
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis International Bachelor Econometrics and Operations Research

Volatility Forecasting for S&P500 Index Returns: A

Dynamic Ensemble Approach using Neural Networks

and Random Forests with Synthetic Data Integration

Daris Fadhilah (595255)

Supervisor: dr. Hakan Akyuz

Second assessor: dr. Xiaomeng Zhang

Date final version: 1st July 2024

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.

Abstract

Accurate volatility forecasting is important for effective risk management and the creation

of robust financial strategies. This study extends upon the work of Lee and Kang (2024),

which proposed the approach of a dynamic ensemble of regression neural networks. This

study particularly explores the effectiveness of this approach within the context of financial

time-series forecasting. To combat the issues of data scarcity and noise in data-scarce nodes,

we advance this approach by integrating synthetic data generated using a Gaussian copula

model fitted to represent the same data distribution as the training set of each node. The

proposed extension aims to increase data availability and provide denoised training data,

thereby reducing the risk of overfitting and improving generalization. Our experiments focus

on forecasting the volatility of S&P 500 index returns. The results show that the new ap-

proach performs well under stable market conditions with low volatility. However, it fails to

outperform traditional baseline models such as GARCH(1,1) and RiskMetrics during peri-

ods of rapid volatility changes. We also adapted this approach to a random forest model,

which showed beneficial results in ensembling the predictions. This shows that the proposed

approach can be adapted to other model architectures to enhance predictive accuracy. Never-

theless, models that utilize synthetic data integration demonstrate promising improvements,

although their statistical significance remains marginal. While the current findings do not

show significantly better performance, future improvements to this methodology, aimed at

creating more representative synthetic data, could prove useful not only within the domain of

financial forecasting but also for other data-intensive fields such as healthcare and insurance.

1

Contents

1 Introduction 4

2 Literature review 6

2.1 Volatility models . 6

2.2 Ensemble neural networks . 6

2.3 Random forests . 7

2.4 Inference . 7

2.5 Synthetic data generation . 7

2.6 Local model training on dataset properties . 8

2.7 Data smoothing . 9

3 Methodology 9

3.1 Baseline volatility models . 10

3.1.1 Historical volatility . 10

3.1.2 Generalized Autoregressive Conditional Heteroskedastic (GARCH) model 10

3.1.3 RiskMetrics . 11

3.2 Synthetic data generation using Gaussian copulas 11

3.2.1 Theoretical background . 11

3.2.2 Generating synthetic data . 12

3.3 Data preparation . 12

3.3.1 Moving average . 12

3.4 Inference (uncertainty quantification) . 13

3.4.1 Neural network . 13

3.4.2 Random forest . 13

3.5 Weighing predictions . 13

4 Computational experiments 14

4.1 Datasets used . 14

4.2 Experimental Settings . 14

4.2.1 Neural network settings . 14

4.2.2 Random forest settings . 15

4.2.3 Financial data pre-processing . 15

4.2.4 Synthetic data generation settings . 15

4.3 Dataset performance comparisons . 15

4.3.1 Disjoint Partitioning (DP) . 15

4.3.2 Bootstrapped Partitioning (BP) . 16

4.3.3 K-Means Clustering (KMeans) . 16

4.3.4 Augmented K-Means Clustering (A-KMeans) 16

4.4 Methodology comparison results . 17

4.4.1 Random forest methodology results . 17

4.4.2 Clustering comparison results . 18

4.5 Time series model comparison results . 20

2

5 Conclusion 23

References 23

A Full experimental results 25

3

1 Introduction

Accurate financial forecasting is important for portfolio managers and policymakers to optimize

portfolio performance and create effective economic policies. Improved forecasting leads to better

decision-making, which therefore would improve economic and strategic outcomes for financial

and economic institutions. Therefore, advancing research on financial forecasting methodologies

is essential for continual improvement in financial performance. Additionally, the benefits of

advancements in ensemble prediction methodologies extend beyond finance. These techniques

have widespread applications across numerous fields, as evidenced by the widespread adoption

of ensemble methods, such as Random Forests, in various industries. This broad applicabil-

ity underscores the importance of continued research and development in ensemble forecasting

techniques.

Data security and privacy concerns often make transmitting information between different

nodes unfeasible. This limitation necessitates novel techniques to combine predictions across

models in various nodes without sharing data. This study builds on the idea proposed by Lee

and Kang (2024) to create a privacy-aware dynamic ensemble within the context of regression

neural networks. The practical applications of such an approach span various domains and

industries such as finance, telecommunications, and insurance.

While the concept of ensembling is not new, it has not been widely explored within the

context of regression neural networks (Lee & Kang, 2024). One aspect that previous research

does not explore is the effectiveness of this approach on different data distributions between

nodes. Additionally, existing studies do not examine regressions within the context of sequential

time-series data, which is the focus of this study.

Time series data, particularly in the field of finance, present unique challenges that demand

careful consideration to prevent overfitting. Financial data are characterized by a high noise-to-

signal ratio, stemming from their inherent stochastic properties. This characteristic poses some

challenges for predictive modeling, especially when using highly flexible model structures such

as neural networks. The susceptibility of neural networks to overfitting in noisy environments

necessitates an exploration of alternative modeling approaches. Random Forests, with their sim-

pler structure and inherent robustness, present a potentially viable alternative. Their ensemble

nature and decision tree base may offer advantages in handling the complex, noisy patterns

inherent in financial time series. To further address the challenge of overfitting, particularly in

scenarios with limited or noisy training data, we propose the integration of synthetic data into

the training process. This approach aims to augment the training set, potentially improving

model generalization and reducing overfitting tendencies. These considerations lead us to our

primary research question:

Can the implementation of a dynamic ensemble approach and synthetic data integration

effectively reduce model overfitting in the context of financial time-series forecasting?

In contrast, traditional financial modelling, which primarily relies on econometric techniques,

has remained largely unchanged for decades. Although machine learning has been rapidly ad-

opted in other industries, its integration into finance has been slow due to strict policies and

regulations. More research into these implementations can help improve the industry’s per-

4

ception of machine learning and quicken the adoption of these approaches within the financial

industry. Current forecasting models, such as GARCH, are widely used for modeling volatility

but often fail to capture the intricate behaviors of financial markets that more sophisticated

models, such as neural networks, may be able to capture. Our research proposes alternative

models, such as neural networks and random forests, to capture the subtle market dynamics

that conventional methods sometimes overlook, potentially changing how we make financial

predictions. Although the original paper by Lee and Kang (2024) focuses on distributing data

over local nodes due to data privacy and security concerns, specialised distribution of training

data over individual nodes can have other potential benefits such as specialised nodes that are

trained over specific regimes. By clustering financial data, we hope to capture regime shifts and

changes in market behaviour such that each node acts as a predictor for a specific regime. We

hope that this specialized form of ensemble can provide more nuanced predictions compared to

a general model trained over the whole dataset.

The implications of this research extend throughout the financial industry, where time-series

data are common, impacting sectors involved in economic forecasting and financial decision-

making. By providing alternative modelling techniques to financial institutions, this study is of

high interest to institutions, such as banks and hedge funds, to add to their list of models for a

more robust financial system. Improved models can lead to better hedging strategies, optimized

asset allocations, and more informed policy decisions, thereby contributing to a more secure and

reliable financial environment.

Although this research contributes to the application of advanced regression techniques in

finance, a field dominated by traditional statistical methods, this research is also relevant for

other fields. Specifically, the improvements in methodology such as the usage of random forests

and synthetic data integration can also be applied to other unrelated fields to enhance the

predictive accuracy of the models.

The contributions of this study include:

• Adapting the methodology proposed by Lee and Kang (2024) for compatibility with ran-

dom forests, using the spread of tree predictions as a proxy for uncertainty instead of

MC-dropout.

• Investigating the effectiveness of this approach on financial time-series datasets, specifically

S&P500 daily volatility, comparing its performance to baseline models like GARCH and

RiskMetrics.

• Exploring the robustness of the methodology by training local nodes on different data

distributions, from simple partitioned data to clustered data.

• Examining the impact of introducing synthetic data to the training set to improve per-

formance in data-scarce nodes, addressing a significant problem noted in Lee and Kang

(2024).

The structure of the rest of this thesis is as follows. In Section 2, we compare the existing

literature surrounding our research topic and analyse the current approaches used in popular

literature. Section 3 explains the research methodology, in which we discuss how we extend

5

upon the original approach by Lee and Kang (2024). In Section 4, we explain the experimental

settings, discuss the results, and explain any meaningful findings. In Section 5, we conclude the

study and present the overall contributions of this research.

2 Literature review

2.1 Volatility models

One of the earliest works in modeling time-varying volatility was the Autoregressive Conditional

Heteroskedasticity (ARCH) model by Engle (1982), which assumes that the conditional vari-

ance of a time series is a function of past squared observations. This model was later developed

by Bollerslev (1986) to create the Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) model, which incorporates both the lagged values of squared observations and lagged

conditional variances into model volatility. This model has played a significant role in financial

time series for modeling and forecasting the volatility of financial returns (Bollerslev, Chou &

Kroner, 1992). This has been used in multiple fields such as risk management, option pricing,

and portfolio optimization (Engle & Patton, 2007). As a result, multiple attempts and exten-

sions have been made to improve the GARCH model. The Exponential GARCH (EGARCH)

model allows for the asymmetric effects of shocks on volatility (Nelson, 1991), which has the

advantage of capturing the leverage effect, where negative shocks have a larger impact on future

volatility than positive shocks. The Threshold GARCH (TGARCH) model, also known as GJR-

GARCH, similarly models the impact of positive and negative shocks differently on volatility by

incorporating threshold effects.

Recent developments in machine learning research have led to a rise in new volatility models.

Kim and Won (2018) combines modern machine learning techniques with traditional GARCH

models to investigate whether this would improve the forecasting accuracy for volatility model-

ling. This paper hopes to contribute to the growing literature towards machine learning applic-

ations towards volatility modelling.

2.2 Ensemble neural networks

Lee and Kang (2024) explores the idea of utilizing an ensemble of regression neural networks

to derive better forecasts. It raises the issue of deteriorating performance in situations of data

scarcity and noise in local datasets.

Ensemble methods combine multiple base models to improve predictions in regression and

classification problems (Mendes-Moreira, Soares, Jorge & Sousa, 2012) (Rokach, 2010). These

methods are popular and can be categorized as static or dynamic. Static ensemble methods apply

the same combination rules to each query instance (Breiman, 2001; Freund & Schapire, 1997),

but may not suit neural networks trained on different data distributions. Dynamic ensemble

methods, however, adjust the combination rules for each instance by weighting models expected

to perform well (Britto et al., 2014; Kolter & Maloof, 2007; Rooney et al., 2004). Few studies

have focused on regression problems within this context, which this paper addresses.

6

2.3 Random forests

Random Forests (Breiman, 2001) have become one of the most popular and powerful machine

learning algorithms for both classification and regression tasks due to their excellent performance

and robustness. This model builds on earlier work by Breiman (2017), who introduced the idea

of classification and regression trees (CART), which involves splitting data into subsets based

on the most significant feature at each node. Random forests build multiple decision trees

based on bootstrap sampling and feature randomization to enhance the prediction accuracy and

reduce overfitting. Applications of random forests are vast, ranging from medical uses such as

the classification of gene expression data (Dı́az-Uriarte & Alvarez de Andrés, 2006) to financial

forecasting in the context of stock market prediction (Khaidem, Saha & Dey, 2016). Due to its

popularity, many variations of the random forest have been made to further optimize, such as

boosting in extreme gradient boosting (XGBoost) (Chen & Guestrin, 2016) and light gradient

boosting (LightGBM) (Ke et al., 2017). In this paper, we provide an extension to this approach

of dynamic ensemble but extend it to the context of random forests. For this experiment, regular

random forests were used for the highest degree of simplicity and generalization. Therefore, the

methodology proposed in this paper can be extended to random forest extensions, such as

XGBoost and LightGBM.

2.4 Inference

This study utilises inference for the uncertainty quantification stage. As the model’s uncertainty

is latent for each query instance, different inferential methods can be used to approximate the

uncertainty of prediction for a certain query. In the case of a neural network, we adopt the

same method as the original paper (Lee & Kang, 2024), which is MC-dropout. Other notable

methods such as variational inference (VI) utilises Bayesian statistics for approximate inference,

particularly useful when exact Bayesian inference is computationally infeasible by approximating

the posterior distributions of model parameters (Blei, Kucukelbir & McAuliffe, 2017). Another

method is Monte Carlo Markov Chain (MCMC) (Godsill, 2001) which is flexible as this method

can be applied to almost any statistical model. Possible limitations of this approach however is

that it can be computationally expensive and there may be convergence issues. Another method

is the Deep Ensemble approach where it involves training multiple independent neural networks

and using their collective predictions to estimate predictive uncertainty (Lakshminarayanan,

Pritzel & Blundell, 2017), however, this is computationally expensive.

For random forests, a slightly different approach is taken. For simplicity, we utilise the

variability across bootstrapped samples (Breiman, 1996). For uncertainty quantification using

random forests, we use the individual predictions of all the trees, which we then can get the

mean and use the standard deviation as the uncertainty metric.

2.5 Synthetic data generation

Financial time-series data often suffer from a high noise-to-signal ratio due to their inherently

stochastic nature. This characteristic can make it challenging for models to extract meaningful

patterns without additional support. Augmenting the training set with synthetic data can

7

potentially enhance model generalization by providing more diverse samples. These additional

observations can help the model better discern the underlying trend from the noise, as the

increased sample size allows for better averaging out of random fluctuations.

Synthetic data generation involves creating new data instances that mimic the distribution

of an original dataset. This approach has evolved greatly over time. Early techniques like

bootstrapping, which involves randomly selecting data subsets for model training, has been

a popular technique within industry and academia to improve model generalization. When

repeated with different subsets and aggregated, this process became known as bagging (Mooney,

Duval & Duvall, 1993).

Synthetic data serves multiple purposes, including mitigating noise in training sets and

expanding dataset size, thereby enhancing overall training set quality. Connor and Khoshgoftaar

(2019) explores various data augmentation techniques, including synthetic data generation, to

improve model robustness against noise. In image processing, techniques such as rotations and

translations help models generalize better to key features in the presence of noisy inputs (Shorten

& Khoshgoftaar, 2019).

Recent decades have seen the emergence of advanced generative models. Generative Ad-

versarial Networks (GANs), introduced by (Goodfellow et al., 2020), employ a generator and

discriminator network to create realistic synthetic data. Conditional Tabular GAN (CTGAN)

(Xu, Skoularidou, Cuesta-Infante & Veeramachaneni, 2019a) is a notable variant designed spe-

cifically for tabular data generation. In medical time series data, specialized GANs such as

medGAN, ehrGAN, tableGAN, and PATE-GAN have gained prominence.

Variational Autoencoders (VAEs), introduced by (Kingma, Welling et al., 2019), offer an-

other powerful approach. VAEs utilize probabilistic graphical models and learned approximate

inference to efficiently produce synthetic samples (Brophy, Wang, She & Ward, 2023). For tab-

ular data, Tabular VAE (TVAE) has been developed as a specialized version. Other methods,

such as the Gaussian Copula, model dependencies between variables to generate synthetic data.

For our experiment, we opted to use a Copula GAN model (Xu, Skoularidou, Cuesta-Infante &

Veeramachaneni, 2019b) due to their computational efficiency.

By addressing data scarcity and noise issues through the introduction of synthetic data,

we aim to overcome the performance limitations observed in the dynamic ensemble approach

proposed by (Lee & Kang, 2024). This strategy not only increases the volume of available data

but also potentially enhances its quality, leading to more robust and generalizable models.

2.6 Local model training on dataset properties

Ensemble learning methods have proven to be robust and versatile, often outperforming single

models by aggregating the predictions from multiple learners. However, the effectiveness of an

ensemble can vary greatly depending on how the data is partitioned among the models. This

literature review explores how the performance of ensemble methods is influenced by various

data partitioning strategies, including regular partitioning, bootstrapped partitioning, clustered

partitions, and the use of synthetic data.

Kuncheva and Whitaker (2003) discusses the importance of diversity among the base learners

in an ensemble. It showed that higher diversity often correlates with improved ensemble per-

8

formance and shows that the way data is partitioned can influence the diversity of models.

Hastie, Tibshirani, Friedman and Friedman (2009) discusses how the properties of data dis-

tribution across partitions affect ensemble performance. It notes that disjoint partitions may

result in high variance if the data within each partition is not representative of the entire dataset.

Breiman (1996) explains how boostrapped sampling can reduce variance and improve model ro-

bustness by introducing randomness and reduces the likelihood of overfitting. Chawla, Bowyer,

Hall and Kegelmeyer (2002) provides insights into how generating synthetic data can balance

class distributions in training datasets, leading to more robust ensemble performance.

2.7 Data smoothing

Data quality improvement often involves noise reduction techniques such as data smoothing

(Velleman, 1980). In the context of regression neural networks, synthetic data can enhance

model robustness by providing additional relevant information, enabling better understanding

and generalization of the underlying data distribution. Various methods have been employed

to reduce noise and improve data quality. (Lee & Kang, 2024) utilized Principal Component

Analysis (PCA) to identify orthogonal vectors capturing the most variation in the data, effect-

ively ignoring noise-containing components (Wold, Esbensen & Geladi, 1987). Median filtering,

which replaces each data point with the median of neighboring points within a specified win-

dow, is effective in removing outliers while preserving data edges (Justusson, 2006). Low-pass

filters attenuate high-frequency noise while allowing low-frequency components to pass through,

smoothing out rapid fluctuations (Roberts & Roberts, 1978). Smoothing splines offer a bal-

ance between data fidelity and curve smoothness, making them particularly useful for capturing

underlying trends while reducing noise (Wang, 2011). In the realm of financial time-series

data, moving averages are a common and effective smoothing technique (Raudys, Lenčiauskas

& Malčius, 2013). This method, which we will employ for our financial dataset, involves calcu-

lating the average of a subset of data points over a specified time window, effectively smoothing

out short-term fluctuations and highlighting longer-term trends Other more sophistical signal

processing techniques are also used in finance such as Kalman filtering (Wells, 2013).

3 Methodology

The methodology section is divided into four main sections. To determine the effectiveness

of the proposed approach on financial time-series data, the results were compared with those

of baseline volatility models. Further techniques are also used to make the time-series data

compatible with neural networks, such as creating lagged features, using differencing techniques

to ensure stationarity, and using dimension reduction (PCA) to improve data quality. We also

explain the steps taken to generate synthetic data and how they are incorporated into our

proposed approach. We also introduce our methodology for adapting the approach from Lee

and Kang (2024) to a random forest model.

9

3.1 Baseline volatility models

3.1.1 Historical volatility

Historical volatility is calculated from the daily returns of an asset, providing a measure of

the asset’s price variability over a specific period. The following steps outline the process for

calculating historical volatility. Gather the daily closing prices of the asset over a specific period.

Let these prices be denoted as P1, P2, . . . , PN , where Pt is the closing price on day t and N is

the total number of days. The daily log return rt is computed using the formula:

rt = ln

(
Pt

Pt−1

)
(1)

where Pt is the closing price on day t and Pt−1 is the closing price on the previous day. Calculate

the mean (µ) of the daily log returns over the period:

µ =
1

N

N∑
t=1

rt (2)

where N is the total number of returns. For this study, we use N = 30.

The variance (σ2) of the daily log returns is given by:

σ2 =
1

N − 1

N∑
t=1

(rt − µ)2 (3)

The standard deviation (σ) of the daily log returns, known as historical volatility, is:

σ =

√√√√ 1

N − 1

N∑
t=1

(rt − µ)2 (4)

3.1.2 Generalized Autoregressive Conditional Heteroskedastic (GARCH) model

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, proposed by

Bollerslev (1986), is used to model time series data with time-varying volatility. In summary,

the GARCH(p, q) model captures the dynamic structure of the volatility by incorporating past

information into the current conditional variance. The GARCH(p, q) model consists of two main

components, being the mean equation and the variance equation. The mean equation models

the conditional expectation of the process yt while the variance equation models the conditional

variance σ2
t of the error term ϵt. The GARCH(p, q) model expresses σ2

t as a function of past

squared errors and past variances. In its simplest form, these equations can be written as:

yt = µ+ ϵt (5)

where ϵt = σtzt, σ
2
t is the conditional variance, and zt ∼ N (0, 1) is an i.i.d. standard normal

random variable.

σ2
t = ω +

p∑
i=1

αiϵ
2
t−i +

q∑
j=1

βjσ
2
t−j (6)

10

where ω is a constant term, αi are coefficients for the lagged squared errors ϵ2t−i, and βj are

coefficients for the lagged variances σ2
t−j .

For this paper, we opted to use p = 1 and q = 1 for our baseline model for which we will

compare our proposed approach. As a result, the variance equation for the GARCH(1,1) model

is:

σ2
t = ω + α1ϵ

2
t−1 + β1σ

2
t−1 (7)

where ω is a constant term, α1 is the coefficient for the lagged squared residuals ϵ2t−1, and β1 is

the coefficient for the lagged conditional variance σ2
t−1.

To ensure the model’s validity, the parameters must satisfy the conditions:

ω > 0, α1 ≥ 0, β1 ≥ 0, and α1 + β1 < 1.

3.1.3 RiskMetrics

Another popular method used in industry is RiskMetrics, developed by JP Morgan, that weighs

observations on an exponentially-weighted basis. The conditional variance σ2
t at time t is estim-

ated using the following Exponentially-Weighted Moving Averagage (EWMA) model:

σ2
t = λσ2

t−1 + (1− λ)r2t−1 (8)

where λ is the smoothing parameter (decay factor), typically set to 0.94 for daily financial data,

rt−1 is the return at time t− 1, and σ2
t−1 is the estimated variance at time t− 1.

The parameter λ controls the rate at which the weights decrease for older observations, with

higher values placing more weight on recent returns. Empirical studies have shown that the

optimal decay rate across all asset classes turns out to be 0.94 (Zumbach, 2007). As a result,

we have set the decay rate λ = 0.94.

3.2 Synthetic data generation using Gaussian copulas

To help improve the model generalization, particularly in cases with limited or noisy data,

which specifically is a significant challenge in financial time-series analysis, we look into the

idea of integrating synthetic data into the training set. This study employs a Gaussian Copula

model (Patki, Wedge & Veeramachaneni, 2016) to model our data distribution, chosen for its

theoretical simplicity compared to more advanced machine learning models such as generative

adversarial networks and autoencoders, as well as its computational practicality. The proposed

approach establishes a baseline performance that can potentially be achieved by integrating

synthetic data into the training set. Further performance improvements may be possible through

hyperparameter tuning and the selection of more advanced models for synthetic data generation.

3.2.1 Theoretical background

A Gaussian copula is a type of copula that uses a multivariate normal distribution to describe

the dependency structure between variables. The copula separates the dependency structure

from the marginal distributions of the variables.

11

Given a random vector X = (X1, X2, . . . , Xn) with marginal cumulative distribution func-

tions (CDFs) F1, F2, . . . , Fn, copula C captures the joint CDF H of X as follows:

H(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn))

For a Gaussian copula, C is derived from the multivariate normal distribution. If ΦΣ is the CDF

of a multivariate normal distribution with zero mean and covariance matrix Σ, the Gaussian

copula is defined as:

C(u1, u2, . . . , un) = ΦΣ(Φ
−1(u1),Φ

−1(u2), . . . ,Φ
−1(un))

where Φ−1 denotes the inverse of the standard normal CDF.

3.2.2 Generating synthetic data

Let X = (X1, . . . , Xd) be our random vector of d dimensions that represents the dataset that we

are modelling. We model each feature as a univariate normally distributed variable. For each

feature n ∈ 1, . . . , d, we calculate the mean µn and variance σ2
n:

µn =
1

m

m∑
i=1

xni

σ2
n =

1

m− 1

m∑
i=1

(xni − µn)
2

where m is the number of samples in the dataset.

We then compute the correlation matrix Σ based on the original data and draw a random

vector using a multivariate normal sampling function, taking into account the means and the

covariance matrix. After the synthetic data are generated, they get integrated with the original

training data to enhance the model training.

3.3 Data preparation

3.3.1 Moving average

For the case of the time-series financial data, we do additional data pre-processing to improve

model performance. Due to the stochastic nature of the data, we utilise a simple moving average

of the time-series data, with a fixed window m set to 10. We choose m = 10 to represent an

average two trading weeks to give a sufficiently large window size, while still being able to

capture weekly changes in volatility.

yi =
1

m

i∑
j=i−m

xj

with yi being the processed time-series data, xj being the j-th point in the time series, and m

being the window that is taken into account for the moving average.

12

3.4 Inference (uncertainty quantification)

Statistical inference is an integral intermediary step we take during each query instance to

calculate the uncertainty of a certain node’s confidence. This is done by quantifying the standard

deviation of the query prediction, which can vary in methods based on the context of the problem

and model architecture. For different model architectures, different methods of inference are used

to support the specific ways that the models function. A description of the inference methods

used for both the neural network and random forest are mentioned below.

3.4.1 Neural network

For neural networks, we use MC-dropout for inference. This involves performing multiple for-

ward passes through the network with dropout applied during inference. Lee and Kang (2024)

contains detailed explanation of how MC-dropout is implemented for this approach.

3.4.2 Random forest

For Random Forests, each tree Tj in the forest T = {T1, T2, . . . , Tm} provides a prediction Tj(x).

The ensemble prediction for the Random Forest is the average of the predictions from all trees:

ŷRF =
1

m

m∑
j=1

Tj(x)

with m denoting the number of trees in the random forest.

To use predictive uncertainty in this context, we can define the uncertainty as the spread

(variance) of the predictions from the individual trees:

u(x; T) =
1

m

m∑
j=1

(Tj(x)− ŷRF)
2

3.5 Weighing predictions

Several methods are employed for weighing predictions such as using the mean and median of

all the predictions as a baseline prediction. We assign smaller weights for nodes that has higher

predicted uncertainty. Complete description and notation of the different weighing methods can

be found in Lee and Kang (2024).

• Oracle

• Mean

• Median

• D-SEL(u) (Dynamic selection unnormalized)

• D-SEL(u′) (Dynamic selection normalized)

• D-ENS(u) (Dynamic ensemble unnormalized)

• Proposed method (Dynamic ensemble normalized)

13

4 Computational experiments

4.1 Datasets used

For this study, we use all the original datasets from Lee and Kang (2024) to compare the

methodology extensions. These datasets (Bikesharing, Compactiv, Cpusmall, Ctscan, Indoorloc,

Mv, Pole, Puma32h, Telemonitoring) were retrieved from the UCI Machine Learning Repository

(Dua & Graff, 2017). These datasets span a whole range of domains from computer systems

to telecommunications. By introducing a diverse set of datasets, we hope to see a holistic view

of each approach’s effectiveness and versatility in different conditions. We also introduce a new

dataset of daily volatility from the S&P 500 for the period of January 1 1983 to January 1 20231,

which is the dataset that we will be mostly focusing on in this study. Information about how

this dataset is pre-processed is mentioned in Section 4.2.3. The remaining nine datasets serves

to give further insights into the versatility of the proposed approach on different datasets and

domains. A description of each dataset used in this study is shown in Table 1.

Table 1: Description of datasets used in this study
Dataset No. instances No. features Domain Nodes No. local nodes

Bikesharing 17,379 12 Bike Sharing System 9 [2331, 1379, 1831, 2308, 2201, 1604, 1869, 1816, 1540]
Compactiv 8,192 21 Computer System 4 [4649, 434, 1379, 802]
Cpusmall 8,192 12 Computer System 4 [1904, 1230, 2384, 1204]
Ctscan 53,500 385 Computed Tomography 8 [5124, 8204, 3229, 5456, 4367, 7714, 3449, 13009]
Indoorloc 19,937 585 Indoor Positioning System 7 [2138, 3163, 1226, 2142, 4577, 2014, 2412]
Mv 40,768 10 Synthetic 10 [6205, 3926, 4876, 4204, 3719, 3879, 3604, 3824, 3004, 3527]
Pole 14,998 26 Telecommunication 6 [2404, 2556, 2622, 2777, 1560, 1669]
Puma32h 8,192 32 Robot Arm 10 [803, 832, 764, 760, 814, 843, 802, 843, 849, 882]
Telemonitoring 5,875 20 Parkinson’s Disease 7 [562, 1046, 891, 580, 715, 547, 1028]
Volatility 10,053 60 Financial Time-Series 5 [1929, 2038, 1664, 2180, 2242]

4.2 Experimental Settings

This study compares the generalization performance of each model based on the root mean

squared error (RMSE) and mean absolute error (MAE). We employed the same uncertainty

normalization and weight calculation methodology as proposed by Lee and Kang (2024), which

is based on the predicted uncertainty calculated during the inference stage in the query instance

for each node.

4.2.1 Neural network settings

We implemented our neural networks using Python 3.9 with the PyTorch library. The archi-

tecture and training routine remained consistent with those described in Lee and Kang (2024),

with one notable exception. For time series data, we modified the test and train split to enable

comparison with baseline models such as GARCH(1,1), which require sequential data training.

We maintained an 80/20 split but designated the first 80% of the sample as the training set and

the latter 20% as the testing set.

1Historical data of the S&P 500 (ĜSPC) was retrieved using the Yahoo finance API, which 40 years (January
1 1983 - January 2023) of historical data was used

14

4.2.2 Random forest settings

Our random forest implementation used 100 trees and a fixed seed to ensure replicability across

iterations and datasets. To prevent divide-by-zero errors, we added a small epsilon value to the

standard errors list, as some random forests produced uncertainty values of zero.

4.2.3 Financial data pre-processing

This pre-processing step is unique only for the 40 years of historical volatility data due to the

univariate time-series nature of the data. Therefore, extra features would need to be created to

be compatible with the dynamic ensemble models. The pre-processing steps varied depending

on the model type. For both baseline and ensemble models, we calculated daily returns using the

natural logarithm of price differences. For specifically ensemble methods, we applied a 10-day

moving average (MA) to the data due to the high noise-to-signal ratio in raw financial data.

For feature creation, we added lagged price and price differences for 30 lags, which principal

component analysis (PCA) was then used to capture only the 10 largest components with the

highest volatility. This approach significantly improved model performance, as shown in Table

8. We assumed zero mean daily returns, equating daily volatility to the absolute value of daily

returns. We used historical volatility as our proxy, noting that volatility can be measured

through various proxies such as historical and realized volatility.

4.2.4 Synthetic data generation settings

We generated synthetic data for nodes with insufficient data points, defined as those containing

fewer data points than the average across all nodes. For these nodes, we generated additional

samples to reach the average number of data points per node. To preserve data privacy and

security, we trained the data generation models using only the data within each respective

node. We utilized the Synthetic Data Vault (SDV) library in Python, specifically employing the

Gaussian copula synthesizer for data generation.

4.3 Dataset performance comparisons

We first explore the performance of this approach based on different characteristics of the training

set of each node. By default, the original paper opted for a K-Means clustering approach to

separate the nodes, but we also explore whether this is a necessary case or whether this actually

would perform worse. As mentioned in Lee and Kang (2024), the performance of the approach

is likely to perform better when the data distribution within the nodes represent the distribution

throughout the whole dataset.

4.3.1 Disjoint Partitioning (DP)

Regular partitioning, also known as disjoint partitioning, involves dividing the dataset into

distinct, non-overlapping subsets. Each node receives a unique subset of the data with no

overlap with other nodes. This method is straightforward but can result in uneven distributions

of data characteristics across nodes, potentially affecting model performance. We implement

this by splitting the dataset X into N disjoint subsets {X1,X2, . . . ,XN}. Then we assign each

15

subset Xi to a different node for training local models. For the sake of comparison, we set the

number of nodes equal to the number of nodes used in the K-Means Clustering method after

filtering out the insufficient nodes.

4.3.2 Bootstrapped Partitioning (BP)

Bootstrapped partitioning involves creating partitions by sampling the dataset with replacement.

Each node receives a bootstrapped sample, which may contain duplicate observations. This

approach ensures that each node gets a slightly different view of the data, helping to reduce

overfitting and improve model robustness. We implement this in the algorithm by sampling d

data points with replacement from the dataset X to form the bootstrapped dataset X∗
i for each

node. For this, d denotes the size of the whole training set divided by the number of nodes

so the number of data points trained at each node is identical, similar to disjoint partitioning.

Similarly to regular partitioning, the number of nodes is also set to the number of nodes of K-

Means clustering method after filtering. By bootstrapping, we hoped that this would enhance

model robustness and generalization by benefiting from a diverse set of training data.

4.3.3 K-Means Clustering (KMeans)

K-means clustered partitioning groups the data points into clusters based on their feature sim-

ilarities using the K-means algorithm. This training approach is what was used in the original

paper by Lee and Kang (2024), so we used this as our baseline to directly compare the effects

of synthetic data integration. Each node is then assigned data from different clusters. This

method ensures that each node has data points that are similar to each other, which can be

beneficial for learning local patterns. This results in data that are much more homogeneous

within nodes, and therefore reduces intra-node variance but can introduce bias if clusters do

not represent the overall distribution. A potential advantage of this approach is that nodes

receive data from distinct clusters, which may lead to specialized models. This is implemented

by applying K-means clustering to dataset X to create K clusters {C1,C2, . . . ,CK}. Each data

point is then labelled with a specific cluster, and the data points are assigned to their respective

clusters. For clusters that contain 5% or less data points from the entire dataset, this cluster is

ignored in the experiments.

4.3.4 Augmented K-Means Clustering (A-KMeans)

This approach extends the K-means clustered partitioning by adding synthetic data to each

cluster. Synthetic data were generated to augment the clusters, particularly for clusters with

limited data points. This method helps address data scarcity and improves model training by

providing more varied training samples. A potential advantage of this method is that it reduces

the variance and potential overfitting by providing additional training data that represent the

underlying data distribution. This approach addresses data scarcity and potentially enhances

the model performance. One caveat is that this approach relies heavily on the quality of synthetic

data, as this can impact model performance negatively, and it is also computationally expensive.

We implement this by firstly performing K-means clustering to divide the dataset X into

clusters {C1,C2, . . . ,CK}. Then for each cluster, we generate synthetic data points and ensure

16

at the end, the training set for each node has at least the number of points that is equal to the

size of the whole training set divided by the number of clusters used. Lastly, we combine the

original and synthetic data for each cluster and assign them to their respective nodes.

4.4 Methodology comparison results

The format of which the results are showed are shown as: mean±std.dev. Only the notable res-

ults that this paper contributes is listed in the body of the paper. For more complete information

about the experimental results, these results are listed in Appendix A.

4.4.1 Random forest methodology results

RMSE MAE
Clustering method Neural network Random forest Neural network Random forest

DP 2.60 ± 0.80 1.80 ± 0.87 2.20 ± 1.25 1.50 ± 0.81
BP 1.50 ± 0.81 2.00 ± 1.00 2.10 ± 0.70 2.20 ± 0.98
KMeans 1.30 ± 0.64 2.00 ± 1.10 2.00 ± 0.63 2.60 ± 0.92
A-KMeans 1.70 ± 0.90 1.40 ± 0.80 2.20 ± 0.75 2.00 ± 0.89

Table 2: Average rank comparison

Table 2 presents the average rank values based on their respective models and evaluates the

performance of each method across all clustering approaches. The average rank refers to how

effective the dynamic ensemble approach is compared to the other baseline weighing methods,

as mentioned in Section 3.5. The lower the rank is, the more effective the proposed approach

is. This comparison aims to assess whether the dynamic ensemble method is equally effective

for the random forest (RF) model compared to the neural network (NN). For each of the error

metrics, RMSE and MAE, the superior results are highlighted in bold.

The results reveal that for the dynamic partitioned (DP) and augmented K-Means clustered

(A-KMeans) training sets, the random forest tends to achieve a better average rank compared to

neural networks. However, it’s important to note that this difference is not statistically signific-

ant for a given α = 0.05. Conversely, the neural network demonstrates greater effectiveness for

the bootstrapped partitioned (BP) and K-Means clustered partitions (KMeans), though again,

this difference is minimal. These observations suggest that the effectiveness of the dynamic

ensemble method is comparable between these two model architectures.

An interesting finding emerges when comparing the results between the K-Means clustered

(KMeans) and augmented K-Means clustered (A-KMeans) training sets. The random forest

shows to be not as effective for the KMeans case but shows a noticeable increase in average

rank The random forest initially shows less effective performance with this set. However, when

integrated with synthetic data (A-KMeans), its performance notably improves. Interestingly, the

opposite effect is observed for neural networks, where the integration of synthetic data leads to a

slight decrease in effectiveness. This could be attributed to the simplistic nature of the random

forest which allows for it to generalize better to the underlying trend. While for the neural

network, it can be susceptible to overfit to the noise added in the synthetic data generation

process, which could worsen overall performance.

17

In conclusion, the effectiveness of the dynamic ensemble methodology appears to be similar

between neural networks and random forests, with only negligible differences observed. The

results suggest that both model architectures can be viable options for implementing the dy-

namic ensemble approach. However, the results reveal a potential advantage for random forests

when working with synthetically generated data. This finding indicates that our approach is not

limited to neural networks but can be generalized to various model architectures. This adapt-

ability underscores the robustness and versatility of the weighted dynamic ensemble approach

in improving predictive accuracy across diverse datasets.

4.4.2 Clustering comparison results

Dataset DP BP KMeans A-KMeans

Bikesharing 0.7545 ± 0.0833 0.4598 ± 0.0483 0.7493 ± 0.0330 0.7619 ± 0.0820
Compactiv 0.1894 ± 0.0048 0.1156 ± 0.0041 0.1894 ± 0.0056 0.2473 ± 0.0198
Cpusmall 0.1978 ± 0.0049 0.2289 ± 0.0054 0.7332 ± 0.0189 0.7336 ± 0.0686
Ctscan 0.3335 ± 0.0054 0.1265 ± 0.0143 0.3377 ± 0.0299 0.3261 ± 0.0233
Indoorloc 0.1129 ± 0.0014 0.0725 ± 0.0027 0.1402 ± 0.0143 0.1619 ± 0.0249
Mv 0.0249 ± 0.0009 0.0500 ± 0.0036 0.0533 ± 0.0058 0.1979 ± 0.0484
Pole 0.1792 ± 0.0031 0.1182 ± 0.0130 0.3038 ± 0.0316 0.3302 ± 0.0445
Puma32h 0.9598 ± 0.0034 0.7791 ± 0.0027 0.9884 ± 0.0023 0.9900 ± 0.0025
Telemonitoring 0.9733 ± 0.0281 0.5011 ± 0.0246 0.7650 ± 0.0494 0.9016 ± 0.4904
Volatility 0.5741 ± 0.0089 0.5667 ± 0.0174 0.7503 ± 0.0145 0.5791 ± 0.0125

Average rank 2.60 ± 0.80 1.50 ± 0.81 1.30 ± 0.64 1.70 ± 0.90

Table 3: RMSE comparison of neural network trained on different dataset configurations

Dataset DP BP KMeans A-KMeans

Bikesharing 0.4548 ± 0.0465 0.4658 ± 0.0363 0.4387 ± 0.0246 0.4431 ± 0.0474
Compactiv 0.1226 ± 0.0022 0.1150 ± 0.0028 0.1159 ± 0.0038 0.1404 ± 0.0128
Cpusmall 0.1396 ± 0.0021 0.2250 ± 0.0039 0.2298 ± 0.0031 0.2346 ± 0.0096
Ctscan 0.1217 ± 0.0021 0.1278 ± 0.0169 0.1227 ± 0.0136 0.1243 ± 0.0078
Indoorloc 0.0759 ± 0.0012 0.0737 ± 0.0071 0.0694 ± 0.0034 0.0819 ± 0.0084
Mv 0.0186 ± 0.0006 0.0544 ± 0.0075 0.0533 ± 0.0058 0.0998 ± 0.0235
Pole 0.0881 ± 0.0030 0.1229 ± 0.0160 0.1203 ± 0.0117 0.1319 ± 0.0164
Puma32h 0.7617 ± 0.0027 0.7770 ± 0.0018 0.7778 ± 0.0028 0.7821 ± 0.0033
Telemonitoring 0.6898 ± 0.0263 0.5101 ± 0.0179 0.4852 ± 0.0373 0.6099 ± 0.3475
Volatility 0.3761 ± 0.0088 0.3682 ± 0.0077 0.4678 ± 0.0134 0.3764 ± 0.0060

Average rank 2.20 ± 1.25 2.10 ± 0.70 2.00 ± 0.63 2.20 ± 0.75

Table 4: MAE comparison of neural network trained on different dataset configurations

As shown in Table 3, we can see differences in the effectiveness of the approach based on

training the data on clustered nodes or randomly partitioned nodes. For some datasets like

Cpusmall, the difference is quite a contrast with regular partitioning having better performance

of 0.1978 compared to K-Means clustered data of 0.7332. It seems that for all datasets, excluding

Telemonitoring, regular partitioning performs an equally good or better job than clustered data.

This could be explained by the nodes being more representative of the overall dataset, and

each node being more similar in distribution properties, making more nodes to be accurately

18

predicted. On the other hand, Table 4, tells us another story. For example, although it seems

that training on bootstrap partitioned data for the Bikesharing dataset gives us much better

performance in terms of RMSE, when comparing MAE, these differences are nearly negligible.

Overall, when comparing the synthetic data integrated approach with the other baseline dataset

configurations in the neural network case, it seems to provide the worst performance for both

RMSE and MAE metrics.

Dataset DP BP KMeans A-KMeans

Bikesharing 0.7340 ± 0.0000 0.7117 ± 0.0000 0.7222 ± 0.0000 0.7231 ± 0.0536
Compactiv 0.2325 ± 0.0000 0.3117 ± 0.0000 0.3226 ± 0.0000 0.2996 ± 0.0290
Cpusmall 0.2992 ± 0.0000 0.3211 ± 0.0000 0.3500 ± 0.0000 0.3324 ± 0.0102
Ctscan 0.2997 ± 0.0000 0.3031 ± 0.0000 0.2982 ± 0.0000 0.4485 ± 0.2154
Indoorloc 0.1132 ± 0.0000 0.2866 ± 0.0000 0.2603 ± 0.0000 0.4534 ± 0.1663
Mv 0.0532 ± 0.0000 0.6575 ± 0.0000 0.6415 ± 0.0000 0.4320 ± 0.0917
Pole 0.2845 ± 0.0000 0.3025 ± 0.0000 0.3039 ± 0.0000 0.3030 ± 0.0033
Puma32h 0.9672 ± 0.0000 0.9939 ± 0.0000 0.9947 ± 0.0000 0.9935 ± 0.0017
Telemonitoring 0.9547 ± 0.0000 1.0264 ± 0.0000 1.1443 ± 0.0000 0.7749 ± 0.1097
Volatility 0.7135 ± 0.0000 0.7476 ± 0.0000 0.6780 ± 0.0000 0.6319 ± 0.0000

Average rank 1.80 ± 0.87 2.00 ± 1.00 2.00 ± 1.10 1.40 ± 0.80

Table 5: RMSE comparison of random forest trained on different dataset configurations

Dataset DP BP KMeans A-KMeans

Bikesharing 0.4701 ± 0.0000 0.4615 ± 0.0000 0.4706 ± 0.0000 0.4730 ± 0.0274
Compactiv 0.1257 ± 0.0000 0.2070 ± 0.0000 0.2165 ± 0.0000 0.1774 ± 0.0204
Cpusmall 0.1438 ± 0.0000 0.1369 ± 0.0000 0.1401 ± 0.0000 0.1375 ± 0.0016
Ctscan 0.0847 ± 0.0000 0.1009 ± 0.0000 0.1008 ± 0.0000 0.1901 ± 0.1492
Indoorloc 0.0577 ± 0.0000 0.1459 ± 0.0000 0.1319 ± 0.0000 0.2030 ± 0.0739
Mv 0.0365 ± 0.0000 0.3308 ± 0.0000 0.3168 ± 0.0000 0.1858 ± 0.0471
Pole 0.1100 ± 0.0000 0.1160 ± 0.0000 0.1186 ± 0.0000 0.1175 ± 0.0018
Puma32h 0.7646 ± 0.0000 0.7838 ± 0.0000 0.7841 ± 0.0000 0.7827 ± 0.0014
Telemonitoring 0.5724 ± 0.0000 0.6371 ± 0.0000 0.7344 ± 0.0000 0.4727 ± 0.0669
Volatility 0.3363 ± 0.0000 0.4161 ± 0.0000 0.4081 ± 0.0000 0.3357 ± 0.0000

Average rank 1.50 ± 0.81 2.20 ± 0.98 2.60 ± 0.92 2.00 ± 0.89

Table 6: MAE comparison of random forest trained on different dataset configurations

Tables 5 and 6 present the results of our random forest implementation. Notably, the stand-

ard errors for random forests are insignificant, likely due to their inherent robustness to data

noise and less complex nature compared to neural networks. In contrast, neural networks, with

their high flexibility, require substantial data to converge to an optimal state that accurately

captures the true data distribution. This flexibility results in larger standard errors between

experiments for neural networks. Our clustering approach with synthetic data shows varying

results across datasets. In some cases, it maintains similar accuracy levels to the baseline K-

means configuration, while in others, such as the Mv and Telemonitoring datasets, we observe

substantial performance improvements.

Comparing the synthetic data integrated models with the regular K-means clustered models

reveals interesting patterns. For random forests, the synthetic data approach outperforms the

19

−4 −2 0 2 4 6 8
0

1,000

2,000

3,000

Value

F
re
q
u
en

cy

Histogram with Normal Distribution Curve

Daily Volatility
Normal Distribution

Figure 1: Daily Volatility Distribution Compared to Normal Distribution

regular clustering in seven out of ten datasets, both in terms of RMSE and MAE. However,

this trend does not hold for neural networks, where the synthetic data results consistently

underperform across all datasets. This contrasting behavior is further evidenced by the average

rank comparisons. In the random forest case, the synthetic data approach ranks second only to

the regular partitioning configuration, outperforming the regular K-Means dataset configuration.

For neural networks, however, the synthetic data approach performs poorly across the board.

These findings suggest that simpler model architectures, such as random forests, can benefit

more from the integration of synthetic data, likely due to improved generalization. Conversely,

the flexibility of neural networks may lead to overfitting on synthetic data, potentially degrading

model performance. This underscores the importance of considering model architecture when

implementing synthetic data strategies in ensemble learning approaches.

4.5 Time series model comparison results

Table 7: Summary statistics of daily volatility
Mean Standard deviation Skewness Kurtosis Jarque-Bera test

0.75 0.52 4.06 28.02 361840.66

Figure 1 shows the histogram of daily volatility and compares it to the normal distribution.

This comparison is necessary as synthetic data generation relies upon the assumption that the

features are Gaussian distributed, as it models the data as such. This is important because if the

assumption is not met, then the synthetic data would not be representative of the underlying

data distribution, therefore making it less effective in improving generalization. This is especially

an issue for financial data as it typically has fat tails.

This non-normality is shown in Table 7 where the kurtosis is 28.02, which is greater than

3 (the kurtosis of a normal distribution). A high positive skewness is also shown, being 4.06,

providing further evidence against normality. To further assess whether the data is normal, we

20

performed a Jarque-Bera test. This test evaluates the null hypothesis that the sample data

have the skewness and kurtosis matching a normal distribution. Our test yielded a statistic of

361840.66, which far exceeds the critical value of 5.99 for p=0.05. Consequently, we reject the

null hypothesis of normality with high confidence. Therefore, we cannot claim that the finance

dataset is multivariate normally distributed, so we should consider the synthetic data results

with caution.

01.01.2015 31.12.2016
0

2

4

Date

V
o
la
ti
li
ty

GARCH(1,1)
RiskMetrics

Historical volatility
Neural Network
Random Forest

Figure 2: Volatility model comparison chart

Figure 2 shows that ensemble methods perform well during stable periods but underestimate

volatility spikes. The ensemble model (neural network) results, trained on A-KMeans data, are

shown for direct comparison with baseline methods. Despite the predicted magnitude being far

off, ensemble methods accurately capture general volatility trends, with daily movement po-

larity similar to GARCH(1,1). Historical volatility captures overall levels but lacks directional

nuance, often remaining high after spikes. RiskMetrics improves upon this by using exponen-

tially weighted averaging, prioritizing recent information. Unlike historical volatility, which

considers a limited time window, GARCH(1,1) and RiskMetrics incorporate information from

infinitely previous time frames through error relationships. The dynamic ensemble approach

shows promise for capturing relative volatility changes rather than absolute levels.

The random forest case is perhaps the most interesting case of all the models, where it

predicts around the same level of volatility at 0.84 and likes to do large spikes during periods of

volatility where volatility is greatly different from the usual.

Dataset RMSE MAE

Historical volatility 1.6646 1.1149
GARCH(1,1) 3.5571 1.4962
RiskMetrics 1.6687 1.1080
Neural network ensemble (w/o MA smoothing) 1.3397 0.8582
Neural network ensemble (w/ MA smoothing) 1.3376 0.8605
Random forest ensemble (w/o MA smoothing) 1.5647 1.0516
Random forest ensemble (w/ MA smoothing) 1.4271 0.9922

Table 8: Volatility model comparison

Table 8 compares the proposed and baseline models using RMSE and MAE metrics for the

period from January 5, 2015, to December 30, 2022. For the neural network and random forest

21

results, we use the dynamic ensemble models trained on A-KMeans data to show specifically

the performance of our proposed method. These outperformed the baseline models in terms

of RMSE and MAE. However, as shown in Figure 2, baseline models provide more nuanced

forecasts. A comprehensive comparison requires examining the actual predicted values and

their practical utility.

The neural network model demonstrates the best performance in both RMSE and MAE.

Unexpectedly, the GARCH(1,1) model performed worst overall, with the highest RMSE (3.5571)

and MAE (1.4962). Nevertheless, it does well at capturing rapid volatility changes, while other

models like historical volatility and neural networks may lag in detecting such fluctuations.

The results also show that training models on smoothened data showed a clear increase in

model performance. For the random forest ensemble, moving average (MA) smoothing reduced

RMSE by 9% and MAE by 6%. However, the neural network ensemble showed negligible

differences between regular and smoothened data in terms of RMSE and MAE.

01.01.2015 31.12.2016

0

1

2

Date

V
ol
at
il
it
y

Neural Network w/o MA smoothing

Neural Network w/ MA smoothing

Figure 3: Neural network model comparison between noisy and denoised training sets

01.01.2015 31.12.2016
0

1

2

Date

V
ol
at
il
it
y

Random Forest w/o MA smoothing

Random Forest w/ MA smoothing

Figure 4: Random forest model comparison between noisy and denoised training sets

Figures 3 and 4 illustrate the contrasts between models trained on regular noisy data and

those trained on denoised data. The denoising process involved smoothing the time-series data

using a moving average technique. As evidenced by these figures, the models trained on denoised

data produce smoother predictions. However, this smoothing comes with a trade-off: sudden

spikes in volatility tend to be underestimated. This occurs because the moving average naturally

22

dampens extreme values, potentially leading to an underestimation of volatility during highly

volatile periods. Thus, while the denoised model offers more stable predictions overall, it may

not fully capture rapid or extreme market fluctuations.

5 Conclusion

In this study, we proposed methodological improvements to the dynamic ensembling of regression

neural networks based on predictive uncertainty, building upon the approach initially proposed

by Lee and Kang (2024). When comparing between different data distributions, our findings

reveal that this approach is most effective when training data distributions across nodes are

similar. When applying this methodology to random forest models, we observed good and

more stable performance, likely due to their simpler structure compared to neural networks,

which led to a lower risk of overfitting. In the context of time-series financial forecasting, we

compared our approach with conventional volatility modeling methods such as GARCH(p,q) and

RiskMetrics. In terms of RMSE and MAE metrics, they both overperformed baseline methods,

with the neural network having the best overall performance. However, when examining further

into the dynamics, the accuracy of these models vary greatly depending on the current market

conditions. While ensemble methods struggled during periods of high volatility, this could

potentially be mitigated by introducing additional features. A notable advantage of our approach

over traditional methods is the ability to incorporate alternative data, such as sentiment analysis,

which could enhance predictions.

The introduction of synthetic data showed promising results, particularly in random forest

models. However, its implementation in neural networks led to decreased performance, sug-

gesting a potential trade-off between including synthetic data for better generalization and

maintaining model flexibility. As a result, the A-KMeans clustering method seems to be the

preferable method for random forests, however, for neural networks, the original KMeans clus-

tering approach seems to be preferable. Future research could explore alternative methods of

synthetic data generation, such as CTGAN or TVAE, to enhance the quality of training data

for regression models. Another interesting direction would be to examine the potential benefits

of using specific model architectures for individual nodes, while addressing the challenge of re-

conciling different uncertainty quantification methods across varied model architectures. Other

more sophisticated signal processing techniques such as Kalman filtering could potentially be

used in replacement to the moving average approach.

In conclusion, while our proposed improvements show promise, particularly in certain con-

texts, they also highlight areas requiring further research. The varying performance across dif-

ferent model types and data conditions underscores the complexity of financial forecasting and

the need for continued refinement of ensemble methods in this field. As we continue to develop

and refine these approaches, we move closer to more accurate and robust financial forecasting

models, with potential impacts across various sectors of the financial industry.

References

Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. (2017). Variational inference: A review for

23

statisticians. Journal of the American statistical Association, 112 (518), 859–877.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of

econometrics, 31 (3), 307–327.

Bollerslev, T., Chou, R. Y. & Kroner, K. F. (1992). Arch modeling in finance: A review of the

theory and empirical evidence. Journal of econometrics, 52 (1-2), 5–59.

Breiman, L. (1996). Bagging predictors. Machine learning , 24 , 123–140.

Breiman, L. (2001). Random forests. Machine learning , 45 , 5–32.

Breiman, L. (2017). Classification and regression trees. Routledge.

Brophy, E., Wang, Z., She, Q. & Ward, T. (2023). Generative adversarial networks in time

series: A systematic literature review. ACM Computing Surveys, 55 (10), 1–31.

Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. (2002). Smote: synthetic

minority over-sampling technique. Journal of artificial intelligence research, 16 , 321–357.

Chen, T. & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings

of the 22nd acm sigkdd international conference on knowledge discovery and data mining

(pp. 785–794).

Connor, S. & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep

learning. Journal of big data, 6 (1), 1–48.

Dı́az-Uriarte, R. & Alvarez de Andrés, S. (2006). Gene selection and classification of microarray

data using random forest. BMC bioinformatics, 7 , 1–13.

Dua, D. & Graff, C. (2017). Uci machine learning repository. Retrieved from

http://archive.ics.uci.edu/ml

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance

of united kingdom inflation. Econometrica: Journal of the econometric society , 987–1007.

Engle, R. F. & Patton, A. J. (2007). What good is a volatility model? In Forecasting volatility

in the financial markets (pp. 47–63). Elsevier.

Godsill, S. J. (2001). On the relationship between markov chain monte carlo methods for model

uncertainty. Journal of computational and graphical statistics, 10 (2), 230–248.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . . . Bengio, Y.

(2020). Generative adversarial networks. Communications of the ACM , 63 (11), 139–144.

Hastie, T., Tibshirani, R., Friedman, J. H. & Friedman, J. H. (2009). The elements of statistical

learning: data mining, inference, and prediction (Vol. 2). Springer.

Justusson, B. (2006). Median filtering: Statistical properties. Two-dimensional digital signal

prcessing II: transforms and median filters, 161–196.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., . . . Liu, T.-Y. (2017). Lightgbm: A

highly efficient gradient boosting decision tree. Advances in neural information processing

systems, 30 .

Khaidem, L., Saha, S. & Dey, S. R. (2016). Predicting the direction of stock market prices using

random forest. arXiv preprint arXiv:1605.00003 .

Kim, H. Y. & Won, C. H. (2018). Forecasting the volatility of stock price index: A hybrid model

integrating lstm with multiple garch-type models. Expert Systems with Applications, 103 ,

25–37.

Kingma, D. P., Welling, M. et al. (2019). An introduction to variational autoencoders. Found-

24

ations and Trends® in Machine Learning , 12 (4), 307–392.

Kuncheva, L. I. & Whitaker, C. J. (2003). Measures of diversity in classifier ensembles and their

relationship with the ensemble accuracy. Machine learning , 51 , 181–207.

Lakshminarayanan, B., Pritzel, A. & Blundell, C. (2017). Simple and scalable predictive un-

certainty estimation using deep ensembles. Advances in neural information processing

systems, 30 .

Lee, Y. & Kang, S. (2024). Dynamic ensemble of regression neural networks based on predictive

uncertainty. Computers & Industrial Engineering , 110011.

Mendes-Moreira, J., Soares, C., Jorge, A. M. & Sousa, J. F. D. (2012). Ensemble approaches

for regression: A survey. Acm computing surveys (csur), 45 (1), 1–40.

Mooney, C. Z., Duval, R. D. & Duvall, R. (1993). Bootstrapping: A nonparametric approach to

statistical inference (No. 95). sage.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econo-

metrica: Journal of the econometric society , 347–370.

Patki, N., Wedge, R. & Veeramachaneni, K. (2016, Oct). The synthetic data vault. In Ieee

international conference on data science and advanced analytics (dsaa) (p. 399-410). doi:

10.1109/DSAA.2016.49

Raudys, A., Lenčiauskas, V. & Malčius, E. (2013). Moving averages for financial data smooth-

ing. In Information and software technologies: 19th international conference, icist 2013,

kaunas, lithuania, october 2013. proceedings 19 (pp. 34–45).

Roberts, J. & Roberts, T. D. (1978). Use of the butterworth low-pass filter for oceanographic

data. Journal of Geophysical Research: Oceans, 83 (C11), 5510–5514.

Rokach, L. (2010). Ensemble-based classifiers. Artificial intelligence review , 33 , 1–39.

Shorten, C. & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep

learning. Journal of big data, 6 (1), 1–48.

Velleman, P. F. (1980). Definition and comparison of robust nonlinear data smoothing al-

gorithms. Journal of the American Statistical Association, 75 (371), 609–615.

Wang, Y. (2011). Smoothing splines: methods and applications. CRC press.

Wells, C. (2013). The kalman filter in finance (Vol. 32). Springer Science & Business Media.

Wold, S., Esbensen, K. & Geladi, P. (1987). Principal component analysis. Chemometrics and

intelligent laboratory systems, 2 (1-3), 37–52.

Xu, L., Skoularidou, M., Cuesta-Infante, A. & Veeramachaneni, K. (2019a). Modeling tabular

data using conditional gan. Advances in neural information processing systems, 32 .

Xu, L., Skoularidou, M., Cuesta-Infante, A. & Veeramachaneni, K. (2019b). Modeling tabular

data using conditional gan. In Advances in neural information processing systems.

Zumbach, G. O. (2007). The riskmetrics 2006 methodology. Available at SSRN 1420185 .

A Full experimental results

25

Dataset Oracle Mean Median D-SEL(u) D-SEL(u′) D-ENS(u) Proposed method

Bikesharing 0.3862 ± 0.0069 0.6800 ± 0.0194 0.6826 ± 0.0281 0.9338 ± 0.0875 0.8153 ± 0.0805 0.9281 ± 0.0874 0.7545 ± 0.0833
Compactiv 0.2055 ± 0.0103 0.1851 ± 0.0044 0.1824 ± 0.0052 0.2045 ± 0.0109 0.2091 ± 0.0100 0.2006 ± 0.0092 0.1894 ± 0.0048
Cpusmall 0.2033 ± 0.0051 0.1929 ± 0.0028 0.1914 ± 0.0023 0.2178 ± 0.0118 0.2169 ± 0.0115 0.2147 ± 0.0116 0.1978 ± 0.0049
Ctscan 0.0613 ± 0.0026 0.3156 ± 0.0023 0.3251 ± 0.0029 0.3521 ± 0.0090 0.3543 ± 0.0082 0.3505 ± 0.0094 0.3335 ± 0.0054
Indoorloc 0.0959 ± 0.0017 0.2139 ± 0.0170 0.1270 ± 0.0040 0.1209 ± 0.0065 0.1185 ± 0.0017 0.1201 ± 0.0064 0.1129 ± 0.0014
Mv 0.0333 ± 0.0011 0.0194 ± 0.0007 0.0199 ± 0.0007 0.0309 ± 0.0011 0.0328 ± 0.0009 0.0302 ± 0.0011 0.0249 ± 0.0009
Pole 0.1984 ± 0.0050 0.1771 ± 0.0034 0.1749 ± 0.0035 0.1876 ± 0.0057 0.1908 ± 0.0044 0.1855 ± 0.0054 0.1792 ± 0.0031
Puma32 0.9591 ± 0.0021 0.9519 ± 0.0006 0.9522 ± 0.0008 0.9605 ± 0.0021 0.9661 ± 0.0051 0.9602 ± 0.0021 0.9598 ± 0.0034
Telemonitoring 0.2358 ± 0.0108 0.8936 ± 0.0087 0.9341 ± 0.0183 1.0655 ± 0.0497 1.0202 ± 0.0280 1.0620 ± 0.0492 0.9733 ± 0.0281
Volatility 0.5593 ± 0.0105 1.4243 ± 0.1330 0.9106 ± 0.0552 0.6145 ± 0.0190 0.5934 ± 0.0173 0.6106 ± 0.0178 0.5741 ± 0.0089

Average rank 2.30 ± 1.90 2.30 ± 1.42 5.10 ± 0.70 4.70 ± 1.55 4.00 ± 0.63 2.60 ± 0.80

Table 9: RMSE scores of neural network models trained with DP data

Dataset Oracle Mean Median D-SEL(u) D-SEL(u′) D-ENS(u) Proposed method

Bikesharing 0.2445 ± 0.0041 0.4661 ± 0.0172 0.4308 ± 0.0166 0.5517 ± 0.0549 0.4850 ± 0.0470 0.5485 ± 0.0546 0.4548 ± 0.0465
Compactiv 0.1294 ± 0.0026 0.1209 ± 0.0016 0.1206 ± 0.0019 0.1273 ± 0.0026 0.1286 ± 0.0026 0.1261 ± 0.0022 0.1226 ± 0.0022
Cpusmall 0.1435 ± 0.0023 0.1370 ± 0.0017 0.1364 ± 0.0018 0.1429 ± 0.0025 0.1439 ± 0.0032 0.1420 ± 0.0025 0.1396 ± 0.0021
Ctscan 0.0339 ± 0.0010 0.1589 ± 0.0017 0.1384 ± 0.0014 0.1246 ± 0.0025 0.1260 ± 0.0027 0.1242 ± 0.0026 0.1217 ± 0.0021
Indoorloc 0.0642 ± 0.0008 0.1646 ± 0.0147 0.0881 ± 0.0036 0.0768 ± 0.0022 0.0781 ± 0.0014 0.0766 ± 0.0022 0.0759 ± 0.0012
Mv 0.0253 ± 0.0008 0.0139 ± 0.0005 0.0144 ± 0.0005 0.0235 ± 0.0008 0.0249 ± 0.0007 0.0230 ± 0.0008 0.0186 ± 0.0006
Pole 0.1039 ± 0.0036 0.0925 ± 0.0030 0.0901 ± 0.0030 0.0890 ± 0.0037 0.0931 ± 0.0033 0.0882 ± 0.0037 0.0881 ± 0.0030
Puma32 0.7622 ± 0.0017 0.7561 ± 0.0005 0.7561 ± 0.0009 0.7601 ± 0.0017 0.7669 ± 0.0049 0.7598 ± 0.0016 0.7617 ± 0.0027
Telemonitoring 0.1390 ± 0.0096 0.7315 ± 0.0125 0.6852 ± 0.0149 0.7503 ± 0.0434 0.7043 ± 0.0268 0.7493 ± 0.0432 0.6898 ± 0.0263
Volatility 0.3494 ± 0.0027 1.0331 ± 0.0840 0.6357 ± 0.0307 0.3913 ± 0.0136 0.3845 ± 0.0120 0.3893 ± 0.0137 0.3761 ± 0.0088

Average rank 3.70 ± 1.85 2.60 ± 1.80 4.40 ± 1.11 4.70 ± 1.42 3.40 ± 1.11 2.20 ± 1.25

Table 10: MAE scores of neural network models trained with DP data

Dataset Oracle Mean Median D-SEL(u) D-SEL(u′) D-ENS(u) Proposed method

Bikesharing 0.2192 ± 0.0064 0.8781 ± 0.0549 0.5906 ± 0.0387 0.5176 ± 0.0913 0.4616 ± 0.0540 0.5151 ± 0.0911 0.4598 ± 0.0483
Compactiv 0.1051 ± 0.0022 0.1592 ± 0.0131 0.1439 ± 0.0113 0.1094 ± 0.0016 0.1184 ± 0.0047 0.1094 ± 0.0016 0.1156 ± 0.0041
Cpusmall 0.1071 ± 0.0011 0.2179 ± 0.0051 0.2424 ± 0.0058 0.2386 ± 0.0052 0.2385 ± 0.0070 0.2380 ± 0.0051 0.2289 ± 0.0054
Ctscan 0.0312 ± 0.0014 0.5591 ± 0.0148 0.4909 ± 0.0164 0.3095 ± 0.0307 0.1147 ± 0.0152 0.3092 ± 0.0308 0.1265 ± 0.0143
Indoorloc 0.0474 ± 0.0025 0.8846 ± 0.0289 0.3659 ± 0.0342 0.0882 ± 0.0111 0.0688 ± 0.0026 0.0886 ± 0.0112 0.0725 ± 0.0027
Mv 0.0149 ± 0.0006 0.5760 ± 0.0260 0.3678 ± 0.0244 0.8547 ± 0.0505 0.0296 ± 0.0034 0.9358 ± 0.0677 0.0500 ± 0.0036
Pole 0.0699 ± 0.0023 0.5368 ± 0.0273 0.2545 ± 0.0135 0.1343 ± 0.0570 0.1234 ± 0.0136 0.1397 ± 0.0550 0.1182 ± 0.0130
Puma32 0.7788 ± 0.0023 0.7723 ± 0.0015 0.7730 ± 0.0018 0.7929 ± 0.0044 0.7883 ± 0.0025 0.7928 ± 0.0042 0.7791 ± 0.0027
Telemonitoring 0.1714 ± 0.0059 0.7216 ± 0.0166 0.6284 ± 0.0218 0.6626 ± 0.0281 0.5057 ± 0.0305 0.6589 ± 0.0273 0.5011 ± 0.0246
Volatility 0.5411 ± 0.0066 0.5598 ± 0.0119 0.5609 ± 0.0141 0.6155 ± 0.0277 0.6153 ± 0.0263 0.6074 ± 0.0282 0.5667 ± 0.0174

Average rank 4.10 ± 1.97 3.70 ± 1.49 4.80 ± 1.17 3.00 ± 1.10 3.90 ± 1.30 1.50 ± 0.81

Table 11: RMSE scores of neural network models trained with BP data

Dataset Oracle Mean Median D-SEL(u) D-SEL(u′) D-ENS(u) Proposed method

Bikesharing 0.2285 ± 0.0073 0.8362 ± 0.0794 0.5711 ± 0.0375 0.4896 ± 0.0471 0.4740 ± 0.0374 0.4865 ± 0.0468 0.4658 ± 0.0363
Compactiv 0.1029 ± 0.0009 0.1665 ± 0.0070 0.1547 ± 0.0110 0.1086 ± 0.0010 0.1182 ± 0.0031 0.1085 ± 0.0010 0.1150 ± 0.0028
Cpusmall 0.1078 ± 0.0017 0.2186 ± 0.0044 0.2415 ± 0.0023 0.2408 ± 0.0066 0.2366 ± 0.0036 0.2405 ± 0.0066 0.2250 ± 0.0039
Ctscan 0.0318 ± 0.0014 0.5544 ± 0.0141 0.4934 ± 0.0195 0.2915 ± 0.0401 0.1175 ± 0.0175 0.2913 ± 0.0400 0.1278 ± 0.0169
Indoorloc 0.0454 ± 0.0012 0.8614 ± 0.0554 0.3577 ± 0.0233 0.0954 ± 0.0120 0.0695 ± 0.0077 0.0958 ± 0.0124 0.0737 ± 0.0071
Mv 0.0151 ± 0.0006 0.5850 ± 0.0179 0.3613 ± 0.0320 0.8684 ± 0.0702 0.0333 ± 0.0063 0.9535 ± 0.0835 0.0544 ± 0.0075
Pole 0.0700 ± 0.0035 0.5295 ± 0.0257 0.2506 ± 0.0256 0.1214 ± 0.0158 0.1278 ± 0.0166 0.1233 ± 0.0149 0.1229 ± 0.0160
Puma32 0.7771 ± 0.0018 0.7720 ± 0.0008 0.7723 ± 0.0009 0.7973 ± 0.0075 0.7854 ± 0.0032 0.7972 ± 0.0076 0.7770 ± 0.0018
Telemonitoring 0.1777 ± 0.0046 0.7294 ± 0.0171 0.6466 ± 0.0260 0.6740 ± 0.0196 0.5138 ± 0.0218 0.6708 ± 0.0193 0.5101 ± 0.0179
Volatility 0.3578 ± 0.0034 0.3649 ± 0.0063 0.3667 ± 0.0077 0.3865 ± 0.0106 0.3856 ± 0.0096 0.3830 ± 0.0107 0.3682 ± 0.0077

Average rank 4.30 ± 2.24 4.10 ± 1.37 4.10 ± 1.58 2.70 ± 1.42 3.70 ± 1.27 2.10 ± 0.70

Table 12: MAE scores of neural network models trained with BP data

Dataset Oracle Mean Median D-SEL(u) D-SEL(u′) D-ENS(u) Proposed method

Bikesharing 0.3621 ± 0.0144 1.1409 ± 0.0998 0.8639 ± 0.0582 0.7901 ± 0.0499 0.7890 ± 0.0275 0.7830 ± 0.0517 0.7493 ± 0.0330
Compactiv 0.1526 ± 0.0017 0.2194 ± 0.0113 0.2119 ± 0.0119 0.2132 ± 0.0078 0.1948 ± 0.0183 0.2135 ± 0.0071 0.1894 ± 0.0056
Cpusmall 0.1500 ± 0.0023 0.6267 ± 0.0085 0.7892 ± 0.0140 0.7916 ± 0.0227 0.7789 ± 0.0213 0.7911 ± 0.0223 0.7332 ± 0.0189
Ctscan 0.0570 ± 0.0021 0.7227 ± 0.0158 0.7348 ± 0.0227 0.7329 ± 0.0555 0.3816 ± 0.0322 0.7304 ± 0.0554 0.3377 ± 0.0299
Indoorloc 0.0693 ± 0.0028 0.9968 ± 0.0616 0.5250 ± 0.0533 0.1962 ± 0.0300 0.1569 ± 0.0215 0.1954 ± 0.0297 0.1402 ± 0.0143
Mv 0.0236 ± 0.0012 0.7930 ± 0.0201 0.7704 ± 0.0531 1.3433 ± 0.0565 0.1668 ± 0.0288 1.3761 ± 0.0546 0.1551 ± 0.0188
Pole 0.1480 ± 0.0044 0.6549 ± 0.0198 0.3874 ± 0.0208 0.3228 ± 0.0338 0.3395 ± 0.0379 0.3237 ± 0.0307 0.3038 ± 0.0316
Puma32 0.9848 ± 0.0033 0.9844 ± 0.0015 0.9830 ± 0.0008 1.0188 ± 0.0086 0.9962 ± 0.0029 1.0186 ± 0.0086 0.9884 ± 0.0023
Telemonitoring 0.2816 ± 0.0039 0.9204 ± 0.0209 0.8817 ± 0.0484 1.0305 ± 0.0264 0.8401 ± 0.0520 1.0210 ± 0.0250 0.7650 ± 0.0494
Volatility 0.9712 ± 0.1156 0.7828 ± 0.0300 0.7556 ± 0.0221 1.3320 ± 0.1024 0.8122 ± 0.0193 1.3286 ± 0.1051 0.7503 ± 0.0145

Average rank 4.10 ± 1.76 3.70 ± 1.49 4.80 ± 1.25 2.80 ± 0.87 4.30 ± 1.19 1.30 ± 0.64

Table 13: RMSE scores of neural network models trained with KMeans data

26

Dataset Oracle Mean Median D-SEL(u) D-SEL(u′) D-ENS(u) Proposed method

Bikesharing 0.2283 ± 0.0074 0.8563 ± 0.1069 0.5427 ± 0.0335 0.4662 ± 0.0359 0.4417 ± 0.0253 0.4634 ± 0.0361 0.4387 ± 0.0246
Compactiv 0.1027 ± 0.0010 0.1663 ± 0.0126 0.1555 ± 0.0133 0.1091 ± 0.0015 0.1187 ± 0.0046 0.1091 ± 0.0015 0.1159 ± 0.0038
Cpusmall 0.1079 ± 0.0016 0.2178 ± 0.0034 0.2424 ± 0.0041 0.2426 ± 0.0062 0.2403 ± 0.0040 0.2420 ± 0.0062 0.2298 ± 0.0031
Ctscan 0.0316 ± 0.0006 0.5672 ± 0.0227 0.4937 ± 0.0155 0.3079 ± 0.0360 0.1093 ± 0.0133 0.3078 ± 0.0359 0.1227 ± 0.0136
Indoorloc 0.0459 ± 0.0012 0.8967 ± 0.0506 0.3735 ± 0.0299 0.0831 ± 0.0081 0.0649 ± 0.0037 0.0832 ± 0.0080 0.0694 ± 0.0034
Mv 0.0151 ± 0.0007 0.5821 ± 0.0154 0.3752 ± 0.0320 0.8388 ± 0.0797 0.0323 ± 0.0040 0.9231 ± 0.0843 0.0533 ± 0.0058
Pole 0.0701 ± 0.0024 0.5290 ± 0.0169 0.2458 ± 0.0142 0.1169 ± 0.0114 0.1253 ± 0.0130 0.1203 ± 0.0098 0.1203 ± 0.0117
Puma32 0.7788 ± 0.0017 0.7725 ± 0.0004 0.7725 ± 0.0005 0.7978 ± 0.0067 0.7856 ± 0.0032 0.7976 ± 0.0068 0.7778 ± 0.0028
Telemonitoring 0.1745 ± 0.0042 0.7257 ± 0.0166 0.6284 ± 0.0337 0.6475 ± 0.0222 0.4838 ± 0.0438 0.6442 ± 0.0228 0.4852 ± 0.0373
Volatility 0.6511 ± 0.0812 0.4865 ± 0.0234 0.4795 ± 0.0195 0.7577 ± 0.0813 0.5025 ± 0.0131 0.7559 ± 0.0825 0.4678 ± 0.0134

Average rank 4.50 ± 2.01 4.00 ± 1.26 4.20 ± 1.66 2.50 ± 1.36 3.80 ± 1.33 2.00 ± 0.63

Table 14: MAE scores of neural network models trained with KMeans data

Dataset Oracle Mean Median D-SEL(u) D-SEL(u′) D-ENS(u) Proposed method

Bikesharing 0.3816 ± 0.0143 1.1381 ± 0.1024 0.9285 ± 0.1048 0.8918 ± 0.1319 0.8130 ± 0.0913 0.8821 ± 0.1318 0.7619 ± 0.0820
Compactiv 0.1965 ± 0.0117 0.2327 ± 0.0134 0.2322 ± 0.0118 0.2637 ± 0.0286 0.2621 ± 0.0249 0.2627 ± 0.0281 0.2473 ± 0.0198
Cpusmall 0.1558 ± 0.0042 0.6302 ± 0.0344 0.7727 ± 0.0745 0.8326 ± 0.0417 0.7840 ± 0.0673 0.8324 ± 0.0417 0.7336 ± 0.0686
Ctscan 0.0825 ± 0.0042 0.7395 ± 0.0287 0.7705 ± 0.0505 0.5642 ± 0.0418 0.3668 ± 0.0243 0.5606 ± 0.0417 0.3261 ± 0.0233
Indoorloc 0.0725 ± 0.0025 0.9618 ± 0.0395 0.5142 ± 0.0411 0.5753 ± 0.1401 0.1884 ± 0.0354 0.5741 ± 0.1397 0.1619 ± 0.0249
Mv 0.0607 ± 0.0039 0.7016 ± 0.0959 0.5101 ± 0.1536 1.4191 ± 0.0555 0.2303 ± 0.0594 1.4281 ± 0.0588 0.1979 ± 0.0484
Pole 0.1483 ± 0.0025 0.6483 ± 0.0195 0.3957 ± 0.0175 0.3536 ± 0.0458 0.3673 ± 0.0510 0.3487 ± 0.0455 0.3302 ± 0.0445
Puma32 0.9893 ± 0.0021 0.9856 ± 0.0013 0.9854 ± 0.0020 1.0292 ± 0.0198 0.9978 ± 0.0041 1.0289 ± 0.0196 0.9900 ± 0.0025
Telemonitoring 0.5027 ± 0.6232 1.0228 ± 0.4505 0.9687 ± 0.4661 1.1432 ± 0.4163 0.9609 ± 0.4764 1.1354 ± 0.4173 0.9016 ± 0.4904
Volatility 0.5307 ± 0.0045 0.5728 ± 0.0104 0.5731 ± 0.0107 0.6262 ± 0.0242 0.6330 ± 0.0244 0.6174 ± 0.0231 0.5791 ± 0.0125

Average rank 3.70 ± 1.95 3.20 ± 1.60 5.00 ± 1.00 3.20 ± 1.33 4.20 ± 1.17 1.70 ± 0.90

Table 15: RMSE scores of neural network models trained with A-KMeans data

Dataset Oracle Mean Median D-SEL(u) D-SEL(u′) D-ENS(u) Proposed method

Bikesharing 0.2417 ± 0.0081 0.8569 ± 0.1018 0.6056 ± 0.0623 0.5146 ± 0.0861 0.4502 ± 0.0517 0.5108 ± 0.0861 0.4431 ± 0.0474
Compactiv 0.1135 ± 0.0014 0.1624 ± 0.0146 0.1488 ± 0.0107 0.1322 ± 0.0173 0.1466 ± 0.0152 0.1319 ± 0.0172 0.1404 ± 0.0128
Cpusmall 0.1123 ± 0.0023 0.2392 ± 0.0141 0.2535 ± 0.0130 0.2722 ± 0.0205 0.2450 ± 0.0105 0.2717 ± 0.0204 0.2346 ± 0.0096
Ctscan 0.0418 ± 0.0014 0.5563 ± 0.0242 0.5255 ± 0.0362 0.1986 ± 0.0192 0.1111 ± 0.0093 0.1984 ± 0.0192 0.1243 ± 0.0078
Indoorloc 0.0499 ± 0.0016 0.8656 ± 0.0340 0.3741 ± 0.0320 0.3007 ± 0.1106 0.0791 ± 0.0095 0.3009 ± 0.1103 0.0819 ± 0.0084
Mv 0.0349 ± 0.0022 0.5594 ± 0.0701 0.3213 ± 0.0791 0.9127 ± 0.0664 0.0909 ± 0.0248 0.9404 ± 0.0777 0.0998 ± 0.0235
Pole 0.0711 ± 0.0022 0.5258 ± 0.0154 0.2537 ± 0.0114 0.1276 ± 0.0141 0.1361 ± 0.0172 0.1266 ± 0.0137 0.1319 ± 0.0164
Puma32 0.7837 ± 0.0015 0.7768 ± 0.0016 0.7771 ± 0.0027 0.8125 ± 0.0187 0.7892 ± 0.0044 0.8122 ± 0.0185 0.7821 ± 0.0033
Telemonitoring 0.3347 ± 0.4386 0.7819 ± 0.2894 0.7000 ± 0.3146 0.7520 ± 0.3014 0.6083 ± 0.3507 0.7489 ± 0.3016 0.6099 ± 0.3475
Volatility 0.3555 ± 0.0016 0.3746 ± 0.0061 0.3759 ± 0.0053 0.3927 ± 0.0082 0.3965 ± 0.0092 0.3893 ± 0.0082 0.3764 ± 0.0060

Average rank 4.40 ± 2.11 3.90 ± 1.22 4.20 ± 1.40 2.70 ± 1.68 3.60 ± 1.56 2.20 ± 0.75

Table 16: MAE scores of neural network models trained with A-KMeans data

Dataset Oracle Mean Median D-SEL(u) D-SEL(u′) D-ENS(u) Proposed method

Bikesharing 0.6058 ± 0.0000 0.7927 ± 0.0000 0.7826 ± 0.0000 0.8980 ± 0.0000 0.7700 ± 0.0000 0.8907 ± 0.0000 0.7340 ± 0.0000
Compactiv 0.2948 ± 0.0000 0.2520 ± 0.0000 0.2424 ± 0.0000 0.2551 ± 0.0000 0.2224 ± 0.0000 1.5186 ± 0.0000 0.2325 ± 0.0000
Cpusmall 0.3164 ± 0.0000 0.2833 ± 0.0000 0.2903 ± 0.0000 0.3218 ± 0.0000 0.3187 ± 0.0000 1.5371 ± 0.0000 0.2992 ± 0.0000
Ctscan 0.1250 ± 0.0000 0.3588 ± 0.0000 0.3476 ± 0.0000 0.3280 ± 0.0000 0.3214 ± 0.0000 0.4256 ± 0.0000 0.2997 ± 0.0000
Indoorloc 0.0779 ± 0.0000 0.3523 ± 0.0000 0.1509 ± 0.0000 0.1208 ± 0.0000 0.1341 ± 0.0000 0.2947 ± 0.0000 0.1132 ± 0.0000
Mv 0.0639 ± 0.0000 0.0529 ± 0.0000 0.0525 ± 0.0000 0.0593 ± 0.0000 0.0589 ± 0.0000 0.3850 ± 0.0000 0.0532 ± 0.0000
Pole 0.3053 ± 0.0000 0.2847 ± 0.0000 0.2845 ± 0.0000 0.3027 ± 0.0000 0.3039 ± 0.0000 3.0038 ± 0.0000 0.2845 ± 0.0000
Puma32 0.9897 ± 0.0000 0.9566 ± 0.0000 0.9599 ± 0.0000 0.9885 ± 0.0000 0.9904 ± 0.0000 0.9675 ± 0.0000 0.9672 ± 0.0000
Telemonitoring 0.3676 ± 0.0000 0.9573 ± 0.0000 0.9876 ± 0.0000 1.0209 ± 0.0000 0.9942 ± 0.0000 0.9924 ± 0.0000 0.9547 ± 0.0000
Volatility 0.3736 ± 0.0000 1.4429 ± 0.0000 0.8578 ± 0.0000 0.7670 ± 0.0000 0.7670 ± 0.0000 0.7551 ± 0.0000 0.7135 ± 0.0000

Average rank 3.40 ± 1.80 2.80 ± 1.25 4.50 ± 1.20 3.50 ± 1.50 5.00 ± 1.26 1.80 ± 0.87

Table 17: RMSE scores of random forest models trained with DP data

Dataset Oracle Mean Median D-SEL(u) D-SEL(u′) D-ENS(u) Proposed method

Bikesharing 0.4141 ± 0.0000 0.6298 ± 0.0000 0.5883 ± 0.0000 0.5531 ± 0.0000 0.4826 ± 0.0000 0.5472 ± 0.0000 0.4701 ± 0.0000
Compactiv 0.1514 ± 0.0000 0.1376 ± 0.0000 0.1325 ± 0.0000 0.1250 ± 0.0000 0.1223 ± 0.0000 0.3158 ± 0.0000 0.1257 ± 0.0000
Cpusmall 0.1564 ± 0.0000 0.1485 ± 0.0000 0.1467 ± 0.0000 0.1442 ± 0.0000 0.1446 ± 0.0000 0.3391 ± 0.0000 0.1438 ± 0.0000
Ctscan 0.0345 ± 0.0000 0.1971 ± 0.0000 0.1616 ± 0.0000 0.0852 ± 0.0000 0.0838 ± 0.0000 0.1165 ± 0.0000 0.0847 ± 0.0000
Indoorloc 0.0416 ± 0.0000 0.2384 ± 0.0000 0.0889 ± 0.0000 0.0586 ± 0.0000 0.0588 ± 0.0000 0.0899 ± 0.0000 0.0577 ± 0.0000
Mv 0.0443 ± 0.0000 0.0371 ± 0.0000 0.0366 ± 0.0000 0.0405 ± 0.0000 0.0402 ± 0.0000 0.0860 ± 0.0000 0.0365 ± 0.0000
Pole 0.1357 ± 0.0000 0.1287 ± 0.0000 0.1235 ± 0.0000 0.1105 ± 0.0000 0.1114 ± 0.0000 1.9624 ± 0.0000 0.1100 ± 0.0000
Puma32 0.7866 ± 0.0000 0.7576 ± 0.0000 0.7611 ± 0.0000 0.7860 ± 0.0000 0.7852 ± 0.0000 0.7656 ± 0.0000 0.7646 ± 0.0000
Telemonitoring 0.1971 ± 0.0000 0.7872 ± 0.0000 0.7896 ± 0.0000 0.6094 ± 0.0000 0.5861 ± 0.0000 0.5925 ± 0.0000 0.5724 ± 0.0000
Volatility 0.2173 ± 0.0000 1.3070 ± 0.0000 0.5174 ± 0.0000 0.3624 ± 0.0000 0.3518 ± 0.0000 0.3542 ± 0.0000 0.3363 ± 0.0000

Average rank 4.80 ± 1.54 4.10 ± 1.22 3.40 ± 1.36 2.60 ± 1.20 4.60 ± 1.28 1.50 ± 0.81

Table 18: MAE scores of random forest models trained with DP data

27

Dataset Oracle Mean Median D-SEL(u) D-SEL(u′) D-ENS(u) Proposed method

Bikesharing 0.5669 ± 0.0000 0.8079 ± 0.0000 0.8052 ± 0.0000 0.7877 ± 0.0000 0.7476 ± 0.0000 0.7711 ± 0.0000 0.7117 ± 0.0000
Compactiv 0.1741 ± 0.0000 0.4182 ± 0.0000 0.3555 ± 0.0000 0.2544 ± 0.0000 0.3564 ± 0.0000 0.2524 ± 0.0000 0.3117 ± 0.0000
Cpusmall 0.1803 ± 0.0000 0.5635 ± 0.0000 0.7114 ± 0.0000 0.3377 ± 0.0000 0.3396 ± 0.0000 0.3364 ± 0.0000 0.3211 ± 0.0000
Ctscan 0.1317 ± 0.0000 0.7413 ± 0.0000 0.8081 ± 0.0000 0.6240 ± 0.0000 0.3193 ± 0.0000 0.6205 ± 0.0000 0.3031 ± 0.0000
Indoorloc 0.0657 ± 0.0000 0.9650 ± 0.0000 0.9799 ± 0.0000 0.3990 ± 0.0000 0.3131 ± 0.0000 0.3987 ± 0.0000 0.2866 ± 0.0000
Mv 0.0478 ± 0.0000 0.5557 ± 0.0000 0.5491 ± 0.0000 1.2969 ± 0.0000 0.7808 ± 0.0000 1.4522 ± 0.0000 0.6575 ± 0.0000
Pole 0.2146 ± 0.0000 0.5366 ± 0.0000 0.4636 ± 0.0000 0.3137 ± 0.0000 0.3185 ± 0.0000 0.6767 ± 0.0000 0.3025 ± 0.0000
Puma32 1.0047 ± 0.0000 0.9881 ± 0.0000 0.9873 ± 0.0000 1.0128 ± 0.0000 1.0130 ± 0.0000 0.9939 ± 0.0000 0.9939 ± 0.0000
Telemonitoring 0.4610 ± 0.0000 0.8693 ± 0.0000 0.8708 ± 0.0000 1.2163 ± 0.0000 1.1387 ± 0.0000 1.1816 ± 0.0000 1.0264 ± 0.0000
Volatility 0.5938 ± 0.0000 0.6589 ± 0.0000 0.6980 ± 0.0000 0.7912 ± 0.0000 0.7844 ± 0.0000 0.7732 ± 0.0000 0.7476 ± 0.0000

Average rank 3.80 ± 1.94 3.70 ± 1.95 4.10 ± 1.37 3.70 ± 1.35 3.70 ± 1.55 2.00 ± 1.00

Table 19: RMSE scores of random forest models trained with BP data

Dataset Oracle Mean Median D-SEL(u) D-SEL(u′) D-ENS(u) Proposed method

Bikesharing 0.3853 ± 0.0000 0.6634 ± 0.0000 0.6419 ± 0.0000 0.4719 ± 0.0000 0.4728 ± 0.0000 0.4635 ± 0.0000 0.4615 ± 0.0000
Compactiv 0.1089 ± 0.0000 0.3374 ± 0.0000 0.2907 ± 0.0000 0.1340 ± 0.0000 0.2224 ± 0.0000 0.1329 ± 0.0000 0.2070 ± 0.0000
Cpusmall 0.1105 ± 0.0000 0.2150 ± 0.0000 0.2389 ± 0.0000 0.1393 ± 0.0000 0.1402 ± 0.0000 0.1384 ± 0.0000 0.1369 ± 0.0000
Ctscan 0.0430 ± 0.0000 0.5514 ± 0.0000 0.5712 ± 0.0000 0.2349 ± 0.0000 0.0890 ± 0.0000 0.2343 ± 0.0000 0.1009 ± 0.0000
Indoorloc 0.0392 ± 0.0000 0.8875 ± 0.0000 0.6489 ± 0.0000 0.2112 ± 0.0000 0.1381 ± 0.0000 0.2117 ± 0.0000 0.1459 ± 0.0000
Mv 0.0309 ± 0.0000 0.4178 ± 0.0000 0.2488 ± 0.0000 0.8571 ± 0.0000 0.3576 ± 0.0000 1.0755 ± 0.0000 0.3308 ± 0.0000
Pole 0.0804 ± 0.0000 0.4787 ± 0.0000 0.3425 ± 0.0000 0.1089 ± 0.0000 0.1120 ± 0.0000 0.3939 ± 0.0000 0.1160 ± 0.0000
Puma32 0.7992 ± 0.0000 0.7772 ± 0.0000 0.7784 ± 0.0000 0.8005 ± 0.0000 0.8031 ± 0.0000 0.7834 ± 0.0000 0.7838 ± 0.0000
Telemonitoring 0.2700 ± 0.0000 0.7189 ± 0.0000 0.6828 ± 0.0000 0.7659 ± 0.0000 0.6941 ± 0.0000 0.7473 ± 0.0000 0.6371 ± 0.0000
Volatility 0.3691 ± 0.0000 0.3914 ± 0.0000 0.3968 ± 0.0000 0.4350 ± 0.0000 0.4345 ± 0.0000 0.4275 ± 0.0000 0.4161 ± 0.0000

Average rank 4.40 ± 1.85 3.80 ± 1.78 3.80 ± 1.60 3.30 ± 1.55 3.50 ± 1.50 2.20 ± 0.98

Table 20: MAE scores of random forest models trained with BP data

Dataset Oracle Mean Median D-SEL(u) D-SEL(u′) D-ENS(u) Proposed method

Bikesharing 0.5683 ± 0.0000 0.8131 ± 0.0000 0.8147 ± 0.0000 0.7944 ± 0.0000 0.7586 ± 0.0000 0.7809 ± 0.0000 0.7222 ± 0.0000
Compactiv 0.1826 ± 0.0000 0.4521 ± 0.0000 0.3587 ± 0.0000 0.2540 ± 0.0000 0.3644 ± 0.0000 0.2533 ± 0.0000 0.3226 ± 0.0000
Cpusmall 0.1855 ± 0.0000 0.5622 ± 0.0000 0.7065 ± 0.0000 0.3648 ± 0.0000 0.3658 ± 0.0000 0.3635 ± 0.0000 0.3500 ± 0.0000
Ctscan 0.1299 ± 0.0000 0.7458 ± 0.0000 0.8175 ± 0.0000 0.6050 ± 0.0000 0.3275 ± 0.0000 0.6018 ± 0.0000 0.2982 ± 0.0000
Indoorloc 0.0660 ± 0.0000 0.9636 ± 0.0000 0.9679 ± 0.0000 0.3693 ± 0.0000 0.2918 ± 0.0000 0.3665 ± 0.0000 0.2603 ± 0.0000
Mv 0.0481 ± 0.0000 0.5548 ± 0.0000 0.5484 ± 0.0000 1.2959 ± 0.0000 0.7611 ± 0.0000 1.4976 ± 0.0000 0.6415 ± 0.0000
Pole 0.2109 ± 0.0000 0.5313 ± 0.0000 0.4618 ± 0.0000 0.3114 ± 0.0000 0.3252 ± 0.0000 0.6804 ± 0.0000 0.3039 ± 0.0000
Puma32 1.0054 ± 0.0000 0.9890 ± 0.0000 0.9901 ± 0.0000 1.0131 ± 0.0000 1.0187 ± 0.0000 0.9927 ± 0.0000 0.9947 ± 0.0000
Telemonitoring 0.4511 ± 0.0000 0.8723 ± 0.0000 0.8704 ± 0.0000 1.2799 ± 0.0000 1.2418 ± 0.0000 1.2461 ± 0.0000 1.1443 ± 0.0000
Volatility 0.4741 ± 0.0000 0.7608 ± 0.0000 0.6469 ± 0.0000 0.7255 ± 0.0000 0.7154 ± 0.0000 0.7014 ± 0.0000 0.6780 ± 0.0000

Average rank 4.20 ± 1.72 3.70 ± 2.15 4.00 ± 1.26 3.60 ± 1.28 3.50 ± 1.57 2.00 ± 1.10

Table 21: RMSE scores of random forest models trained with KMeans data

Dataset Oracle Mean Median D-SEL(u) D-SEL(u′) D-ENS(u) Proposed method

Bikesharing 0.3871 ± 0.0000 0.6676 ± 0.0000 0.6510 ± 0.0000 0.4748 ± 0.0000 0.4810 ± 0.0000 0.4673 ± 0.0000 0.4706 ± 0.0000
Compactiv 0.1106 ± 0.0000 0.3589 ± 0.0000 0.2937 ± 0.0000 0.1349 ± 0.0000 0.2312 ± 0.0000 0.1345 ± 0.0000 0.2165 ± 0.0000
Cpusmall 0.1112 ± 0.0000 0.2148 ± 0.0000 0.2385 ± 0.0000 0.1423 ± 0.0000 0.1445 ± 0.0000 0.1414 ± 0.0000 0.1401 ± 0.0000
Ctscan 0.0424 ± 0.0000 0.5540 ± 0.0000 0.5784 ± 0.0000 0.2288 ± 0.0000 0.0928 ± 0.0000 0.2283 ± 0.0000 0.1008 ± 0.0000
Indoorloc 0.0393 ± 0.0000 0.8864 ± 0.0000 0.6439 ± 0.0000 0.1916 ± 0.0000 0.1179 ± 0.0000 0.1908 ± 0.0000 0.1319 ± 0.0000
Mv 0.0310 ± 0.0000 0.4157 ± 0.0000 0.2487 ± 0.0000 0.8557 ± 0.0000 0.3417 ± 0.0000 1.1142 ± 0.0000 0.3168 ± 0.0000
Pole 0.0804 ± 0.0000 0.4756 ± 0.0000 0.3440 ± 0.0000 0.1099 ± 0.0000 0.1164 ± 0.0000 0.4005 ± 0.0000 0.1186 ± 0.0000
Puma32 0.7966 ± 0.0000 0.7766 ± 0.0000 0.7785 ± 0.0000 0.7994 ± 0.0000 0.8036 ± 0.0000 0.7821 ± 0.0000 0.7841 ± 0.0000
Telemonitoring 0.2677 ± 0.0000 0.7229 ± 0.0000 0.6829 ± 0.0000 0.8430 ± 0.0000 0.7840 ± 0.0000 0.8266 ± 0.0000 0.7344 ± 0.0000
Volatility 0.2360 ± 0.0000 0.4709 ± 0.0000 0.3877 ± 0.0000 0.3338 ± 0.0000 0.4375 ± 0.0000 0.3242 ± 0.0000 0.4081 ± 0.0000

Average rank 4.70 ± 1.73 3.80 ± 1.83 3.50 ± 1.50 3.40 ± 1.56 3.00 ± 1.73 2.60 ± 0.92

Table 22: MAE scores of random forest models trained with KMeans data

Dataset Oracle Mean Median D-SEL(u) D-SEL(u′) D-ENS(u) Proposed method

Bikesharing 0.5724 ± 0.0026 0.8726 ± 0.0203 0.8566 ± 0.0231 0.7755 ± 0.0513 0.7584 ± 0.0527 0.7502 ± 0.0501 0.7231 ± 0.0536
Compactiv 0.2066 ± 0.0106 0.4396 ± 0.0920 0.3940 ± 0.0390 0.2735 ± 0.0108 0.3287 ± 0.0371 0.2715 ± 0.0108 0.2996 ± 0.0290
Cpusmall 0.1842 ± 0.0022 0.5506 ± 0.0163 0.6610 ± 0.0313 0.3404 ± 0.0059 0.3429 ± 0.0073 0.3402 ± 0.0059 0.3324 ± 0.0102
Ctscan 0.1358 ± 0.0021 0.7694 ± 0.0119 0.8689 ± 0.0240 0.6316 ± 0.0403 0.5015 ± 0.2038 0.6276 ± 0.0400 0.4485 ± 0.2154
Indoorloc 0.0658 ± 0.0004 0.9605 ± 0.0070 0.9735 ± 0.0117 0.5531 ± 0.1698 0.5120 ± 0.1814 0.5469 ± 0.1714 0.4534 ± 0.1663
Mv 0.0884 ± 0.0067 0.6094 ± 0.0196 0.5360 ± 0.0182 1.2948 ± 0.0009 0.4814 ± 0.0910 1.3253 ± 0.0081 0.4320 ± 0.0917
Pole 0.2144 ± 0.0008 0.5428 ± 0.0029 0.4567 ± 0.0081 0.3209 ± 0.0115 0.3197 ± 0.0086 0.6693 ± 0.0059 0.3030 ± 0.0033
Puma32 1.0023 ± 0.0028 0.9855 ± 0.0011 0.9873 ± 0.0011 1.0179 ± 0.0027 1.0166 ± 0.0044 0.9941 ± 0.0016 0.9935 ± 0.0017
Telemonitoring 0.4528 ± 0.0087 0.8792 ± 0.0052 0.8663 ± 0.0136 0.8894 ± 0.0926 0.8593 ± 0.1118 0.8498 ± 0.0884 0.7749 ± 0.1097
Volatility 0.4880 ± 0.0000 0.6351 ± 0.0000 0.6410 ± 0.0000 0.6764 ± 0.0000 0.6777 ± 0.0000 0.6570 ± 0.0000 0.6319 ± 0.0000

Average rank 4.40 ± 1.56 4.40 ± 1.36 4.20 ± 1.25 3.30 ± 1.35 3.30 ± 1.62 1.40 ± 0.80

Table 23: RMSE scores of random forest models trained with A-KMeans data

28

Dataset Oracle Mean Median D-SEL(u) D-SEL(u′) D-ENS(u) Proposed method

Bikesharing 0.3941 ± 0.0021 0.7392 ± 0.0276 0.7089 ± 0.0284 0.4766 ± 0.0271 0.4816 ± 0.0273 0.4640 ± 0.0259 0.4730 ± 0.0274
Compactiv 0.1149 ± 0.0017 0.3642 ± 0.0739 0.3217 ± 0.0407 0.1377 ± 0.0029 0.1838 ± 0.0214 0.1371 ± 0.0029 0.1774 ± 0.0204
Cpusmall 0.1137 ± 0.0014 0.2444 ± 0.0223 0.2432 ± 0.0069 0.1415 ± 0.0010 0.1403 ± 0.0024 0.1406 ± 0.0010 0.1375 ± 0.0016
Ctscan 0.0463 ± 0.0007 0.5679 ± 0.0083 0.6257 ± 0.0188 0.2577 ± 0.0300 0.1964 ± 0.1473 0.2567 ± 0.0297 0.1901 ± 0.1492
Indoorloc 0.0395 ± 0.0001 0.8858 ± 0.0089 0.6650 ± 0.0352 0.2374 ± 0.0890 0.1960 ± 0.0826 0.2370 ± 0.0892 0.2030 ± 0.0739
Mv 0.0431 ± 0.0019 0.4987 ± 0.0223 0.3388 ± 0.0199 0.8534 ± 0.0012 0.1922 ± 0.0471 0.9160 ± 0.0122 0.1858 ± 0.0471
Pole 0.0812 ± 0.0006 0.4827 ± 0.0020 0.3367 ± 0.0099 0.1113 ± 0.0030 0.1122 ± 0.0026 0.3805 ± 0.0061 0.1175 ± 0.0018
Puma32 0.7968 ± 0.0026 0.7756 ± 0.0010 0.7782 ± 0.0009 0.8043 ± 0.0037 0.8044 ± 0.0044 0.7828 ± 0.0014 0.7827 ± 0.0014
Telemonitoring 0.2795 ± 0.0041 0.7319 ± 0.0066 0.6842 ± 0.0115 0.5139 ± 0.0614 0.4940 ± 0.0724 0.4995 ± 0.0579 0.4727 ± 0.0669
Volatility 0.2523 ± 0.0000 0.3878 ± 0.0000 0.3680 ± 0.0000 0.3223 ± 0.0000 0.3604 ± 0.0000 0.3158 ± 0.0000 0.3357 ± 0.0000

Average rank 5.20 ± 1.54 4.50 ± 1.12 3.40 ± 1.28 2.90 ± 1.45 3.00 ± 1.61 2.00 ± 0.89

Table 24: MAE scores of random forest models trained with A-KMeans data

29

