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Abstract

This paper proposes utilizing the Heterogeneous Autoregressive model of Realized Volatility

(HAR-RV) model and several extensions to forecast intra-day realized volatilities and assess

the ability to capture volatility characteristics over short time intervals. Empirical results

reveal that by analytically selecting a system of economically accountable lag components and

implementing key dummy variables, forecasting accuracy improves. The models are tested

on the S&P 500 and several constituents of the Dow Jones Industrial Average. The research

reports all models outperform a simplistic Autoregressive (AR) model with specifically the

semivariance HAR (SHAR) model, which incorporates individual coefficients for positive and

negative returns, exhibiting particularly superior results with respect to an AR model.

1 Introduction

A lot of existing research has been conducted regarding forecasting volatility, a topic of increasing

importance due to the expanding availability of high-frequency data and the growth of high-frequency

trading. With the rising amounts of daytraders and dense occupation on the market, the

necessity for a robust and precise forecasting model has become paramount. Despite the

prevalence of stochastic GARCH and heterogeneous autoregressive (HAR) models in forecasting

daily realized variance, there exists a gap in the academic literature regarding their effectiveness

in intra-day forecasts, such as hourly realized volatilities (RV ).

This paper aims to address this gap and explores the feasibility of using simple HAR − RV

models, as proposed by Corsi (2009), to effectively capture volatility characteristics at an

intra-day horizon and forecast at this shorter time interval. Specifically, the objective is to

evaluate whether the models can improve volatility predictions compared to an AR model

for one-hour ahead forecasts. Furthermore the paper examines two extensions of the Corsi

(2009) paper: the HAR quarticity model (HARQ) as proposed by Bollerslev et al. (2015)

which incorporates possible measurement errors and the semivariance HAR model (SHAR)

defined by Patton and Sheppard (2015), which accounts for the ’leverage effect’ by using RV+

and RV−. Furthermore several dummies are added to the model to incorporate anomalies

including the ’weekend effect’ as suggested by Kiymaz and Berument (2003), the effect of FOMC

announcements and the boosted volatility of the opening hour of the market.

In the paper, solely an empirical analysis is conducted which relies on intra-day data of four

different assets obtained from the TAQ database. The assets considered are the S&P 500 and

three constituents of the Dow Jones Industrial Average (DJIA) with the data spanning from 01
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January 2013 up to 30 December 2022. The raw data is tick-by-tick data that is subsequently

aggregated into one-minute interval returns.

The original HAR-RV model uses lag components for the lagged day, lagged week and lagged

month with economic interpretations behind these lag components. To assess which lag components

would work for one-hour ahead forecasts, goodness-of-fit tests such as the Akaike information

criterion (AIC) and Bayesian information criterion (BIC) are employed. Based upon these

results, the best fitting models are estimated and used for predictions. Results of the various

models are compared over both the estimation and prediction sample using the RMSE, QLIKE

and Diebold-Mariano (DM) test as evaluation metrics.

My findings show that a model incorporating one-hour, three-hour and seven-hour lag components

fits the data sets best. These specific lags embody key temporal dimensions: the one-hour reflects

immediate market movements, a three-hour lag captures volatility peak persistance. The last

seven-hour lag component represents the whole preceding trading day. In this paper, all models

employing this lag combination outperform the corresponding AR model in prediction accuracy,

suggesting an improvement in forecasting abilities. The SHAR and HARQ models perform

best among the models tested and can replicate many volatility characteristics observed in the

empirical data. These results contribute to the understanding and modelling of realized volatility

at shorter time intervals.

The remainder of this paper is structured as follows. First, the theoretical background is provided

in Section 2. Then, I elaborate on the methodological framework behind the results in Section 3

and discuss the used datasets in Section 4. Following the methodology and data, the empirical

analysis is interpreted in Section 5. Lastly, the main findings are presented in Section 6.

2 Literature Review

Forecasting the volatility of assets accurately has become of utmost importance as the liquidity

of stocks increases as more and more trading techniques and players join the trading market.

Over the years, the choice of proxy for volatility has become the realized volatility as many

studies indicate that this is a consistent unbiased estimator for the true volatility of an asset, as

stated by Anderson and Bollerslev (1998) & Hansen et al. (2003). The true integrated volatility

is unobservable but by taking the sum of squared intra-day returns it can be approximated it

very precisely.
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Müller et al. (1993) & Anderson and Bollerslev (1998) advocate that the realized variance model

improves as the observation frequency increases, yielding more accurate estimates of the true

volatility with a higher sample frequency. Nevertheless, the true price process remains obscured

due to microstructure friction. Furthermore, Bandi and Russell (2008) shows that it is crucial to

consider the trade-off between variance and the bias when estimating the variance using intra-day

data hence increasing the sampling frequency increases the precision of the variance estimations

but also introduces additional noise such as larger bid-ask spread fluctuations. Hansen et al.

(2003) among others state that 5-min returns significantly improved reduction in noise compared

to using 30-min returns, making it the conventional sample frequency in recent research.

Another significant benefit of using intra-day data was pinpointed by Bollerslev et al. (1998).

They identified that intra-day data could provide a more precise assessment due to two significant

features: the leverage effect and the volatility feedback effect. Taking this into account, Patton

and Engle (2001) acknowledged a set of stylized facts concerning asset return volatility, which

they argued should be integrated into all volatility models to provide accurate forecasts. These

main characteristics are:

1. Volatility clustering : Return volatility fluctuates over time and a volatility shock today

will impact the volatility fur multiple periods into the future.

2. Mean reversion: There is a level of volatility to which the volatility will eventually revert.

3. Tail probabilities: The unconditional distribution of asset returns exhibits heavy tails

indicating a non-normal kurtosis which could range from 4 to 100.

4. Leverage effect : Volatility escalates more following a negative price shock compared to a

equally sized positive shock.

Using straightforward component models to capturing volatility clustering and long term

memory proves challenging however the HAR-RV model introduced by Corsi (2009) effectively

addresses this challenge using a simple additive model. It integrates the simplistic model

proposed by LeBaron (2001), which uses the sum of three distinct AR(1) processes, with

the HARCH model developed by Muller et al. (1997) and Dacorogna et al. (1998) which can

reproduce the long memory of volatility. The resulting model, the HAR-RV, led to a simple

model that could replicate the same volatility clustering feature as well as mimicking the slowly

decaying ACF of the volatility proxies. Since its introduction, this model has arguably become
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the preferred model for forecasting realized volatility.

The lag components of the HAR-RV model were selected with a certain economic interpretation.

The lag components encompass variables for activity of the previous day, week and month.

Each of these corresponds to a different trading profile: Hence the market makers who engage

in high-frequency traders, the medium term traders who adjust their portfolios weekly and the

institutional traders such as pension- and hedge funds who may rebalance their presumably

larger portfolios on a monthly basis to curtail trading costs.

An extension of the HAR-RV model was proposed by Patton and Sheppard (2015), which

incorporated the leverage effect of return volatility into the model, resulting in the semivariance

HAR (SHAR) model. The leverage effect elucidates why negative returns tend to coincide with

higher volatility. By specifically targeting downside risk within the model, Patton improved

forecast accuracy compared to the HAR model developed by Corsi (2009).

Another eminent extension is the easily implementable Heterogenous Autoregressive Quarticity

(HARQ) model that was developed by Bollerslev et al. (2015). It addresses the measurement

errors inherent in the realized volatility due to a finite sampling frequency. The HARQ model

capitalizes on the heteroskedasticity in these errors by incorporating time-varying autoregressive

parameters. These parameters increase when the variance of the realized volatility is low and

decrease on days with high variance. This adjustment enhances forecast persistence during

stable times and facilitates quicker mean reversion during volatile periods.

The model incorporates a quarticity component that incorporates higher order moments of

return, building upon the framework suggested by Corsi (2009). The quarticity, fourth moment,

provides information about the distribution tails’ shape and fatness. The inclusion of this

additional component effectively handles the fluctuation of the magnitude in the measurement

errors within the realized volatility as well as the model parameters.

Additionally it is important to consider several anomalies in return data. French (1980) first

observed that due to two non-trading days preceding Monday, the stock market exhibited

higher volatility and significantly lower returns than on midweek days, calling this encouter ’the

weekend effect.’ Most studies were done on the US stock and equity market, aligning with this

research paper. This anomaly is acknowledged and dealt with using dummy variables. Besides
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the varying volatility between days of the week, Wood et al. (1985) states that asset returns in

the opening stock exchange hour are much more volatile than other hours of the market. For

this another dummy variable is created, just like the lifted volatility on days following Federal

Open Market Committee (FOMC) announcements that often trigger raised volatility. These

announcements inform the US on altercations of the Federal interest rate.

3 Methodological Framework

This section outlines the models and metrics used for the construction of volatility forecasts.

Furthermore, it describes how the forecasts are computed and how their accuracy is assessed.

3.1 Realized Volatility

The standard continuous time process of a stock is defined as

dp(t) = µ(t)dt+ σ(t)dW (t) (1)

where p(t) is the log of instantaneous price, µ(t) is the cadlag finite variation process, W(t)

is a standard Brownian motion and σ(t) a independent stochastic process.

For such a process, the integrated variance of the stock on day t (only looking at trading hours)

is derived with

IVt =

∫ t

t−1
σ2(s)ds (2)

To get the integrated volatility, the squareroot of equation 2 is simply taken, which coincides

with the rest of the paper as volatilities are compared instead of variances.

Although the true integrated daily volatility, IVt, is unobservable due to infinitesimal time

intervals, several papers show that it can be estimated consistently using the one-day realized

volatility as exhibited in a collection of papers by Andersen et al. (2001a), Andersen et al. (2001b)

& Barndorff-Nielsen and Sheppard (2002). Soon thereafter, Andersen et al. (2003) showed that

a simple time series model using RV outperformed popular GARCH and stochastic volatility

models in forecasting which was an important contribution to forecasting literature.

The realized variance of an asset is calculated using the following equation:

RVt =

n∑
i=1

r2t,i (3)
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where n is the number of intra-day logarithmic returns and rt,i is the intra-day logarithmic

return at time i of n within day t. To calculate the realized volatility (RV), the metric used in

this paper, the squareroot of the realized variance is taken.

For all assets considered in this paper, the returns on day t at time-interval i of n, rt,i, are

calculated by:

rt,i = log(Pt,i)− log(Pt,i−1) (4)

Due to data limitations there is an upper bound on the number of intra-day returns, n, but

by the asymptotic distribution theory of Barndorff-Nielsen and Sheppard (2002), as n → ∞, we

see that
√
n(RVt − IVt)

d−→ MN(0, 2
nIQt)

where IQt =
∫ t
t−1 σ

4
sds stands for the Integrated Quarticity and MN stands for mixed normal.

The paper also acknowledges that high-frequency financial data can be contingent on market

microstructure noise, which possibly distorts the accuracy of the realized volatility. Several

methods are discussed to slightly adjust for the noise including implementing the quarticity

factor into the model as explained in section 3.4.

3.2 HAR model by Corsi (2009)

The renowned heterogenous autoregressive (HAR) model is recognized for its ability in effectively

capturing the main stylized features typically observed in the realized volatility despite being

a simplistic AR-like model. It is widely regarded as the benchmark in volatility forecasting

research as remarked in Christensen et al. (2023), among others.

The HAR model is defined as:

RVt = β0 + β1RVt−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + ut (5)

where RVt−1 denotes the lagged daily RV, RVt−1|t−5 and RVt−1|t−22 the lagged weekly and

monthly RV and ut denotes the volatility innovation which is contemporaneously and serially

independent with mean zero and a suitably truncated left tail to ensure the positivity of RVt.

βj(j = 0, 1, 2, 3) are unknown parameters that have to be estimated.

These are estimated using ordinary least squares (OLS) estimation. Essentially the HAR-RV
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model is an AR(22) model with constraints restricting coefficients in the same week (or month)

to be the same.

To compute the weekly RV at day t the following formula is used which simply aggregates

the RV’s of the past five days:

RV
(w)
t = RVt−1|t−5 =

1

5
(RVt−1 +RVt−2 +RVt−3 +RVt−4 +RVt−5) (6)

Similarly the lagged monthly RV at day t is calculated as follows:

RV
(m)
t = RVt−1|t−22 =

1

22
(RVt−1 +RVt−2 + ...+RVt−21 +RVt−22) (7)

3.3 SHAR model by Patton et al. (2015)

The first variation of the HAR model that is employed in this research is semivariance HAR

(SHAR) model defined by Patton and Sheppard (2015). This model is built to account for the

’leverage effect’, a term that refers to the coherence of an asset’s volatility with its returns as

identified by Anderson and Bollerslev (1998). Volatility tends to stay reasonably stable when

asset prices go up but when prices drop, volatility tends to increase abruptly. The SHAR model

leverages these effects by using the positive and negative variance as separate parameters with

unrelated coefficients.

The model is defined as follows:

RVt = β0 + β−
1 RV −

t−1 + β+
1 RV +

t−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + ut (8)

where RV −
t−1 =

∑
i:rt,i<0 r

2
t,i and RV +

t−1 =
∑

i:rt,i>0 r
2
t,i and rt,i is the intra-day return at time i

within day t

3.4 HARQ model by Bollerslev et al. (2016)

The extension modelled by Bollerslev et al. (2015) uses an additional parameter to account for

measurement errors. This parameter is known as the quarticity and refers to the fourth moment

of a distribution. The true quarticity, the Integrated Quarticity (IQ), is unobservable, analogous

to the IV , but can be consistently estimated using the Realized Quarticity (RQ) as exhibited

by Barndorff-Nielsen and Sheppard (2002).
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The Realized Quarticity is computed as follows:

RQt =
n

3

n∑
i=1

r4t,i (9)

where n is the number of intra-day logarithmic returns and rt,i is the intra-day logarithmic

return at time i of n within day t.

Including this component into the HAR-RV model gives the following:

RVt = β0 + (β1 + β1QRQ
1/2
t−1)︸ ︷︷ ︸

β1,t

RVt−1 + (β2 + β2QRQ
1/2
t−1|t−5)︸ ︷︷ ︸

β2,t

RVt−1|t−5

+(β3 + β3QRQ
1/2
t−1|t−22)︸ ︷︷ ︸

β3,t

RVt−1|t−22 + ut

(10)

Intuitively, the model above adjusts the HAR coefficients in proportion to the magnitude

of the corresponding measurement errors. This makes far tail values of the distribution less

consequential for the following forecasts. Logically the impact of the measurement errors will

slowly diminish as the time goes on. This means that the adjustment is much more important for

the daily lag than the weekly and monthly lagged components. Bollerslev et al. (2015) explains

that adjusting solely the daily lag component is sufficient, giving us the model:

RVt = β0 + (β1 + β1QRQ
1/2
t−1)︸ ︷︷ ︸

β1,t

RVt−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + ut (11)

This model is referred to as the HARQ model and equation 10 is denoted as the full HARQ

model (HARQ-F). This is because it permits all parameters to adjust with the estimated degree

of measurement error.

3.5 Utilized model

As this paper aims to forecast one-hour ahead volatility instead of the daily RV for which

the aforementioned models were designed, a few altercations are made. Below the various

combinations of HAR components are illustrated along with their corresponding economic

interpretation and subsequently the additional dummy variables are clarified. It is important to

note that the utilized model uses subscript t as hour instead of day as done in past cited research.
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The forecasting model, given the information set at time t, will look like:

RVt+1 = β0 + β1,t RVt−1|t−a + β2,t RVt−1|t−b + β3,t RVt−1|t−c

+ β4 Mt + β5 Tut + β6 Tht + β6 Ft + β7 FOMCt + β8 openingHourt + ut

(12)

where a, b & c correspond to the lags of the models. These lag components are explained in

subsection 3.5.1. The RQ can be implemented in the β1,t, β2,t & β3,t depending on the model.

The same applies for the SHAR model which can be switched in for the β1,t. Mt, Tut, Tht, Ft,

FOMCt & openingHourt correspond to the dummy variables for Monday, Tuesday, Thursday,

Friday, FOMC announcements (and other notable dates) and a dummy for the opening hours

of the stock market. These are explained below.

3.5.1 The applied lag combinations

To apply the idea of using several lagged components of the realized volatility to forecast one-hour

ahead predictions, several different lag combinations are used. The combinations are listed in

Table 1 below.

Combination 1st Lag 2nd Lag 3rd Lag

1 1 hr 3 hrs 7 hrs

2 1 hr 3 hrs 14 hrs

3 1 hr 7 hrs 14 hrs

4 3 hr 7 hrs 14 hrs

Table 1: The Combinations of Lagged Components for the HAR(Q) models

Combinations are constructed by incorporating one short lag component, one medium lagged

component, and a longer component which either encompasses a full trading day or two full

trading days (13 hours). All combinations will be evaluated using the HAR-RV model, alongside

the HARQ and HARQ-F models. Additionally, results for the AR(7), AR(14) and ARFIMA(5,d,0)

models will be computed for comparative analysis as done in the original Corsi (2009) paper.

The 1-hour lag might provide insights into the current market movements and could be

a crucial component for the model. Similarly, the 3-hour component could be interesting,

as it might indicate whether volatility shocks are just beginning or have already dissipated.

The 7-hour lag is selected to correspond to a complete trading day on the New York Stock

Exchange (NYSE), ensuring comprehensive coverage of a day’s market activity. Lastly the
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14-hour component could potentially be valuable for determining if a high volatility event is

lasts solely one day or extends beyond that.

3.5.2 Weekend effect

Kiymaz and Berument (2003) presents empirical evidence indicating significant difference in

volatility across different days of the week. With the market opening on Monday after two

days of no trading, investors react to news and announcements that occurred Friday evening

or during the weekend. Friday usually tends to have higher volatility than other weekdays.

Conversely, for instance Wednesday and Thursdays exhibit more stable market conditions as

investors try to position themselves for the end of the trading week. To take these different days

into account, dummy variables are added to the model. Adding these variables and thereby

preventing potential forecasting errors resulting from these effects, is essential for the evaluation

of the HAR resembling models.

3.5.3 Dummy for FOMC announcements

Several times a year the Federal Open Market Comittee (FOMC) issues statements about new

monetary policies and the market condition. These announcements are interesting for traders,

as these can trigger higher volatility. Calls and decisions by the Federal Reserve impact many

rates including exchange and interest rates. Research by Gurkaynak et al. (2005) and later Rosa

(2013) demonstrate that the volatility of US asset prices significantly rises on the day following

a FOMC press release. To account for this, a dummy variable with value one is assigned to all

press release dates.

Furthermore, this dummy variable also takes a value of one on dates following the result of

US presidential elections. Lastly, the list includes the date of the first confirmed COVID-19 case

in the US and the day COVID-19 was declared a national emergency in the US. The full list of

dates is provided in the Appendix in Table 7.

3.5.4 Dummy for opening hour

Wood et al. (1985) states that on average the return of assets in the opening hour is much more

volatile than other hours due to several factors. Pre-market order imbalances can cause sharp

price movements and the accumulation of information outside these hours can lead to rapid price

movements. To keep this in mind, an additional dummy for the first hour (9:30 - 10:00) has

been implemented in the model as this hour clearly has a higher mean RV and this can oppose
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the bias of being a shorter time interval.

3.6 Model evaluation

To assess the forecasting accuracy of the models, three loss measures are employed: The Root

Mean Squared Error (RMSE), the Mean Absolute Error (MAE) and the Quasi-Likelihood

(QLIKE) function. Literature on comparison of volatility forecasts, (Patton, 2011) & (Patton

and Sheppard, 2009), concludes that solely the (R)MSE and the QLIKE measures remain robust

to noise in assessing forecasts and the MAE is chosen to be consistent with the foundational

paper by Corsi (2009).

The first loss function, the RSME, penalizes errors on both sides symmetrically and penalizes

outliers heavier than a absolute loss function would do. The RSME is specified as follows:

RMSE =

√∑
(RVt − R̂Vt)2

N − P
(13)

where RVi is the actual realized volatility at observation i and R̂Vi is the forecasted realized

volatility at i. N is the number of observations and P is the number of parameter estimates.

Additionally, the MAE is calculated. The formula is given below:

MAE =
1

N

N∑
t=1

|RVt − R̂Vt| (14)

Lastly, the QLIKE loss function is incorporated. This loss function serves as a specific

evaluation tool for volatility clustering, proposed by Bollerslev et al. (1994), and penalizes

under-predictions heavier than over-predictions, a feature which is very appreciated in fields

like risk management. The QLIKE function is a loss function that is implied by a Gaussian

likelihood. The metric is defined as follows:

QLIKE =
1

N

N∑
t=1

(
RVt

R̂Vt

− log(
RVt

R̂Vt

)− 1

)
(15)

These three measures are used for the out of sample evaluation. For the in-sample evaluation,

solely the RMSE and MAE are measured.

Finally, to verify whether there is a significant difference in performance between the various

HAR models and AR model, the one-sided Diebold-Mariano test is also used. This test is

11



implemented in R using the dm.test from the forecast package. This function is founded upon

the theoretical framework outlined by Harvey et al. (1997).

In addition to the Diebold-Mariano test, the Model Confidence Set (MCS) procedure is carried

out to test whether the best performing model is in fact, given a level of confidence, one of

the best performing models for a specific dataset. This test is implemented in R using the

MCSprocedure function from the MCS package. This function is based on the test proposed by

Hansen et al. (2011).

4 Data

This section provides a description of the various datasets used in my research and how the data

has been processed.

This study strictly focusses on empirical data, examining two distinct asset types. Firstly

consistent to the Corsi (2009) paper, the S&P 500 index is observed. To track this index, data

of the SPDR S&P 500 ETF (SPY ) has been used. This ETF is the most liquid S&P500

tracker, providing a sufficient amount of intraday data. As this is a market index, it is less

volatile than the second asset type that is observed. Several constituents of the Dow Jones

Industrial Average (DJIA) as of 01 January 2013 are also observed and classified as the more

volatile assets of this research. The constituents that will be examined are Coca-Cola (KO),

Microsoft (MSFT ) and American Express (AXP ) each progressively increasing in volatility.

Table 2 gives the summary statistics of the daily and intraday data.

Analyzing the table, it is clear that the hourly realized variances do not follow a normal

distribution due to the notably high kurtosis and skewness. The datasets exhibit high positive

skewness between 3.71 and 5.20, suggesting more frequent regular market volatility with occasional

moments of extreme volatility, which usually coincides with sell-offs. The kurtosis values indicate

that the distribution of the datasets possess fat tails. Furthermore the mean values show that

the S&P 500 is logically the least volatile as it is an index of 500 constituents. It stays relatively

stable if one constituent or a industry falls or spikes. Secondly, the other assets get increasingly

more volatile with the consumer products industry (KO) being quite a steady market with mean

(0.00280) and the finance (AXP ) and technology (MSFT ) delivering more dynamic returns.
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Company Symbol Mean Median Min Max Kurtosis Skewness

SPDR S&P 500 ETF SPY 0.00240 0.00173 0.000 0.0288 27.96 3.94

Coca-Cola KO 0.00280 0.00236 0.000 0.0470 55.40 5.20

Microsoft MSFT 0.00367 0.00308 0.000 0.0431 27.11 3.71

American Express AXP 0.00379 0.00304 0.000 0.0477 37.28 4.40

Table 2: Summary statistics for one-hour RVs for all discussed assets

All stock and index prices are obtained from the TAQ database and cleaned using the highfrequency

package in R by Kleen, (2023). This paper focusses on prices during exchange hours only (9:30

to 16:00 EDT) from Monday to Friday. All datasets share the same sample range from 1 January

2013 up to 30 December 2022 including significant market events such as the flash crash of 24

August 2015 and the COV ID − 19 recession (2020-22). As 2020 was a very erratic year, the

performance of the models is given including and excluding 2020. In contrast to the common

five-minute returns, the study opts for a frequency of one-minute returns for the calculations of

the realized volatility. This decision is driven by the shorter forecast horizon, targeting realized

volatility over an hour instead of a day. Consequently a higher frequency per calculation of

the RV is deemed crucial for accuracy and a limited bias. Furthermore, all realized volatility

estimates are computed using the two scales estimator introduced by Zhang et al. (2005) to

mitigate measurement errors due to noise.

The initial observations of the sample are used for model estimation, with all estimations

calculated using Ordinary Leased Squares (OLS). The estimation period spans from the first

observation of the various assets up to June 30, 2016, ensuring that the forecasting period is

equal for all assets. Utilizing these coefficients, the remaining data is used as the forecasting

sample. All estimations and forecasts are conducted using R.

5 Empirical analysis

In this section the empirical results are observed and analysed. In 5.1 the parameter estimates

are presented and the in-sample prediction errors are given. In 5.2, the out of sample results are

described.
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5.1 In-sample estimation and forecast results

As briefly mentioned in Section 4, the parameters of our model in equation 12 are estimated using

a simple linear regression. OLS regression estimates are consistent and normally distributed. To

address potential serial correlation in the data, the Newey–West covariance correction is applied.

This is done in R using the NeweyWest() function from the sandwich package. This function is

founded upon the theoretical foundation addressed by Newey and West (1987).

This paper evaluates multiple combinations of different lagged RV’s, making it crucial to carry

out goodness-of-fit tests to determine which the optimal model for the data. Table 3 presents

the information criterion measures for all models applied to the S&P 500 dataset. The full

table of results for all datasets is provided in the appendix in Table 8 but these corroborate

the findings below. Table 3 reports that the lag components of one-hour, three hour and seven

hours best fit the data as the information criterion measures are the lowest for all models. This

is understandable as it is important to incorporate a one-hour lag as it gives critical insights into

the volatility at very short notice. Along with this lag, a combination of the three-hour lag and

seven-hour lag which corresponds with a full trading day give a comprehensible interpretation

of short term market behaviour. The results indicate that a 14-hour lag is redundant for

estimating one-hour ahead volatility, as the volatility is predominantly affected by very short

term fluctuations.

Specifically the information criterion measure are lowest for the SHAR and HARQ-F models,

which could potentially imply that these models will yield the best results; this hypothesis will

be checked in the subsequent subsection. As discussed above in section 3, the HAR-RV model

is basically a AR(x ) model which has been aggregated into three lagged components with clear

economic interpretations. To check the effectiveness of this restriction, the information criterion

for the unrestricted AR models, consistent to the original paper by Corsi (2009), are also given.

The values for the HAR models are also superior over the AR(x) models, indicating a conceivably

better fitting model in comparison to the classic AR models.

Table 4 reports the parameter estimates for the best-fitting models of Table 3 for the S&P

500 dataset. We focus the discussion on this dataset however the rest of the results and estimates

are presented in Table 9 in the Appendix. The t-values are provided in parentheses below the

estimated values. Below the R2 and MSE for in-sample analysis are also given. The values of the

1Logically the AR(x) models remain the for all lag components but are only written once
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S&P 500 AR(7) AR(14) HAR SHAR HARQ HARQ-F

AIC

(1,3,7) -68860.9 1 -68175.2 -68886.3 -69006.4 -68950.1 -69020.1

(1,3,14) -68700.4 -68783.8 -68751.6 -68829.6

(1,7,14) -68808.8 -68909.2 -68867.1 -68875.9

(3,7,14) -68344.7 -68379.5 -68342.0 -68394.2

BIC AR(7) AR(14) HAR SHAR HARQ HARQ-F

(1,3,7) -68800.6 -68067.9 -68812.5 -68925.9 -68863.0 -68906.1

(1,3,14) -68626.6 -68703.4 -68664.5 -68715.7

(1,7,14) -68735.1 -68828.8 -68780.0 -68762.0

(3,7,14) -68271.0 -68299.0 -68254.9 -68280.3

Table 3: Goodness-of-fit tests for the various one-hour HAR-RV models for the S&P500

t-statistics indicate that the main components for the one-hour, three-hour and seven-hour lags

are significant across all databases. There is one exception which is the three-hour lag for the

HARQ-F model for the S&P 500 database. This could be attributed to the additional significant

quarticity components added in the HARQ-F model which may create collinearity between the

quarticity component and the lag component.

Furthermore it is evident that the SpecialDate dummy, which accounts for FOMC announcements,

and the 9am dummy that considers the raised volatility of the opening hour of the stock exchange

are also highly significant in all models. Interestingly, most weekday dummies are insignificant

in most models, however the Friday is highly significant in a few cases including in all models of

the S&P 500. The dummy has the lowest value of all weekdays corresponding to the potentially

conservative trading behaviour before the weekend.

If we assume the lag components together give a good representation of the true volatility,

we can examine the contribution of the various components to the model. The 7-hour lag,

corresponding to a full trading day, appears to have the highest contribution to the realized

volatility of the subsequent hour. This could be plausible as it encapsulates the activity of the

market of a full day, indicating that the volatility is not solely influenced by the preceding hour.

Contrarily, the three-hour lag component has a negative coefficient across all models which may

suggest that raised volatility in the preceding hours, tends to subside and that periods of raised
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volatility do not typically extend over multiple hours in addition to seasonality in the hours of

a trading day.

HAR SHAR HARQ HARQ-F

β0 0.000240 0.000230 0.000309 0.000374

(4.7459) (4.6963) (6.607) (4.3515)

β1 0.3809 0.372880 0.366090

(10.8845) (13.9533) (12.2376)

β2 -0.066604 0.098071 -0.090410 -0.027436

(-1.9574) (2.6071) (-2.419) (-0.6897)

β3 0.57766 0.590410 0.583180 0.509520

(16.2392) (12.8586) (15.8998) (12.367)

weekdayMon -0.000052 -0.000067 -0.000055 -0.000054

(-1.2984) (-1.6135) (-1.3712) (-1.3722)

weekdayTue -0.000027 -0.000026 -0.000031 -0.000031

(-0.7866) (-0.7059) (-0.8904) (-0.8965)

weekdayThu -0.000097 -0.000103 -0.000094 -0.000093

(-2.6024) (-2.467) (-2.4779) (-2.4815)

weekdayFri -0.000109 -0.000129 -0.000113 -0.000113

(-3.2326) (-3.473) (-3.3091) (-3.3603)

SpecialDate 0.000328 0.000372 0.000323 0.000326

(3.3384) (3.295) (3.2704) (3.316)

dummy 9am 0.000108 0.000195 0.000120 0.000096

(3.1920) (5.4671) (3.3169) (2.5759)

β1 + 0.050816

(2.4423)

β1 - 0.187100

(12.4971)

β1Q 1.223700 1.718300

(2.3848) (2.748)

β2Q -3.501400

(-5.1787)

β3Q 5.090900

(2.1034)

Table 4: Ordinary least squares Model Estimates for S&P 500

Lastly, it is noteworthy to mention that when looking at all datasets, as the asset volatility

increases, the coefficient of the seven-hour lag reduces, rendering it less of an influence on the

forecasted realized volatility. In addition to that, comparing the coefficients over the various

assets reveals that the β1− coefficient in the SHAR model, which represents negative returns,

declines as asset volatility increases and the positive returns coefficient , β1+, increases. This

can be explained by considering that for individual stocks, company announcements have a big
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impact on the stock price in both directions and for the index asset, an individual company’s

announcement will not have much effect on the price, whereas negative industry- or nation-wide

announcements will.

S&P500 KO MSFT AXP

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

AR(7) 0.000791 0.000507 0.001421 0.000821 0.001486 0.001033 0.001446 0.000914

HAR 0.000789 0.000509 0.001050 0.000720 0.001458 0.000984 0.001384 0.000845

SHAR 0.000781 0.000499 0.001026 0.000700 0.001448 0.000976 0.001375 0.000828

HARQ 0.000790 0.000514 0.001051 0.000723 0.001458 0.000984 0.001384 0.000850

HARQ-F 0.000792 0.000521 0.001051 0.000722 0.001459 0.000985 0.001385 0.000856

Table 5: One-hour ahead in-sample performance

Table 5 reports the in-sample performance of the evaluated models. Consistent with the

methodology proposed by Corsi (2009), the performance of the models is evaluated using the

root mean square error (RMSE) and the mean absolute error (MAE). The results clearly indicate

that HAR models perform better than the conventional AR(7) model as the MAE and RSME are

lower across all models. Notably the SHAR demonstrates the most pronounced improvement,

which may be explainable due to its ability to utilize the correlation between negative returns

and high volatility.

5.2 Out of sample forecasts results

The out of sample results presented in this section exclude the year 2020, due to the erratic

market conditions. These results are presented in Table 6, while the results including the year

2020 are given in the Appendix in Table 10. Across all datasets, the HAR models outperform

the AR(7) model as the RMSE and QLIKE are lower for all datasets except the RMSE of the

S&P 500. Notably, the SHAR model exhibits the best results, as highlighted in bold, and the

Quarticity models perform very similarly to the original HAR model by Corsi (2009).

To ascertain whether the SHARmodel significantly differs from the AR(7) model, the Diebold-Mariano

(DM) test is applied. The hypothesis being tested here is H0 : MSESHAR = MSEAR(7) against

a one-sided alternative Hα : MSESHAR < MSEAR(7). As indicated in the table, null hypotheses

are rejected for the KO and MSFT datasets, implying that the SHAR significantly outperforms

at a significance level of 0.003% and 7% respectively. This suggests that the SHAR model is
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more effective for individual stocks than for the index, potentially due to the stronger leverage

effect for individual stocks.

In addition to the DM test, the MSC procedure is employed using all computed models to

check the superior set of models. These results are provided in Table 11. Interestingly, the

superior sets all include either the HARQF or HARQ model but solely the MSFT set includes

our overal best performing model, the SHAR model. Conforming with our previous results,

all sets do not include the AR(7) model. Future research could explore the performance of an

ARFIMA in comparison to the HAR models to determine whether it outperforms these models

or compliments them in the superior set.

S&P500 KO MSFT AXP

Excluding 2020 RMSE MAE QLIKE RMSE MAE QLIKE RMSE MAE QLIKE RMSE MAE QLIKE

AR(7) 0.000974 0.000606 0.351075 0.001045 0.000717 0.284935 0.001397 0.000956 0.317154 0.001800 0.001072 0.387675

HAR 0.000977 0.000611 0.345209 0.001057 0.000691 0.249309 0.001355 0.000921 0.279233 0.001736 0.001028 0.338677

SHAR 0.000971 0.000601 0.330946 0.000992 0.000679 0.238402 0.001341 0.000911 0.275513 0.001718 0.001010 0.324997

HARQ 0.000979 0.000618 0.341274 0.001009 0.000697 0.250088 0.001359 0.000925 0.280286 0.001736 0.001033 0.336638

HARQ-F 0.000979 0.000625 0.339163 0.001010 0.000697 0.250493 0.001359 0.000925 0.279970 0.001738 0.001038 0.334450

DM test with AR(7) DM test with AR(7) DM test with AR(7) DM test with AR(7)

DM t-statistic p-value DM t-statistic p-value DM t-statistic p-value DM t-statistic p-value

SHAR -0.49 0.31 -7.10 0.003 -1.44 0.07 -0.70 0.24

Table 6: One-hour ahead out of sample performance of the models excluding 2020

Table 6 also reveals that plausibly all models perform better on less volatile assets with

generally lower loss metrics, as these are easier to forecast due to the smaller fluctuations.

However, contrarily the QLIKE results are not necessarily better for the less volatile assets such

as the S&P 500 and KO. This discrepancy may arise from the fact that the QLIKE loss function

penalizes under predictions more severely than over predictions and possibly the fitted models

for the more stable assets do not work as well when volatility spikes occur.

Figures 5, 6, 7 and 8 in the Appendix show the various forecasts for a random sample spanning

from November to December 2016. They illustrate the differences among forecasts between

the AR(7), HAR, HARQ-F and SHAR models. Particularly in Figure 6, it is visible that the

HAR models exhibit more fluctuations in volatility forecasts compared to the AR(7) model and

follow the preceding observation more. This reaffirms our earlier conclusion that the addition of

various dummies and extensions, like incorporating quarticity of semivariance, helps the model

to capture the dynamic characteristic of hourly RV better.
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Given these findings, a potential area for future research would be modifying the model into

a state-space model, as proposed by Durbin and Koopman (2012). This modification could

potentially enhance the model’s ability in capturing seasonality more effectively than the current

approach with dummy variables. Figures 1, 2, 3 and 4 show the Partial Autocorrelation

Function of the datasets which all show signs of daily seasonality as there are spikes every seven

observations. This could further improve the adaptability of the model to different market

conditions and capture the volatility clustering effect better.

6 Conclusion

This research investigates whether the renowned HAR-RV model proposed by Corsi (2009) would

work at a short forecasting interval and could capture volatility characteristics at an intra-day

horizon. Empirical analysis on multiple datasets consisting of stable indices and volatile stocks

shows that with specific interpretable lags, the HAR model and various extensions capture the

characteristics at this interval more effectively than the simple AR model. The selection of

lagged components that best fit the data are lags of the preceding hour, three hours and the

last full trading day consisting of the last seven hours. These lags can be interpreted as the last

hour which shows what is happening at a very short notice, a three hour lag indicating whether

the possible volatility spike is short lasting or of longer duration and a seven hour lag with the

highest coefficient in all model which informs the model on the general level of volatility over

the past day.

The HAR model and its extensions, the SHAR, HARQ and HARQ-F, yield more accurate

forecasts of one-hour ahead realized volatility than the AR model. The SHAR model steadily

outperforms all models and following a Diebold-Mariano test significantly outperforms the AR

model. This is potentially due to the captured leverage effect which was first incorporated

into the model by Patton and Sheppard (2015). This effect is influential at short interval as it

coincides with raised volatility.

Further research could investigate whether this model can perform at the same level as other

stochastic volatility models such as GARCH, ARFIMA and Mixed Data Sampling (MIDAS)

models that are often used for high frequency data. Incorporating the state-space system

of Durbin and Koopman (2012) into the model could be interesting as well, as it will likely

mitigate daily seasonal effects in the data. A final proposal for further research is utilizing a

moving window for the estimation of the coefficients as this could improve performance too.
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7 Appendix

FOMC Announcement Dates 2013 - 2022

2013 2016 2019 2022

30 January 2013 27 January 2016 30 January 2019 26 January 2022

20 March 2013 16 March 2016 20 March 2019 16 March 2022

1 May 2013 27 April 2016 1 May 2019 4 May 2022

19 June 2013 15 June 2016 19 June 2019 15 June 2022

31 July 2013 27 July 2016 31 July 2019 21 September 2022

18 September 2013 21 September 2016 18 September 2019 2 November 2022

16 October 2013 2 November 2016 4 October 2019 14 December 2022

30 October 2013 14 December 2016 30 October 2019

18 December 2013 11 December 2019

2014 2017 2020 Other

29 January 2014 1 February 2017 29 January 2020 Presidential Elections:

4 March 2014 15 March 2017 3 March 2020 3 November 2020

19 March 2014 3 May 2017 15 March 2020 8 November 2016

30 April 2014 14 June 2017 23 March 2020 US Covid Announcements:

18 June 2014 26 July 2017 31 March 2020 1 March 2020

30 July 2014 20 September 2017 29 April 2020 13 March 2020

17 Setember 2014 1 November 2017 10 June 2020

29 October 2014 13 December 2017 29 July 2020

17 December 2014 27 August 2020

16 September 2020

5 November 2020

16 December 2020

2015 2018 2021

28 January 2015 31 January 2018 27 January 2021

18 March 2015 21 March 2018 17 March 2021

29 April 2015 2 May 2018 28 April 2021

17 June 2015 13 June 2018 16 June 2021

29 July 2015 1 August 2018 28 July 2021

17 September 2015 26 September 2018 22 September 2021

28 October 2015 8 November 2018 3 November 2021

16 December 2015 19 December 2018 15 December 2021

Table 7: FOMC Announcement Dates

Figure 1: PACF for the S&P500
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Figure 2: PACF for KO

Figure 3: PACF for MSFT

Figure 4: PACF for AXP
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S&P 500 AR(7) AR(14) HAR SHAR HARQ HARQ-F

AIC

(1,3,7) -68860.9 -68175.2 -68886.3 -69006.4 -68950.1 -69020.1

(1,3,14) -68700.4 -68783.8 -68751.6 -68829.6

(1,7,14) -68808.8 -68909.2 -68867.1 -68875.9

(3,7,14) -68344.7 -68379.5 -68342.0 -68394.2

BIC

(1,3,7) -68800.6 -68067.9 -68812.5 -68925.9 -68863.0 -68906.1

(1,3,14) -68626.6 -68703.4 -68664.5 -68715.7

(1,7,14) -68735.1 -68828.8 -68780.0 -68762.0

(3,7,14) -68271.0 -68299.0 -68254.9 -68280.3

KO AR(7) AR(14) HAR SHAR HARQ HARQ-F

AIC

(1,3,7) -64684.8 -64916.4 -65721.4 -65448.3 -65538.3 -65532.6

(1,3,14) -65594.4 -65346.2 -65434.3 -65429.4

(1,7,14) -65665.7 -65378.5 -65473.9 -65480.9

(3,7,14) -64988.4 -64822.0 -64911.4 -64926.2

BIC

(1,3,7) -64624.5 -64809.2 -65640.9 -65374.6 -65451.1 -65418.6

(1,3,14) -65513.9 -65272.5 -65347.1 -65315.4

(1,7,14) -65585.3 -65304.8 -65386.8 -65366.9

(3,7,14) -64907.9 -64748.2 -64824.2 -64812.2

AXP AR(7) AR(14) HAR SHAR HARQ HARQ-F

AIC

(1,3,7) -61395.8 -61572.2 -62202.1 -62124.9 -62153.5 -62159.4

(1,3,14) -62088.5 -62020.5 -62047.9 -62053.6

(1,7,14) -62119.3 -62064.6 -62093.5 -62110.6

(3,7,14) -61578.9 -61563.2 -61621.8 -61631.2

BIC

(1,3,7) -61335.5 -61465.0 -62121.7 -62051.1 -62066.4 -62045.4

(1,3,14) -62008.1 -61946.8 -61960.8 -61939.7

(1,7,14) -62038.8 -61990.9 -62006.4 -61996.7

(3,7,14) -61498.5 -61489.4 -61534.6 -61517.3

MSFT AR(7) AR(14) HAR SHAR HARQ HARQ-F

AIC

(1,3,7) -60956.2 -61110.9 -61561.3 -61484.5 -61530.6 -61530.9

(1,3,14) -61407.0 -61340.2 -61388.6 -61391.8

(1,7,14) -61473.0 -61409.4 -61459.7 -61463.4

(3,7,14) -60830.9 -60837.2 -60892.6 -60901.1

BIC

(1,3,7) -60787.2 -61003.7 -61480.9 -61410.8 -61443.5 -61416.9

(1,3,14) -61326.6 -61266.5 -61301.5 -61277.9

(1,7,14) -61392.6 -61335.7 -61372.6 -61349.5

(3,7,14) -60750.5 -60763.5 -60805.4 -60787.2

Table 8: Goodness-of-fit test for the various one-hour HAR-RV models for all four datasets

(S&P 500, KO, AXP & MSFT)
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(a) AR vs Realized Volatility (b) HAR vs Realized Volatility

(c) SHAR vs Realized Volatility (d) HARQ-F vs Realized Volatility

Figure 5: Realized volatility compared with the computed HAR models for S&P500, Nov 2016

- Dec 2016

(a) AR vs Realized Volatility (b) HAR vs Realized Volatility

(c) SHAR vs Realized Volatility (d) HARQ-F vs Realized Volatility

Figure 6: Realized volatility compared with the computed HAR models for KO, Nov 2016 - Dec

2016
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(a) AR vs Realized Volatility (b) HAR vs Realized Volatility

(c) SHAR vs Realized Volatility (d) HARQ-F vs Realized Volatility

Figure 7: Realized volatility compared with the computed HAR models for MSFT, Nov 2016 -

Dec 2016

(a) AR vs Realized Volatility (b) HAR vs Realized Volatility

(c) SHAR vs Realized Volatility (d) HARQ-F vs Realized Volatility

Figure 8: Realized volatility compared with the computed HAR models for AXP, Nov 2016 -

Dec 2016
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Superior Set M:

SPY

Rank of Models vM vR Loss

HARQF error -19.6898 -19.6898 -0.000016

p-value: 0

KO

Rank of Models vM vR Loss

HARQ error -7.1199 -7.1199 -0.00000987

p-value: 0

MSFT

Rank of Models vM vR Loss

SHAR error -0.2415 2.0816 -0.000062

HARQ error -2.0947 -1.7473 -0.000064

HARQF error 1.4554 1.7473 -0.000059

p-value 0.196

AXP

Rank of Models vM vR Loss

HARQF error -8.7727 -8.7727 0.000114

p-value 0

Notes. For the MCS procedure an α of 0.10 is employed and the number of

bootstrapped samples to construct the test statistic is 1000.

Table 11: Model Confidence Sets for all four datasets
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