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Abstract

Given the ongoing advances in technologies like self-driving vehicles and the

pressing need for more stringent data security, data-decentralised environments are

increasingly common. In sensitive fields such as defence or healthcare, data-sharing

is often difficult or even prohibited. This poses challenges in implementing global

predictive models which typically rely on the presence of high-quality centralised

data. Dynamic ensemble methods offer a promising solution by aggregating pre-

dictions from multiple local models, and dynamically adjusting their weights based

on performance. We propose a novel weighting mechanism that considers not only

the predictive uncertainty of the models but also their generalisation performance,

quantified by validation loss. We simulate a data-decentralised environment by par-

titioning the datasets and using the subsets to train separate regression neural net-

works. To compare the performance of the mechanism against benchmark methods,

nine publicly available datasets are used from the UCI machine learning repository

and the KEEL dataset repository. We find that incorporating validation loss into

ensemble network weighting yields modest performance improvements compared to

most existing methods.

1 Introduction

Given the ongoing advances in data analysis and machine learning techniques, maintaining

data security and privacy has become a priority. Data-sharing between entities in sens-

itive sectors such as defence, telecommunications, and healthcare is therefore not always

possible, or advisable. This has led to an increase in situations where data decentralisa-

tion is present and necessary as a tool to limit the impact of breaches. Improvements

in technologies such as IoT (Internet of Things), blockchain, and self-driving vehicles,

have also contributed to this, as data in these fields is often collected and distributed

across a network of individual nodes rather than a centralised database. With practical

difficulties in data-sharing across all the local nodes, it becomes challenging to deploy a

global predictive model. Traditional machine learning models typically rely heavily on the

availability of high-quality centralised data. Deploying models locally and training them

on data available at their local node is a possible solution although it has been shown

that the generalisation performance of these models is compromised if data distributions

differ across local nodes (Lee & Kang, 2024).

This has given rise to dynamic ensemble methods, which have demonstrated superior

performance to traditional ensemble methods such as classic bagging and boosting across

a wide range of applications (Opitz & Maclin, 1999). Dynamic ensembles aggregate the

predictions made by several models to produce a single prediction. This can help offset

the poor generalisation performance of some of the individual local models. Unlike static
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ensemble methods, dynamic methods assign and adjust weights dynamically, providing

larger weights to better-performing individual models. This means that the influence of

each model on the final prediction is variable, and dependent on its performance using

the query which it has been provided. The weighting mechanism used to combine the

individual predictions heavily influences the performance of these models and remains a

challenge. Improvements in these mechanisms allow for the creation of robust, accurate

predictive models that crucially, eliminate the need for data-sharing across nodes.

Recent approaches such as the one adopted by Lee & Kang (2024) have generally resolved

the data-sharing limitations, but find that the performance of individual nodes heavily

influences overall model performance. That is to say, model generalisation remains an

issue, and noisy data at the node level has a significant impact on the performance of

the ensemble. Despite the model generalisation metric validation loss typically being

used as a stop criterion for neural network training Prechelt (2002) (training stops when

validation loss does not improve), it has so far never been incorporated into the calculation

of ensemble weights. To address this, we attempt to improve on the weighting mechanism

presented by Lee & Kang (2024). This paper introduces a novel weighting mechanism that

considers not only the predictive uncertainty of individual models but also generalisation

performance, extending the work of Lee & Kang (2024). The central research question of

the paper is: How can the weighting mechanism in dynamic ensemble regression neural

networks be improved by incorporating prediction errors?

To answer the question, we follow a methodology similar to that of Lee & Kang (2024),

but also incorporate validation loss, a measure of generalisation performance, into the

weighting mechanism. First, we replicate the results of Lee & Kang (2024), and then

we introduce the extension. We make use of nine open-source regression datasets from

the UCI machine learning repository (Dua et al., 2017), and the KEEL dataset reposit-

ory (Derrac et al., 2015). We simulate a data-decentralised environment by partitioning

each dataset into several subsets with distinct characteristics and distributions, each rep-

resenting a local node. Each subset is then used to train a separate regression neural

network and produce a prediction and a weight, based on predictive uncertainty and gen-

eralisation performance. Nodes with higher predictive accuracy and lower validation loss

post-training, are given larger weights. The weights and predictions are then combined

to form a final ensemble prediction.

The results show that in general, the incorporation of validation loss into the weighting

mechanism of ensemble networks improves on the performance of most existing baseline

methods. These findings contribute to the field of machine learning and data security,

indicating a potential for further improvement with other approaches to validation loss-

based weighting.
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The paper is structured as follows: Section 2 presents the theoretical framework and

background, Section 3 presents the datasets used, and Section 4 presents the methodology,

formulating the methods used mathematically. Finally, Section 5 presents our findings,

and Section 6 concludes, summarising and providing suggestions for future research.

2 Literature Review

2.1 Static and Dynamic Ensemble Methods

Ensemble methods aim to make better predictions by aggregating forecasts from multiple

models. These models often capture the distribution of the underlying data more accur-

ately (Shahhosseini et al., 2022). Early ensemble methods include Bayesian averaging,

Bagging (Bootstrap Aggregating) and Boosting. Dietterich (2000) reviewed these meth-

ods and found that they frequently outperform any single model within the ensemble.

These methods are used widely today and are examples of static ensembles. The defining

feature of a static ensemble is the fact that model weights are not adjusted based on the

input data - The technique for merging the models does not change once it has been

determined (Breiman (2001); Freund & Schapire (1997)). On the contrary, in a dynamic

ensemble, model weights are adjusted continuously, with better models being assigned

larger weights depending on the query(Britto Jr et al. (2014);Kolter & Maloof (2007)).

Lee & Kang (2024) state that static ensembles may not perform optimally when the data

distributions differ within the ensemble. In such cases, dynamic ensembles are often more

effective. The individual model weighting within an ensemble plays a crucial role in the

overall model performance.

2.2 Ensemble Weighting Techniques

Several papers have looked into different weighting methods for ensemble networks. Zhang

et al. (2019) presents a dynamic weighting framework for dynamic ensemble selection

(DES) systems that uses local information around the query sample, improving classifier

selection and fusion. Soares & Araújo (2015) proposes a dynamic ensemble regression

(DOER) method that adapts to time-varying environments, updating model weights based

on their recent performance. Qiao & Wang (2021) apply the theory of ensemble networks

to temperature prediction in ladle furnaces for the first time. They propose a method

which selects only the most competent base model from a pool of base models for each

test pattern.
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2.3 Quantifying Uncertainty of Ensemble Regression Neural Net-

works

Neural networks are often referred to as black boxes due to their lack of interpretability.

Along with this, comes the challenge of quantifying the predictive uncertainty of a neural

network. Abdar et al. (2021) conducted an extensive review of existing techniques for

uncertainty quantification, citing several challenges. One of the techniques they examine

is MC-Dropout, proposed by Gal & Ghahramani (2016). MC-Dropout is a method which

obtains multiple predictions from a single model and takes the variance in these predictions

as a measure of the predictive uncertainty of that model. It is a flexible technique that

does not aggressively restrict the architecture of neural networks.

3 Data

Throughout the paper, nine publicly available regression datasets are used, originating

from two sources: Bikesharing, Ctscan, Indoor- loc, and Telemonitoring from the UCI

machine learning repository (Dua et al., 2017), and Compactiv, Cpusmall, Mv, Pole, and

Puma32h from the KEEL dataset repository (Derrac et al., 2015). These datasets are

widely used in the field of machine learning for model training and validation. To ensure

accurate replication of the study performed by Lee & Kang (2024) we use their exact files,

unchanged, and provided to us in the form of nine CSV files.

Table 1 shows a description of the datasets and their corresponding domains, number of

features and observations. We partition each dataset into subsets by method of K-means

clustering. The number of local nodes represents the number of clusters formed, and their

corresponding size is also shown. This will be further explained in Section 4.

Table 1: Description of datasets and their subsets

Dataset No. instances No. features Domain No. local nodes Local dataset sizes

Bikesharing 17,397 12 Bike Sharing System 9 [1173, 1368, 1558, 1722, 1949, 2145, 2277, 2312, 2375]

Compactiv 8,192 21 Computer System 4 [419, 734, 1345, 4470]

Cpusmall 8,192 12 Computer System 5 [412, 1204, 1227, 1902, 2375]

Ctscan 53,500 385 Computed Tomography 8 [3212, 3460, 4364, 5065, 5501, 7727, 8197, 13025]

Indoorloc 19,937 525 Indoor Positioning System 6 [1225, 2007, 2135, 2409, 4702, 4703]

Mv 40,768 10 Synthetic 10 [2991, 3240, 3394, 3495, 4148, 4242, 4287, 4303, 5111, 5557]

Pole 14,998 26 Telecommunication 5 [1338, 1572, 2675, 3067, 4287]

Puma32h 8,192 32 Robot Arm 10 [779, 783, 797, 806, 809, 817, 828, 848, 854, 871]

Telemonitoring 5,875 20 Parkinson’s Disease 7 [474, 535, 630, 679, 715, 1055, 1421]
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4 Methodology

This Section outlines the methods used to obtain predictions and predictive uncertainties

from the neural network ensemble. First, the datasets are partitioned into subsets by

K-means clustering and each subset is used to train a separate regression neural network.

These are referred to as local nodes, and we assume them to be separate from each other.

This is done to simulate a data-decentralised environment. Then, Monte Carlo (MC)

dropout is applied to obtain numerous predictions from each neural network, which are

then used to quantify the predictive uncertainty of said network. We also take the mean

of these predictions, to arrive at a single prediction per neural network. The predictive

uncertainty, and the validation loss of each network are combined to form a weight for

that neural network. Finally, we combine the prediction and weight output by each neural

network, to form a single ensemble prediction. Figure 1 shows an illustration of the full

process, as detailed in Lee & Kang (2024). We explain this process in more detail below,

building up to an explanation of our proposed weighting method.

Figure 1: Model architecture, from Lee & Kang (2024)

4.1 Assumptions of the Data-Decentralised Environment

In order to best simulate a data-decentralised environment, we make several assumptions.

They represent the constraints that would need to be met in a real-life scenario where

data security and privacy are essential:
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1. No data-sharing between local nodes: We assume that data used in one local

node cannot be accessed by other nodes. Applying this to the real world scenario

of smart self-driving vehicles, this would mean that data from one vehicle could not

be accessed by any other vehicle in the network.

2. Regression Neural networks are locally trained and maintained: We as-

sume that each neural network is local, and has no access to the underlying datasets

or their distributions during prediction. This means that following model training,

the ensemble can simply be provided with a query, and it is able to output a fi-

nal prediction. This assumption, introduced by Lee & Kang (2024) deviates from

existing methods, and adds another layer of data security.

3. Datasets at different nodes have differing distributions: As would likely be

the case in real-world situations, every local node is trained on data with a unique

distribution. We simulate this using K-means clustering, as will be explained in

subsection 4.2.

4.2 Partitioning the Datasets

In order to simulate a data-decentralised environment and split the datasets into distinct

subsets, we first apply principal component analysis (PCA) to reduce the dimensionality

of the datasets. PCA aims to lower the number of features in a dataset, reducing them to

a set of uncorrelated principal components (Abdi & Williams, 2010). This leads to less

noisy data found in the original datasets, allowing us to create well-defined clusters using

K-means clustering. We performed PCA with a maximum dimensionality of 10, meaning

that the number of features in each dataset was reduced to at most 10.

Next, we apply K-means clustering to split the datasets into 10 disjoint clusters with

distinct characteristics. We remove any cluster which forms less than 5% of the total

dataset as they may be too small to train a neural network effectively. We denote the

clusters asD1, D2, ..., DK . Each cluster represents a subset in a local node. As an example,

for the Bikesharing dataset, K = 9, meaning the dataset was split into 10 subsets, one

of which was removed, and nine corresponding neural networks were included in the

ensemble, as shown in Table 1.

4.3 Uncertainty Quantification: MC-Dropout

For every dataset Dk in a local node, we train a corresponding neural network fk as shown

in Figure 1. We split every dataset Dk into a training subset Dtrn
k and a validation subset

Dval
k which we use to train the network. We elaborate on the details of the functioning of

the regression neural networks f1, f2, ..., fK in further subsections, but for now, they can
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be considered black boxes that can be provided with a query x and return predictions for

a target variable.

A key component in the weight assigned to each local node in the ensemble is the predict-

ive uncertainty of the neural network corresponding to that node. In order to quantify

the uncertainty of regression neural network fk, we use MC-dropout (Gal & Ghahramani,

2016). The core idea of MC-dropout is to obtain multiple predictions from a single neural

network and take the variance in these predictions as a measure of the predictive uncer-

tainty of that neural network. This works by passing data through the network L times.

With each forward pass, there is a probability p that certain hidden units in fk are deac-

tivated. This is a randomisation step which provides us with slightly different prediction

values for each forward pass, as the underlying neural network structure is slightly altered.

The end result from neural network fk is L different predictions f 1
k (x), ..., f

L
k (x). We then

take the mean of these predictions as the final prediction for fk and the variance as its

predictive uncertainty:

f̄k(x) =
1

L

L∑
l=1

f
(l)
k (x) (1)

u(x; fk) =
1

L

L∑
l=1

(
f
(l)
k (x)− f̄k(x)

)2
(2)

As a final step, we normalise the predictive uncertainty for each neural network. This is

due to our earlier assumption that datasets at local nodes have different data distributions,

meaning that comparing predictive uncertainties between networks cannot be readily

done. We do this by first averaging the predictive uncertainties of fk on the validation

subset Dval
k to obtain ūk:

ūk =
1

|Dval
k |

∑
(xi,yi)∈Dval

k

u(xi; fk). (3)

We then divide the original predictive uncertainty by ūk to obtain the normalised pre-

dictive uncertainty of network fk shown in Figure 1:

u′(x; fk) =
u(x; fk)

ūk

. (4)

We aim to obtain a final prediction ŷ from the ensemble, as shown in Figure 1:

ŷ =

∑K
k=1w(x; fk)f̄k(x)∑K

k=1w(x; fk)
, (5)

where w(x; fk) is a weight function based on the predictive uncertainties presented

above, and the validation loss of each network. Our proposed weighting mechanism is
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explained next.

4.4 Proposed Novel Weight Calculation Method

We design a weighting function that uses predictive uncertainty and validation loss of each

network, to assign a weight for each node in the ensemble. Additionally, we normalise the

uncertainties as this was shown to be ideal by Lee & Kang (2024) using u′(x; fk) as first

presented in equations 3 and 4

w(x; fk) = exp(
α

u′(x; fk)
· 1

Vk

) (6)

where

Vk =
1

|Dval
k |

|Dval
k |∑

i=1

(yi − ŷi)
2 (7)

is the validation loss corresponding to fk. This is simply the mean squared error (MSE) of

the neural network’s predictions on unseen data in the validation setDval
k . Since validation

loss is a measure of model generalisation performance, it is inversely related to the model

performance. Networks that exhibit a higher validation loss, have a lower generalisation

performance and should be assigned a lower weight, hence we multiply the first part of

the expression by 1
Vk
. We use α as a scaling factor that represents the variation in the

assigned weights. If α = 0 then all nodes are assigned equal weights, and a larger α

means more importance is given to networks with low uncertainty and validation loss,

meaning a larger disparity amongst the weights. In our experiments, we set α to 0.1,1 or

10 depending on the scale of the validation losses and the normalised uncertainties.

What differentiates our proposed weighting mechanism from that of Lee & Kang (2024)

and other literature, is the incorporation of validation loss in the weight of the nodes in

the ensemble. Validation loss is a metric frequently used during model training as a stop

condition but has never been used to influence ensemble weights. In our experiments,

for example, the regression neural networks conclude training if the validation loss of

the network does not improve for 20 successive forward passes, or epochs (This will be

explained in more detail in subsection 5.1. After training, we store the validation loss of

each network fk based on the validation subset Dval
k , and incorporate it in the weighting

mechanism as in Equation 6. Our proposed method is an addition to the method proposed

by Lee & Kang (2024), which excludes the validation loss term as follows:

w(x; fk) = exp(
α

u′(x; fk)
) (8)
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4.5 Compared Methods

We compare the performance of our proposed method with the following baseline methods

used in Lee & Kang (2024):

• Mean: The first method simply assigns an equal weight to each local node, with

the following weighting function:

w(x; fk) =
1

K
. (9)

This means that the final ensemble prediction is simply the mean of all the predic-

tions:

ŷ =
1

K

K∑
k=1

f̄k(x). (10)

• Median: This method takes the median of the individual predictions as the final

ensemble prediction:

ŷ = median{f̄1(x), f̄2(x), . . . , f̄K(x)}. (11)

• Dynamic Selection using Unnormalised Predictive Uncertainty (D-SEL(u)):

This method assigns one neural network with a weight of 1, namely the one with the

lowest predictive uncertainty, and assigns 0 to all other networks. This is done using

an indicator function, which returns a value of 1 for the k at which the predictive

uncertainty of the corresponding network fk is minimal:

w(x; fk) = I

(
k = argmin

j∈{1,...,K}
u(x; fj)

)
. (12)

• Dynamic Selection using normalised Predictive Uncertainty (D-SEL(u′)):

This method is identical to the above but uses the normalised uncertainties presented

in Equation 4.3

w(x; fk) = I

(
k = argmin

j∈{1,...,K}
u′(x; fj)

)
. (13)

• Dynamic Ensemble using Unnormalised Predictive Uncertainty (D-ENS(u)):

This method is a variation of the method proposed by Lee & Kang (2024) in Equa-

tion 8. The key difference is that it uses the unnormalised predictive uncertainties

as opposed to the normalised ones:

w(x; fk) = exp

(
α

u(x; fk)

)
. (14)
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• Oracle: Finally, oracle is used as a reference point, and considered to be a proxy

for the best possible performance. This is because it disregards the earlier assump-

tion that networks do not have access to the underlying datasets post-training. It

uses this information to select the neural network from which the input query x

originated. It does so by finding the k∗ that minimises the distance between query

x and the elements in the dataset Dk corresponding to neural network fk:

ŷ = f̄k∗(x), where k∗ = argmin
k∈{1,...,K}

min
(xi,yi)∈Dk

∥x− xi∥. (15)

5 Results

This section discusses the setup of our experiments, and analyses our main findings.

5.1 Experimental Settings

The architecture shown in Figure 1 shows a higher level overview of the ensemble of

neural networks. The networks were all trained in an identical fashion, and with the

same settings. As in Lee & Kang (2024), we use a standard feed-forward architecture

with three hidden layers, each containing 128 hidden units and using the ReLU activation

function. We use mean squared error (MSE) as the loss function, and we terminate

network training if this value does not improve for 20 successive epochs, or after 500

epochs have been reached. An epoch is one complete pass through the entire training

dataset. During one epoch, the model’s parameters are updated based on the training

data.

We applied MC-Dropout with a probability of 0.1 for each hidden layer, setting L=20

(The number of predictions per local node, averaged to produce the final prediction of

that node, see figure 1). This means that each hidden layer has a probability of dropping

out equal to 0.1, and this is how 20 slightly different predictions are obtained for each

local node. Hyperparameter α, introduced and explained in Section 4.4, was set to 10,

except in a few cases where weights grew too large due to the addition of the validation

loss term, and it was set to 0.1. The experiment was repeated 10 times using random

seeds.

5.2 Results and Discussion

Firstly, we replicate the experiments carried out by Lee & Kang (2024). Tables 2 and 3

show the generalisation performance of the method proposed by Lee & Kang (2024) and
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other baseline methods for the nine benchmark problems, in terms of MAE and RMSE.

The final row shows an average rank for each method, over the nine benchmark problems

(Excluding oracle as this is simply a reference method). For every row, the number in

bold represents the best performing method for the corresponding dataset (Once again

excluding oracle from the comparison). The results align with those of Lee & Kang (2024),

clearly showing that their proposed method outperforms baseline methods for three of the

benchmark problems in terms of MAE and six in terms of RMSE.

Additionally, we confirm the pattern noted by Lee & Kang (2024): Their method per-

forms worse than basic measures such as the mean, when oracle performs badly. Weak

performance from the oracle method is a clear indication that individual neural networks

are not performing well at their local nodes. As explained in section 4.5, oracle is used as

a reference point and indicator of the best possible performance of the ensemble. This is

because it disregards our earlier assumption about inaccessibility of underlying data by

local nodes, and selects the neural network from which the query originated. In short,

poor performance of individual neural networks in the ensemble, heavily compromises the

performance of Lee & Kang (2024) weighting method.

We also notice that the Lee & Kang (2024) method seems to exhibit stronger performance

when we observe RMSE. It is the top performing method on six datasets in terms of

RMSE, as opposed to only three when we look at MAE. This could be due to several

factors and the differences between these two metrics. Firstly, RMSE is more sensitive to

outliers because it squares the individual prediction errors before averaging them. This

means that larger errors are disproportionately more influential in the final RMSE value.

Therefore, a method that minimizes large errors will show a big reduction in RMSE. In

contrast, Mean Absolute Error (MAE) averages the absolute differences between predicted

and actual values without squaring them, treating all errors equally. This means that

MAE is less affected by outliers and large deviations. Hence the improved performance

metrics for RMSE, could be an indication that the method by Lee & Kang (2024) is

particularly strong at handling outliers and large deviations. This makes sense since the

method uses variation in predictions as the main performance measure, assigning less

weight to nodes where predictions exhibit higher variation.

We also note the superior performance of D-SEL(u’ ) over D-SEL(u) in both tables 2 and

3. This confirms the importance of uncertainty normalisation, and is the reason we choose

to normalise the uncertainties in our novel proposed method.

Next, we move to Tables 4 and 5 to analyse the performance of our novel proposed method.

Due to computational constraints, we asses the performance of our method using only the

five smallest datasets out of the nine introduced earlier. Both tables show that our novel

method outperforms all of the baseline methods, with the exception of that of Lee &

11



Table 2: Performance comparison of baseline and proposed methods in terms of MAE
(mean ± standard deviation).

Dataset Oracle Mean Median D-SEL(u) D-SEL(u’) D-ENS(u) Method Lee & Kang (2024)

Bikesharing 0.2358 ± 0.0061 0.8033 ± 0.0970 0.4762 ± 0.0263 0.4994 ± 0.0560 0.4070 ± 0.0389 0.4954 ± 0.0550 0.4004 ± 0.0340

Compactiv 0.1218 ± 0.0064 0.2429 ± 0.0377 0.2440 ± 0.0414 0.2552 ± 0.1412 0.1753 ± 0.0115 0.2550 ± 0.1413 0.1733 ± 0.0110

Cpusmall 0.1169 ± 0.0014 0.2076 ± 0.0050 0.2452 ± 0.0039 0.2465 ± 0.0053 0.2470 ± 0.0102 0.2462 ± 0.0054 0.2248 ± 0.0096

Ctscan 0.0310 ± 0.0010 0.5782 ± 0.0175 0.5132 ± 0.0148 0.3518 ± 0.0340 0.1201 ± 0.0158 0.3515 ± 0.0340 0.1320 ± 0.0157

Indoorloc 0.0476 ± 0.0010 0.9779 ± 0.0675 0.6289 ± 0.0367 0.0807 ± 0.0129 0.0614 ± 0.0037 0.0807 ± 0.0129 0.0646 ± 0.0041

Mv 0.0149 ± 0.0006 0.5505 ± 0.0218 0.2229 ± 0.0200 0.8761 ± 0.0480 0.0661 ± 0.0118 0.9573 ± 0.0600 0.0668 ± 0.0095

Pole 0.0643 ± 0.0032 0.5542 ± 0.0491 0.1655 ± 0.0122 0.0814 ± 0.0047 0.0791 ± 0.0056 0.0810 ± 0.0047 0.0752 ± 0.0045

Puma32h 0.7813 ± 0.0018 0.7773 ± 0.0005 0.7787 ± 0.0010 0.7888 ± 0.0061 0.7852 ± 0.0026 0.7885 ± 0.0061 0.7797 ± 0.0017

Telemonitoring 0.1771 ± 0.0037 0.7050 ± 0.0098 0.6164 ± 0.0244 0.6220 ± 0.0293 0.4288 ± 0.0322 0.6182 ± 0.0298 0.4332 ± 0.0264

Average rank – 4.22 3.56 4.78 2.22 4.11 1.78

Table 3: Performance comparison of baseline and proposed methods in terms of RMSE
(mean ± standard deviation).

Dataset Oracle Mean Median D-SEL(u) D-SEL(u’) D-ENS(u) Method Lee & Kang (2024)

Bikesharing 0.3727 ± 0.0079 1.0226 ± 0.0874 0.7655 ± 0.0450 0.8668 ± 0.0733 0.7272 ± 0.0622 0.8568 ± 0.0717 0.6859 ± 0.0534

Compactiv 0.2347 ± 0.0069 0.4214 ± 0.0208 0.4953 ± 0.0202 0.5437 ± 0.0934 0.4778 ± 0.0173 0.5433 ± 0.0936 0.4726 ± 0.0143

Cpusmall 0.2012 ± 0.0043 0.5439 ± 0.0167 0.7868 ± 0.0247 0.8032 ± 0.0262 0.7781 ± 0.0433 0.8029 ± 0.0268 0.6649 ± 0.0479

Ctscan 0.0623 ± 0.0038 0.7442 ± 0.0180 0.7698 ± 0.0232 0.8104 ± 0.0430 0.4181 ± 0.0430 0.8073 ± 0.0433 0.3646 ± 0.0350

Indoorloc 0.0746 ± 0.0030 1.0887 ± 0.0922 0.7326 ± 0.0550 0.1853 ± 0.0326 0.1328 ± 0.0165 0.1845 ± 0.0327 0.1228 ± 0.0126

Mv 0.0249 ± 0.0013 0.6962 ± 0.0265 0.4525 ± 0.0213 1.3548 ± 0.0418 0.2011 ± 0.0276 1.3857 ± 0.0450 0.1547 ± 0.0188

Pole 0.1409 ± 0.0050 0.6965 ± 0.0589 0.3020 ± 0.0215 0.1950 ± 0.0156 0.1967 ± 0.0187 0.1927 ± 0.0159 0.1735 ± 0.0119

Puma32h 0.9930 ± 0.0018 0.9872 ± 0.0007 0.9883 ± 0.0015 1.0052 ± 0.0085 0.9974 ± 0.0040 1.0049 ± 0.0084 0.9919 ± 0.0028

Telemonitoring 0.3130 ± 0.0052 0.8724 ± 0.0154 0.8227 ± 0.0247 0.9820 ± 0.0276 0.7564 ± 0.0424 0.9726 ± 0.0270 0.6741 ± 0.0353

Average rank – 3.56 3.56 5.22 2.78 4.44 1.44

Kang (2024). On average, our method ranks 2.8 out of the seven methods, over the five

datasets. Our method is the best performer for one dataset in terms of RMSE, and three

for MAE.

These results are contrary to the method by Lee & Kang (2024) which saw better per-

formance metrics when observing RMSE. This is a potential indication that our method

is worse at handling outliers and large deviations in predictions. When looking at table

5, we also observe that while our method performs best for three out of the five datasets,

overall, it is still second in terms of average rank. This is because for the datasets pole

and telemonitoring, our method not only performs poorly, but is one of the two worst

performing methods. It seems that our method is either the best performer, or the worst,

with no real in-between. These observations all point to overfitting as a possible explan-

ation. It might be that the addition of validation loss into the weighting mechanism has

led to a method that works very well for some datasets with certain characteristics, but

badly for others.

We also observe that many of the datasets on which our method performs better, were

ones where Oracle exhibited weak performance, and so did the method of Lee & Kang
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(2024). For these specific datasets (for example cpusmall and puma32 in terms of MAE,

Table 2 and Table 5) our method shows promising improvements. A possible explanation

for this could be the fact that our method punishes the poor performance of individual

neural networks more heavily. Not only does it penalise networks with high variation in

predictions, but it also penalises networks with poor generalisation performance over a

validation set. This leads to even smaller weights for these poorly performing networks

than what would be assigned by the method of Lee & Kang (2024).

Overall, our method outperforms all the baseline methods except that of Lee & Kang

(2024), and seems to perform better on datasets with poor individual network perform-

ance.

Table 4: Performance comparison of baseline and proposed methods including our pro-
posed method, in terms of RMSE (mean ± standard deviation).

Dataset Mean Median D-SEL(u) D-SEL(u’) D-ENS(u) Method Lee & Kang (2024) Novel Proposed Method

Compactiv 0.4214 ± 0.0208 0.4953 ± 0.0202 0.5437 ± 0.0934 0.4778 ± 0.0173 0.5433 ± 0.0936 0.4726 ± 0.0143 0.4250 ± 0.04616

Cpusmall 0.5439 ± 0.0167 0.7868 ± 0.0247 0.8032 ± 0.0262 0.7781 ± 0.0433 0.8029 ± 0.0268 0.6649 ± 0.0479 0.2214 ± 0.0119

Pole 0.6965 ± 0.0589 0.3020 ± 0.0215 0.1950 ± 0.0156 0.1967 ± 0.0187 0.1927 ± 0.0159 0.1735 ± 0.0119 0.2953 ± 0.0299

Puma32h 0.9872 ± 0.0007 0.9883 ± 0.0015 1.0052 ± 0.0085 0.9974 ± 0.0040 1.0049 ± 0.0084 0.9919 ± 0.0028 0.9868 ± 0.0007

Telemonitoring 0.8724 ± 0.0154 0.8227 ± 0.0247 0.9820 ± 0.0276 0.7564 ± 0.0424 0.9726 ± 0.0270 0.6741 ± 0.0353 0.8364 ± 0.0230

Average rank 3.20 4.20 6.00 4.00 5.40 2.40 2.80

Table 5: Performance comparison of baseline and proposed methods including our pro-
posed method, in terms of MAE (mean ± standard deviation).

Dataset Mean Median D-SEL(u) D-SEL(u’) D-ENS(u) Method Lee & Kang (2024) Novel Proposed Method

Compactiv 0.2429 ± 0.0377 0.2440 ± 0.0414 0.2552 ± 0.1412 0.1753 ± 0.0115 0.2550 ± 0.1413 0.1733 ± 0.0110 0.1580 ± 0.0135

Cpusmall 0.2076 ± 0.0050 0.2452 ± 0.0039 0.2465 ± 0.0053 0.2470 ± 0.0102 0.2462 ± 0.0054 0.2248 ± 0.0096 0.1661 ± 0.0083

Pole 0.5542 ± 0.0491 0.1655 ± 0.0122 0.0814 ± 0.0047 0.0791 ± 0.0056 0.0810 ± 0.0047 0.0752 ± 0.0045 0.1438 ± 0.0147

Puma32h 0.7773 ± 0.0005 0.7787 ± 0.0010 0.7888 ± 0.0061 0.7852 ± 0.0026 0.7885 ± 0.0061 0.7797 ± 0.0017 0.7767 ± 0.0003

Telemonitoring 0.7050 ± 0.0098 0.6164 ± 0.0244 0.6220 ± 0.0293 0.4288 ± 0.0322 0.6182 ± 0.0298 0.4332 ± 0.0264 0.6260 ± 0.0161

Average rank 4.60 4.00 5.80 3.60 4.80 2.40 2.80

6 Conclusion

This paper aimed to answer the question ”how can the weighting mechanism in dynamic

ensemble regression neural networks be improved by incorporating prediction errors?”.

With an increased need for data security, and an abundance of data-decentralised envir-

onments, dynamic ensemble methods provide an interesting solution to the problem of

local deployment of neural network models. The weighting mechanism in ensemble neural

networks is paramount to their performance. In this paper, a novel weighting mechanism

was proposed, incorporating a measure of generalisation performance of individual models

into their weighting.
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We find that our novel method generally improves upon most existing baseline methods,

bar one. Improvements seem to be most prominent in datasets where individual node

performance is lacking. We also see some evidence of overfitting due to the inclusion of

a validation loss term which incorporates information from the validation set into the

weighting mechanism. While our method was not the absolute best performing method

for ensemble weighting, it did show modest improvements in certain situations. This is

evidence that the incorporation of prediction errors into ensemble weighting can definitely

yield some improvements in performance, with the potential for much more.

The findings presented in this paper have practical and theoretical implications. Namely,

the clear evidence that prediction errors of neural networks on their validation sets con-

stitute valuable information that should be used to improve ensemble weighting. We

encourage future research to look for different ways to incorporate the prediction errors

into weighting so as to overcome this issue of overfitting. It would also be interesting to

look into why the inclusion of prediction loss in weighting improves ensemble performance

for datasets where individual nodes typically underperform.
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A Programming code

Code was kindly provided by Lee & Kang (2024), adjusted to include our novel proposed

weighting method, and adapted to run on google colab:

!apt update && apt install cuda-11-8

import numpy as np

import time

import torch

import torch.nn as nn

from torch.optim import Adam

from sklearn.metrics import mean_squared_error

data_dir = ’/content/data/’

class RegDataset:

def __init__(self, X, Y):

self.X = X

self.Y = Y

def __len__(self):

return len(self.X)

def __getitem__(self, idx):

x = torch.from_numpy(self.X[idx]).float()

y = torch.from_numpy(self.Y[idx]).float()

return x, y
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class RegNN(nn.Module):

def __init__(self, dim_x, n_layers = 3, dim_h = 128, activation =

nn.ReLU(), prob_dropout=0.1):

super(RegNN, self).__init__()

layers = [nn.Linear(dim_x, dim_h), activation,

nn.Dropout(prob_dropout)]

for _ in range(n_layers-1): layers += [nn.Linear(dim_h, dim_h),

activation, nn.Dropout(prob_dropout)]

layers += [nn.Linear(dim_h, 1)]

self.predict = nn.Sequential(*layers)

def forward(self, x):

y_hat = self.predict(x)

return y_hat

class Trainer:

def __init__(self, net, batch_size, model_path, cuda):

self.net = net

self.batch_size = batch_size

self.model_path = model_path

self.cuda = cuda

self.optimizer = None

def load(self):

self.net.load_state_dict(torch.load(self.model_path, map_location =

torch.device(’cuda’)))

def training(self, train_loader, val_loader, patience = 20, max_epochs =

500): # patience = 20 , max_epoch = 500

loss_fn = nn.MSELoss()

val_y =

np.array(val_loader.dataset.dataset.Y)[val_loader.dataset.indices].flatten()

val_log = np.zeros(max_epochs)

for epoch in range(max_epochs):

# training

self.net.train()

start_time = time.time()
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for batchidx, batchdata in enumerate(train_loader):

batch_x, batch_y = batchdata

batch_x, batch_y = batch_x.to(self.cuda), batch_y.to(self.cuda)

batch_y_hat = self.net(batch_x)

loss = loss_fn(batch_y_hat, batch_y)

self.optimizer.zero_grad()

loss.backward()

self.optimizer.step()

# validation

val_y_hat, _ = self.inference(val_loader)

val_log[epoch] = mean_squared_error(val_y, val_y_hat) ** 0.5

if np.argmin(val_log[:epoch + 1]) == epoch:

torch.save(self.net.state_dict(), self.model_path)

elif np.argmin(val_log[:epoch + 1]) <= epoch - patience:

best_RMSE = np.min(val_log[:epoch + 1])

best_epoch = np.argmin(val_log[:epoch + 1])

break

print(’epoch’, epoch)

self.load()

def inference(self, test_loader, n_forward_passes = 20):

self.net.eval()

for m in self.net.modules():

if m.__class__.__name__.startswith(’Dropout’):

m.train()

y_hat_list = []

for _ in range(n_forward_passes):

y_hat = []

with torch.no_grad():

for _ , batchdata in enumerate(test_loader):

batch_x = batchdata[0]

batch_x = batch_x.to(self.cuda)

batch_y_hat = self.net(batch_x).cpu().numpy()

y_hat.append(batch_y_hat)

y_hat = np.vstack(y_hat).flatten()

y_hat_list.append(y_hat)

return np.mean(y_hat_list, 0), np.std(y_hat_list, 0, ddof = 0)
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!pip install scikit-learn

!pip install torch torchvision

import numpy as np

import csv, sys

import os

from sklearn.cluster import KMeans

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

from sklearn.gaussian_process.kernels import Matern

from sklearn.gaussian_process import GaussianProcessRegressor

from sklearn.metrics import mean_squared_error, mean_absolute_error

import torch

from torch.utils.data import DataLoader, random_split

from torch.optim import Adam

import warnings

warnings.filterwarnings("ignore")

for sys_1 in range(0, 20):

for sys_2 in range(10):

dname_list =

[’bikesharing’,’compactiv’,’cpusmall’,’ctscan’,’indoorloc’,’mv’,’pole’,’puma32’,’telemonitoring’]

def load_data(dname, sort = ’none’, n_clusters = 10, cluster_thr =

0.05, seed = 27407):

dfile = ’data/%s.csv’%dname

data = np.genfromtxt(dfile, delimiter=’,’)

scaler = StandardScaler()

data = scaler.fit_transform(data)

X = data[:,:-1]

Y = data[:,-1:]

pca = PCA(np.min([10, X.shape[1]]), svd_solver = ’full’)

scaler2 = StandardScaler()
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X = scaler2.fit_transform(pca.fit_transform(X))

dim_x = X.shape[1]

print(’-- dataset: %s, size: %d, n. features: %d’%(dname, len(X),

dim_x))

C = KMeans(n_clusters=n_clusters, random_state=seed).fit(X).labels_

frac_clusters = np.array([np.mean(C==j) for j in range(n_clusters)])

cluster_list = [j for j in range(n_clusters) if frac_clusters[j] >

cluster_thr]

print(’cluster list’, cluster_list)

print(’# clusters:’, len(cluster_list))

print(np.array([np.sum(C==j) for j in range(n_clusters) if

frac_clusters[j] > cluster_thr]))

print(X.shape)

use_idx = [i for i in range(len(C)) if C[i] in cluster_list]

X, Y, C = X[use_idx], Y[use_idx], C[use_idx]

X_trn, X_tst, Y_trn, Y_tst, C_trn, C_tst = train_test_split(X, Y,

C, test_size=None, train_size=0.8, stratify = C,

random_state=seed)

return X_trn, X_tst, Y_trn, Y_tst, C_trn, C_tst, cluster_list

def weight_method_1(x, temperature):

return ((x)**temperature / ((x)**temperature).sum(axis= 0) )

def weight_method_2(x, temperature):

return ((np.exp(- temperature / x)) / (np.exp(- temperature /

x)).sum(axis = 0))

# based softmax (chosen)

def weight_method_3(x, alpha):

return ((np.exp(x * alpha)) / (np.exp(x * alpha)).sum(axis = 0))

data_id = int(sys_1)

seed = 27407

batch_size = 64
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device = torch.device(’cuda’)

print(data_id, dname_list[data_id])

X_trn, X_tst, Y_trn, Y_tst, C_trn, C_tst, cluster_list =

load_data(dname_list[data_id], seed = seed)

dim_x = X_trn.shape[1]

net = [RegNN(dim_x).to(device) for _ in cluster_list]

mean_list = []

std_list = []

meta_list = []

val_losses = []

for i, c in enumerate(cluster_list):

model_dir = f’./model_parameter/{data_id}’

os.makedirs(model_dir, exist_ok=True)

model_path = ’./model_parameter/%d/model_%s_%d_%d.pt’%(data_id,

dname_list[data_id] , i, sys_2)

trainer = Trainer(net[i], batch_size, model_path, device)

idx_trn_c = (C_trn == c)

X_trn_c = X_trn[idx_trn_c]

Y_trn_c = Y_trn[idx_trn_c]

print(model_path, i, c, len(X_trn_c))

scalerX = StandardScaler()

scalerY = StandardScaler()

trn_set = RegDataset(scalerX.fit_transform(X_trn_c),

scalerY.fit_transform(Y_trn_c))

n_trn = int(len(X_trn_c) * 0.8)

n_val = len(X_trn_c) - n_trn

trn_subset, val_subset = random_split(trn_set, [n_trn, n_val],

generator=torch.Generator().manual_seed(seed))

trn_loader = DataLoader(dataset=trn_subset, batch_size=batch_size,

shuffle=True, drop_last=True)

val_loader = DataLoader(dataset=val_subset, batch_size=batch_size,

shuffle=False)
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trainer.optimizer = Adam(net[i].parameters(), lr= 1e-4 ,

weight_decay=1e-5) # lr = 1e-4

trainer.training(trn_loader, val_loader)

trainer.load()

_, Y_val_hat_std = trainer.inference(val_loader)

# Calculate and store the validation loss for the model

val_y_hat, _ = trainer.inference(val_loader)

val_loss =

mean_squared_error(np.array(val_loader.dataset.dataset.Y)[val_loader.dataset.indices].flatten(),

val_y_hat)

# Inverse of validation loss

val_losses.append(1 / val_loss)

tst_set = RegDataset(scalerX.transform(X_tst),

scalerY.transform(Y_tst))

tst_loader = DataLoader(dataset=tst_set, batch_size=batch_size,

shuffle=False)

Y_tst_hat_mean, Y_tst_hat_std = trainer.inference(tst_loader)

mean_list.append(scalerY.inverse_transform(Y_tst_hat_mean.reshape(-1,1)))

std_list.append(Y_tst_hat_std * scalerY.scale_)

meta_list.append([scalerY.scale_, np.mean(Y_val_hat_std *

scalerY.scale_), np.median(Y_val_hat_std * scalerY.scale_),

np.max(Y_val_hat_std * scalerY.scale_)])

print(val_losses)

print(val_loss)

report_RMSE = []

report_MAE = []

Y_tst = Y_tst.flatten()

oracle selection

Y_tst_hat_oracle = np.array([mean_list[cluster_list.index(s)][i] for

i, s in enumerate(C_tst)]).flatten()

tst_rmse_all = mean_squared_error(Y_tst, Y_tst_hat_oracle) ** 0.5

tst_MAE_all = mean_absolute_error(Y_tst, Y_tst_hat_oracle)

tst_rmse_cluster = [mean_squared_error(Y_tst[C_tst == k],

Y_tst_hat_oracle[C_tst == k]) ** 0.5 for k in cluster_list]
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report_RMSE.append(tst_rmse_all)

report_MAE.append(tst_MAE_all)

# Calculate weights incorporating validation loss (W Normalisation)

val_losses = np.array(val_losses).reshape(-1, 1)

uncertainties = 1 / np.vstack([a/meta_list[i][1] for i, a in

enumerate(std_list)])

weights = np.transpose(weight_method_3(uncertainties * val_losses,

alpha=0.1))

mean_array = np.transpose(np.squeeze(np.array(mean_list)))

Y_tst_hat_dyn_ensemble = np.sum(np.array(weights * mean_array), axis=1)

tst_rmse_all = mean_squared_error(Y_tst, Y_tst_hat_dyn_ensemble) ** 0.5

tst_MAE_all = mean_absolute_error(Y_tst, Y_tst_hat_dyn_ensemble)

report_MAE.append(tst_MAE_all)

report_RMSE.append(tst_rmse_all)

# Novel Proposed: Calculate weights incorporating validation loss

(With Normalisation uncertainties)

val_losses = np.array(val_losses).reshape(-1, 1)

uncertainties = 1 / np.vstack([a/meta_list[i][1] for i, a in

enumerate(std_list)])

weights = np.transpose(weight_method_3(uncertainties * val_losses,

alpha=0.1))

mean_array = np.transpose(np.squeeze(np.array(mean_list)))

Y_tst_hat_dyn_ensemble = np.sum(np.array(weights * mean_array), axis=1)

tst_rmse_all = mean_squared_error(Y_tst, Y_tst_hat_dyn_ensemble) ** 0.5

tst_MAE_all = mean_absolute_error(Y_tst, Y_tst_hat_dyn_ensemble)

report_MAE.append(tst_MAE_all)

report_RMSE.append(tst_rmse_all)

# ensemble W normalization (proposed Lee/Kang)

weight = np.transpose(weight_method_3((1 /

np.vstack([a/meta_list[i][1] for i, a in enumerate(std_list)])),

alpha = 10))

mean_array = np.transpose(np.squeeze(np.array(mean_list)))

Y_tst_hat_dyn_ensemble = np.sum(np.array(weight * mean_array), axis =

1)

tst_rmse_all = mean_squared_error(Y_tst, Y_tst_hat_dyn_ensemble) ** 0.5
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tst_MAE_all = mean_absolute_error(Y_tst, Y_tst_hat_dyn_ensemble)

report_MAE.append(tst_MAE_all)

report_RMSE.append(tst_rmse_all)

# ensemble W/O normalization

weight = np.transpose(weight_method_3((1 / np.array(std_list)), alpha

= 10))

weight[weight < 10 ** (-8)] = 0

weight = np.nan_to_num(weight, nan = 1)

if np.sum(weight, axis = 0).any() > 1.1:

raise ValueError

mean_array = np.transpose(np.squeeze(np.array(mean_list)))

Y_tst_hat_dyn_ensemble = np.sum(np.array(weight * mean_array), axis =

1)

tst_rmse_all = mean_squared_error(Y_tst, Y_tst_hat_dyn_ensemble) ** 0.5

tst_MAE_all = mean_absolute_error(Y_tst, Y_tst_hat_dyn_ensemble)

report_MAE.append(tst_MAE_all)

report_RMSE.append(tst_rmse_all)

tst_rmse_cluster = [mean_squared_error(Y_tst[C_tst == k],

Y_tst_hat_dyn_ensemble[C_tst == k]) ** 0.5 for k in cluster_list]

tst_mae_cluster = [mean_absolute_error(Y_tst[C_tst == k],

Y_tst_hat_dyn_ensemble[C_tst == k]) for k in cluster_list]

## dynamic selection / var mean normalized

selection = np.argmin(np.vstack([a/meta_list[i][1] for i, a in

enumerate(std_list)]), 0)

Y_tst_hat_dyn = np.array([mean_list[s][i] for i, s in

enumerate(selection)]).flatten()

tst_rmse_all = mean_squared_error(Y_tst, Y_tst_hat_dyn) ** 0.5

tst_rmse_cluster = [mean_squared_error(Y_tst[C_tst == k],

Y_tst_hat_dyn[C_tst == k]) ** 0.5 for k in cluster_list]

tst_MAE_all = mean_absolute_error(Y_tst, Y_tst_hat_dyn)

report_MAE.append(tst_MAE_all)

report_RMSE.append(tst_rmse_all)

## dynamic selection / vanila

selection = np.argmin(np.vstack(std_list), 0)

Y_tst_hat_dyn = np.array([mean_list[s][i] for i, s in

enumerate(selection)]).flatten()

tst_rmse_all = mean_squared_error(Y_tst, Y_tst_hat_dyn) ** 0.5
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tst_rmse_cluster = [mean_squared_error(Y_tst[C_tst == k],

Y_tst_hat_dyn[C_tst == k]) ** 0.5 for k in cluster_list]

tst_MAE_all = mean_absolute_error(Y_tst, Y_tst_hat_dyn)

report_MAE.append(tst_MAE_all)

report_RMSE.append(tst_rmse_all)

## mean prediction

Y_tst_hat_mean = np.mean(mean_list, 0).flatten()

tst_rmse_all = mean_squared_error(Y_tst, Y_tst_hat_mean) ** 0.5

tst_rmse_cluster = [mean_squared_error(Y_tst[C_tst == k],

Y_tst_hat_mean[C_tst == k]) ** 0.5 for k in cluster_list]

tst_MAE_all = mean_absolute_error(Y_tst, Y_tst_hat_mean)

report_MAE.append(tst_MAE_all)

report_RMSE.append(tst_rmse_all)

## median prediction

Y_tst_hat_median = np.median(mean_list, 0).flatten()

tst_rmse_all = mean_squared_error(Y_tst, Y_tst_hat_median) ** 0.5

tst_rmse_cluster = [mean_squared_error(Y_tst[C_tst == k],

Y_tst_hat_median[C_tst == k]) ** 0.5 for k in cluster_list]

tst_MAE_all = mean_absolute_error(Y_tst, Y_tst_hat_median)

report_MAE.append(tst_MAE_all)

report_RMSE.append(tst_rmse_all)

with open(’./{}_NEW_DE_wo_RMSE_MINE2.csv’.format(dname_list[data_id]),

’a’) as f:

wr = csv.writer(f)

wr.writerow(report_RMSE)

with open(’./{}_NEW_DE_wo_MAE_MINE2.csv’.format(dname_list[data_id]),

’a’) as f:

wr = csv.writer(f)

wr.writerow(report_MAE)
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