true or false) that configures whether weighted arcs are used. If w is

completely omitted, it will default to false. If w is given, but not followed by any values, it will

default to true.

t is an integer that configures the number of threads that are run simultaneously.

If for all parameters only a single value is given, including keeping it on its default, the

application will run in single process mode. In single process mode t1 threads will be started

and each will run the given configuration with a distinct, but deterministic seed. The results of

each threads will be written to output.dat in fixed column format.

If for any parameter multiple values are given, the application will run in multi process mode.

In multi process mode, for each combination of the configuration a single process Kep.Runner

will be started. If such a child process reports an error or crashes, for example for running out

of memory, that error will be written to error.dat. Once a child process has finished, the next

one will be started, such that at most one child process is running at a time.

Example1: Kep.Runner cycle n 50 d 0.2 k 3 t 5 will run the Cycle formulation on n =

50 pairs with a compatibility density of d = 20%, w = 1 on all arcs, limiting cycles to k = 3,

running 5 threads simultaneously.

Example2: Kep.Runner mtz cycle n 20 d 0.1 0.2 k 3 4 5 6 w t 10 will run 16 differ-

ent configurations: both MTZ-like and Cycle formulations on n = 20, d = 0.1, 0.2, k = 3, 4, 5, 6,

w = Unif(0, 1), running 10 threads simultaneously. On my test machine that gives the output:

2024-07-01 21:28:02Z Start mtz n 30 k 3 d 0.1 t 10 w True

2024-07-01 21:28:03Z Start cycle n 30 k 3 d 0.1 t 10 w True

2024-07-01 21:28:03Z Start mtz n 30 k 4 d 0.1 t 10 w True

2024-07-01 21:28:04Z Start cycle n 30 k 4 d 0.1 t 10 w True

2024-07-01 21:28:04Z Start mtz n 30 k 5 d 0.1 t 10 w True
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2024-07-01 21:28:05Z Start cycle n 30 k 5 d 0.1 t 10 w True

2024-07-01 21:28:05Z Start mtz n 30 k 6 d 0.1 t 10 w True

2024-07-01 21:28:06Z Start cycle n 30 k 6 d 0.1 t 10 w True

2024-07-01 21:28:06Z Start mtz n 30 k 3 d 0.2 t 10 w True

2024-07-01 21:30:11Z Start cycle n 30 k 3 d 0.2 t 10 w True

2024-07-01 21:30:11Z Start mtz n 30 k 4 d 0.2 t 10 w True

2024-07-01 21:40:15Z Start cycle n 30 k 4 d 0.2 t 10 w True

2024-07-01 21:40:15Z Start mtz n 30 k 5 d 0.2 t 10 w True

2024-07-01 21:42:40Z Start cycle n 30 k 5 d 0.2 t 10 w True

2024-07-01 21:42:40Z Start mtz n 30 k 6 d 0.2 t 10 w True

2024-07-01 21:43:17Z Start cycle n 30 k 6 d 0.2 t 10 w True

Already in the program output you can see that (some) MTZ-like instances run up to 10

minutes, while no Cycle instance takes more than a second.

B.2 output.dat

Assuming a configuration did not crash, its results will be appended to the file output.dat in

a fixed column format, with each column separated by one or more spaces.

The order of the columns in the file is: formulation name, n, k, d(%), a(%), L, seed, weight

? 1 : 0, setup time, running time, objective, LP gap. The columns a and L are always 0 and 99

respectively as the exist to support unused altruistic donors. The weight column is 1 if weights

are used (w ∼ Unif(0, 1)) or 0 if weights are not used (w = 1). If a solution was not found, the

objective will be -0 and the LP gap will be 1E+100.

Using example1 from Kep.Runner: Kep.Runner cycle n 50 d 0.2 k 3 t 5, output.dat

will contain:

cycle 50 3 20 0 99 44 0 0 0 50 0

cycle 50 3 20 0 99 46 0 0 0 50 0

cycle 50 3 20 0 99 43 0 0 0 50 0

cycle 50 3 20 0 99 42 0 0 0 50 0

cycle 50 3 20 0 99 45 0 0 0 50 0
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C Flawed Arc formulation row generation

An earlier version of the Arc formulation would first generate all possible cycles longer than k

and then extract all paths. This created duplication in two ways: multiple cycles that differed

only slightly could contain the same path and due to the generation of duplicate cycles starting

at a different node, even more copies of the same path would be generated.

Unsurprisingly, creating that many duplicate paths slows down solving the problem in the

vast majority of cases. Table 7 contains the running times and LP gaps of that implementation

for all the configurations that were run.

Table 7: Running times (seconds)/LP gap (%) of Arc formulation (row generation)

w = 1 w ∼ Unif(0, 1)
n k d = 0.1 0.2 0.5 0.8 0.1 0.2 0.5 0.8

50

3 190 287 542 0 138 /9.7 /6.6 /4.2
4 1160/4.4 1722/5.2 11 0 1496/7.4 /8.3 /5.9 /10.1
5 625/4.3 766/6.4 6 0 1160/6.1 /5.1 /11.2 /6.3
6 284 584/4.2 5 0 849/1.7 1634/2.0 1705/3.5 1488/0.7
10 7 0 0 10 44 110 116 95
15 0 0 0 0 2 9 10 9
20 0 0 0 0 0 0 0 1

100

3 /20.9 /19.5 /41.0 − /36.1 /23.5 /32.4 /94.7
4 − /20.6 /41.0 − /24.2 /25.7 /80.6 /56.8
5 − /20.6 1459/41.0 − /45.8 /31.0 /86.1 /66.3
6 /94.9 /20.6 1279/28.0 123a /52.3 /56.4 /70.0 /43.2
10 /59.7 /18.7 43 19 /77.1 /71.4 /59.1 /46.5a

15 /29.9 1202/5.5 16 8 /41.8 /43.7 /33.6 /13.9
20 167 35 4 8 1415/11.7 1473/9.5 /2.3 /1.5

200

3 /45.7 /10.5 − − ? ? ? ?
4 /45.7 /10.5 − − ? ? ? ?
5 /45.7 /10.5 − − ? ? ? ?
6 /45.7 /10.5 − − ? ? ? ?
10 /45.7 /10.5 − − ? ? ? ?
15 /45.7 /10.5 − − ? ? ? ?
20 /40.9 /9.3 881a 208a ? ? ? ?

− average LP gap ≥ 100%. a 1 or more instances had no result.
Running time omitted if =1800 for all instances.

Only for n = 100, d = 10%, k = 3, w = 1 is the result of the new implementation significantly

worse, with a gap of 74.3% vs 20.9%.
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