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Abstract

This paper addresses the Driver and Vehicle Routing Problem (DVRP), a routing prob-

lem with two depots. Each driver must start and end at the same depot to return home,

while each vehicle must begin and end at different depots for maintenance checks. Therefore,

the drivers must switch vehicles at designated exchange locations. Previously, an efficient

heuristic for the DVRP was developed in the literature. However, this heuristic only as-

sumed one arbitrary exchange location. We present an improved version of the heuristic

that allows multiple exchange locations and incorporates the locations as a decision. We use

a multi-armed bandit approach to find the best locations. This extension consistently yields

better results than when one arbitrary exchange location is considered. Additionally, our

implementation does not compromise on computation time. This shows that, in practical

applications, installing more exchange locations strategically is beneficial.
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1 Introduction

Vehicle routing problems (VRP) are studied extensively because of their relevance in society.

Transportation plays a big part in our daily lives, e.g., public transport and postal services.

Therefore, it is in the best interest of a transportation company to effectively and efficiently

identify routes for its vehicles such that its customers are served and the costs are minimized.

VRP problems commonly assume that a driver stays with one vehicle throughout their entire

route.

The Driver and Vehicle Routing Problem (DVRP), proposed in Domı́nguez-Mart́ın et al.

(2018a), takes a different view in which the drivers and the vehicles have different routes. Re-

alistically, the drivers wish to return home after a long time on the road. Vehicles do not have

this requirement. This variant of the VRP includes two depots, each housing a homogeneous

fleet of vehicles and a homogeneous crew of drivers. Each driver leaving from a depot must

return to the same depot at the end of their route. On the other hand, each vehicle departing

from a depot must end at the other depot. This is possible by having drivers exchange vehicles

while on duty. This swap can only take place in specified exchange locations. A vehicle can only

move when accompanied by a driver. Drivers can only move in a vehicle. All driver-vehicle pairs

must collectively visit all customers. The duration of a route is defined as the time between the

departure from a depot and the arrival to a depot. Under protective labor laws, the duration

of a driver’s route must not exceed a given time limit. Vehicles, in contrast, can be on the road

indefinitely.

This problem was originally inspired by a case in air transportation in the Canary Islands

(Salazar-González, 2014). In this problem, a set of scheduled flights between airports must

performed daily by aircraft and flight crew. Two major airports played the role of the depots,

Tenerife North and Las Palmas. The crew leaving from each base must return by the end of

the day to avoid overnight hotel costs. Each aircraft must undergo maintenance every other

day, and maintenance is only possible in Las Palmas. As this airport has limited capacity, it

is required that each aircraft departing from Las Palmas ends in Tenerife North, while aircraft

departing from Tenerife North must fly to Las Palmas for maintenance.

For the DVRP, an effective heuristic is constructed in Domı́nguez-Mart́ın et al. (2023). The

heuristic has two phases. The first phase generates the routes of drivers while ensuring that

the duration does not exceed the allowed limit and every customer is visited. The second

phase constructs the vehicle routes accordingly. However, that heuristic assumes one exchange

location which is selected arbitrarily. This setting is restrictive and costly. Therefore, the main

contribution of our paper is to extend the heuristic to incorporate the exchange location as a

decision and to allow multiple exchange locations. To find a balance between exploring new

exchange locations and exploiting familiar exchange locations, this problem is solved as a multi-

armed bandit problem. This extension has many cost benefits. As the exchange of vehicles is

mandatory, the exchange location will be visited many times. Having an exchange location close

to the depots will reduce the costs associated with travel distance. Furthermore, having multiple

exchange locations intuitively cuts costs by implicitly clustering the customer locations based

on distance. In practical applications, the DVRP is a frequently repeated problem (e.g., daily

in the Canary Islands). The amount of costs saved will accumulate. Therefore, it is beneficial
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to invest and install more facilities that support exchanging vehicles.

The remainder of the paper is structured as follows. Section 2 provides a summary of the

related literature. Section 3 provides the framework for the DVRP with multiple exchange loca-

tions and provides insight into the data instances. Section 4 and 5 constitute the methodology

of the paper. In the former section, the heuristic algorithm is explained, while the latter section

proposes modifications to determine good exchange locations. Section 6 and 7 form the numer-

ical results. The former section discusses the issues with replicating the heuristic algorithm.

The latter section focuses on the results of the proposed extensions. Lastly, the conclusions are

gathered in Section 8.

2 Literature review

A VRP classically includes one depot which all vehicles depart from and return to (see Mor

& Speranza, 2022, for a recent survey). The idea to expand the problem to multiple depots

followed soon, with Laporte (1984) providing a branch-and-bound algorithm to find the optimal

value. In the standard multi-depot VRP, every vehicle must start and end at the same depot.

This allows efficient heuristics that first assign customer locations to depots, and then construct

the routes in a second phase (e.g., Renaud et al., 1996). To augment flexibility and practicality,

Crevier et al. (2007) describes the Multi-Depot VRP with Inter-depot routes (MDVRPI). In

this problem, vehicles can end their route in any depot that is convenient, adding a layer of

complexity. Our DVRP takes a unique approach with the depots. Multiple depots are present

but strict rules apply on which depots to visit.

Traditionally, no distinction was made between the driver and the vehicle. Groër et al.

(2009) emphasizes the relationship between the drivers and customers. Customer satisfaction

is heightened when a driver consistently visits the same customers. Another paper that values

the driver consistency is Spliet & Dekker (2016). The authors first assign customers to drivers

when demand is unknown, and then create the vehicle routes when the demand is revealed.

Despite the focus on the driver, a driver stays with one vehicle from start to finish. In terms of

mathematical formulation, the driver and vehicle are still one entity.

Plenty of papers view the crew and the vehicle as separate factors. One approach is to

view the route construction and crew scheduling as two separate problems. Examples of the

sequential approach are Ball et al. (1983); Darby-Dowman et al. (1988). While commonly the

routes of the vehicles are constructed first and the crew is assigned second, we reverse the order

for the DVRP in this paper. This helps shift the focus from the vehicles to the crew. Another

approach to the vehicle and crew scheduling problem is to integrate vehicle routing and crew

scheduling. One of the earliest formulations for the single depot case is proposed in Freling et

al. (1999). Cordeau et al. (2001) solves the same type of problem in air transportation. The

integrated vehicle and crew scheduling problem is extended to multi-depot in Huisman et al.

(2005). Hollis et al. (2006) discusses a similar problem in the context of postal services. The

simultaneous approach received much more attention lately due to the many benefits that it

offers. It easier to respect the working hours of the crew. Integration also generally leads to

lower costs because the costs attributed to personnel often outweigh the costs attributed to

vehicles. There is an increased focus on the crew because a large turnover has become a serious
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problem, especially in the truckload industry (Vergara & Root, 2013). Srinivas & Gajanand

(2017) presents a qualitative survey on the factors that influence driver behavior, especially in

cases where the driver deviates from planning.

The DVRP was first defined in Domı́nguez-Mart́ın et al. (2018a). In that paper, the authors

created an Integer Linear Programming formulation that integrates the driver and vehicle con-

straints. Furthermore, they developed a branch-and-cut algorithm that can solve to optimality

for instances with a size of up to 30 nodes. Domı́nguez-Mart́ın et al. (2018b) subsequently

modeled a two-phase heuristic for the problem with one exchange location. The first phase con-

structs driver routes using an Integer Linear Programming formulation, and the second phase

constructs the corresponding vehicle routes. This approach solves instances with sizes up to

50. An improved version of the two-phase heuristic is described in Domı́nguez-Mart́ın et al.

(2023). In this method, the first phase of the heuristic is replaced with a multi-start loop. This

multi-start heuristic regularly finds optimal solutions for small instances with a size of up to 30

nodes. The method also finds solutions of high quality in a short time for bigger instances with

a size of up to 1000 nodes.

3 Problem description

The DVRP is defined on a complete directed graph G = (V,A). The node set V = D ∪ Vc

consists of the set of customer locations Vc = {1, ..., n}, and the set of depots D = {0, n + 1}.
All customer locations must be visited by a vehicle, led by a driver. Therefore the number of

nodes in the graph is n+ 2. The set of arcs is A = {(i, j) : i, j ∈ V, i ̸= j}. When traversing arc

(i, j), a cost cij is incurred, and the time tij is needed. The total travel time of a driver must

not exceed a given time limit T . The vehicle routes are not limited by time. Let Kd be the

set of drivers available at each depot d ∈ D. All drivers must start and end their route at the

same depot. Vehicles, on the other hand, must end in the other depot than the starting depot.

This is possible when drivers switch vehicles in exchange locations. The set E ⊆ Vc is the set

of exchange locations. It is only possible for a driver to switch vehicles in these nodes. Multiple

drivers can visit an exchange location. An exchange location must be visited at least once,

while the other customer locations must be visited exactly once. To make the interactions at

the exchange locations possible, the routes must be time-synchronized. This means that drivers

must have consistent departure and arrival times at the exchange locations. However, when we

assert that every driver and vehicle visit exactly one exchange location, time synchronization

is no longer a decision because drivers and vehicles are free to leave when convenient. This

assertion is reasonable because visiting multiple exchange locations leads to unnecessary costs.

Furthermore, to guarantee the compatibility of driver routes and vehicle routes, we impose that

at every exchange location, the number of visiting drivers from one depot equals the number of

visiting drivers from the other depot. This guarantee is proven in Section 3.2.

To represent a driver route as a walk in the graph G, we introduce Rld as a sequence of nodes

that the driver ld ∈ Kd leaving from depot d ∈ D will visit. The goal of the DVRP is to find

feasible routes for drivers and vehicles in G such that all customers are visited while minimizing

the total costs. The exact mathematical formulation is described in Domı́nguez-Mart́ın et al.

(2018a).
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3.1 Data

The data consists of three sets of randomly generated instances. Each of these instances specifies

customer n to be the exchange location. The first set (Class I) appeared first in Domı́nguez-

Mart́ın et al. (2018a). The instances have size n+2 ∈ {10, 15, 20, 25, 30} and the node coordinates

are in the square [0, 100]× [0, 100]. All depots, exchange locations, and other customer locations

are uniformly distributed over the area. There are five instances for each size, resulting in 25

instances in Class I. The second set (Class II) appeared first in Domı́nguez-Mart́ın et al. (2018b).

The instances have size n + 2 = 50. The nodes have more structure. One depot is randomly

placed in the area [0, 20] × [0, 100], and the other depot in [80, 100] × [0, 100]. The exchange

location is placed in [40, 60] × [0, 100]. This configuration attempts to represent the common

situation where the two depots are located far from each other, and the exchange location is

placed at a central location between them. There are 16 instances of this class. Lastly, the third

set of instances (Class III) is the set of the largest instances, first introduced in Domı́nguez-

Mart́ın et al. (2023). The instances have size n + 2 ∈ {100, 200, 300, 400, 500, 600, 800, 1000}.
These instances are generated as in Class II, with two depots located far from each other and

the exchange location between them. Each size also has five instances. All of these 81 instances

are available at data.mendeley.com/datasets/w5sbtwy8y9/4.

3.2 Time synchronization

In the DVRP with one exchange location, Domı́nguez-Mart́ın et al. (2018b) claims that when

the number of drivers leaving from each depot is equal, then there exist compatible vehicle

routes corresponding to the driver routes. While this sounds trivial, we present a formal proof.

Let G′ = (V,A′) =
⋃

d∈D
⋃

ld∈Kd
Rld be a directed multigraph, which is the union of all driver

routes. Let e ∈ V be the exchange location. Then every driver route is a cycle that visits e and

either 0 or n+ 1. Additionally, the in- and out-degree of a node v ∈ V is denoted as δ−(v) and

δ+(v) respectively.

Theorem 1. If δ+(0) = δ+(n + 1) = m,m ∈ N and there is only one exchange location, then

there exist compatible vehicle routes corresponding to G′.

Proof. We prove this by induction.

Base step: m = 1. This means that there are two cycles that only share the node e. Let

(0, v1, ..., vp−1, e, vp+1, ..., 0) be the cycle of the driver leaving from depot 0, with e being the pth

visit number. Let (n+1, u1, ..., uq−1, e, uq+1, ..., n+1) be the cycle of the other driver, with e being

the qth visit number. All ui and vi are different. The first vehicle route is the path (0, v1, ..., vp−
1, e, uq+1, ..., n + 1). The second vehicle route is is the path (n + 1, u1, ..., uq−1, e, vp+1..., 0).

Because the union of these paths equals G′, no driver moves without a vehicle and no vehicle

moves without a driver.

Induction hypothesis: Let M ∈ N and let G′
M be a graph containing the driver cycles. Assume

that there exist compatible vehicle routes for G′
M .

Inductive step: Let G′
M+1 be a graph of driver routes such that δ+(0) = δ+(n + 1) = M + 1.

We select an arbitrary driver l0 ∈ K0 and an arbitrary driver ln+1 ∈ Kn+1. From the two

corresponding cycles, we construct two vehicle paths in the same manner as described in the
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base step. Denote the paths as P0 and Pn+1. Then, we consider the subgraph G′
M ⊂ G′

M+1

where all arcs and non-exchange customer nodes in the two vehicle paths are removed. This

eliminates l0 and ln+1 from the resulting problem. In G′
M , the out-degrees of both depots will be

M , because exactly one outgoing arc is removed from each depot. By the induction hypothesis,

G′
M has compatible vehicle routes for (K0 ∪Kn+1) \ {l0, ln + 1}. Taking the union of P0, Pn+1,

and the vehicle routes from G′
M , we obtain a set of vehicle routes that ensure that no driver

moves without a vehicle and no vehicle moves without a driver.

We can extend Theorem 1 to multiple exchange locations. We only require the condition

that the number of drivers from one depot that visit some exchange location must be equal to

the number of drivers from the other depot that visit the exchange location.

Corollary 2. If ∀e ∈ E: the number of cycles which include e and 0 equals the number of cycles

which include e and n+ 1, then there exist compatible vehicle routes corresponding to G′.

Proof. Let G′
e ⊂ G′ be a subgraph that contains all the driver cycles that visit exchange location

e ∈ E. For illustration,
⋃

e∈E G′
e = G′ and

⋂
e∈E G′

e = {0, n + 1}. For every G′
e, the graph has

one exchange location. In the directed multigraph G′
e, the number of cycles that visit e and

0 equals δ+(0) and the number of cycles that visit e and n + 1 equals δ+(n + 1). Therefore,

by Theorem 1, every subgraph G′
e has compatible vehicle routes. The union of all the vehicle

routes equals G′. Therefore, no driver moves without a vehicle and no vehicle moves without a

driver.

4 Heuristic algorithm

In this section, we describe the heuristic algorithm to solve the DVRP. Domı́nguez-Mart́ın et al.

(2023) originally defined the heuristic as a two-phase algorithm, where the first phase creates

the driver routes, and the second phase creates the vehicle routes. For the remainder of the

paper, we omit the second phase. It has an insignificant impact on the computation time.

Theorem 1 and Corollary 2 also ensure the existence of the vehicle routes. Domı́nguez-Mart́ın

et al. (2018b) describes an effective algorithm to construct the vehicle routes given the driver

routes. Algorithm 1 describes the multi-start heuristic for the construction of driver routes.

While the time limit is not reached, the heuristic tries finding a solution with a fixed number

of drivers nDrivers leaving each depot, starting with nDrivers = 1. It searches for a solution

using a multi-start loop, which is described in lines 6 to 14 in the algorithm. In the loop, a

new solution is repeatedly constructed and improved upon. The lowest-cost feasible solution is

kept. Infeasible solutions are disposed of. A solution is feasible if every customer is served and

no driver route has a duration exceeding T . This loop is repeated a specified number of times

maxIter. If no solution is found after this number of iterations, nDrivers is increased, and the

multi-start loop repeats.

4.1 Initial construction of driver routes

Let G′ =
⋃

d∈D
⋃

ld∈Kd
Rld be the set of all driver routes. As every route must visit an exchange

location, the algorithm initializes Rld = (d, e, d) for a given e ∈ E. The strategy to choose e is
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Algorithm 1 Multi-start heuristic for the DVRP, adapted from Domı́nguez-Mart́ın et al. (2023)

Input: Instance data and parameters timeLim and maxIter

Output: Drivers’ routes S∗ and solution value f∗

1: f∗ ←∞
2: S∗ ← ∅
3: nDrivers← 1
4: while time ≤ timeLim and no feasible solution S∗ found and nDrivers ≤ maxDrivers

do
5: nIter ← 1
6: while time ≤ timeLim and nIter ≤ maxIter do
7: S ← ConstructGreedySol(nDrivers)
8: S ← LocalSearch(S)
9: if S is feasible and f(S) < f∗ then

10: S∗ ← S
11: f∗ ← f(S)
12: end if
13: nIter ← nIter + 1
14: end while
15: if not feasible solution S∗ found then
16: nDrivers← nDrivers+ 1
17: end if
18: end while
19: return S∗, and f∗

described in Section 5. It continues by repeatedly inserting a customer in a route until G′ covers

all nodes. In every iteration, a customer i ∈ Vc that is not in any route is randomly selected

and is added to a route using the cheapest insertion strategy. This means that we search for

two consecutive nodes u, v in any route in G′ such that cui+ civ − cuv is minimal. The customer

is inserted in the selected route if the route duration does not exceed T . If it does, then the

customer i is inserted into the route with the shortest duration, following again the cheapest

insertion strategy.

To inspect the time complexity, we specify r = 2 ∗ nDrivers as the number of routes. In

one multi-start iteration, the greedy construction is O(n2). The first node to be inserted must

consider 2r number of positions. For each route, it must be inserted either right before or after

the exchange node. The second node must consider 2r + 1 positions. Continuing this way, the

ith node must consider 2r + i − 1 positions. In total, using the arithmetic series formula, we

have n2r+2r+n−1
2 options to consider, which is O(n2).

4.2 Improvements of driver routes

The improvement procedure consists of two parts. First, an inter-route customer relocation local

search is repeated until there is no feasible improvement. Second, a 2-opt arc exchange local

search is repeated until a local minimum is reached. This simple design is demonstrated to be

very effective in Domı́nguez-Mart́ın et al. (2023).

The inter-route operator randomly chooses a customer in G′ that is not an exchange location.

The drawn customer is removed from its current route and is inserted into another route using
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the cheapest insertion strategy. Every other route is examined for an insertion that would lead

to the biggest reduction in costs. The insertion must be time-feasible. This means that the

relocation is not considered if it causes a route’s duration to exceed the time limit T . This may

cause difficulty in escaping a local minimum. The insertion must also lead to lower costs. A

disadvantage is that the heuristic might fail to find a feasible solution, although it exists. This

can occur when there is an imbalance in the lengths of the driver routes. Suppose that there is

a short route and a long route that exceeds the time limit. Relocating a customer from the long

route to the short route possibly makes the solution feasible. However, this option is neglected

if it increases the costs. When no feasible relocation leads to lower costs, the next customer is

considered. When every customer is examined and no customer relocation leads to lower costs,

we move to the 2-opt local search.

In the 2-opt operator, for every route, we consider all non-adjacent pairs of arcs. For every

pair, we calculate the change in costs if we were to delete the arcs and reconnect the route. The

pair of arcs that leads to the largest decrease in costs is swapped in that manner. This procedure

is repeated as long as a cost-decreasing arc exchange is found. It is unnecessary to take the time

feasibility into account, as the arc exchanges cannot increase the duration of the route.

The running time of the inter-route and the 2-opt local search depends on the number of

iterations. The number of iterations depends on whether improvements are found, and numerical

experiments are conducted to inspect this. For one iteration of the inter-route operator, the best-

case time is O(n). In this case, a customer i considers all positions outside its route to relocate to

and finds a feasible improvement. If π is the fraction of nodes in the graph that are in the same

route as i, then (1− π)n positions must be considered, which is O(n). The worst-case running

time of one iteration is O(n2), which happens at the termination of the inter-route local search.

When a customer fails to find a feasible improvement, the next customer is considered. The

local search terminates when all customers are inspected and none yield a desirable relocation.

Therefore, n customers examine O(n) positions, which is O(n2). Under the assumption that the

number of iterations is uncorrelated with n, the whole inter-route relocation would be O(n2). In

this case, the last iteration, which is O(n2), dominates all the other iterations. This assumption

is investigated. One iteration of the 2-opt local search is O(n2). For one route, let π be the

fraction of nodes in that route. One route is a cycle, which means the number of arcs equals the

number of nodes. Every pair of non-adjacent arcs must be examined to find the best exchange.

The number of pairs has the upper bound
(
πn
2

)
, which is O(n2).

5 Finding optimal exchange locations

Domı́nguez-Mart́ın et al. (2023) considered the restrictive scenario of the DVRP where only one

exchange location is present. Furthermore, the exchange location is arbitrarily placed, especially

in Class I instances. This section describes the strategy to find multiple alternative exchange

locations.
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5.1 Candidate exchange locations

To inspect the characteristics of favorable exchange locations, we solve the DVRP using alter-

native exchange locations. We first define what makes a customer node a candidate exchange

location. A customer location is a candidate if the highest distance of the location to a depot

does not exceed the distance between the two depots. We further introduce C as the set of

candidate locations.

We solve the DVRP with one alternative exchange node. Two different criteria are inspected

to select the exchange location. The first criterion is the minimum distance to one depot, under

the constraint that the location is a candidate. Therefore, we select a location as close as possible

to one depot without being too far from the other. In a graph with no candidates locations,

which happens when two depots are very close to each other, we do not inspect this criterion.

The second criterion is the sum of the distances of the location to the two depots. Therefore, we

are searching for a location in the middle of the two depots, irrespective of the location being

a candidate. We compare the results with the original exchange locations described in Section

3.1.

5.2 Deciding on good exchange locations

To satisfy the conditions of Corollary 2, we decide the exchange location for each pair of drivers

coming from different depots. This decision will take place exclusively in the initial greedy

construction. It is not effective to incorporate switching the exchange location as part of the

solution improvement. Switching leads very unlikely to lower costs because of the cheapest

insertion strategy during the greedy construction. Due to the multi-start nature of the algorithm,

we approach the greedy construction as a multi-armed bandit problem. We employ the epsilon-

decreasing strategy (Sutton & Barto, 2018); for a varying ϵ, the best currently known exchange

locations are chosen with a probability of 1− ϵ. Otherwise, with probability ϵ, a random set of

exchange locations is chosen. With a decreasing ϵ, exploration is emphasized at the start, and

exploitation is emphasized near the end of the algorithm. We use the simple linear function

ϵ = 1− nIter
maxIter . More complex strategies for the multi-armed bandit are left for future research.

When deciding on the set of exchange locations, we consider a k-combination with repetitions

of the set of candidate locations, with k = nDrivers. If k = 1, the heuristic simply optimizes

the exchange location. If there are no candidates, which happens when the two depots are close

to each other, then the set C contains one node for which the sum of the distances to the depots

is minimal. Let |C| be the number of candidate locations. The number of possible combinations

is
(|C|+k−1

k

)
. If this value exceeds the maximum number of multi-start iterations maxIter, then

the exploration of candidate locations is limited. The time complexity of the greedy construction

is unaffected as all the multi-armed bandit operations are constant time.

6 Results of replication

The algorithm in Section 4 was coded in Java. All experiments were run on a computer with

an Intel(R) Core(TM) i7-11800H CPU @ 2.30 GHz, 16 GB RAM, and Windows 11 Home. We

replicate Domı́nguez-Mart́ın et al. (2023) for the values of the parameters, as their configuration
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showed an appropriate balance between solution quality and running time. Throughout all in-

stances of data, the number of drivers available maxDrivers at each depot is three. The costs

cij equal the Euclidean distance between location i and j. The time required to traverse arc

(i, j) is defined as tij = cij/60 + 0.5. The maximum number of multi-start iterations maxIter

is set to 100, 000. The parameter T , the upper bound of the duration the driver routes, takes

different values for different instances and is reported in the tables below. For Class I and Class

III instances, we inspect small values of T = TA that still allow feasible solutions and large values

of T = TB
1 that generate cheap solutions with one driver. The maximum computation time

timeLim is set to 2 hours, which is the same limit as in Domı́nguez-Mart́ın et al. (2018a). This

value is chosen in contrast to the 10 minutes in Domı́nguez-Mart́ın et al. (2018b) as our exper-

iments failed to find feasible solutions for large datasets. We employ these settings throughout

this entire section and Section 7.

6.1 Computation time

The computation time of the algorithm depends on three major factors. The first is the size of

the instance n + 2. The second is the bound of driver route duration T . Smaller values of T

allow few feasible solutions, requiring the algorithm to search longer and inspect multiple values

of nDrivers. The third is the number of multi-start iterations maxIter. However, the value

of this parameter is fixed at 100,000 throughout the paper. Therefore we do not consider this

factor.

With the time limit set to 2 hours, we do not consider data instances with a size of 500 or

higher. The heuristic finds a feasible solution only up to size 400 within the time limit. This

contradicts Domı́nguez-Mart́ın et al. (2023), in which their heuristic always found a solution

within 10 minutes for all datasets, including the largest with size 1000. Their algorithm was

coded in C++ using a desktop computer with an Intel(R) Core(TM) i7-10750H CPU @ 2.60

GHz, 16 GB RAM, and Windows 10 Home. According to the single-thread rates available

at www.cpubenchmark.net, our hardware contradictorily has a better performance. The dis-

crepancy in computation times is too large to attribute to the difference in software. A possible

explanation is the difference in interpretation of the algorithm. The authors were not transparent

in their approach. In that paper, they state that they repeat the inter-route and 2-opt operator

while the total costs decrease. This has an ambiguous meaning. Our algorithm stops the inter-

route operator when no customer has an improving relocation. A faster alternative would be to

terminate when the randomly chosen customer has no improving relocation, so other customers

would not be considered. Furthermore, our algorithm finds the best improvement among all

possible arc exchanges. A faster alternative would be to perform the first improvement. In

this case, not every pair of non-adjacent arcs must be examined every iteration. These faster

alternatives do not search for improvements as thoroughly as our implementation. Therefore,

we would expect solutions of worse quality if these alternatives are employed.

To dissect the computation times of our algorithm, we time how much each of the three

operators contributes to the total running time. The three operators are the greedy con-

struction, inter-route relocation, and 2-opt. We inspect one instance of each size n + 2 ∈
1The values of TA and TB correspond to TA and TD in Domı́nguez-Mart́ın et al. (2023), respectively
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{10, 15, 20, 25, 30, 50, 100, 200, 300}. We solve the DVRP with T = TB for a fair comparison,

as the algorithm always finds a feasible solution with one driver per depot. Furthermore, we

select the exchange location specified in the data instance, as in Domı́nguez-Mart́ın et al. (2023).

We additionally track the average number of inter-route iterations and 2-opt iterations across

multi-start iterations. This means we calculate the average number of customer relocations and

arc exchanges in one multi-start iteration. The results are reported in Table 1.

Name T k Total time Greedy Inter-route 2-opt

Time Iterations Time Iterations

n10-1 10 1 0.42s 0.19s 0.05s 7.02 0.18s 2.22
n15-1 12 1 0.68s 0.24s 0.12s 15.49 0.32s 2.44
n20-1 14 1 1.34s 0.36s 0.59s 47.70 0.40s 2.62
n25-1 16 1 1.61s 0.50s 0.31s 26.67 0.80s 2.70
n30-1 18 1 3.74s 0.78s 1.51s 83.07 1.45s 3.21
n50-1 18 1 8.87s 1.70s 1.13s 47.00 6.04s 5.66
n100-1 40 1 48.75s 4.85s 8.14s 208.13 35.76s 8.32
n200-1 60 1 293.33s 19.16s 15.87s 197.00 258.29s 15.40
n300-1 90 1 945.92s 44.87s 41.57s 322.23 859.48s 21.23

Table 1: Summary of Computation Times and Iterations

Evidently, the running time of each operator increases as the size increases. The running time

of 2-opt grows the fastest and requires the majority of the time. Between the greedy construction

and inter-route operator, there is not one that is consistently faster. The number of iterations

in the inter-route relocation has a volatile increasing trend, while for 2-opt a much more stable

increasing trend is visible. When inspecting the number of iterations, we find surprisingly that

the inter-route relocation has many more than the 2-opt. This means that the inter-route finds

improvements more frequently. Despite that the 2-opt exchanges happen less often, they still

require more time.

Figure 1 shows evidence in favor of the theoretical running times explained in Section 4. The

horizontal axis shows the number of customers n, and the vertical axis shows the time in seconds.

The blue dots are the observed running times and the red line is the fitted curve an2+bn+c. The

coefficient parameters a, b, and c are estimated using Ordinary Least Squares. Figure 1a shows

the growth of greedy construction time. Figure 1b shows the evolution of the total computation

time of the inter-route local search. Both resemble a quadratic parabola, giving evidence that

both operators are O(n2). However, the inter-route operator has a worse fit. This is likely

because the number of iterations has an increasing trend. The number of iterations must be

uncorrelated with n for the local search to be O(n2). Figures 1c and 1d shows the average

time per iteration of the inter-route relocation and 2-opt, respectively. The times are calculated

by dividing the time attributed to the operator by the average number of iterations. For the

inter-route relocation, the running times show a linear pattern. This implies that the best case,

where an immediate improvement is found, happens the most often. Therefore, most of the total

computation time is attributed to the few dominating worst cases that are O(n2). Because the

2-opt has a quadratic growth in every iteration, the growth in computation time is the fastest,

contributing the most to the total computation time of the heuristic. For the bigger datasets

with a size of 100 or higher, the average running times per iteration of 2-opt are close to the
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(a) ConstructGreedySol (b) Inter-route Total

(c) Inter-route per Iteration (d) 2-opt per Iteration

Figure 1: Running time of parts of the heuristic

total running of the greedy construction and inter-route relocation. This gives further indication

that the time complexities are O(n2).

6.2 Solution quality

Next to discrepancies in computation time, there are also some sizable gaps in the solution

values. The results of the multi-start heuristic taken from Domı́nguez-Mart́ın et al. (2023) are

associated with the symbolH2, which is used in that paper. The columns under en are the results

of our attempt to replicate the heuristic. This symbol signifies that the nth customer serves as

the exchange location. Despite that the H2 also follows this setting, the reason for choosing en

will be apparent in Section 7.1. Furthermore, the column TA or TB sets the maximum duration

of a driver route, with TA being a small value and TB being a bigger value. The column sol is

the objective value of the solution, the total costs of all routes. The parameter k is the number

of drivers per depot. Lastly, the Gap is the percentage deviation in solution value between the

original H2 heuristic and the replicated en heuristic. The value is defined as 100∗((replication
solution value) - (original solution value)) / (original solution value). A positive gap means

that our replication has higher costs.

For the sake of brevity and ease of reading, not all instances are displayed. The presented

datasets represent their size in terms of running time and solution quality. All results of the

replication are available in Appendix A. Table 2 and 3 show a comparison for Class I and Class

II instances, respectively. The gaps between the results are small for the two instance classes.

The number of drivers required always stays the same. The differences in solution value are

likely explained by different precision levels of decimal numbers. Furthermore, many solutions

are optimal, indicated with an asterisk * in the tables. The optimality is confirmed using

the mathematical formulation of the DVRP (Domı́nguez-Mart́ın et al., 2018a). An anomalous
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observation is the instance n15-3 with T = TA. The absolute gap is too large to be justified by

the difference in rounding.

Name TA H2 en TB H2 en

sol k sol k Gap sol k sol k Gap

n10-1 6 652* 2 657 2 0.73 10 369* 1 371 1 0.51

n10-2 5 486* 2 486 2 0.08 10 292* 1 293 1 0.44

n10-3 5 987* 3 987 3 -0.04 10 383* 1 383 1 -0.08

n15-1 6 454* 2 456 2 0.34 12 302* 1 302 1 -0.04

n15-2 6 746* 2 746 2 -0.06 12 406* 1 405 1 -0.25

n15-3 6 723 2 660 2 -8.70 12 388* 1 387 1 -0.28

n20-1 7 1268 3 1275 3 0.52 14 520* 1 521 1 0.22

n20-2 7 666* 2 667 2 0.10 14 399* 1 402 1 0.70

n20-3 7 845* 2 846 2 0.14 14 507* 1 508 1 0.17

n25-1 8 718* 2 720 2 0.31 16 483* 1 483 1 0.01

n25-2 8 801 2 805 2 0.56 16 483* 1 486 1 0.68

n25-3 8 603* 2 601 2 -0.32 16 405* 1 402 1 -0.62

n30-1 9 897 2 896 2 -0.07 18 581* 1 582 1 0.25

n30-2 9 854 2 861 2 0.08 18 552* 1 553 1 0.26

n30-3 9 812 2 812 2 0.01 18 485* 1 487 1 0.34

Table 2: Replication results for Class I instances

Name T H2 en

sol k sol k Gap

n50-1 18 606* 1 608 1 0.38

n50-2 18 592 1 591 1 -0.16

n50-3 18 585 1 586 1 0.12

n50-4 18 593* 1 597 1 0.69

n50-5 18 613 1 617 1 0.60

Table 3: Replication results for Class II intances

Table 4 shows a comparison for Class III instances. The number of drivers required is

consistent. The gap remains close to zero when T = TB. The differences are likely again due to

precision. However, when T = TA, our replication consistently performs better. The gaps are

always negative and are substantial on some occasions. This indicates that our implementation

of the multi-start heuristic finds better solutions at the cost of higher computation times than

Domı́nguez-Mart́ın et al. (2023). This means that the authors most probably applied the faster

alternatives to the local search operators as described in Section 6.1.
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Name TA H2 en TB H2 en

sol k sol k Gap sol k sol k Gap

n100-1 15 1130 3 1129 3 -0.07 40 738 1 741 1 0.40

n100-2 15 1246 3 1238 3 -0.63 40 787 1 788 1 0.16

n200-1 25 1721 3 1575 3 -8.50 60 1120 1 1141 1 1.85

n200-2 25 1865 3 1687 3 -9.54 60 1139 1 1140 1 0.12

n300-1 35 1816 3 1781 3 -1.95 90 1375 1 1380 1 0.39

n300-2 35 2189 3 2047 3 -6.51 90 1340 1 1335 1 -0.34

n400-1 45 2229 3 2109 3 -5.38 115 1573 1 1551 1 -1.40

n400-2 45 2007 3 1974 3 -1.67 115 1536 1 1531 1 -0.35

Table 4: Replication results for Class III intances

7 Results of optimizing exchange locations

This section provides the results of the extensions of Section 5. The modifications were imple-

mented in Java as well. The hardware and the value of all parameters are the same as specified

in Section 6.

7.1 Candidate exchange locations

This section investigates the characteristics of favorable exchange locations. In each of the

following tables, en refers to the solution where the customer n is arbitrarily chosen as the

exchange location (Section 3.1). On the other hand, eC and eM show solutions where the

exchange location is selected using the first and second criterion respectively. The columns

under eC show the results when the candidate location closest to a depot serves as the exchange

node. The solutions under eM appoint the customer with the minimal sum of distances to the

two depots as the exchange node. Similarly to the previous section, TA and TB set the maximum

duration of a route, sol refers to the solution value and k is the number of drivers. Additionally,

Time refers to the computing time in seconds. The Gap is now the percentage deviation in

solution value between using customer n and the alternative as the exchange location. The

value is calculated as 100∗((alternative solution value) - (en solution value)) / (en solution

value). A negative gap means that the alternative solution has lower costs than the original.

Lastly, for every table, we report the averages of the solution values and gaps. The purpose of

these values is to give a superficial impression of the results.

Not all results are presented. The reported averages are the averages of the displayed in-

stances. The full results are available in Appendix A. Tables 5 and 6 show the results for Class

I with low and high values for T respectively. In the datasets n10-3, n25-2, and n30-2, no cus-

tomer was a candidate because the depots were close to each other. Using alternative exchange

locations proved to decrease the costs significantly. Both the first and second criteria often lead

to lower objective values. The second criterion provides better solutions than the first criterion

more frequently. The lower average gap also indicates that the second criterion is superior.
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Interestingly, if the original exchange location n is not a candidate, switching to the second

criterion location always leads to improvement. If the original is a candidate, the improvement

is arbitrary. Some instances show better results, some do not. The gap in solution value is

generally bigger with strict T values. Specifically, in n10-3 and n20-1, a solution is found using

one driver fewer, reducing the costs immensely. As fewer possibilities for the number of drivers

are examined, the computation time is also reduced.

Name TA en eC eM

sol k Time sol k Time Gap sol k Time Gap

n10-1 6 656.79 2 0.75 543.91 2 0.79 -17.19 462.47 2 0.64 -29.59
n10-2 5 486.40 2 0.56 506.18 2 0.56 4.07 521.52 2 0.61 7.22
n10-3 5 986.58 3 0.88 - 546.33 2 0.57 -44.62
n15-1 6 455.55 2 1.28 446.85 2 1.29 -1.91 446.85 2 1.29 -1.91
n15-2 6 745.57 2 1.09 598.56 2 1.2 -19.72 664.07 2 1.21 -10.93
n15-3 6 660.07 2 1.12 556.13 2 1.21 -15.75 529.55 2 1.38 -19.77
n20-1 7 1274.56 3 3.14 705.37 2 1.96 -44.66 705.37 2 1.96 -44.66
n20-2 7 666.67 2 1.96 682.87 2 1.94 2.43 596.18 2 2.06 -10.57
n20-3 7 846.16 2 1.94 615.65 2 2.08 -27.24 615.65 2 2.08 -27.24
n25-1 8 720.21 2 3.08 805.67 2 3.00 11.87 878.05 2 2.96 21.92
n25-2 8 805.47 2 2.87 - 743.89 2 3.11 -7.65
n25-3 8 601.05 2 3.37 694.03 2 3.57 15.47 621.04 2 3.60 3.33
n30-1 9 896.36 2 4.23 680.35 2 4.84 -24.10 680.35 2 4.84 -24.10
n30-2 9 860.85 2 4.50 - 697.57 2 4.78 -18.97
n30-3 9 812.05 2 5.37 653.59 2 4.94 -19.51 598.21 2 5.06 -26.33

Average - 764.96 - - 624.10 - - -11.35 620.47 - - -15.59

Table 5: Results for Class I instances with tight T values with one exchange location

Name TB en eC eM

sol k Time sol k Time Gap sol k Time Gap

n10-1 10 370.89 1 0.27 371.62 1 0.24 0.20 340.17 1 0.25 -8.28
n10-2 10 293.28 1 0.19 298.16 1 0.29 1.66 292.82 1 0.26 -0.16
n10-3 10 382.70 1 0.23 - 337.15 1 0.25 -11.90
n15-1 12 301.87 1 0.60 305.09 1 0.52 1.07 305.09 1 0.52 1.07
n15-2 12 405.00 1 0.48 329.41 1 0.60 -18.66 318.26 1 0.77 -21.42
n15-3 12 386.90 1 0.48 341.84 1 0.66 -11.65 338.67 1 0.56 -12.47
n20-1 14 521.12 1 1.27 465.61 1 1.41 -10.65 465.61 1 1.41 -10.65
n20-2 14 401.81 1 0.99 428.65 1 1.18 6.68 385.82 1 1.18 -3.98
n20-3 14 507.87 1 1.19 462.19 1 1.36 -8.99 462.19 1 1.36 -8.99
n25-1 16 483.04 1 1.42 511.09 1 2.04 5.81 541.43 1 2.11 12.09
n25-2 16 486.29 1 1.91 - 462.62 1 2.26 -4.87
n25-3 16 402.49 1 1.74 443.50 1 1.60 10.19 415.52 1 1.82 3.24
n30-1 18 582.43 1 3.18 539.50 1 3.04 -7.37 539.50 1 3.04 -7.37
n30-2 18 553.43 1 2.50 - 534.53 1 3.41 -3.42
n30-3 18 486.64 1 3.28 436.27 1 3.30 -10.35 434.64 1 3.03 -10.69

Average - 437.72 - - 411.08 - - -3.51 411.60 - - -5.85

Table 6: Results for Class I instances with loose T values with one exchange location

Table 7 shows the results of Class II instances, where T = 18. In contrast to Class I,

changing exchange locations rarely leads to cost reduction. Similar to a prior observation, when
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the exchange node is a candidate, the improvements are arbitrary. In this class, the initial

exchange location n always is a candidate. Therefore, few improvements are found. Among the

five samples, no solution with an alternative exchange location has lower costs. The algorithm

frequently needs two drivers instead of one to find a feasible solution, causing gaps in solution

value of at least 15%. The computation time is also affected negatively.

Name T en eC eM

sol k Time sol k Time Gap sol k Time Gap

n50-1 18 608.29 1 8.45 695.26 2 21.05 14.30 708.7 2 21.51 16.51
n50-2 18 591.06 1 6.83 687.62 2 19.63 16.34 592.2 1 7.68 0.19
n50-3 18 585.70 1 9.69 707.24 2 19.75 20.75 693.64 2 21.14 18.43
n50-4 18 597.10 1 7.49 675.07 2 20.90 13.06 615.53 1 7.59 3.09
n50-5 18 616.66 1 9.07 741.87 2 22.59 20.30 750.57 2 23.73 21.72

Average - 599.76 - - 701.41 - - 16.95 672.13 - - 11.99

Table 7: Results for Class II instances with one exchange location

Table 8 and 9 show the results for Class III instances with a low and high value of T ,

respectively. A similar pattern is visible as in Class II. The alternative exchange locations do

not consistently improve the solutions, due to the characteristics of the exchange location n.

Name TA en eC eM

sol k Time sol k Time Gap sol k Time Gap

n100-1 15 1129.24 3 100.70 1393.97 3 87.56 23.44 1393.97 3 87.57 23.44
n100-2 15 1238.10 3 98.26 1262.44 3 91.16 1.97 1219.55 3 91.99 -1.50
n200-1 25 1574.77 3 536.97 1760.87 3 505.66 11.82 1553.33 3 512.76 -1.36
n200-2 25 1687.01 3 527.93 1745.22 3 494.98 3.45 1745.22 3 494.98 3.45
n300-1 35 1780.61 3 1626.38 2143.58 3 1459.08 20.38 1902.87 3 1504.76 6.87
n300-2 35 2046.51 3 1582.45 2086.63 3 1481.98 1.96 1826.19 3 1572.64 -10.77
n400-1 45 2109.17 3 3683.42 2375.76 3 3315.56 12.64 2206.67 3 3538.23 4.62
n400-2 45 1973.55 3 3709.12 2313.91 3 3343.26 17.25 1985.88 3 3510.73 0.62

Average - 1692.37 - - 1885.2975 - - 11.61 1729.21 - - 3.17

Table 8: Results for Class III instances with tight T values with one exchange location

Name TB en eC eM

sol k Time sol k Time Gap sol k Time Gap

n100-1 40 740.94 1 49.13 869.22 1 59.32 17.31 869.22 1 55.53 17.31
n100-2 40 788.22 1 48.38 788.72 1 57.89 0.06 779.28 1 55.41 -1.13
n200-1 60 1140.77 1 308.41 1193.78 2 296.86 4.65 1130.96 1 304.54 -0.86
n200-2 60 1140.32 1 306.47 1208.67 2 675.19 5.99 1208.67 2 675.19 5.99
n300-1 90 1380.37 1 980.23 1406.87 2 1964.33 1.92 1391.18 1 965.20 0.78
n300-2 90 1335.43 1 1014.02 1366.26 2 1972.34 2.31 1336.74 1 966.22 0.10
n400-1 115 1551.02 1 2354.91 1563.50 2 4590.02 0.80 1548.95 1 2305.22 -0.13
n400-2 115 1530.55 1 2282.85 1577.96 2 4445.27 3.10 1546.47 1 2303.86 1.04

Average - 1200.95 - - 1246.87 - - 4.52 1226.43 - - 2.89

Table 9: Results for Class III instances with loose T values with one exchange location

Generally, the second criterion exchange location performs better than the first criterion.
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Throughout all three classes of instances, the average gap in solution value is lower for the second

criterion. In summary, if the exchange location is too far from a depot (is not a candidate), then

it is highly beneficial to consider relocating it to the center of the two depots. If the exchange

location is sufficiently close to both depots (is a candidate), then there is no clear measure to

find better alternatives.

As established, the running time depends on the size of the data and the number of drivers

that are needed for a feasible solution. This is visible throughout all datasets. A different

exchange location only influences the running time of the algorithm through the number of

drivers. For any solution where the different exchange locations yield solutions with the same

number of drivers, the running times are the same. Any disparity is caused by randomness.

When a solution is found with one driver fewer, as commonly in Class I, the computation time

decreases significantly. Oppositely, if there is one driver more, as commonly in Class II and III,

the computation time increases significantly.

7.2 Deciding on good exchange locations

In this section, we inspect whether allowing multiple exchange locations shows significant im-

provement over only using exchange location n. If only one exchange location is used, then we

inspect whether exploring various exchange locations is beneficial. In the following tables, en

again refers to the solutions with exchange location n. The columns under E show the results

when multiple exchange locations are used. All other columns have the same definition as in the

previous section. The average solution value and average gap of the displayed instances are also

reported. For the sake of brevity, the running times of the algorithms are not reported but can

be found in Appendix B. The strategy to select new exchange locations does not contribute vis-

ibly to the running time. Similar to the previous section, the computation time is only affected

if a solution is found with a different number of drivers.

Table 10 shows a sample of the results of Class I instances. All results are available in

Appendix B. In all of the 25 instances, solving the DVRP with a tight value T = TA leads to

cost improvement. Furthermore, the absolute gap is also always bigger than or equal to the gap

in the en solutions with one exchange location. There is more cost reduction when T = TA than

when T = TB. In the latter case, a solution is always found with one driver from each depot.

This means that only one exchange location is used, neglecting the advantages of using multiple

exchange locations. Therefore, there is not always a cost improvement when the duration of the

driver route is large.

Table 11 shows results of Class II instances with one value of T . There is frequently a small

improvement in costs. The size of the improvements is limited because only one driver per

depot is involved in most solutions. This shows that searching for good exchange locations as a

multi-armed bandit problem consistently leads to good solutions without the expense of longer

computation times.
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Name TA en E TB en E

sol k sol k Gap sol k sol k Gap

n10-1 6 656.79 2 436.79 2 -33.50 10 370.89 1 340.17 1 -8.28
n10-2 5 486.40 2 463.89 2 -4.63 10 293.28 1 281.56 1 -4.00
n10-3 5 986.58 3 546.33 2 -44.62 10 382.70 1 337.15 1 -11.90
n15-1 6 455.55 2 444.57 2 -2.41 12 301.87 1 305.09 1 1.07
n15-2 6 745.57 2 580.66 2 -22.12 12 405.00 1 318.26 1 -21.42
n15-3 6 660.07 2 512.11 2 -22.42 12 386.90 1 338.67 1 -12.47
n20-1 7 1274.56 3 705.37 2 -44.66 14 521.12 1 465.61 1 -10.65
n20-2 7 666.67 2 583.09 2 -12.54 14 401.81 1 413.72 1 2.96
n20-3 7 846.16 2 586.99 2 -30.63 14 507.87 1 457.29 1 -9.96
n25-1 8 720.21 2 688.56 2 -4.39 16 483.04 1 482.20 1 -0.17
n25-2 8 805.47 2 732.46 2 -9.06 16 486.29 1 462.62 1 -4.87
n25-3 8 601.05 2 530.72 2 -11.70 16 402.49 1 402.49 1 0.00
n30-1 9 896.36 2 634.25 2 -29.24 18 582.43 1 531.56 1 -8.73
n30-2 9 860.85 2 696.70 2 -19.07 18 553.43 1 534.53 1 -3.42
n30-3 9 812.05 2 611.97 2 -24.64 18 486.64 1 435.51 1 -10.51

Average - 764.96 - 583.63 - -21.04 - 437.72 - 407.10 - -6.82

Table 10: Results for Class I instances with multiple exchange locations

Name T en E

sol k sol k Gap

n50-1 18 608.29 1 591.62 1 -2.74

n50-2 18 591.06 1 587.65 1 -0.58

n50-3 18 585.70 1 581.59 1 -0.70

n50-4 18 597.10 1 594.31 1 -0.47

n50-5 18 616.66 1 613.62 1 -0.49

Average - 599.76 - 593.76 - -1.00

Table 11: Results for Class II instances with multiple exchange locations

Table 12 shows the results of Class III instances. Similarly to Class I, when T = TA,

there is always a sizable negative gap. However, when only one driver per depot is needed to

satisfy the driver route constraint, the absolute size of the gap diminishes and improvements

are less frequent. Instance n100-1 has 86 candidate locations. With three drivers from each

depot, the number of possible combinations of exchange locations is 109,736. Instance n200-1

has 115 candidates. With the same number of drivers, the number of combinations exceeds

a million. Details on the number of candidates for all the other datasets can be found in

Table 22 in Appendix B. With the maximum number of multi-start iterations fixed at 100,000,

the exploration of new exchange locations is limited for Class III instances. Despite this, the

algorithm finds solutions of high quality with three drivers from every depot.
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Name TA en E TB en E

sol k sol k Gap sol k sol k Gap

n100-1 15 1129.24 3 964.68 3 -14.57 40 740.94 1 738.89 1 -0.28

n100-2 15 1238.10 3 1019.96 3 -17.62 40 788.22 1 779.27 1 -1.14

n200-1 25 1574.77 3 1312.97 3 -16.62 60 1140.77 1 1116.88 1 -2.09

n200-2 25 1687.01 3 1288.77 3 -23.61 60 1140.32 1 1119.05 1 -1.87

n300-1 35 1780.61 3 1500.17 3 -15.75 90 1380.37 1 1376.54 1 -0.28

n300-2 35 2046.51 3 1479.32 3 -27.71 90 1335.43 1 1334.85 1 -0.04

n400-1 45 2109.17 3 1695.25 3 -19.62 115 1551.02 1 1556.80 1 0.37

n400-2 45 1973.55 3 1672.92 3 -15.23 115 1530.55 1 1536.15 1 0.37

Average - 1692.37 - 1366.76 - -18.84 - 1200.95 - 1194.80 - -0.62

Table 12: Results for Class III instances with multiple exchange locations

8 Conclusion

In this paper, we studied the Driver and Vehicle Routing problem where two depots are present.

The drivers must return to their starting depot and the vehicles must end in the other depot than

their starting depot. To make this possible, the drivers must switch their vehicles at designated

exchange locations. We extended an existing multi-start heuristic such that it can be applied to

multiple exchange locations.

When inspecting favorable exchange locations, our results suggest that the location should

not be further from a depot than the distance between the depots. If this requirement is satisfied,

there is no precise measure to determine the best exchange location. Therefore, when incorpo-

rating the exchange locations as a decision, we confine the potential exchange nodes to locations

that satisfy this requirement. Our results prove that exploring potential exchange locations as

a multi-armed bandit problem consistently yields improvements for all of our datasets. The

improvements are especially reliable when multiple drivers are required to serve all customers.

The computation time of the heuristic took unexpectedly long. This is speculated to be

caused by implementation choices in the route improvement part of the heuristic. More inves-

tigation on the proposed faster alternatives would be helpful. Additionally, all of the data was

provided from a previous paper. Further robustness checks using newly generated data is another

suggestion for future research. Using instances with various sizes might provide clearer insights

into the time complexity. Lastly, the multi-armed bandit problem uses a simple exploration-

exploitation scheme. Using complex strategies such as a Markov Decision Process seems the

most prospective suggestion for future work.
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A Candidate exchange locations

Name TA en eC eM

sol k Time sol k Time Gap sol k Time Gap

n10-1 6 656.79 2 0.75 543.91 2 0.79 -17.19 462.47 2 0.64 -29.59

n10-2 5 486.40 2 0.56 506.18 2 0.56 4.07 521.52 2 0.61 7.22

n10-3 5 986.58 3 0.88 - -100.00 546.33 2 0.57 -44.62

n10-4 5 610.55 2 0.50 610.55 2 0.65 0.00 610.55 2 0.65 0.00

n10-5 5 594.32 2 0.51 448.03 2 0.59 -24.61 379.37 2 0.59 -36.17

n15-1 6 455.55 2 1.28 446.85 2 1.29 -1.91 446.85 2 1.29 -1.91

n15-2 6 745.57 2 1.09 598.56 2 1.20 -19.72 664.07 2 1.21 -10.93

n15-3 6 660.07 2 1.12 556.13 2 1.21 -15.75 529.55 2 1.38 -19.77

n15-4 6 1093.02 3 1.88 1344.28 3 1.73 22.99 622.62 2 1.17 -43.04

n15-5 6 788.47 2 1.15 573.19 2 1.23 -27.30 540.50 2 1.23 -31.45

n20-1 7 1274.56 3 3.14 705.37 2 1.96 -44.66 705.37 2 1.96 -44.66

n20-2 7 666.67 2 1.96 682.87 2 1.94 2.43 596.18 2 2.06 -10.57

n20-3 7 846.16 2 1.94 615.65 2 2.08 -27.24 615.65 2 2.08 -27.24

n20-4 7 601.70 2 2.10 626.30 2 2.00 4.09 626.30 2 2.00 4.09

n20-5 7 689.25 2 2.04 567.71 2 2.19 -17.63 529.65 2 2.18 -23.16

n25-1 8 720.21 2 3.08 805.67 2 3.00 11.87 878.05 2 2.96 21.92

n25-2 8 805.47 2 2.87 - -100.00 743.89 2 3.11 -7.65

n25-3 8 601.05 2 3.37 694.03 2 3.57 15.47 621.04 2 3.60 3.33

n25-4 8 685.64 2 3.35 677.76 2 3.28 -1.15 603.10 2 3.59 -12.04

n25-5 8 724.48 2 3.21 663.78 2 3.39 -8.38 565.27 2 3.46 -21.98

n30-1 9 896.36 2 4.23 680.35 2 4.84 -24.10 680.35 2 4.84 -24.10

n30-2 9 860.85 2 4.50 - -100.00 697.57 2 4.78 -18.97

n30-3 9 812.05 2 5.37 653.59 2 4.94 -19.51 598.21 2 5.06 -26.33

n30-4 9 720.83 2 4.33 771.13 2 4.09 6.98 892.01 2 4.06 23.75

n30-5 9 750.20 2 4.63 625.39 2 4.92 -16.64 583.70 2 4.98 -22.19

Average - 749.31 - - 654.42 - - -9.00 610.41 - - -15.84

Table 13: Results for Class I instances with tight T values with one exchange location
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Name TB en eC eM

sol k Time sol k Time Gap sol k Time Gap

n10-1 10 370.89 1 0.27 371.62 1 0.24 0.20 340.17 1 0.25 -8.28
n10-2 10 293.28 1 0.19 298.16 1 0.29 1.66 292.82 1 0.26 -0.16
n10-3 10 382.70 1 0.23 - 337.15 1 0.25 -11.90
n10-4 10 382.72 1 0.19 382.72 1 0.20 0.00 382.72 1 0.20 0.00
n10-5 10 350.92 1 0.21 290.62 1 0.23 -17.18 270.02 1 0.24 -23.05
n15-1 12 301.87 1 0.60 305.09 1 0.52 1.07 305.09 1 0.52 1.07
n15-2 12 405.00 1 0.48 329.41 1 0.60 -18.66 318.26 1 0.77 -21.42
n15-3 12 386.90 1 0.48 341.84 1 0.66 -11.65 338.67 1 0.56 -12.47
n15-4 12 460.23 1 0.59 518.81 1 0.64 12.73 441.03 1 0.55 -4.17
n15-5 12 468.96 1 0.57 404.47 1 0.57 -13.75 389.40 1 0.63 -16.97
n20-1 14 521.12 1 1.27 465.61 1 1.41 -10.65 465.61 1 1.41 -10.65
n20-2 14 401.81 1 0.99 428.65 1 1.18 6.68 385.82 1 1.18 -3.98
n20-3 14 507.87 1 1.19 462.19 1 1.36 -8.99 462.19 1 1.36 -8.99
n20-4 14 416.76 1 0.91 420.71 1 1.17 0.95 420.71 1 1.17 0.95
n20-5 14 408.71 1 1.19 381.09 1 0.97 -6.76 372.62 1 0.98 -8.83
n25-1 16 483.04 1 1.42 511.09 1 2.04 5.81 541.43 1 2.11 12.09
n25-2 16 486.29 1 1.91 - 462.62 1 2.26 -4.87
n25-3 16 402.49 1 1.74 443.50 1 1.60 10.19 415.52 1 1.82 3.24
n25-4 16 456.06 1 1.56 454.71 1 1.86 -0.30 443.93 1 1.67 -2.66
n25-5 16 453.99 1 1.71 437.37 1 1.92 -3.66 428.74 1 2.23 -5.56
n30-1 18 582.43 1 3.18 539.50 1 3.04 -7.37 539.50 1 3.04 -7.37
n30-2 18 553.43 1 2.50 - 534.53 1 3.41 -3.42
n30-3 18 486.64 1 3.28 436.27 1 3.30 -10.35 434.64 1 3.03 -10.69
n30-4 18 495.30 1 2.70 506.63 1 2.75 2.29 551.75 1 3.08 11.40
n30-5 18 491.64 1 2.42 473.46 1 3.36 -3.70 461.10 1 2.96 -6.21

Average - 438.04 - - 418.342 - - -3.25 413.44 - - -5.72

Table 14: Results for Class I instances with loose T values with one exchange location

Name T en eC eM

sol k Time sol k Time Gap sol k Time Gap

n50-1 18 608.29 1 8.45 695.26 2 21.05 14.30 708.70 2.00 21.51 16.51
n50-2 18 591.06 1 6.83 687.62 2 19.63 16.34 592.20 1.00 7.68 0.19
n50-3 18 585.70 1 9.69 707.24 2 19.75 20.75 693.64 2.00 21.14 18.43
n50-4 18 597.10 1 7.49 675.07 2 20.90 13.06 615.53 1.00 7.59 3.09
n50-5 18 616.66 1 9.07 741.87 2 22.59 20.30 750.57 2.00 23.73 21.72
n50-6 18 584.58 1 7.68 706.39 2 18.24 20.84 695.98 2.00 18.88 19.06
n50-7 18 551.73 1 7.41 649.16 2 19.36 17.66 674.88 2.00 17.66 22.32
n50-8 18 590.76 1 7.46 662.10 2 19.83 12.08 604.29 1.00 7.71 2.29
n50-9 18 607.38 1 7.50 795.74 2 22.07 31.01 600.84 1.00 7.48 -1.08
n50-10 18 602.78 1 9.18 762.09 2 20.52 26.43 762.09 2.00 20.52 26.43
n50-11 18 602.58 1 8.26 719.44 2 20.80 19.39 593.02 1.00 9.14 -1.59
n50-12 18 628.36 1 8.15 738.23 2 19.80 17.49 793.61 2.00 21.06 26.30
n50-13 18 785.73 2 18.03 778.48 2 19.62 -0.92 798.79 2.00 19.80 1.66
n50-14 18 618.02 1 7.93 692.16 2 24.24 12.00 723.97 2.00 22.05 17.14
n50-15 18 812.87 2 16.90 733.79 2 23.06 -9.73 738.86 2.00 23.66 -9.10
n50-16 18 614.92 1 8.13 743.21 2 23.38 20.86 732.40 2.00 22.38 19.10

Average - 624.91 - - 717.99 - - 15.74 692.46 - - 11.40

Table 15: Results for Class II instances with one exchange location
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Name TA en eC eM

sol k Time sol k Time Gap sol k Time Gap

n100-1 15 1129.24 3 100.70 1393.97 3 87.56 23.44 1393.97 3 87.57 23.44
n100-2 15 1238.10 3 98.26 1262.44 3 91.16 1.97 1219.55 3 91.99 -1.50
n100-3 15 1159.73 3 92.01 1320.92 3 83.86 13.90 1284.31 3 87.88 10.74
n100-4 15 1206.03 3 95.69 1418.71 3 90.73 17.63 1299.60 3 94.38 7.76
n100-5 15 1277.14 3 94.49 1450.35 3 87.79 13.56 1366.84 3 86.92 7.02
n200-1 25 1574.77 3 536.97 1760.87 3 505.66 11.82 1553.33 3 512.76 -1.36
n200-2 25 1687.01 3 527.93 1745.22 3 494.98 3.45 1745.22 3 494.98 3.45
n200-3 25 1558.62 3 533.83 1808.41 3 484.42 16.03 1785.29 3 472.58 14.54
n200-4 25 1436.11 3 543.59 1812.97 3 470.06 26.24 1645.56 3 488.58 14.58
n200-5 25 1476.02 3 535.52 1807.36 3 486.54 22.45 1498.36 3 510.42 1.51
n300-1 35 1780.61 3 1626.38 2143.58 3 1459.08 20.38 1902.87 3 1504.76 6.87
n300-2 35 2046.51 3 1582.45 2086.63 3 1481.98 1.96 1826.19 3 1572.64 -10.77
n300-3 35 1780.55 3 1681.32 2329.78 3 1407.9 30.85 2211.39 3 1432.98 24.20
n300-4 35 1859.17 3 1616.87 2219.31 3 1439.74 19.37 1832.90 3 1500.91 -1.41
n300-5 35 1601.47 3 1645.45 2102.78 3 1491.45 31.30 1724.51 3 1540.10 7.68
n400-1 45 2109.17 3 3683.42 2375.76 3 3315.56 12.64 2206.67 3 3538.23 4.62
n400-2 45 1973.55 3 3709.12 2313.91 3 3343.26 17.25 1985.88 3 3510.73 0.62
n400-3 45 1942.33 3 3561.48 2434.66 3 3266.69 25.35 2071.19 3 3367.01 6.63
n400-4 45 2393.49 3 3405.18 2429.62 3 3224.33 1.51 2311.45 3 3379.86 -3.43
n400-5 45 2288.83 3 3435.85 2429.52 3 3230.22 6.15 2218.68 3 3246.42 -3.06

Average - 1675.92 - - 1932.34 - - 15.86 1754.19 - - 5.61

Table 16: Results for Class III instances with tight T values with one exchange location

Name TB en eC eM

sol k Time sol k Time Gap sol k Time Gap

n100-1 40 740.94 1 49.13 869.22 1 59.32 17.31 869.22 1 55.53 17.31
n100-2 40 788.22 1 48.38 788.72 1 57.89 0.06 779.28 1 55.41 -1.13
n100-3 40 767.04 1 47.49 785.21 1 56.23 2.36 774.81 1 57.96 1.01
n100-4 40 762.67 1 45.70 883.33 1 58.54 15.82 763.22 1 57.49 0.07
n100-5 40 786.12 1 54.13 799.88 1 57.38 1.75 790.27 1 61.56 0.52
n200-1 60 1140.77 1 308.41 1193.78 2 296.86 4.64 1130.96 1 304.54 -0.86
n200-2 60 1140.32 1 306.47 1208.67 2 675.19 5.99 1208.67 2 675.19 5.99
n200-3 60 1144.46 1 319.14 1189.36 2 601.19 3.92 1181.74 2 607.92 3.25
n200-4 60 1138.27 1 298.60 1232.96 2 631.06 8.32 1140.19 1 299.84 0.17
n200-5 60 1136.13 1 314.80 1218.76 2 609.58 7.27 1126.56 1 303.86 -0.84
n300-1 90 1380.37 1 980.23 1406.87 2 1964.33 1.92 1391.18 1 965.20 0.78
n300-2 90 1335.43 1 1014.02 1366.26 2 1972.34 2.31 1336.74 1 966.22 0.10
n300-3 90 1328.21 1 968.36 1433.73 2 2263.61 7.94 1371.49 1 951.27 3.26
n300-4 90 1406.39 1 1001.15 1610.04 1 927.09 14.48 1398.07 1 963.36 -0.59
n300-5 90 1330.07 1 1010.96 1707.64 1 942.54 28.39 1341.52 1 957.32 0.86
n400-1 115 1551.02 1 2354.91 1563.50 2 4590.02 0.80 1548.95 1 2305.22 -0.13
n400-2 115 1530.55 1 2282.85 1577.96 2 4445.27 3.10 1546.47 1 2303.86 1.04
n400-3 115 1583.78 1 2318.07 1600.13 2 4323.72 1.04 1575.64 1 2260.13 -0.51
n400-4 115 1562.59 1 2307.30 1642.09 2 4854.67 5.09 1571.94 1 2283.64 0.60
n400-5 115 1601.82 1 2238.69 1589.68 2 4424.49 -0.76 1620.55 1 2166.35 1.17

Average - 1207.76 - - 1283.39 - - 6.59 1223.37 - - 1.60

Table 17: Results for Class III instances with loose T values with one exchange location
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B Deciding on good exchange locations

Name TA en E TB en E

sol k sol k Gap sol k sol k Gap

n10-1 6 656.79 2 436.79 2 -33.50 10 370.89 1 340.17 1 -8.28

n10-2 5 486.40 2 463.89 2 -4.63 10 293.28 1 281.56 1 -4.00

n10-3 5 986.58 3 546.33 2 -44.62 10 382.70 1 337.15 1 -11.90

n10-4 5 610.55 2 590.93 2 -3.21 10 382.72 1 374.85 1 -2.06

n10-5 5 594.32 2 379.37 2 -36.17 10 350.92 1 270.02 1 -23.05

n15-1 6 455.55 2 444.57 2 -2.41 12 301.87 1 305.09 1 1.07

n15-2 6 745.57 2 580.66 2 -22.12 12 405.00 1 318.26 1 -21.42

n15-3 6 660.07 2 512.11 2 -22.42 12 386.90 1 338.67 1 -12.47

n15-4 6 1093.02 3 575.95 2 -47.31 12 460.23 1 441.03 1 -4.17

n15-5 6 788.47 2 515.39 2 -34.63 12 468.96 1 389.40 1 -16.97

n20-1 7 1274.56 3 705.37 2 -44.66 14 521.12 1 465.61 1 -10.65

n20-2 7 666.67 2 583.09 2 -12.54 14 401.81 1 413.72 1 2.96

n20-3 7 846.16 2 586.99 2 -30.63 14 507.87 1 457.29 1 -9.96

n20-4 7 601.70 2 540.84 2 -10.11 14 416.76 1 416.76 1 0.00

n20-5 7 689.25 2 500.70 2 -27.36 14 408.71 1 366.28 1 -10.38

n25-1 8 720.21 2 688.56 2 -4.39 16 483.04 1 482.20 1 -0.17

n25-2 8 805.47 2 732.46 2 -9.06 16 486.29 1 462.62 1 -4.87

n25-3 8 601.05 2 530.72 2 -11.70 16 402.49 1 402.49 1 0.00

n25-4 8 685.64 2 547.69 2 -20.12 16 456.06 1 432.36 1 -5.20

n25-5 8 724.48 2 563.75 2 -22.19 16 453.99 1 435.29 1 -4.12

n30-1 9 896.36 2 634.25 2 -29.24 18 582.43 1 531.56 1 -8.73

n30-2 9 860.85 2 696.70 2 -19.07 18 553.43 1 534.53 1 -3.42

n30-3 9 812.05 2 611.97 2 -24.64 18 486.64 1 435.51 1 -10.51

n30-4 9 720.83 2 644.82 2 -10.54 18 495.30 1 486.24 1 -1.83

n30-5 9 750.20 2 546.77 2 -27.12 18 491.64 1 451.30 1 -8.21

Average - 749.312 - 566.43 - -22.18 - 438.042 - 406.80 - -7.13

Table 18: Results for Class I instances with multiple exchange locations
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Name T en E

sol k sol k Gap

n50-1 18 608.29 1 591.62 1 -2.74

n50-2 18 591.06 1 587.65 1 -0.58

n50-3 18 585.70 1 581.59 1 -0.70

n50-4 18 597.10 1 594.31 1 -0.47

n50-5 18 616.66 1 613.62 1 -0.49

n50-6 18 584.58 1 584.58 1 0.00

n50-7 18 551.73 1 534.69 1 -3.09

n50-8 18 590.76 1 584.81 1 -1.01

n50-9 18 607.38 1 585.34 1 -3.63

n50-10 18 602.78 1 609.47 1 1.11

n50-11 18 602.58 1 586.55 1 -2.66

n50-12 18 628.36 1 605.95 1 -3.57

n50-13 18 785.73 2 602.63 1 -23.30

n50-14 18 618.02 1 605.21 1 -2.07

n50-15 18 812.87 2 705.10 2 -13.26

n50-16 18 614.92 1 612.38 1 -0.41

Average - 624.91 - 599.09 - -3.55

Table 19: Results for Class II instances with multiple exchange locations
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Name TA en E TB en E

sol k sol k Gap sol k sol k Gap

n100-1 15 1129.24 3 964.68 3 -14.57 40 740.94 1 738.89 1 -0.28

n100-2 15 1238.10 3 1019.96 3 -17.62 40 788.22 1 779.27 1 -1.14

n100-3 15 1159.73 3 914.72 3 -21.13 40 767.04 1 760.54 1 -0.85

n100-4 15 1206.03 3 1088.24 3 -9.77 40 762.67 1 763.85 1 0.15

n100-5 15 1277.14 3 1242.01 3 -2.75 40 786.12 1 776.94 1 -1.17

n200-1 25 1574.77 3 1312.97 3 -16.62 60 1140.77 1 1116.88 1 -2.09

n200-2 25 1687.01 3 1288.77 3 -23.61 60 1140.32 1 1119.05 1 -1.87

n200-3 25 1558.62 3 1297.58 3 -16.75 60 1144.46 1 1155.68 1 0.98

n200-4 25 1436.11 3 1335.54 3 -7.00 60 1138.27 1 1157.06 1 1.65

n200-5 25 1476.02 3 1306.64 3 -11.48 60 1136.13 1 1141.17 1 0.44

n300-1 35 1780.61 3 1500.17 3 -15.75 90 1380.37 1 1376.54 1 -0.28

n300-2 35 2046.51 3 1479.32 3 -27.71 90 1335.43 1 1334.85 1 -0.04

n300-3 35 1780.55 3 1945.44 3 9.26 90 1328.21 1 1334.30 1 0.46

n300-4 35 1859.17 3 1559.22 3 -16.13 90 1406.39 1 1395.77 1 -0.76

n300-5 35 1601.47 3 1460.25 3 -8.82 90 1330.07 1 1338.27 1 0.62

n400-1 45 2109.17 3 1695.25 3 -19.62 115 1551.02 1 1556.80 1 0.37

n400-2 45 1973.55 3 1672.92 3 -15.23 115 1530.55 1 1536.15 1 0.37

n400-3 45 1942.33 3 1705.38 3 -12.20 115 1583.78 1 1578.11 1 -0.36

n400-4 45 2393.49 3 1801.46 3 -24.74 115 1562.59 1 1581.72 1 1.22

n400-5 45 2288.83 3 1707.32 3 -25.41 115 1601.82 1 1579.33 1 -1.40

Average - 1675.92 - 1414.89 - -14.88 - 1207.76 - 1206.06 - -0.20

Table 20: Results for Class III instances with multiple exchange locations
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Class I TA TB Class II T Class III TA TB

Name k Time k Time Name k Time Name k Time k Time

n10-1 2 0.67 1 0.27 n50-1 1 8.06 n100-1 3 95.29 1 55.59

n10-2 2 0.50 1 0.19 n50-2 1 7.19 n100-2 3 95.55 1 55.47

n10-3 2 0.50 1 0.23 n50-3 1 8.78 n100-3 3 92.01 1 50.51

n10-4 2 0.45 1 0.19 n50-4 1 7.59 n100-4 3 94.08 1 55.55

n10-5 2 0.49 1 0.21 n50-5 1 9.55 n100-5 3 89.47 1 57.63

n15-1 2 1.12 1 0.60 n50-6 1 7.73 n200-1 3 527.08 1 302.46

n15-2 2 1.05 1 0.48 n50-7 1 7.15 n200-2 3 533.07 1 308.07

n15-3 2 1.08 1 0.48 n50-8 1 7.29 n200-3 3 510.63 1 289.64

n15-4 2 1.02 1 0.59 n50-9 1 7.34 n200-4 3 512.46 1 296.72

n15-5 2 1.14 1 0.57 n50-10 1 7.96 n200-5 3 516.03 1 297.95

n20-1 2 1.82 1 1.27 n50-11 1 8.43 n300-1 3 1599.76 1 979.05

n20-2 2 1.80 1 0.99 n50-12 1 7.84 n300-2 3 1606.19 1 972.57

n20-3 2 2.02 1 1.19 n50-13 1 7.86 n300-3 3 1486.08 1 938.93

n20-4 2 1.95 1 0.91 n50-14 1 8.10 n300-4 3 1547.98 1 953.13

n20-5 2 1.98 1 1.19 n50-15 2 15.77 n300-5 3 1566.09 1 953.16

n25-1 2 2.97 1 1.42 n50-16 1 8.36 n400-1 3 3576.43 1 2283.63

n25-2 2 2.95 1 1.91 n400-2 3 3592.27 1 2329.32

n25-3 2 3.12 1 1.74 n400-3 3 3493.03 1 2263.58

n25-4 2 3.15 1 1.56 n400-4 3 3441.49 1 2264.12

n25-5 2 3.22 1 1.71 n400-5 3 3425.54 1 2149.53

n30-1 2 4.51 1 3.18

n30-2 2 4.41 1 2.50

n30-3 2 4.71 1 3.28

n30-4 2 4.23 1 2.70

n30-5 2 4.77 1 2.42

Table 21: Running times in seconds of all instances with multiple exchange locations
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Class I Class II Class III

Name |C| k=2 k=3 Name |C| k=2 k=3 Name |C| k=2 k=3

n10-1 2 3 4 n50-1 22 253 2024 n100-1 86 3741 109736

n10-2 6 21 56 n50-2 38 741 9880 n100-2 62 1953 41664

n10-3 0 1 1 n50-3 38 741 9880 n100-3 56 1596 30856

n10-4 3 6 10 n50-4 29 435 4495 n100-4 68 2346 54740

n10-5 2 3 4 n50-5 32 528 5984 n100-5 40 820 11480

n15-1 2 3 4 n50-6 46 1081 17296 n200-1 187 17578 1107414

n15-2 2 3 4 n50-7 43 946 14190 n200-2 115 6670 260130

n15-3 7 28 84 n50-8 34 595 7140 n200-3 174 15225 893200

n15-4 8 36 120 n50-9 21 231 1771 n200-4 166 13861 776216

n15-5 3 6 10 n50-10 47 1128 18424 n200-5 184 17020 1055240

n20-1 1 1 1 n50-11 39 780 10660 n300-1 216 23436 1703016

n20-2 6 21 56 n50-12 45 1035 16215 n300-2 251 31626 2667126

n20-3 4 10 20 n50-13 47 1128 18424 n300-3 138 9591 447580

n20-4 12 78 364 n50-14 37 703 9139 n300-4 166 13861 776216

n20-5 15 120 680 n50-15 39 780 10660 n300-5 247 30628 2542124

n25-1 21 231 1771 n50-16 32 528 5984 n400-1 339 57630 6550610

n25-2 0 1 1 n400-2 306 46971 4822356

n25-3 16 136 816 n400-3 352 62128 7331104

n25-4 17 153 969 n400-4 240 28920 2332880

n25-5 3 6 10 n400-5 243 29646 2421090

n30-1 8 36 120

n30-2 0 1 1

n30-3 3 6 10

n30-4 17 153 969

n30-5 7 28 84

Table 22: Number of candidates for every instance

C Programming code

The src directory contains all the code. The Main class is the control panel where all the

configurations are set and runs are performed. The other classes are explained in detail using

Javadoc comments.

There are three configuration files, one for each instance class. The name of the file is

configClassi.csv, with i being the class. Their purpose is to easily iterate over the datasets.

The maximum route durations are also collected.

The diagnostics directory contains the results of the computation times and the num-

ber of iterations for each part of the heuristic. The computation times are acquired with the

extractRunningTimes() method in the Main class. The code to obtain the number of iterations

has unfortunately been lost as counting the iterations greatly slows the code down. To obtain

the numbers, a modified version of the performReplication() method in the Main class is used.

The results are reported in Table 1 and Figure 1.

The outputReplicate directory contains the results of the replication part. There are
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summarizing .csv files containing the most relevant information of every instance. The summary

files are separated by class and by route time limit. There are additionally more detailed .dat

files for every instance that show the routes that constitute the solution. These results are

obtained using the performReplication() method in the Main class. The results are scattered

among all tables in Sections 7.1 and 7.2 under the column en.

The outputExchange directory contains the results for when one alternative exchange lo-

cation is considered. Only the summary .csv files are stored. There would be too many

.dat files to save because we need four different variations of one instance. There are two

route time limits and two exchange locations to consider. These results are obtained using the

iterateExchange() method in the Main class. The results are reported in the Tables 5, 6, 7,

8, and 9. They also appear in Appendix A.

The outputMulti directory contains the results for when the exchange locations are se-

lected using a multi-armed bandit approach. This directory contains the same type of files

as outputReplicate. These results are obtained using the iterateMulti() method in the

Main class. The results are reported in Tables 10, 11, and 12. They also appear in Appendix B.

Lastly, the number of candidates in every dataset, found in Table 22, is obtained using the

testExchangeCriterion() method in the Main class.
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