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Abstract

This study examines the heterogeneity in the effects of large-scale social media advertising

campaigns on COVID-19 vaccination rates in France. Using the methodological framework

of Chernozhukov et al. (2023), which focus on specific features of the conditional average

treatment effect (CATE) rather than full estimation, I analyse the impact of two types of tar-

geted messaging on different population groups. The findings reveal significant heterogeneity

in both positive and negative directions. Vaccination rates were significantly negatively im-

pacted by both messaging campaigns among individuals living in low-income areas, whereas

positive vaccination outcomes were observed in wealthier areas. These insights highlight the

importance of tailored health campaigns that address the specific needs to different groups

in order to effectively improve COVID-19 vaccination rates, and, more broad, general public

health outcomes.

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.



1 Introduction

Randomised Controlled Trials (RCTs) assign subjects randomly to either a control or an exper-

imental group, where they receive a different treatment based on their assignment. The primary

advantage of RCTs is their ability to provide unbiased estimates of treatment effects, making

them widely utilised in social and economic program evaluations, medical treatments, market-

ing, psychological treatments and policy interventions. Examples include speech treatment for

patients with Parkinson’s disease (Ramig et al., 2018), the effect of dance movement therapy

on stress management improvement and reduction (Bräuninger, 2012), and drug treatments on

chronic insomniac adults (Buscemi et al., 2007). See the works of Glewwe and Kremer (2006),

Duflo et al. (2004) and Karlan and Zinman (2009) for more examples of RCTs in a (develop-

ment) economic context. While RCTs can provide valuable simple average treatment effects,

understanding treatment effect heterogeneity—such as its effect on age, gender, income level,

socio-economic status, etc.—is a major point of contention for researchers and policymakers

and can provide valuable insights. To illustrate, Duflo et al. (2021) find that secondary school

scholarships for financially disadvantaged students in rural Ghana lead to a 27 percentage point

increase in secondary school completion rates, along with increased enrolment in tertiary educa-

tion and higher rates of securing a job in the public section, with women benefiting particularly

strongly in the latter two areas.

Assessing the heterogeneity of treatment effects is crucial for two reasons: it not only provides

a better understanding of the underlying drivers behind an effect of a program, allowing experts

to tailor interventions more effectively, but it is also essential for determining whether the pro-

gram’s impact can be generalised to populations that have different characteristics. In the past,

studies have assessed this heterogeneity in RCTs by pre-determining the subgroups of covariates

(Turner et al. (2012) and Twisk et al. (2018)). However, restricting the analysis to pre-sorting

the subgroups can result in an overwhelming number of subgroups to check and the loss of

potentially valuable information. Conversely, choosing subgroups ex-post exposes the study to

the risk of overfitting.

Recently, the use of machine learning (ML) tools has been proposed to resolve these is-

sues and estimate the conditional average treatment effects (CATE). To illustrate, Athey et al.

(2019) propose generalised random forests, Athey and Imbens (2015) introduce five tree-based

algorithms for estimating the CATE, and Künzel et al. (2019) introduce the X-learner. In causal

inference, the CATE is a key metric that measures how the effects of a treatment vary among

individuals with different observed characteristics, thereby revealing the responses of different

population groups to the treatment. However, a downside of using ML tools in estimating the

CATE is that they struggle to obtain uniformly valid causal effects inferences and, therefore,

struggle to consistently estimate the CATE (Chernozhukov et al., 2023). This difficulty partic-

ularly arises in high-dimensional settings, where the complexity of ML methods and the large

number of data features can weaken statistical significance.

The approach by Chernozhukov et al. (2023) diverges fundamentally from directly estimat-

ing the CATE with high precision across all scenarios, often leading to biased or inconsistent

results due to the inherent challenges. Instead, inspired by the work of Genovese and Wasser-

man (2008), they propose focusing on the estimation and inference on features of the CATE.
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This methodological shift allows for more reliable and valid estimates without overcommitting

to estimating the CATE with the highest precision, and the researchers hereby overcome the

limitation of ML tools in non-parametric inference settings. The purpose of their study is to

develop a generic approach to using any ML tool to predict and make inference on heterogen-

eous treatment by targeting three features of the CATE: the Best Linear Predictor (BLP) of the

CATE, the Sorted Group Average Treatment Effects (GATES), and the Classification Analysis

(CLAN). The researchers account for estimation and splitting uncertainty by taking a multi-

tude of sample splitting and then aggregating the results using quantile-aggregated inference. A

goodness-of-fit measure for the BLP and GATES evaluates and selects among the ML methods

applied.

This study applies the approach by Chernozhukov et al. (2023) to a large-scale RCT con-

ducted in France, studying the impact of Facebook advertising campaigns on COVID-19 vac-

cination.1 Despite the widespread availability of COVID-19 vaccination, 78% of the population

in France was fully vaccinated (two doses), and hospital admissions continued to increase as of

December 2022, according to the Santé Publique France (2022). In addition to that, France’s

regions show large disparities, highlighting the need for effective strategies to encourage uptake.

In an effort to boost COVID-19 vaccination, Ho et al. (2023) collaborated with healthcare profes-

sionals to post short video messages that addressed common doubts and misconceptions around

COVID-19 vaccination. Leveraging Facebook’s advertising tools, the campaign randomly tar-

geted users in areas with vaccination rates below 80 percent of France’s national average. Two

outreach strategies were then employed: ”direct messages” were posted to a large audience of

Facebook users, while ”friends messages” encouraged users to share information about the vac-

cine with friends. The campaign reached around 11.5 million distinct French Facebook users in

total and achieved high engagement metrics, yet the results indicated no statistically significant

impact on vaccination rates across any of the strategies employed. The observed null effect sug-

gests that, although the content was highly engaging, users were not sufficiently motivated to

get vaccinated. Considering these findings, I seek to investigate the data more thoroughly using

ML techniques to uncover obscured heterogeneity in treatment effects that may be overlooked

by the aggregate analysis in Ho et al. (2023). It is plausible that different population subgroups

might respond differently to the same intervention due to factors such as demographic charac-

teristics, socioeconomic status, and pre-existing attitudes towards vaccination. Understanding

which subgroups are more receptive or resistant to vaccination can help develop more targeted

interventions to promote COVID-19 vaccination more effectively. This can ultimately improve

vaccination rates and overall public health outcomes, as well as provide valuable insights for

future health campaigns. My findings reveal that the 20% most affected areas saw a reduction

of 72.1 first-dose vaccinations per week and a reduction of 55.5 completed vaccinations per week

for the direct messages. For the friends messages, these numbers are 78.1 and 59.0, respectively.

Further analysis reveals that these areas are characterised by lower-income individuals. The

study highlights the counterproductive effect the treatments have had on promoting COVID-19

vaccination in this population group.

The remainder of this paper is structured as follows. Section 2 covers literature on the integ-

1Chernozhukov et al. (2023) apply their approach to a study that assesses the heterogeneity in the effect of
microcredit availability. My replication of this study can be found in Appendix F.
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ration of ML and RCTs, sample splitting, and previous literature on heterogeneity in COVID-19

vaccination rates. This will be followed by Section 3, which describes the creation of the ML

proxy predictor, the construction of the key features of the CATE and quantile aggregation.

Thereafter, Section 4 introduces the empirical application, where I use four ML tools to obtain

and analyse the BLP, GATES and CLAN and identify which subgroups of areas in France are

affected most by the two employed treatments. Finally, Section 5 summarises the paper.

2 Literature Review

The intersection of ML and RCTs marks a significant advancement in data analysis, provid-

ing unbiased treatment effects while managing high-dimensional data and uncovering complex

patterns. Besides, the intersection allows for identifying heterogeneous effects without requiring

strict assumptions. For examples, see Imai and Ratkovic (2013) and Athey and Imbens (2016).

In contrast, less complex non-ML tools address heterogeneity by imposing strong assumptions

about sparsity and function forms of models (examples can be found in Chernozhukov et al.

(2018), Hansen et al. (2018), Belloni et al. (2015) and Dezeure et al. (2017)). ML-based or

not, these methods focus on the full estimation of the CATE. The approach by Chernozhukov

et al. (2023) is different, addressing the challenge of non-parametric inference by focusing on

the features of the CATE rather than the function itself. In doing so, the researchers avoid

making unrealistic and hard-to-check assumptions. Their research underscores the importance

of uncovering heterogeneous effects, as failing to do so can be harmful, particularly in medical

treatments (Kravitz et al., 2004).

This study applies the approach of Chernozhukov et al. (2023) to an RCT that evaluates the

heterogeneous effects of large-scale social media Facebook advertising campaigns on COVID-19

vaccination rates increase. This RCT, previously studied by Ho et al. (2023), posted recorded

video messages on Facebook addressing misconceptions about COVID-19 vaccination in areas in

France and US where the vaccination rates were relatively low compared to the national average.

Previous studies have shown proof that COVID-19 vaccination rates exhibit heterogeneity across

different populations and regions. For instance, Sun and Monnat (2022) find that rural counties

in the US, particularly those depending on farming and mining, have significantly lower vaccin-

ation rates compared to urban areas. Factors such as education, health care infrastructure, and

Trump vote share contribute to this, the latter of which is also supported by Albrecht (2022),

who finds that counties dominated by Republic votes have significantly lower vaccination rates.

Brown et al. (2021) use the COVID-19 Community Vulnerability Index to identify commonal-

ities between county vulnerability and vaccination rates, concluding that counties where people

generally struggle with challenges relating to covering housing, transportation, household ar-

rangements, and disability have significantly lower vaccination rates. Furthermore, demographic

factors such as gender, age, race, and education influence the willingness to receive COVID-19

vaccinations. Studies by Malik et al. (2020) and Kreps et al. (2020) find that particularly men

and individuals with college degrees are among the most accepting of the COVID-19 vaccine,

whereas black Americans show significantly low uptake. These disadvantaged subpopulations

face greater risks of infections, have lower access to health care, and, as a result, experience

higher COVID-19 mortality rates (Mackey et al. (2021) and Saunders et al. (2021)). Strategic
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approaches are needed to overcome these barriers to vaccination and ensure that vulnerable

populations are vaccinated.

Numerous studies have explored the efficacy of treatment programs to promote vaccina-

tion. For example, Dai et al. (2021) used text-based reminders that highlight the importance

of getting vaccinated and provide information to simplify the process. They conclude that this

boosted vaccination appointments and rates, although the effect decreased with a subsequent

reminder. This can be explained by the study of Rabb et al. (2022), finding that text messages

do not significantly increase COVID-19 vaccination rates for those individuals who have not

been vaccinated five to eight weeks after becoming eligible for vaccination. It suggests that

such a vaccination nudge may be effective early in the vaccination campaign and less so for

more hesitant individuals. The study by Berliner Senderey et al. (2021) finds that reminders

emphasising the personal benefit of vaccination over social benefit are more effective in increas-

ing vaccination rates. This is supported by Batteux et al. (2022), who conduct a systematic

review of studies relating to interventions to increase COVID-19 vaccination, finding that per-

sonalising communications and sending booking reminders via text message increases vaccine

uptake. In Sweden, Campos-Mercade et al. (2021) finds that a money reward of 200 Swedish

kronor increased vaccination rates by 4.2 percentage points. The paper by Ho et al. (2023)

attempts another approach: utilising Facebook’s advertising features. My study extends Ho

et al. (2023) by examining whether different subgroups of the population in these French areas

react differently to these interventions.

To ensure robustness of the results, Chernozhukov et al. (2023) take inspiration from Davis

and Heller (2020) by using a ”hold-out” sample and generate ML predictions via multiple sample

splitting, similar to the approach of Abadie et al. (2018). Multiple sample splitting mitigates

the issues of single sample splitting—including loss of statistical power and efficiency—but pro-

duces different estimates, p-values, and confidence intervals for each split (Romano and DiCiccio,

2019). Several studies have developed procedures to achieve stable and accurate inference. For

instance, Ritzwoller and Romano (2023) propose a method that aggregates these metrics using

a running average, balancing the trade-off between quickly reducing residual randomness and

achieving no significant improvement in the error rate. Another aggregation method is pro-

posed by Meinshausen et al. (2009), who aggregate p-values across multiple random splits using

quantiles. Chernozhukov et al. (2023) build on these ideas, using median quantile aggregation

with adjustments for splitting uncertainty to provide reliable estimates.

3 Methodology

Using the terminology from Chernozhukov et al. (2023), this section presents their methodology

for estimation and inference of the key features of the CATE. Accordingly, I explain their

approach to constructing ML proxy predictors and using these to develop the BLP, GATES and

CLAN features of the CATE. Furthermore, I present their measure for choosing and selecting

among ML tools and discuss features of quantile aggregation. The structure of this section

is based on the algorithm provided in Chernozhukov et al. (2023), which is also detailed in

Appendix A.
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3.1 Model and Key Causal Functions

Let Data := (Yi, Zi, Di)
N
i=1 be the observed data consisting of N i.i.d. observations of the

random vector (Y,Z,D) drawn from a probability distribution P . Here, Y is the outcome of

interest, Z is a multidimensional vector of covariates that characterise the observed units studied

in the dataset, and D is a binary treatment indicator. Chernozhukov et al. (2023) assume

unconfoundedness of the covariates and random treatment assignment of each unit conditional

on Z. The regression model for the observed outcome Y is given by:

Y := b0(Z) +Ds0(Z) + U, E[U | Z,D] = 0 (3.1)

where b0(Z) := E[Y | D = 0, Z] represents the baseline conditional average (BCA) and

s0(Z) := E[Y | D = 1, Z] − E[Y | D = 0, Z] defines the conditional average treatment effect

(CATE). The expectation operator is denoted by E.
Essentially, Y serves as a foundation for estimating causal effects. The model is designed

to systematically quantify the effects of a treatment across different subgroups, based on their

unique covariate profile Z. By doing so, Y not only measures the overall treatment effectiveness,

but can also identify the subgroups that are most significantly impacted by it. Predictive ML

methods leverage the regression model by learning E[Y | D,Z], and then estimating the CATE,

s0(Z).

3.2 Sample Splitting

In order to get robust estimation and inference results, and avoid overfitting, Chernozhukov

et al. (2023) use repeated random data splitting. Let (A,M) define a random partition of the

set of indices {1, . . . , N}. That is, Data = (Yi, Di, Zi)
N
i=1 is split in two disjoint sets

DataA = (Yi, Di, Zi)i∈A and DataM = (Yi, Di, Zi)i∈M , which denote an auxiliary sample (A)

and a main sample (M), respectively. On the auxiliary sample, A, Chernozhukov et al. (2023)

use some machine learner to obtain ML estimators z 7→ B(z) = BA(z) and z 7→ S(z) = SA(z)

of b0(z) and s0(z), respectively, which they refer to as the ML proxy predictors. Note that both

S(Z) and B(Z) are potentially biased and noisy estimators due to estimation uncertainty from

conditioning on subsample A. Hence, these proxy predictors are not required to be consistent

estimators. In the main sample, M , the proxies are then used to estimate and make inference

on three key features of the CATE function z 7→ s0(z). These key features inculde the Best

Linear Predictor (BLP) of the CATE, the Sorted Group Average Treatment Effects (GATES)

and the Classification Analysis (CLAN). Systematically repeating this process addresses not

only estimation uncertainty associated with the auxiliary sample, but also uncertainty that is

induced by the random partitioning of the data.

3.3 Best Linear Predictor

Assuming the Best Linear Predictor (BLP) of the CATE s0(Z) exists, it is defined as

BLP[s0(Z) | S(Z)] := β1 + β2(S(Z)− E[S(Z)]). (3.2)
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Here, β1 = E[s0(Z)] and β2 = Cov[s0(Z), S(Z)]/Var[S(Z)]. In the context of treatment effects,

specifically for estimating the CATE, the BLP is a statistical method that finds the best linear

approximation of the true CATE, while aiming to minimise the prediction error through S(Z).

BLP[s0(Z) | S(Z)] is an unbiased predictor of s0(Z). See Chernozhukov et al. (2023) for details.

In general, if one can statistically reject β2 = 0, we conclude that s0(Z) in heterogeneous

(i.e. s0(Z) not constant across observations) and S(Z) is a statically significant predictor of

s0(Z). This implies that S(Z) provides meaningful information about the CATE, despite po-

tential errors. Furthermore, for β2 = 1, S(Z) perfectly predicts s0(Z) and does not contain any

discrepancies. However, typically, β2 ̸= 1, correcting for the noise in S(Z). The coefficients

β1 and β2 in BLP[s0(Z) | S(Z)] can be identified through two strategies. The first estimation

strategy employs a weighted linear projection to enhance the predictive accuracy of the BLP,

with its empirical equivalent being:

Yi = α̂′
0X1i + α̂1(Di − p(Zi)) + α̂2(Di − p(Zi))(Si − EN,M [Si]) + ϵ̂i, i ∈M (3.3)

with EN,M [w(Zi)ϵ̂iXi] = 0 and where Xi = [X ′
1i, X

′
2i]

′, X1i := [1, B(Zi), p(Zi), p(Zi)S(Zi)]
′,

X2i := [Di − p(Zi), (Di − p(Zi))(Si − EN,M [Si])]. An alternative strategy can be defined by

using the Horvitz-Thompson transform H, which is detailed in Appendix B along with detailed

algorithms that implement both estimation strategies.

3.4 Sorted Group Average Treatment Effects

The Sorted Group Average Treatment Effects (GATES) measures the average of s0(Z) across

different heterogeneity groups Gk, for k = 1, . . . ,K, based on the values of the ML proxy

predictor S(Z). That is,

γk = E[s0(Z) | Gk], k = 1, . . . ,K. (3.4)

where Gk = {S ∈ Ik}, with non-overlapping intervals Ik = [ℓk−1, ℓk) and

−∞ = ℓ0 < ℓ1 < ... < ℓK = +∞, creating partitions based on the range of the predicted

treatment effect S into K equally-sized distinct groups. Following this, Chernozhukov et al.

(2023) define the following estimation strategy:

Yi = α̂′
0X1i + α̂′W2i + ν̂i, i ∈M, EN,M [w(Zi)ν̂iWi] = 0 (3.5)

whereWi = [X ′
1i,W

′
2i]

′, X1i := (B(Zi), p(Zi){1(Gk)
K
k=1})′ andW2i := ([Di−p(Zi)]·{1(Gk)}Kk=1)

′.

The estimation strategy using the Horvitz-Thompson transform is detailed in Appendix C.

Also refer to Appendix C for details on the algorithms recovering and estimating the GATES

parameters γ = (γk)
K
k=1.

Interestingly, for each group Gk as classified by the GATES, the average treatment effect

within that group, γk, can be seen as a BLP of s0(Z) for that specific group. Given the

construction of the groups, it is only natural to impose the monotonicity restriction:

E[s0(Z) | G1] ≤ ... ≤ E[s0(Z) | GK ]. (3.6)

See Chernozhukov et al. (2017) for further details.
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Groups are constructed to maximise the variation in S across different subgroups. This

approach effectively captures and clarifies the differences in how various subpopulations respond

to a certain treatment. One can apply many alternative methods to create groups based on ML

tools applied to auxiliary data, such as an ”endogenous stratification” analysis, where grouping

is based on predicted baseline response (Abadie et al., 2018). Alternatively, Athey and Imbens

(2016) partition the training sample recursively using a causal tree approach.

3.5 Classification Analysis

The Classification Analysis (CLAN) measures the average characteristics of the groups in a

subpopulation that are most and least affected by the heterogeneity in a treatment. Under the

monotonicity restriction, Chernozhukov et al. (2023) denote the ”least affected group” by G1,

whereas GK defines the ”most affected group”. Note that the labels ”most” and ”least” may be

switched depending on the context of the analysis.

Denote g(Y,D,Z) a vector of characteristics of an observed unit. The average characteristics

of the most and least affected groups are defined by the parameters

δ1 = E[g(Y,D,Z) | G1], and δK = E[g(Y,D,Z) | GK ], (3.7)

where binary group indicators Gk, for k = 1, . . . ,K, are constructed similarly as for the GATES.

The CLAN enables us to quantify the disparity between the most and least affected groups and

can be extended to comparing features other than averages, for instance variances or distribu-

tions.

3.6 Goodness-of-Fit Measures for Fitting the CATE

To effectively select ML proxies in the main sample, is it beneficial to employ goodness-of-fit

measures, given their ability to assess model fit. Guided by the BLP of the CATE, Chernozhukov

et al. (2023) propose

Λ := |β2|2Var(S(Z)) = Corr(s0(Z), S(Z))2Var(s0(Z)). (3.8)

This measure essentially quantifies the variability in the actual treatment effect s0(Z) that is

accounted for by the proxy predictor S(Z). Maximising Λ enhances this correlation, indicating

a stronger predictive power of S(Z). Similarly, for the GATES analysis, Chernozhukov et al.

(2023) maximise

Λ̄ = E
(∑K

k=1 γk1(S ∈ Ik)
)2

=

K∑
k=1

γ2k P(S ∈ Ik). (3.9)

The equation calculates Λ̄ as the sum of the squared group-specific average treatment effects γ2k ,

weighted by the probability of S(Z) falling into each group interval Ik. For equally-sized groups

Gk = {S ∈ Ik}, that is P(S(Z) ∈ Ik) = 1/K for each k = 1, . . . ,K, one chooses the best ML

method by maximising

Λ̄ =
1

K

K∑
k=1

γ2k . (3.10)
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3.7 Quantile Aggregation

Let θ represent a generic target parameter or functional that this study aims to estimate. This

parameter can assume various forms, such as θ = β2, θ = γk or θ = δK − δ1, depending on the

context of the analysis. I explicitly acknowledge the dependence on the auxiliary sample: θ = θA.

Different partitions (A,M) of the set {1, ..., N} into sample sizes n and N −n yield different es-

timands θA and estimators θ̂A. Consequently, θA, θ̂A, p-values pA, confidence intervals [LA, UA],

and approximate distributions are all random variables. To systematically account for the ran-

domness and therefore uncertainty in these estimators and their distributions, Chernozhukov

et al. (2023) employ quantile aggregation, which yields non-random results conditional on the

data. More specifically, they focus on using medians for enhanced robustness compared to a

single split.

For the median point estimator, Chernozhukov et al. (2023) propose

θ̂ := Med(θ̂A|Data). (3.11)

The increasing uncertainty from sample splitting is reflected in the confidence interval below,

which has a confidence level 1− 2α, as opposed to 1− α for a single split:

[L,U ] := [Med(LA|Data);Med(UA|Data)]. (3.12)

Testing the null hypothesis with adjusted p-values has a significance level α if

P(pA ≤ α/2|Data) ≥ 1/2 or p0.5 = Med(pA|Data) ≤ α/2. (3.13)

This implies that in at least 50 percent of the random data splits, the realised p-value pA is

below α/2. Consequently, Chernozhukov et al. (2017) define p = 2p0.5 as the sample splitting

adjusted p-value, where small values provide evidence against the null hypothesis. One-sided

alternative hypotheses can now be tested with median p-value p± = M(p±A|Data), whereas the

two-sided median p-value is p̄ = 2min(p+, p−), effectively doubling the smaller one of the two.

Utilising median p-values is particularly beneficial for inference, as it minimises the impact of

outliers and extreme splits in the data, resulting in more consistent results across many data

splits.

4 Results

By applying the approach of Chernozhukov et al. (2023) to an RCT, one can effectively study

heterogeneity without pre-determining sources that cause the variation. The methodology is

particularly effective in high-dimensional settings, and CLAN estimation provides valuable in-

sights for analysts, experts and researchers. In this empirical application, I study an RCT that

evaluates the impact of a large-scale Facebook advertising campaign on COVID-19 vaccinations

in France.
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4.1 The Impact of Large-Scale Social Media Advertising Campaigns of COVID-

19 Vaccinations

The COVID-19 pandemic caused major disruptions to economies, societies and global health.

Vaccinations were quickly developed and made available to the public, yet vaccination rates var-

ied widely across countries and regions. This prompted researchers to identify effective strategies

to increase COVID-19 vaccination rates, with social media being of particular interest due to

its rapid and widespread reach. This is illustrated by de Vere Hunt et al. (2021), for instance,

who showed that their messages addressing questions and misconceptions about the COVID-19

vaccine achieved high engagement rates on Facebook, reaching individuals an average of about

5.5 times within a month. The effectiveness of such vaccination promotion campaigns is demon-

strated by studies such as Athey et al. (2023) and Evans et al. (2023), whose social media-based

campaigns successfully changed individuals’ beliefs about vaccination and increased vaccination

rates. Building on these findings, this study investigates the effectiveness of video messages

from physicians and nurses in France during the height of the Omicron wave in the winter

of 2021-2022. These approximately 30-second videos addressed common doubts and miscon-

ceptions about COVID-19 vaccination. Using Facebook’s advertising tools, the messages were

posted in randomly selected areas with vaccination rates below 80 percent of the national aver-

age. Two types of messages were employed in the Facebook campaign. ”Direct” messages were

directly posted to a broad audience of Facebook users. In contrast, ”friends” messages were

designed to be more personal and involved health experts encouraging viewers to share vaccin-

ation information with their friends, along with a link to additional resources and videos on the

study’s website. This type of message is inspired by studies on alcohol consumption (Collins

and Marlatt, 1981) and AIDS prevention (Fisher and Misovich, 1990), which demonstrate the

significant influence of social networks on individuals’ decision-making. The dataset is taken

from Ho et al. (2023), whose study determined that the messages had no significant effects on

France’s COVID-19 vaccination rates in these areas.

By extending the research of Ho et al. (2023), my aim is to discover the heterogeneous

effects of the two types of messages. This analysis is relevant as it uncovers the specific socio-

economic factors that influence the effectiveness of the two vaccination promotion messages.

Health authorities can then use these insights to better tailor future health campaigns, leading

to enhanced public health outcomes in the targeted regions. The dataset includes information

from public intermunicipal cooperation establishments (EPCI) and postal codes that correspond

to the municipalities within Lyon, Marseille and Paris. Selected areas have vaccination rates

that are less than 80 percent of France’s national average. The randomisation process divided

the areas into three equally sized groups, with each area having a one-third probability of being

assigned to the control, direct, or friends group. The two outcome variables in my study are

the first-dose COVID-19 vaccinations per week and the number of completed vaccinations (first

and second dose) per week. The covariates Z include 43 area-level salary and poverty control

variables, such as the average net hourly wage of women in 2020, the number of fiscal households,

the share of taxes, and the share of total social benefits. Tables 9 and 10 in Appendix D provide

a detailed list of covariates and some corresponding summary statistics, respectively. As a fixed

effect, I include the stratification of EPCIs and postal codes based on region, vaccination rates at
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baseline, and population. Due to a large number of observations, Ho et al. (2023) aggregate the

data into 3-by-3-week periods. After removing rows with missing values for the aforementioned

variables, the dataset includes N = 4, 810 observations. Crucial for valid causal inference is

undersampling, as it balances the treatment and control groups, ensuring an equal number of

observations in each group. Given two treatment types, the undersampled dataset includes a

total of N = 3, 242 observations for both the treatment with direct and friends messages. Both

analyses have treatment and control groups, which contain an equal number of observations,

namely 1, 621 each, providing a robust dataset for the analysis.

4.2 Direct Messages

My first focus will be on assessing the heterogeneity of posting direct messages on COVID-19

vaccination rates. Table 1 evaluates the performance of four ML methods in predicting the

proxy predictor S(Zi) for the two outcome variables: dose 1 and completed vaccination. It is

evident from the table that Random Forest seems to be the most reliable method, especially for

predicting the first outcome variable, although Boosting is a close second for both outcomes.

Tree-based methods seem to be superior, likely due to their higher flexibility compared to linear

models (such as Elastic Net) and lower propensity to overfit compared to Neural Networks. The

comparatively lower performances of these models suggest a limited ability to capture the data

patterns effectively. Therefore, I will proceed with the analysis of the BLP, GATES and CLAN

using Random Forest and Boosting.

Table 1: Comparison of ML Methods: Large-Scale Direct Messaging Campaign

Random Forest Elastic Net Neural Network Boosting

Dose 1

Best BLP (Λ) 5,240 200 437 4,008

Best GATES (Λ̄) 2,123 87 261 1,888

Completed

Best BLP (Λ) 3,377 140 240 1,954

Best GATES (Λ̄) 1,134 69 163 1,202

The table compares the performance of four ML methods—Random Forest, Elastic Net, Neural Network,
and Boosting—in predicting outcomes from direct Facebook messages promoting COVID-19 vaccination.
The two performance metrics are the weekly number of first-dose COVID-19 vaccinations and the weekly
number of full vaccinations. Each method’s performance is evaluated by using the best BLP (Λ) and
best GATES (Λ̄) values, representing goodness-of-fit measures. The results are based on medians over
100 splits, reflecting robustness of the results across various data partitions, and indicate that Random
Forest and Boosting are particularly effective predictors.

Table 2 reports the estimates of the average treatment effect (ATE) parameter, β1, and

heterogeneity loading (HET) parameter, β2, for the two outcome variables in the BLP. Confid-

ence intervals are median-adjusted, accounting for variability across the sample splits, and are
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reported in parentheses. The p-values, adjusted similarly, are reported in brackets and test the

hypothesis that the respective outcome parameter is zero. The estimated ATEs of the treatment

show that both outcome variables report statistically insignificant results at the 10% level for

both ML methods. This indicates that, on average, posting direct messages on Facebook in

areas of France with generally low COVID-19 vaccination rates does not significantly affect the

number of weekly first-dose vaccinations or the number of weekly completed vaccinations. These

findings align with Ho et al. (2023), who find insignificant point estimates of 0.013 during the

campaign period and −0.038 post-campaign. Despite high engagement on Facebook in France,

people did not follow through with vaccination, thus leading to no significant rise in vaccinations.

Ho et al. (2023) suggest that people stick to their existing beliefs and opinions about the vaccine.

Additionally, in the summer of 2021, the French government had introduced strong incentives

to get vaccinated, such as a COVID-19 certificate. Ho et al. (2023) argue that this polarised

the population into those who were vaccinated and those who deliberately resisted vaccination,

leaving few people undecided about getting vaccinated.

Table 2: BLP of Large-Scale Direct Messaging Campaign

Random Forest Boosting

ATE (β1) HET (β2) ATE (β1) HET (β2)

Dose 1 -0.500 -1.239 1.46 -0.730

(-12.0, 11.3) (-1.47, -1.04) (-10.7, 13.5) (-0.881, -0.581)

[0.934] [0.000] [0.802] [0.000]

Completed -3.00 -0.879 -1.61 -0.512

(-13.8, 8.13) (-1.09, -0.674) (-13.33, 9.63) (-0.672, -0.364)

[0.600] [0.000] [0.778] [0.000]

The table reports the BLP of the CATE using two performance indicators: the estimates of the average
treatment effect (ATE) and heterogeneity loading (HET) parameters. In the parentheses, 90% confidence
intervals are reported, and median-adjusted p-values over 100 splits can be found in the brackets for the
hypothesis that the respective outcome parameter is zero. Results suggest that, on average, the direct
messages do not significantly impact the number of weekly first doses and weekly completed vaccinations
at the 10% level. However, the p-values of the HET indicate that there is significant heterogeneity present
in the effect on both outcomes for any reasonable statistical level of significance.

Next, considering the heterogeneity results, the hypothesis that HET is zero at any reasonable

significance level is rejected for both weekly first-dose and completed vaccinations across both

ML methods. The results suggest that the direct messages have varying impacts on individuals’

likelihood of receiving the first dose and completing their vaccinations. Possible explanations

might lie in socio-demographic differences, geographical or psychological factors. For example,

Kelly et al. (2021) conduct a study investing predictors of willingness to get the COVID-19

vaccine, finding that men and older people (age 65 and older) are more likely to get the vaccine.

The negative HET values suggest that for certain groups of individuals within the sample, the

impact of the direct message campaign is especially ineffective or even counterproductive. This

is an important finding, which I will elaborate on later.
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Table 3: GATES of 20% Most and Least Affected Groups for Large-Scale Direct Messaging Campaign

Random Forest Boosting

20% Most (γ5) 20% Least (γ1) Difference (γ5 − γ1) 20% Most (γ5) 20% Least (γ1) Difference (γ5 − γ1)

Dose 1 -72.1 68.9 -142 -63.7 66.0 -134

(-100, -44.2) (40.7, 97.2) (-183, -103) (-91.4, -36.8) (37.9, 92.6) (-175, -93.1)

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Completed -55.5 48.0 -103 -56.4 45.9 -104

(-81.7, -29.5) (20.7, 74.5) (-142, -65.7) (-83.3, -30.0) (20.9, 72.0) (-140, -68.7)

[0.000] [0.001] [0.000] [0.000] [0.000] [0.000]

The results in the table report the GATES estimates, dividing the areas in the dataset into K = 5
groups based on quantile cutoffs of S(Zi). Random Forest and Boosting are used to estimate the average
effects of the three categories on the outcome variables. The 90% confidence intervals are reported in
the parentheses, and median-adjusted p-values over 100 splits are shown in the brackets. Statistically
significant results at any reasonable level are reported in all groups. While the least affected group
displays positive effects on weekly first doses and weekly completed vaccinations, the most affected group
responds negatively. One can conclude that the direct messages have varying impacts across different
groups.

The GATES parameters provide more insights into these observations. These estimates are

provided in Table 3, where individuals are split into five groups based on quantile cutoffs of

S(Zi). The average effect of each group is estimated, showing significant heterogeneity for both

the most and least affected group. For the most affected group, the GATES estimates on the

number of weekly first doses and weekly completed vaccinations differ significantly from zero at

any meaningful significance level for both ML methods. The negative effects on these outcome

variables suggest that this group of individuals, on average, is less likely to get the first vaccine or

complete their vaccinations. This seems paradoxical, as it implies that the people most affected

by the direct messages are even less inclined to get vaccinated after watching the videos. These

individuals might have interpreted the message negatively, felt a backlash, or already had very

strong beliefs against vaccination. As a result, the direct messages appear to have had the

opposite effect on them. Conversely, the group least affected by seeing the direct messages on

Facebook responds positively and is more likely to get vaccinated. These individuals might

already have a positive attitude towards vaccination. Further investigation into the difference

between the most and least affected groups reveals statistically significant differences from zero

for the outcome variables at any reasonable level across both ML methods, reporting negative

values.

The results from Table 3 suggest that there is significant heterogeneity present in both the

negative and positive directions. This variability suggests that the success of the direct messages

varies widely across different areas. It not only underscores the importance of considering

individual or group-level characteristics in public health campaigns but also the need for more

tailored strategies. These results help explain why the overall ATE in Table 2 is insignificant. It

appears that there are two distinct groups: those positively affected and those who are affected
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negatively. Together, they average out to a net zero effect. One can see this from Figure 1,

which is a visual representation of the data in Table 3 for the analysis with Random Forest. A

similar figure for the Boosting analysis can be found in Figure 3 in Appendix E.

Group by Het score Dose 1 Group by Het score Completed

Figure 1: Grouping by Het score based on Random Forest analysis. The black dots represent the GATES
estimates with their respective confidence bands. The blue dashed line indicates the ATE and the red
dashed lines show the confidence interval. The significant heterogeneity in both opposite directions
averages each other out to a net zero effect.

Table 4 displays the average characteristics of the 20% most and least affected groups, based

on the same quantiles as Table 3, focusing on four factors: the median standard of living, overall

poverty rate, average net hourly wage of people aged 18 to 25 (in 2020), and the average net

hourly wage of women (in 2020). The results can help understand the cause of heterogeneity

in the treatment effects. My analysis will focus solely on Random Forest results, as Boosting

yields statistically insignificant results for all four factors across the outcome variables at any

meaningful statistical level. A reasonable explanation for this might be due to the poorer fit

observed in Table 1. Table 4 shows that significant results at the 10% level are found only

for the median standard of living and the overall poverty rate. For the median standard of

living, negative values for both outcome variables suggest that direct messages had a larger

negative impact on people who live in areas with lower median incomes. Despite a study by

Altman (2021) reporting that doctors and nurses were among the most trusted individuals in

providing information about COVID-19 according to US citizens, the messages did not seem to

have positively impacted vaccination rates for these groups of individuals. Similar results are

observed for the overall poverty rate, suggesting that the most affected groups reside in areas with

higher poverty rates compared to the least affected group. One can observe that the likelihood of

completing all vaccinations is more negative for these groups compared to receiving the first dose.

The results from the table can be attributed to several factors: individuals in poorer communities

often have lower trust in public health messages, limited access to healthcare resources, and a

generally higher level of vaccine hesitancy. Moreover, they often have a lower understanding of

medical and health-related information and greater scepticism towards vaccination promotion

campaigns. Conversely, wealthier individuals living in areas where the median living standard

is higher respond positively to the direct messages in the advertisements, showing an increase

in vaccination rates.
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Table 4: CLAN of Large-Scale Direct Messaging Campaign

Random Forest Boosting

20% Most

(δ5)

20% Least

(δ1)

Difference

(δ5 − δ1)

20% Most

(δ5)

20% Least

(δ1)

Difference

(δ5 − δ1)

Dose 1

Median living standard 21,747 22,264 -515 21,809 21,885 -155

(21391,

22111)

(21914,

22600)

(-1032, -6.00) (21421,

22149)

(21591,

22183)

(-628, 323)

[0.000] [0.000] [0.047] [0.000] [0.000] [0.555]

Poverty rate 50.7 52.4 -1.62 50.6 51.0 -0.510

(49.7, 51.7) (51.4, 53.3) (-3.05, -0.220) (49.5, 51.6) (50.0, 52.1) (-1.91, 0.890)

[0.000] [0.000] [0.024] [0.000] [0.000] [0.463]

Hourly wage 18-25 10.7 10.7 0.050 10.7 10.7 0.050

(10.7, 10.8) (10.6, 10.8) (-0.06, 0.140) (10.6, 10.8) (10.6, 10.7) (-0.040, 0.130)

[0.000] [0.000] [0.291] [0.000] [0.000] [0.263]

Hourly wage women 14.2 14.4 -0.190 14.1 14.0 0.060

(13.9, 14.5) (14.1, 14.6) (-0.580, 0.240) (13.8, 14.4) (13.8, 14.3) (-0.310, 0.430)

[0.000] [0.000] [0.415] [0.000] [0.000] [0.736]

Completed

Median living standard 21,744 22,252 -582 21,757 21,825 -72.0

(21379,

22065)

(21902,

22607)

(-1104, -59.0) (21393,

22119)

(21509,

22144)

(-569, 423)

[0.000] [0.000] [0.029] [0.000] [0.000] [0.787]

Poverty rate 50.7 52.7 -1.77 50.6 50.9 -0.420

(49.7, 51.7) (51.6, 53.8) (-3.22, -0.380) (49.5, 51.6) (50.0, 51.9) (-1.89, 1.06)

[0.000] [0.000] [0.013] [0.000] [0.000] [0.579]

Hourly wage 18-2025 10.7 10.7 -0.00 10.7 10.7 0.050

(10.7, 10.8) (10.7, 10.8) (-0.110, 0.100) (10.6, 10.8) (10.6, 10.7) (-0.040, 0.130)

[0.000] [0.000] [0.994] [0.000] [0.000] [0.254]

Hourly wage women 14.2 14.5 -0.330 14.1 14.1 0.020

(13.8, 14.4) (14.2, 14.8) (-0.750, 0.100) (13.8, 14.4) (13.8, 14.3) (-0.350, 0.420)

[0.000] [0.000] [0.149] [0.000] [0.000] [0.798]

The table reports the CLAN estimates of the median standard of living, overall poverty rate, average
net hourly wage of individuals between 18 and 25, and the average net hourly wage for women for the
20% most and least affected groups are reported for both outcome variables. Note that the median living
standard and wages are reported in euros. In parenthesis, the 90% confidence intervals are shown, and
median-adjusted p-values over 100 splits are indicated in the brackets. Significant results are found for
the first two factors in the Random Forest analysis and indicate that direct messages had a larger negative
impact on poorer individuals, increasing the resistance to get vaccinated. Wealthier individuals, on the
other hand, show higher COVID-19 vaccination rates after receiving the direct messages on Facebook.
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4.3 Friends Messages

It is also of interest to examine the heterogeneity in the effects of the friends messaging campaign

on COVID-19 vaccination rates and determine whether encouragement from health experts to

convince friends is a more effective method than receiving less personal video messages addressing

misconceptions about the vaccine. Table 5 shows that Random Forest excels in predicting the

outcome variables for this treatment. Although Boosting does perform as well as it did in Table

5, I will continue the analysis with both Random Forest and Boosting. The comparative analysis

again demonstrates better performance of the tree-based ML models.

Table 5: Comparison of ML Methods: Large-Scale Friends Messaging Campaign

Random Forest Elastic Net Neural Network Boosting

Dose 1

Best BLP (Λ) 4,121.6 200.2 296.8 970.8

Best GATES (Λ̄) 1,986.13 80.05 340.98 1,423.60

Completed

Best BLP (Λ) 1,603.5 424.3 148.2 365.0

Best GATES (Λ̄) 1,081.26 69.29 158.08 875.13

The table compares the performance of four ML methods in predicting outcomes from Facebook messages
encouraging users to convince friends to promote COVID-19 vaccination. The two performance metrics
are the number of weekly first-dose COVID-19 vaccinations and the weekly number of full vaccinations.
Each method’s performance is evaluated by two goodness-of-fit measures, best BLP and best GATES,
with results based on medians over 100 splits. One can observe that tree-based ML methods—Random
Forest and Boosting—are particularly effective predictors.

Table 6 reports the estimates of ATE and HET parameters in the BLP for the two outcome

variables. Results are similar to those observed in Table 2, showing statistically insignificant res-

ults for the ATE estimates at the 10% level across both outcome variables for both ML methods.

This indicates that, on average, posting messages on Facebook that encourage users to share

links and provide information to promote COVID-19 vaccination does not significantly affect

the number of first-dose COVID-19 vaccinations per week or the number of weekly completed

vaccinations. Ho et al. (2023) reached the same conclusion, reporting insignificant point estim-

ates of 0.05 and 0.047 during the friends messaging campaign and post-campaign, respectively.

This can again be attributed to the fact that people seeing the messages were already convinced

not to get vaccinated and, logically, were not likely to encourage others to do so. Considering

the heterogeneity results, both outcomes are statistically significant at any reasonable statistical

level across the ML methods, suggesting that these friend messages have heterogeneous, yet

negative, impacts on the number of weekly first doses and weekly completed vaccinations. It

suggests that this kind of treatment had a particularly strong effect on certain individuals in

the sample, negatively affecting their likelihood of getting vaccinated.
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Table 6: BLP of Large-Scale Friends Messaging Campaign

Random Forest Boosting

ATE (β1) HET (β2) ATE (β1) HET (β2)

Dose 1 -6.226 -1.070 -7.510 -0.366

(-17.916, 5.428) (-1.283, -0.844) (-19.600, 4.427) (-0.519, -0.234)

[0.288] [0.000] [0.227] [0.000]

Completed -4.266 -0.606 -6.121 -0.138

(-15.115, 6.493) (-0.827, -0.397) (-17.336, 4.880) (-0.281, 0.016)

[0.425] [0.000] [0.278] [0.076]

The table reports the BLP of the CATE using the two performance indicators, presenting estimates of
the average treatment effect (ATE) and heterogeneity loading (HET) parameters. The 90% confidence
intervals are reported in parentheses, and median-adjusted p-values over 100 splits can be found in the
brackets. Results suggest that, on average, the friends messages do not significantly impact the weekly
number of first doses and weekly completed vaccinations on a 10% level. However, the p-values of the HET
indicate that there is significant heterogeneity present in the effect on both outcomes at any meaningful
statistical level.

The estimates of the GATES are provided in Table 7, showing significant heterogeneity for

γ1 and γ5 at any reasonable level of statistical significance. From the results of the table, I can

reach the same conclusion as for the direct messages: significant heterogeneity is present in both

positive and negative directions. That is, individuals in the most affected group are less likely

to get vaccinated, probably due to negatively interpreting the Facebook messages or having pre-

existing strong beliefs against COVID-19 vaccination. The least affected group, on the other

hand, responds positively, reporting an increase in weekly first-dose and completed vaccinations.

The results in Table 7 are visually represented in Figure 2, which again eludes to the average

net effect being zero. The same conclusion can be drawn from Figure 4 in Appendix E, which

shows the boosting analysis of the GATES parameter from posting the friends messages.

Group by Het score Dose 1 Group by Het score Completed

Figure 2: Grouping by Het score based on Random Forest analysis for the friends messages. The black
dot represents the GATES estimate with its respective confidence bands. The blue dashed line indicates
the ATE and the red dashed lines show the confidence interval. The most and least affected groups
report significant heterogeneity in opposite directions, averaging each other out to a net zero effect. This
explains the insignificant ATE results observed in Table 6.
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Table 7: GATES of 20% Most and Least Affected Groups For Large-Scale Friends Messaging Campaign

Random Forest Boosting

20% Most (γ5) 20% Least (γ1) Difference (γ5 − γ1) 20% Most (γ5) 20% Least (γ1) Difference (γ5 − γ1)

Dose 1 -78.052 56.099 -137.332 -73.347 38.267 -112.268

(-104.713, -50.355) (28.939, 83.595) (-177.485, -97.309) (-102.038, -44.655) (10.474, 67.673) (-151.016, -72.442)

[0.000] [0.000] [0.000] [0.000] [0.006] [0.000]

Completed -58.950 38.304 -99.983 -56.042 27.190 -83.128

(-85.287, -33.362) (12.887, 64.723) (-138.205, -63.122) (-81.829, -31.470) (0.671, 52.232) (-122.392, -45.602)

[0.000] [0.003] [0.000] [0.000] [0.040] [0.000]

The results in the table report the GATES estimates, dividing the areas into K = 5 groups based on
quantile cutoffs of S(Zi). Statistically significant results at any meaningful statistical level are reported
in all three groups. Reported in parentheses are the 90% confidence intervals and median-adjusted p-
values over 100 splits can be found in the brackets. The least affected group displays positive effects
on the weekly number of first doses and completed vaccinations, while the most affected group responds
negatively. Similar to the results in Section 4.2, I conclude that the friends messages had varying impacts
across the different groups.

So far, the direct and friend messages have reported similar effects on COVID-19 vaccination

rates, exhibiting heterogeneity: they negatively impact the most affected group and positively

impact the least affected group. The CLAN analysis in Table 8 provides further insights into

the characteristics of the individuals most and least affected, thereby highlighting differences

between the two treatments. These characteristics include the median standard of living, overall

poverty rate, average net hourly wage of people aged 18 to 25 (in 2020), and the average net

hourly wage of women (in 2020). From Table 8, different conclusions can be drawn compared

to the direct messages. Again, our analysis of the CLAN will focus on Random Forest.

For the first outcome variable, the number of weekly first-dose vaccines, only the factor for the

average net hourly wage of women in 2020 reports significant results at the 10% level. It indicates

that the messages encouraging users to influence their friends had a larger negative impact in

areas where women earn lower average net hourly wages than in areas where women earn higher

wages, ultimately discouraging individuals from getting their first dose. It suggests that, in

these areas, this treatment was particularly ineffective and even counterproductive in promoting

vaccination rates. Regarding the number of weekly completed COVID-19 vaccinations, the

statistically significant negative results at the 10% level for the overall poverty rate, the average

net hourly wage of people aged 18 to 25, and the average net hourly wage of women suggest that

the friends messages posted to Facebook had a larger negative impact on the weekly completed

vaccinations for individuals living in areas with these characteristics. Factors such as a lack

of trust in the healthcare system, higher susceptibility to disinformation leading to vaccine

hesitancy, and prioritising basic daily needs over vaccination due to hardships can account for

these results, hindering vaccination efforts.
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Table 8: CLAN of Large-Scale Friends Messaging Campaign

Random Forest Boosting

20% Most

(δ5)

20% Least

(δ1)

Difference

(δ5 − δ1)

20% Most

(δ5)

20% Least

(δ1)

Difference

(δ5 − δ1)

Dose 1

Median living Standard 22,246 22,264 -367 21,770 21,884 225

(21843,

22694)

(21843,

22694)

(-897, 138) (21467,

22113)

(21544,

22245)

(-272, 718)

[0.000] [0.000] [0.158] [0.000] [0.000] [0.339]

Poverty rate 52.1 52.4 -0.984 50.9 50.6 0.538

(50.9, 53.2) (51.3, 53.6) (-2.54, 0.572) (49.8, 51.9) (49.5, 51.8) (-0.915, 1.98)

[0.000] [0.000] [0.215] [0.000] [0.000] [0.429]

Hourly wage 18-25 10.8 10.8 -0.058 10.7 10.7 0.017

(10.7, 10.8) (10.7, 10.9) (-0.153, 0.031) (10.6, 10.7) (10.5, 10.8) (-0.071, 0.105)

[0.000] [0.000] [0.197] [0.000] [0.000] [0.663]

Hourly wage women 14.6 14.8 -0.525 14.0 14.1 -0.029

(14.2, 14.9) (14.4, 15.2) (-0.930, -0.085) (13.8, 14.3) (13.9, 14.4) (-0.421, 0.366)

[0.000] [0.000] [0.018] [0.000] [0.000] [0.887]

Completed

Median living Standard 22,207 22,252 -370 21,769 22,104 147

(21758,

22647)

(21758,

22647)

(-956, 215) (21452,

22115)

(21740,

22483)

(-354, 638)

[0.000] [0.000] [0.215] [0.000] [0.000] [0.538]

Poverty rate 52.4 51.1 -1.37 51.1 51.1 -0.156

(51.3, 53.6) (50.1, 52.1) (-2.90, 0.160) (50.1, 52.1) (49.50, 51.8) (-1.54, 1.24)

[0.000] [0.000] [0.079] [0.000] [0.000] [0.826]

Hourly wage 18-25 10.8 10.8 -0.107 10.7 10.7 0.000

(10.7, 10.9) (10.7, 10.9) (-0.200, -0.004) (10.6, 10.7) (10.6, 10.7) (-0.095, 0.085)

[0.000] [0.000] [0.044] [0.000] [0.000] [0.981]

Hourly wage women 14.6 14.8 -0.525 14.1 14.1 -0.029

(14.2, 14.9) (14.4, 15.2) (-0.930, -0.085) (13.8, 14.3) (13.9, 14.4) (-0.421, 0.366)

[0.000] [0.000] [0.018] [0.000] [0.000] [0.887]

The table presents the CLAN estimates of four characteristics for the two outcome variables. These
characteristics are: median standard of living, overall poverty rate, average net hourly wage of individuals
between 18 and 25, and the average net hourly wage for women. These characteristics are reported for
the 20% most and least affected groups. Note that the median living standard and wages are reported in
euros. Furthermore, 90% confidence intervals are provided in parentheses, and median-adjusted p-values
over 100 splits are shown in the brackets. The results from the Random Forest analysis suggest that
particularly areas where women earn lower average hourly wages experience a significant negative impact
on vaccination rates in the targeted areas.

Overall, the results show that the direct messaging campaign was ineffective and even coun-

terproductive, especially in poorer areas with lower median incomes. This can be attributed
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to various factors, including deep-rooted distrust in public health institutions, limited access to

healthcare resources, and higher susceptibility to misinformation in these communities. Sim-

ilarly, the friends messaging campaign demonstrated counterproductive effects on vaccination

rates in areas where women earn lower average hourly wages. Policymakers can take valuable

lessons from both findings. It shows that a one-size-fits-all approach is insufficient, and socio-

economic differences need to be considered when designing future public health campaigns to

ensure their success.

While this study provides valuable insights, several limitations need to be acknowledged.

First, the study relies on Facebook advertising data, which constrains the findings to people

who actively use the platform. As a result, the sample may not accurately represent the general

population. For instance, older individuals or those without internet access could be underrep-

resented. Second, the intervention period—the winter of 2021-2022—coincides with government

prevention measures such as the introduction of a vaccine pass to access various public places and

mandatory face mask-wearing. This makes it harder to attribute effects solely to a specific treat-

ment, as the measures could have independently influenced individuals’ vaccination behaviour

in the targeted regions. Third, Ho et al. (2023) aggregate the data into 3-by-3 week periods,

but this may conceal temporal dynamics and more detailed area-specific variations in response

to the interventions. Future research should address these limitations by extending the inter-

vention period or utilising other social media platforms, thereby providing a more enhanced

understanding of the impact of large-scale social media campaigns on COVID-19 vaccination

rates.

5 Conclusion

In randomised controlled trials (RCTs), full estimation of the conditional average treatment

effect (CATE) often requires strong assumptions to obtain consistent estimates. The methodo-

logical approach of Chernozhukov et al. (2023) instead focuses on features of the CATE. These

include the Best Linear Predictor (BLP) of the CATE, the Sorted Group Average Treatment

Effects (GATES) and the Classification Analysis (CLAN). Complemented by machine learning

(ML) techniques, this allows for reliable inference on heterogeneous treatment effects. Building

on the the framework of Chernozhukov et al. (2023), this study investigates the heterogeneity in

the effects of large-scale Facebook advertising campaigns on COVID-19 vaccination in France,

particularly in areas where vaccination rates are below 80 percent of the national average. Two

types of messages are employed: broad-reaching direct messages and more personalised messages

that encourage users to convince their friends to get vaccinated (referred to as friends messages).

My analysis focuses on two outcome variables: the number of weekly first-dose and completed

vaccinations. The study is an extension of the work by Ho et al. (2023), who explored whether

these advertising messages increased vaccination rates. Their results reported insignificant and

very small effects. In contrast, this study aims to investigate more thoroughly whether there

are potential heterogeneous effects of the two types of messages.

Similar to Ho et al. (2023), I find no significant effect on the number of first dose and com-

pleted vaccinations for both messaging campaigns on average. However, the findings reveal sig-

nificant heterogeneity in both positive and negative directions for both campaigns. Specifically,
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the direct messaging campaign highlighted particular adverse effect in poorer areas, indicating

this treatment was counterproductive in stimulating vaccination rates among poorer individu-

als in France. Vulnerable populations may experience increased resistance against COVID-19

vaccinations due to a mistrust of health care authorities or pre-existing negative opinions about

vaccination. Similarly, the friends messages particularly negatively affected areas where wo-

men earn lower average hourly wages. Socio-economic disadvantages and pre-existing beliefs

can again be attributed to the effectiveness of this intervention. Overall, the result suggest

that both messaging campaigns led to a decrease in the weekly number of first-dose and com-

pleted vaccinations among lower-income individuals. Conversely, individuals in wealthier areas

responded positively to both treatments. The research underscores the importance of tailor-

ing campaigns to address the specific needs and circumstances of different demographic groups.

Understanding the characteristics that contribute to the heterogeneity in treatment effects can

aid policymakers and health professionals in developing more targeted and effective strategies

to promote COVID-19 vaccination and address future public health challenges. Future research

should continue to explore these population dynamics, investigating alternative approaches to

effectively reach and encourage these hard-to-convince individuals to get vaccinated despite pre-

existing beliefs, a lack of medical understanding, or other factors influencing their decision to

not get vaccinated.
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A Inference Algorithm

Algorithm 1, as presented in Chernozhukov et al. (2023), provides the general algorithm for

inference on heterogeneous effects. Refer to Section 3 for details on the computation of model

estimates and evaluation statistics in the final steps of the algorithm.

Algorithm 1 Inference Algorithm with Random Splits

initialise:
Data set {(Yi, Di, Zi, p(Zi))} on units i ∈ [N ] = {1, . . . , N}, number of splits S, significance
level α, set of ML or Causal ML methods
generate:
S random splits in half of [N ] into disjoint sets A and M , where s = {1, . . . , S}
s← 1
while s ≤ S do

Using A, tune and train each ML method to generate B and S
Output these predictions B and S for M
Optionally, choose the best or aggregate ML methods via (A.1) or (A.2)
Estimate the BLP parameters by weighted OLS (3.3) or Horvitz-Thompson (C.1) in M
Estimate the GATES parameters by weighted OLS (3.5) or Horvitz-Thompson (??) in M
Estimate the CLAN parameters by taking averages (3.7) in M
Compute goodness-of-fit measures via (3.8) and (3.9) for each model in M
s← s+ 1

end while
Choose the best ML method based on the median-aggregated goodness-of-fit measures
Calculate the quantile-aggregated point estimates, p-values, and (1 − 2α) confidence bounds
of each target parameter
return Final quantile-aggregated point estimates, p-values, (1 − 2α) confidence intervals of
each target parameter in the BLP, GATES and CLAN

As shown in Algorithm 1, the best ML method to target the CATE can be chosen at two different

stages, based on the sample used for this decision. In the main sample, the best ML method

is selected based on the goodness-of-fit measures of either the BLP or GATES, as described in

Section 3. Alternatively, the ML method can also be chosen earlier, using the auxiliary sample.

In this case, the best ML method is determined by either minimising the error in predicting Y H,

or through the weighted prediction of Y . More specifically, one can solve either of the following

25



problems, respectively:

(B,S) = arg min
B∈B,S∈S

∑
i∈A

w(Zi)[Yi −B(Zi)− (Di − p(Zi)){S(Zi)− S̄(Zi)}]2, (A.1)

(B,S) = arg min
B∈B,S∈S

∑
i∈A

[YiHi −B(Zi)Hi − S(Zi)]
2, (A.2)

where S̄(Zi) = |A|−1
∑

i∈A S(Zi), and B and S are parameter spaces for z 7→ B(z) and z 7→ S(z).

See Chernozhukov et al. (2023) for more details.

B Algorithm BLP

The coefficients β1 and β2 of BLP[s0(Z)|S(Z)] can be identified and estimated through two

strategies. The first strategy, outlined in Algorithm 2, considers a weighted linear projection

that enhances the predictive accuracy of the BLP by leveraging proxy measures S(Z) and B(Z)

(denoted by S and B in Algorithm 2) to reduce noise. Its effectiveness is demonstrated through

a simulation example in Chernozhukov et al. (2023), which shows that the estimated BLP can

predict the CATE more accurately than simple ML proxies, even when there is heterogeneity

present in the CATE.

Algorithm 2 Best Linear Predictor (BLP), Strategy A

initialise:
Data set {(Yi, Di, Zi, p(Zi))} on units i ∈ [N ] = {1, . . . , N}, number of splits S, significance
level α, set of ML or Causal ML methods, α0

set:
Xi = (X ′

1i, X
′
2i)

′

X1i = [1, B(Zi), p(Zi), p(Zi)S(Zi)]
′

X2i = [Di − p(Zi), (Di − p(Zi))(Si − EN,M [Si])]
′

generate:
S random splits of [N ] into disjoint sets A and M , where s = {1, . . . , S}
s← 1
while s ≤ S do

Using A, tune and train each ML method to generate B(Zj) and S(Zj), for j ∈ A
Output these predictions B(Zj) and S(Zj) for k ∈M
Estimate the BLP parameters by weighted OLS in M :

Yk = α̂′
0X1k + α̂1(Dk − p(Zk)) + α̂2(Dk − p(Zk))(Sk − EN,M [Sk]) + ϵ̂k, k ∈M

Extract α̂ = (α̂1, α̂2)
′

s← s+ 1
end while
Choose the best ML method based on the median-aggregated goodness-of-fit measures
Calculate the quantile-aggregated point estimates, p-values, and (1 − 2α) confidence bounds
of α̂ = (α̂1, α̂2)

′

return Final quantile-aggregated estimates for β = (β1, β2), p-values, (1 − 2α) confidence
intervals for parameters

The second strategy to identify and estimate β1 and β2 uses the Horvitz-Thompson transform

H, defined as H = H(D,Z) = D−p(Z)
p(Z)(1−p(Z)) , as detailed in Chernozhukov et al. (2023). The
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empirical implementation of this estimation strategy is:

YiHi = µ̂′
0X1iHi + µ̂1 + µ̂2(Si − EN,M [Si]) + ϵ̂i, i ∈M (B.1)

with EN,M [ϵ̂iX̃i] = 0 and X̃i := (X ′
1iHi, X̃

′
2i)

′, X1i := [1, B(Zi), p(Zi), p(Zi)S(Zi)]
′, and

X̃2i := (1, Si − EN,M [Si])
′. Note that S := S(Z) and B := B(Z) in Algorithm 3.

Algorithm 3 Best Linear Predictor (BLP), Strategy B

initialise:
Data set {(Yi, Di, Zi, p(Zi))} on units i ∈ [N ] = {1, . . . , N}, number of splits S, significance
level α, set of ML or Causal ML methods, µ0

set:
X̃i = (X ′

1iHi, X̃
′
2i)

′

X1i = [1, B(Zi), p(Zi), p(Zi)S(Zi)]
′

X̃2i = (1, Si − EN,M [Si])
′

generate:
S random splits of [N ] into disjoint sets A and M , where s = {1, . . . , S}
s← 1
while s ≤ S do

Using A, tune and train each ML method to generate B(Zj) and S(Zj), for j ∈ A
Output these predictions B(Zj) and S(Zj) for k ∈M
Estimate the BLP parameters by weighted OLS in M :

YkHk = µ̂′
0X1kHi + µ̂1 + µ̂2(Sk − EN,M [Sk]) + ϵ̂k, k ∈M

Extract µ̂ = (µ̂1, µ̂2)
′

s← s+ 1
end while
Choose the best ML method based on the median-aggregated goodness-of-fit measures
Calculate the quantile-aggregated point estimates, p-values, and (1 − 2α) confidence bounds
of µ̂ = (µ̂1, µ̂2)

′

return Final quantile-aggregated estimates for β = (β1, β2), p-values, (1 − 2α) confidence
intervals for parameters

Chernozhukov et al. (2023) present two theorems demonstrating that the coefficients

α̂ = (α̂1, α̂2)
′ from strategy A and µ̂ = (µ̂1, µ̂2)

′ from strategy B correctly identify the BLP

coefficients β = (β1, β2), respectively. In other words, both α̂ and µ̂ solve the best linear

approximation problem for s0(Z) in their respective strategies. For more details, including

proofs and a comparative analysis of both estimation strategies, I refer to Chernozhukov et al.

(2023).

C Algorithm GATES

The identification and estimation strategies for the GATES parameters γ = (γk)
K
k=1 mimic those

used for the BLP. Strategy A, detailed in Algorithm 4, utilises a weighted linear projection

to estimate the GATES parameters. In contrast, strategy B uses a linear projection of the

Horvitz-Thompson transformed variables. Both strategies are outlined in Algorithms 4 and 5,

respectively. Note that S := S(Z) and B := B(Z).

27



Algorithm 4 Sorted Group Average Treatment Effects (GATES), Strategy A

initialise:
Data set {(Yi, Di, Zi, p(Zi))} on units i ∈ [N ] = {1, . . . , N}, number of splits S, significance
level α, set of ML or Causal ML methods, α0

set:
Wi = [X ′

1i,W
′
2i]

′

X1i = (B(Zi), p(Zi){1(Gk)
K
k=1})′

W2i = ([Di − p(Zi)] · {1(Gk)}Kk=1)
′

generate:
S random splits of [N ] into disjoint sets A and M , where s = {1, . . . , S}
s← 1
while s ≤ S do

Using A, tune and train each ML method to generate B(Zj) and S(Zj), for j ∈ A
Output these predictions B(Zj) and S(Zj) for k ∈M
Estimate the GATES parameters by weighted OLS in M :

Yk = α̂′
0X1k + α̂′W2k + ν̂k, k ∈M

Extract α̂ = (α̂1, . . . , α̂K)′

s← s+ 1
end while
Choose the best ML method based on the median-aggregated goodness-of-fit measures
Calculate the quantile-aggregated point estimates, p-values, and (1 − 2α) confidence bounds
of α̂ = (α̂1, α̂2)

′

return Final quantile-aggregated estimates for γ = (γ1, . . . , γK), p-values, (1−2α) confidence
intervals for parameters

For estimation strategy B, Chernozhukov et al. (2023) define the empirical implementation by:

YiHi = µ̂′
0X1iHi + µ̂′W̃2i + υ̂i, i ∈M (C.1)

with EN,M [υ̂iW̃i] = 0 and where W̃i = (X ′
1iHi, W̃

′
2i), X1i := (B(Zi), p(Zi){1(Gk)

K
k=1})′, and

W̃2i := [{1(Gk)}Kk=1]
′. Details can be found in Chernozhukov et al. (2023) and Algorithm 5.
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Algorithm 5 Sorted Group Average Treatment Effects (GATES), Strategy B

initialise:
Data set {(Yi, Di, Zi, p(Zi))} on units i ∈ [N ] = {1, . . . , N}, number of splits S, significance
level α, set of ML or Causal ML methods, µ0

set:
W̃i = (X ′

1iHi, W̃
′
2i)

X1i = (B(Zi), p(Zi){1(Gk)
K
k=1})′

W̃2i = [{1(Gk)}Kk=1]
′

generate:
S random splits of [N ] into disjoint sets A and M , where s = {1, . . . , S}
s← 1
while s ≤ S do

Using A, tune and train each ML method to generate B(Zj) and S(Zj), for j ∈ A
Output these predictions B(Zj) and S(Zj) for k ∈M
Estimate the GATES parameters in M :

YiHi = µ̂′
0X1iHi + µ̂′W̃2i + υ̂i, i ∈M

Extract µ̂ = (µ̂1, . . . , µ̂K)′

s← s+ 1
end while
Choose the best ML method based on the median-aggregated goodness-of-fit measures
Calculate the quantile-aggregated point estimates, p-values, and (1 − 2α) confidence bounds
of α̂ = (α̂1, α̂2)

′

return Final quantile-aggregated estimates for γ = (γ1, . . . , γK), p-values, (1−2α) confidence
intervals for parameters

Chernozhukov et al. (2023) present a formal theorem regarding parameter identification,

asserting that αk, µk and γk are equal and identify the GATES as:

αk = µk = γk = E[s0(Z)|Gk], k = 1, . . . ,K. (C.2)
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D Summary Statistics Direct and Friends Messaging Campaign

Table 9 provides a detailed list of control variable descriptions that are used in the analysis.

The variables are measured in the year 2020.

Table 9: Description of Control Variables

Variable Description

SNHM20 Average net hourly wage in 2020 (euros)

SNHMC20 Average net hourly wage of executives, intellectual professions, and salaried business
leaders in 2020 (euros)

SNHMP20 Average net hourly wage of intermediate professions in 2020 (euros)

SNHME20 Average net hourly wage of employees in 2020 (euros)

SNHMO20 Average net hourly wage of workers in 2020 (euros)

SNHMF20 Average net hourly wage of women in 2020 (euros)

SNHMFC20 Average net hourly wage of female executives or those in intellectual professions and
salaried business leaders in 2020 (euros)

SNHMFP20 Average net hourly wage of women in intermediate professions in 2020 (euros)

SNHMFE20 Average net hourly wage of female employees in 2020 (euros)

SNHMFO20 Average net hourly wage of female workers in 2020 (euros)

SNHMH20 Average net hourly wage of men in 2020 (euros)

SNHMHC20 Average net hourly wage of male executives or those in intellectual professions and
salaried business leaders in 2020 (euros)

SNHMHP20 Average net hourly wage of men in intermediate professions in 2020 (euros)

SNHMHE20 Average net hourly wage of male employees in 2020 (euros)

SNHMHO20 Average net hourly wage of male workers in 2020 (euros)

SNHM1820 Average net hourly wage of people aged 18 to 25 in 2020 (euros)

SNHM2620 Average net hourly wage of people aged 26 to 50 in 2020 (euros)

SNHM5020 Average net hourly wage of people over 50 in 2020 (euros)

SNHMF1820 Average net hourly wage of women aged 18 to 25 in 2020 (euros)

SNHMF2620 Average net hourly wage of women aged 26 to 50 in 2020 (euros)

SNHMF5020 Average net hourly wage of women over 50 in 2020 (euros)

SNHMH1820 Average net hourly wage of men aged 18 to 25 in 2020 (euros)

SNHMH2620 Average net hourly wage of men aged 26 to 50 in 2020 (euros)

SNHMH5020 Average net hourly wage of men over 50 in 2020 (euros)

NBMENFISC18 Number of fiscal households

NBPERSMENFISC18 Number of people in fiscal households

MED18 Median standard of living (€)

PIMP18 Percentage of taxable households (%)

TP6018 Poverty rate - Overall (%)

PACT18 Share of activity income (%)

PTSA18 of which share of wages and salaries (%)

PCHO18 of which share of unemployment benefits (%)

PBEN18 of which share of income from self-employment (%)

PPEN18 Share of pensions, retirements, and annuities (%)

PPAT18 Share of property income and other income (%)

PPSOC18 Share of total social benefits (%)

PPFAM18 of which share of family benefits (%)

PPMINI18 of which share of minimum social benefits (%)

PPLOGT18 of which share of housing benefits (%)

PIMPOT18 Share of taxes (%)

RD18 1st decile of standard of living (€)

D118 9th decile of standard of living (€)

D918 Interdecile ratio (9th decile/1st decile)

Descriptions for control variables used in the analysis. All monetary values are reported in euros.
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Table 10: Descriptive Statistics of Areas for the Direct Messaging Campaign

All Treated Control

Outcome Variables

Number of Dose 1 Vaccinations (New Week) 82.343 89.902 78.461

Number of Completed Vaccinations (New Week) 91.079 99.681 86.661

Covariates

Average Net Hourly Wage 15.379 15.309 15.414

Average Net Hourly Wage of People Aged 18 to 25 10.647 10.648 10.646

Median Standard of Living 21,938 21,947 21,934

Overall Poverty Rate 13.986 13.968 13.994

Share of Unemployment Benefits 2.983 2.948 3.001

Share of Income from Self-Employment 5.566 5.620 5.538

Share of Total Social Benefits 5.526 5.499 5.540

Share of Taxes -17.009 -17.020 -17.003

Descriptive statistics for the outcome variables and a selection of covariates for the direct treatment.
They are categorised into three groups: all observations, treated group observations, and control group
observations.

Table 11: Descriptive Statistics of Areas for the Friends Messaging Campaign

All Treated Control

Outcome Variables

Number of Dose 1 Vaccinations (New Week) 82.343 81.771 82.634

Number of Completed Vaccinations (New Week) 91.079 90.382 91.433

Covariates

Average Net Hourly Wage 15.379 15.435 15.350

Average Net Hourly Wage of People Aged 18 to 25 10.647 10.663 10.638

Median Standard of Living 21,938 22,002 21,906

Overall Poverty Rate 13.986 13.972 13.992

Share of Unemployment Benefits 2.983 3.010 2.969

Share of Income from Self-Employment 5.566 5.489 5.605

Share of Total Social Benefits 5.526 5.502 5.539

Share of Taxes -17.009 -17.059 -16.984

Descriptive statistics for the outcome variables and selected covariates for the friends messages, categor-
ized into three groups: all observations, treated group observations, and control group observations. The
first three covariates are measured in euros for the year 2020.
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E Boosting Analysis on the GATES for the Direct and Friends

Messaging Campaign

Group by Het score Dose 1 Group by Het score Completed

Figure 3: Grouping by Het score based on Boosting analysis for the direct messages. Het black dot
represents het GATES estimate, with its respective confidence bands. The blue dashed line indicates the
ATE and the red dashed lines show its confidence interval.

Group by Het score Dose 1 Group by Het score Completed

Figure 4: Grouping by Het score based on Boosting analysis for the friends messages. Het black dot
represents het GATES estimate, with its respective confidence bands. The blue dashed line indicates the
ATE and the red dashed lines show its confidence interval.

F Evaluation of Heterogeneity in the Effect of Microcredit Avail-

ability

The purpose of giving out microcredit is to give low-income individuals the opportunity to

start their own business or become self-employed, thereby improving their standard of living.

Borrowers tend to be from less developed countries. While the premise may seem valid, there

have been numerous studies that have questioned the effectiveness and impact of microcredit.

A summary of recent literature on microcredit availability can be found in Banerjee (2013).

Research by Attanasio et al. (2014), Banerjee et al. (2015), Angelucci et al. (2013) and Tarozzi

et al. (2013) show that, while access to microcredit positively impacts investments on self-
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employment activities, it does not lead to an overall increase in consumption, total income or

profit. In addition, these studies often find no significant increase in business profits or income

from self-employment activities. Experiments conducted on an individual level confirm these

findings (Augsburg et al. (2012), Karlan and Zinman (2010) and Karlan and Zinman (2011)).

In general, studies report that the difference in microcredit take-up between the treatment and

control group is low, as exemplified by Crépon et al. (2015), who find a 13% microcredit take-up

in the treatment group and 17% in a subsample of villages that was regarded as having a ”higher

probabiliy” of taking up microcredit.

Given these generally weak effects of microcredit availability across all units in the sample,

an important question arises: could there be significant variations in how different units are af-

fected, but that this is masked by average effects? Investigating this potential heterogeneity can

provide insights into the effectiveness of microcredit on individuals’ welfare, offering important

implications for policy designs and targetting groups that would benefit most from microcredit

availability. In fact, previous papers on heterogeneous treatment effects in microcredit avail-

ability have found interesting results, prompting the hypothesis that heterogeneity is indeed

present in these experiments. To illustrate, Banerjee et al. (2017), who follow up on the study

by Banerjee et al. (2015), show that microcredit has a much larger impact on business outcomes

for individuals who had already started a business prior to receiving microcredit, compared

to those without prior businesses. Meager (2022) supports this by proving that ”had a prior

business” is a generalisable and robust predictor. Additionally, Crépon et al. (2015) classify

households in three categories based on their likelihood of borrowing pre-intervention and find

that, among those most likely to borrow, microcredit access does not significantly impact income

and consumption.

This empirical application replicates the research by Chernozhukov et al. (2017), who apply

their generic approach to a study examing the heterogeneous effects of microcredit availability

on borrowing and self-employment activities. This study, conducted between 2006 and 2007,

included 162 rural villages in Morocco. These villages were divided into 81 pairs based on

similar characteristics such as the number of households, existing infrastructure, and type of

agriculture activities. In each pair, one village was randomly selected for the treatment—

access to microcredit—while its counterpart acted as a control. After two years of intervention,

household-level data from N = 5, 524 households was collected through surveys. The primary

goal of the study is to assess whether there are any changes in overall loan amount, output from

self-employment activities, profit from self-employment activities, and monthly consumption

(all in MAD2). Each of these outcome variables is represented by Y . Furthermore, D indicates

whether a household is part of a treated village with access to microcredit, and Z includes

eight household characteristics, including the number of household members, the age of the

household’s head, and whether or not the household has borrowed from any source. Along with

that, Z also includes corresponding dummy variables and 81 fixed effects to control for the unique

characteristics within each village pair, effectively isolating the treatment effect of microcredit

availability. Furthermore, the study uses grouping variables: a village pair identifier and an

identifier for the individual villages within each pair, which are used to control for fixed effects

2Moroccan Dirams
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Table 12: Descriptive Statistics of Households

All Treated Control

Outcome Variables

Total Amount of Loans 2,364 2,934 1,807

Total output from self-employment activities (past 12 months) 32,559 35,199 29,976

Total profit from self-employment activities (past 12 months) 10,120 11,050 9,211

Total monthly consumption 3,012 2,996 3,027

Baseline Covariates

Number of Household Members 3.878 3.870 3.887

Number of Members 16 Years Old or Older 2.604 2.600 2.608

Head Age 35.953 35.899 36.005

Declared Animal Husbandry Self-employment Activity 0.415 0.426 0.404

Declared Non-agricultural Self-employment Activity 0.146 0.128 0.163

Borrowed from Any Source 0.211 0.225 0.197

Spouse of Head Responded to Self-employment Section 0.067 0.074 0.061

Member Responded to Self-employment Section 0.044 0.047 0.041

Descriptive statistics for the four outcome variables and eight baseline covariates, categorised into three
groups: all observations, treated group observations, and control group observations. Other covariates
not shown in this table include the respective dummy variables of the eight baseline covariates, and 81
village pairs, totaling 96 covariates used in the analysis. Note that all monetary variables are expressed
in Moroccan Dirams (MAD)

and clustering. Standard errors are clustered on the village level. Observations with missing

data from the variables mentioned are excluded, resulting in a total of N = 5, 513 villages in the

dataset. Table 12 presents some descriptive statistics for the outcome variables and the eight

baseline covariates.

The performance of four ML methods in predicting the proxy predictor S(Zi) across the four

outcome variables is presented in Table 13. The results from this table indicate that Random

Forest and Elastic Net seem to be the most reliable methods across all outcome variables for

both goodness-of-fit measures. Although Neural Network and Boosting are generally effective,

their relatively lower performances suggest that they may not be able to capture data patterns

and relationships as effectively as Random Forest and Elastic Net. Accordingly, further analysis

will focus on the latter two ML methods.
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Table 13: Comparison of ML Methods: Microfinance Availability

Random Forest Elastic Net Neural Network Boosting

Amount of Loans

Best BLP (Λ) 1,818,461 488,156 437,965 820,570

Best GATES (Λ̄) 2,997,844 2,265,442 2,505,021 3,325,010

Output

Best BLP (Λ) 16,843,626 73,911,741 38,737,276 11,999,845

Best GATES (Λ̄) 122,369,634 160,578,356 101,897,011 103,226,183

Profit

Best BLP (Λ) 17,151,533 8,010,214 10,320,273 3,683,870

Best GATES (Λ̄) 38,093,159 22,767,522 31,885,759 32,403,059

Consumption

Best BLP (Λ) 6,482 8,095 18,138 10,600

Best GATES (Λ̄) 29,672 40,490 38,850 31,692

The table compares the performance of four ML methods—Random Forest, Elastic Net, Neural Network,
and Boosting—in predicting microfinance availability, evaluated by four performance indicators. These
indicators include the amount of loans, the output from self-employment activities, profit from self-
employment activities, and monthly consumption. Each method’s performance is evaluated by using the
best BLP (Λ) and best GATES (Λ̄) values, representing goodness-of-fit measures. The results are based
on medians over 100 splits, reflecting robustness of the results across various data partitions, and indicate
that Random Forest and Elastic Net are particularly effective predictors.

Table 14 reports the estimates of the average treatment effect (ATE) and heterogeneity

loading (HET) parameters, β1 and β2, respectively, in the BLP for the four outcome variables.

Confidence intervals are median-adjusted, accounting for variability across the sample splits, and

are reported in the parentheses. The p-values are adjusted similarly and are reported in brackets,

testing the hypothesis that the respective outcome parameter is zero. The estimated ATEs of

microfinance availability show that the amount of loans is positive and statistically significant

at the 1% significance level for both Elastic Net and Random Forest. However, the same cannot

be said for the ATEs on output, profit and consumption, reporting statistically insignificant

results at the 10% level. This indicates that while, on average, microfinance availability has a

significant impact on the amount of money borrowed, it does not significantly affect the output

and profit from self-employment activities or monthly consumption.

Next, considering the heterogeneity results, I reject the hypothesis that the HET estimates

are zero at the 10% significance level for the amount of loans, output and profit, but this finding

only holds with specific ML methods: Random Forest indicates significant heterogeneity in the

effect of microfinance availability for the amount of laons and profit, while Elastic Net shows

significant heterogeneity for output. Both methods however, do not uncover any heterogeneity

for consumption. These results suggest that the availability of microcredit affects outcomes that

involve business activities heterogeneously but shows no immediate impact on living standards,

as measured by consumption, even for the most benefited households. Chernozhukov et al.

(2017) argue that this might be because households use microloans to invest in their business
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Table 14: BLP of Microfinance Availability

Elastic Net Random Forest

ATE (β1) HET (β2) ATE (β1) HET (β2)

Amount of Loans 1,141 0.200 1,132 0.339

(308,1994) (-0.214,0.671) (321,1964) (-0.023,0.676)

[0.008] [0.294] [0.005] [0.066]

Output 5,625 0.278 4,929 0.120

(-1483,12726) (0.001,0.564) (-2390,12162) (-0.109,0.371)

[0.118] [0.048] [0.181] [0.324]

Profit 1,793 0.290 1,724 0.204

(-2336,5879) (-0.109,0.706) (-2309,5809) (-0.018,0.433)

[0.389] [0.146] [0.413] [0.069]

Consumption -52.0 0.153 -63.5 0.079

(-202,93.2) (-0.234,0.514) (-219,89.0) (-0.212,0.406)

[0.480] [0.420] [0.433] [0.618]

The table reports the BLP of the CATE using the four performance indicators, presenting estimates of the
average treatment effect (ATE) and heterogeneity loading (HET) parameters in the BLP, respectively. In
the parentheses, 90% confidence intervals are reported, and median-adjusted p-values over 100 splits can
be found in the brackets for the hypothesis that the parameter is zero. Results suggest that, on average,
microfinance availability significantly impacts the amount of loans, but does not on output, profit and
consumption at the 10% level. Furthermore, from the p-values of the HET estimates, one can conclude
that there is no significant heterogeneity present in the effect on consumption.

rather than to increase consumption, resulting in different levels of business success and profit.

The estimates of the GATES are provided in Table 15, where households are divided into

five groups based on quantile cutoffs of S(Zi). The average effect of each group is estimated,

revealing significant heterogeneity primarily for the most affected group, denoted as γ5. For this

group, the GATES on the amount of loans, output and profit differs significantly from zero at

the 10% significance level for both ML methods. The positive estimated effects on these outcome

variables suggest that, on average, this group of households borrows more and achieves greater

outputs and profits from their self-employment activities. This supports the hypothesis that mi-

crocredit availability helps these households in expanding their business ventures and economic

activity. Further investigation shows statistically significant differences from zero between the

most and least affected groups for the first three outcome variables at the 10% level: Random

Forest identifies these differences for the amount of loans and profit, and Elastic Net does so

for output. For consumption, both ML methods report statically insignificant results at the

10% level across all groups. These results indicate that, in conjunction with the results from

the BLP analysis in Table 14, no heterogeneity is found in the outcome variable consumption.

Similar to Chernozhukov et al. (2017), I will therefore omit the results of consumption in the

CLAN analysis. Table 16 displays the average characteristics of the 20% most and least af-

fected groups, based on the same quantiles as in Table 15, focusing on three factors: the age

of the household head, investment in non-agricultural self-employment activities, and whether

the household borrowed from any source. The results can help understand the cause of hetero-
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Table 15: GATES of 20% Most and Least Affected Groups for Microcredit Availability

Elastic Net Random Forest

20% Most (γ5) 20% Least (γ1) Difference (γ5 − γ1) 20% Most (γ5) 20% Least (γ1) Difference (γ5 − γ1)

Amount of Loans 2,055 530 1,720 3,014 -186 2,924

(226,3843) (-1232,2455) (-1152,4390) (1008,4985) (-2176,1954) (280,5827)

[0.016] [0.599] [0.223] [0.004] [0.879] [0.030]

Output 24,171 -2,634 25,975 20,890 1,543 18,492

(4160,45799) (-13643,8751) (2196,51201) (1357,40300) (-15162,16965) (-6610,44215)

[0.017] [0.677] [0.032] [0.033] [0.815] [0.142]

Profit 6,512 617 6,566 11,976 -335 12,019

(-1164,15177) (-7935,8998) (-6476,19211) (546,23167) (-8773,7724) (-1771,26071)

[0.094] [0.825] [0.312] [0.036] [0.947] [0.084]

Consumption 38.8 -342 343 -15.1 -212 239

(-281,328) (-809,141) (-218,922) (-362,347) (-670,198) (-342,833)

[0.808] [0.165] [0.231] [0.949] [0.321] [0.392]

The results in the table report the GATES analysis on the most affected group, the least affected group,
and the difference between these two. Based on quantile cutoffs, K = 5 groups are created, and Elastic
Net and Random Forest are used to estimate the average affects of the three categories in the table on
the four outcome variables. 90% confidence intervals are reported in parentheses, and median-adjusted
p-values over 100 splits can be found in the brackets. One can observe that the most affected group
reports statistically significant results at the 10% level for the first three metrics. The same can be said
for the difference between the most and least affected groups for these three outcome variables, only now
just one the ML tools reports statistically significant results at the 10% level. In general, all four metrics
report insignificance results for the least affected group and the consumption outcome variable reports
only insignificant results across all groups. In conjunction with the results from the BLP analysis in Table
14, one can conclude that the consumption metric does not contain any heterogeneity.

geneity in the treatment effects. From the first outcome variable—amount of loans—the results

suggest that households with younger household heads that are involved in non-agricultural

self-employment and that borrow less from other sources are likely to borrow more from a mi-

crofinance institution. This suggests that households see formal loans from the microfinance

institution as substitutes for their overall borrowing rather than complements. For the output,

households with similar characteristics are likely to obtain more financial output from their

self-employment activities due to microcredit availability. Regarding the profit, only Random

Forest yields statistically significant results, specifically for the average non-agricultural self-

employment sector and for households that borrow from any source. Important to note here

is that the p-value of the difference between δ5 and δ1 can be prone to the sensitivity of the

ML method that is used to generate the ML proxy. This explains why Random Forest and

Elastic Net do not consistently produce the same significance levels in their results. Overall,

this study’s main findings show that households involved in non-agricultural self-employment

activities and those that have borrowed money from other sources particularly benefit from

microcredit availability.
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Table 16: CLAN of Microfinance Availability

Elastic Net Random Forest

20% Most

(δ5)

20% Least

(δ1)

Difference

(δ5 − δ1)

20% Most

(δ5)

20% Least

(δ1)

Difference

(δ5 − δ1)

Amount of Loans

Head Age 31.3 41.1 -12.0 24.3 37.2 -12.7

(29.0,33.5) (38.9,42.7) (-14.8,-8.69) (22.0,26.6) (35.3,39.1) (-15.8,-9.69)

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Non-agricultural self-emp. 0.166 0.069 0.091 0.145 0.121 0.018

(0.134,0.196) (0.042,0.090) (0.052,0.129) (0.115,0.174) (0.094,0.149) (-0.020,0.056)

[0.000] [0.000] [0.000] [0.000] [0.000] [0.362]

Borrowed from Any Source 0.186 0.193 -0.001 0.138 0.281 -0.141

(0.154,0.217) (0.159,0.227) (-0.048,0.047) (0.109,0.166) (0.243,0.318) (-0.187,-0.093)

[0.000] [0.000] [1.000] [0.000] [0.000] [0.000]

Output

Head Age 35.9 38.5 -2.33 33.4 30.8 3.02

(33.9,38.0) (36.4,40.6) (-5.21,0.547) (31.2,35.6) (28.6,33.0) (-0.216,6.18)

[0.000] [0.000] [0.112] [0.000] [0.000] [0.060]

Non-agricultural self-emp. 0.330 0.025 0.302 0.255 0.116 0.141

(0.291,0.369) (0.012,0.038) (0.262,0.343) (0.217,0.290) (0.089,0.143) (0.095,0.187)

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Borrowed from Any Source 0.196 0.242 -0.048 0.188 0.200 -0.015

(0.163,0.229) (0.206,0.278) (-0.096,0.000) (0.155,0.219) (0.166,0.233) (-0.062,0.032)

[0.000] [0.000] [0.051] [0.000] [0.000] [0.529]

Profit

Head Age 36.2 35.5 0.623 31.5 33.0 -1.63

(34.1,38.2) (33.4,37.6) (-2.31,3.56) (29.4,33.6) (30.7,35.4) (-4.82,1.57)

[0.000] [0.000] [0.654] [0.000] [0.000] [0.318]

Non-agricultural self-emp. 0.160 0.127 0.020 0.176 0.119 0.056

(0.130,0.191) (0.096,0.157) (-0.024,0.063) (0.144,0.208) (0.092,0.147) (0.014,0.098)

[0.000] [0.000] [0.305] [0.000] [0.000] [0.005]

Borrowed from Any Source 0.206 0.183 0.013 0.152 0.196 -0.043

(0.171,0.240) (0.151,0.215) (-0.033,0.062) (0.122,0.182) (0.163,0.229) (-0.089,-0.003)

[0.000] [0.000] [0.548] [0.000] [0.000] [0.067]

The table presents the CLAN estimates for three characteristics across three outcomes variables. The
characteristics include the age of the household head, investment in non-agricultural self-employment
activities, and whether the household has borrowed from any source. The 20% most and least affected
groups are reported for all outcomes, with 90% confidence intervals in parentheses, and median-adjusted p-
values in brackets. Significant results across all three outcomes are found for the latter two characteristics,
indicating that microcredit avilability is especially beneficial for households with these traits.
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G Programming Code

The R scripts used for both empirical analyses in this study are made available. Each analysis

includes a preprocessing script that loads and preprocesses the data, and another script that

performs that analysis using the GenericML framework. Packages such as mlr3, ggplot2L, and

GenericML are employed to ensure robust analysis. Computations were performed on a Windows

11 Home system with 4 cores, using R version 4.4.0.
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