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Abstract

With the expanding use of machine learning methods, the development of interpretable

machine learning is becoming increasingly important. To enable a broader audience to

benefit from machine learning results, the research field should focus on building interpretable

machine learning methods. Our work enhances the interpretability of cluster analysis (CA)

by adding an extra term in the objective function of an existing Mixed Integer Programming

formulation (Carrizosa et al., 2022). The original formulation focuses on finding an optimal

explanation per cluster that maximises precision and distinctiveness. This means that the

chosen explanation should include as many individuals from the corresponding cluster as

possible, while excluding as many individuals from other clusters as possible. The explanation

is based on the distance from an individual to the chosen prototype. The prototype is chosen

per cluster and is intuitively explained as the most ’average’ individual in that cluster. In our

work, we propose an extra distance term in the objective function that penalises for chosen

prototypes that lie closely together. This term encourages the model to choose prototypes

that are dissimilar. As the prototypes are chosen to be further apart from each other, the

explanations for each cluster will be more distinct as well. Making it easier to interpret the

variations between clusters following a CA. Running our experiments on a mall customer

dataset we find a 9.4% and 25.0% increase in dissimilarity compared to the original model

without a significant loss in distinctiveness and precision. Thereby, showing that with a

marginal loss in distinctiveness and precision a more interpretable solution can be found.
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1 Introduction

As the application of machine learning methods grows, there is an increasing need for methods

that are easy to use and interpret. Interpretable machine learning is a research field entirely

focused on building trust in models, performing model debugging, and informing real human

decision-making by creating models and methods that are easier to interpret (V. Chen et al.,

2022). A major drawback of using complex machine learning methods is that their workings

are complicated and hard to grasp for non-experts. For a broader audience to fully benefit

from the advances in computer science, interpretable methods are sometimes preferred over

state-of-the-art methods that might only provide marginal improvements in results.

In our work, we focus on the machine learning method cluster analysis (CA). This method

groups data points into clusters that have high similarity based on a distance metric (Ma & Wu,

2007). This technique is widely used for decision-making, so having interpretable results helps

decision-makers better understand the outcomes of CA. The applications of CA are large, but

the main motivation for using this technique is usually to help identify patterns and structures

in the dataset that are hard to detect by solely observing the data.

Especially within marketing CA plays a crucial role in grouping customers that show similar

behaviour. Using these customer segments, specific marketing strategies can be applied to

different groups of customers. Cluster targeted marketing can therefore provide large benefits

for companies and other organisations. Other fields that use cluster analysis are image processing

and biology (Nugent & Meila, 2010) (Mittal et al., 2022). There are two common models to

improve the interpretability of CA. Intrinsic models improve interpretability while at the same

time forming clusters for the given data. Post-hoc models on the other hand, were developed

to increase the interpretability of existing clusters. Since for some data the CA is already

performed we can only use the appointed cluster label and use that as information to increase

interpretability. In this work we propose a post-hoc model that enhances the interpretability of

existing CA by means of prototypes.

In CA, the explanation is often distance-based, meaning that individuals that are close to

each other are expected to be in the same cluster, while individuals that are far apart are

expected to be in the other clusters. We can explain a cluster by the distance of each individual

to the prototype (Rousseeuw & Kaufman, 2009). The prototype serves as something that could

be intuitively explained as being the “average” individual in the cluster. From this individual

we measure the distance to the other data points in the cluster. To see whether a prototype is a

good explanation for the other data points in the cluster, we use two metrics. The first metric

is called true positive rate (TPR), which counts the individuals that are correctly explained by

the prototype. The second metric is the false positive rate (FPR) which counts the individuals

that were supposed to be explained by the prototype, but were not. To find the optimal set of

prototypes we use two different Mixed Integer Linear Programming (MILP) formulations.

The main aim of our research is to improve the interpretability of existing CA by increasing

the distance between the prototypes in the optimal set. To test our methods we use 3 different

datasets, one on Canadian weather, one simulated dataset to test model robustness for large

instances and one to evaluate increased interpretability on a marketing dataset. We manage

to find optimal sets of solutions that are up to 25% further apart while maintaining acceptable
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values for TPR and FPR. Showing a trade off between differing prototypes and performance

in terms of TPR and FPR.

The rest of the paper is structured as follows: in section 2, we cover relevant related work.

In section 3, the data we use to test our model is discussed. Then, in section 4 our methods are

introduced and in section 5 the results are shown. Last, in section 6 we give our conclusion and

future research directions.

2 Related Work

In this section, we elaborate on the relevant current work surrounding the topic of CA and, more

specifically, the interpretability of CA. We provide background information to better understand

the proposed methods.

Machine learning models or algorithms can be classified as using either supervised learning

or unsupervised learning. Supervised learning is a technique that uses labelled datasets to

train models. By doing so, it tries to accurately predict the labels from the data for a given

new data point. In contrast, unsupervised learning is a technique that does not use a labelled

dataset for training. The model tries to identify patterns and structures in the data without any

prior knowledge provided through labelled datasets. CA is an unsupervised learning technique

and although unsupervised learning methods often deliver promising results, they can suffer

from a lack of clear interpretability (V. Chen et al., 2022). In this work, we aim to improve

the interpretability of cluster analysis by using prototypes in combination with Mixed Integer

Linear Programming formulations.

CA is a machine learning technique that groups data points into different clusters based on

their similarities. Over the years, multiple methods have been proposed to form these clusters.

There are partitional methods, such as K-means clustering (MacQueen et al., 1967), which

divide the data into a fixed number of clusters, and hierarchical methods, which use a distance-

based rule to create nested series of partitions (Sneath, 2005). More sophisticated methods have

also been developed to handle special cases or clusters with irregular shapes. Examples include

model-based clustering (Hastie et al., 2009) and density-based clustering (Ester et al., 1996).

Improving the interpretability of CA has been a significant research focus. Two main ap-

proaches exist in this domain. Firstly, intrinsic models perform CA while simultaneously build-

ing explanations for the clusters they create. Examples of these methods are the discriminative

rectangle mixture model (DReaM) (J. Chen et al., 2016) and the interpretable clustering via

optimal trees model (ICOT) (Bertsimas et al., 2021). The second approach involves post-hoc

methods, which enhance the interpretability of a previously performed CA. In this scenario, the

only available information is the cluster label assigned to a data point during the CA. This ap-

proach verifies whether the given rule-based explanations are satisfactory by evaluating whether

individuals satisfy a list of features (Davidson et al., 2018). Our work also presents a post-hoc

model, largely inspired by a paper that aims to increase interpretability (Carrizosa et al., 2022).

Recent advancements in explainable artificial intelligence have also influenced the field of

CA interpretability. Techniques such as SHAP (SHapley Additive exPlanations) (Lundberg &

Lee, 2017) and LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro et al., 2016)
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have been adapted to provide local explanations for cluster assignments. These methods help

in understanding the contribution of individual features to the clustering decisions.

Furthermore, the integration of human centered approaches in interpretability, such as user

studies and interactive visualisation tools, has been explored to bridge the gap between technical

explanations and user comprehension (Choo & Liu, 2018). These approaches aim to make cluster

analysis more accessible and understandable to non-expert users.

In summary, the interpretability of cluster analysis is an evolving field with various method-

ologies ranging from intrinsic models to post-hoc explanations and human centered approaches.

Our contribution lies in enhancing interpretability by leveraging prototypes and MILP, thereby

providing more interpretable CA results.

3 Data

In this section we consider the three different datasets that we use for testing our methods. In

section 4.1 and 4.2 we describe the datasets used in the original work to test the workings of

the covering and partitioning model (Carrizosa et al., 2022). In section 4.3, we explain a newly

introduced mall customer dataset to evaluate the workings of our proposed extension on the

covering model.

3.1 Canadian weather data

This dataset contains 365 observations on the daily temperatures of 35 Canadian cities. All of

these cities are clustered in one of four climates: Atlantic, Pacific, Continental or Arctic. This

data is publicly available in the R package fda and shown in figure 1.
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Figure 1: This figure shows the 35 cities from the Canadian weather dataset. It displays the
average temperature over 365 days and the colours of the lines correspond to the climate in this
city.

3.2 Simulated data

To demonstrate the model’s capability to handle large datasets, we use simulated data comprising

of three distinct clusters. Each cluster c is constructed by drawing from a multivariate normal

distribution N(βc,
∑c). Specifically, the individuals within each cluster c are drawn according

to the following parameters:

β1 = (1.45, 1.5)

1∑
=

[
0.01 0.00

0.00 0.02

] β2 = (1.8, 1.6)

2∑
=

[
0.02 0.00

0.00 0.02

] β3 = (1.4, 2.0)

3∑
=

[
0.03 0.00

0.00 0.04

]

This simulated approach allows us to effectively test the model’s performance and scalability

when applied to large datasets. By analysing the model’s handling of these large datasets we

can validate its robustness and efficiency in real-world applications involving substantial data

volumes. In figure 2 you can see what the three clusters look like.
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Figure 2: This figure shows the three generated clusters using the multivariate normal distri-
butions indicated in section 2. In this particular example figure N = 104.

3.3 Mall customer data

In our work we use a third and final dataset to showcase the increase in interpretability when

adding an extra distance term. The dataset that we utilise is a marketing dataset on mall

customers. This dataset can be found on Kaggle 1. In this dataset we find 200 individuals.

For each of those individuals the following 5 variables are denoted: gender, age, annual income

and spending score. The variable gender equals 1 when the individual is a male and 0 when

the individual is a female. The annual income is denoted in 1000 US Dollars per year and the

variable spending score is a score from 1-99 where 1 means little spending and 99 means large

spending. We use this dataset to illustrate the effectiveness on distance based interpretability.

Next to that, this dataset contains multidimensional numeric data, which is something common

in marketing. We show that our methods also provide sensible interpretations when applied

to multiple variables. To prepare the dataset for running the adjusted versions of the covering

model. We firstly need to perform a clustering ourselves as there are no cluster labels present

in the dataset. In this case, we use k-means clustering with k = 5. The obtained clusters are

used for the implementation of the adjusted covering model.

4 Methodology

In this section we explain the methods that we use in three subsections. In section 4.1 and

4.2 we explain the two models we use in our work (Carrizosa et al., 2022). In section 4.3, we

explain our proposed extension for the covering model to optimise the distance between selected

prototypes.

To explain the models used we first need to introduce some general definitions and notation.

1https://www.kaggle.com/datasets/shwetabh123/mall-customers/data
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We define a set of individuals N , where all individuals have a cluster label c ∈ C . Where C is

the set of all clusters. We want to assign these individuals an optimal prototype. We also define

a set of prototypes I , from this set we choose a prototype that is used as the explanation of the

cluster it is appointed to. We try to improve interpretability by formulating an explanation for

each cluster c that is as precise and distinct as possible i.e. having the highest true positive rate

(TPR) and the lowest false positive rate (FPR). The TPR and FPR are measures defined per

cluster. The TPR represents the fraction of individuals out of all individuals that have cluster

label c, that is correctly explained by the selected prototype for cluster c. The FPR represents

the fraction of individuals out of all individuals that have cluster label c, that is supposed to

be explained by the prototype for cluster c but was not. In our model we want the selected

prototype for cluster c to be correct for as many individuals as possible within the cluster. Next

to that, we want the prototype not to explain individuals that are not in the cluster that the

prototype is in, as this would increase the value of the FPR. For both models we are given the

same existing clustering C that is obtained by clustering N individuals in c clusters. This yields

Nc where N =
⋃

c∈C Nc. The prototypes Ic are selected from Nc. Essentially, the prototypes

are the same set of individuals but they are separately considered for the purpose of the MILP

formulation. It also holds up for the set of prototypes that I =
⋃

c∈C Ic. Furthermore, we have

the dissimilarity matrix δ that contains the distance between prototype i ∈ I and individual

n ∈ N . The distance is calculated by means of the Euclidean distance. As we work on a post-

hoc method we assume that we are only given the clusters and not necessarily the dissimilarity

matrix used to construct them. Therefore, this is not necessarily the same dissimilarity matrix

that is used to create the clusters in C . Furthermore, we introduce the binary decision variable

zi:

zi =

1 if i is chosen as prototype,

0 otherwise.

4.1 The covering model

In the covering model, we define a threshold value rc that represents the maximum distance that

can be between an individual j and the prototype i for a cluster c. All individuals that have a

distance smaller than rc are considered to be in cluster c, and all individuals with a value larger

than rc are considered to be outside of cluster c. In this optimisation we thus need to find the

set of prototypes as well as the radii for the different clusters.

Let rc be the radius of cluster c. For each prototype i ∈ I , we define the binary decision

variable πin:

πin =

1 individual n lies in the ball of radius rc spanned by prototype i,

0 otherwise.

To prevent a bi-linear formulation of the problem, we can apply the Fortet transformation

for decision variables πin and zi (Fortet, 1960). We define a new decision variable yin = πinzi.

We can denote the number of true positive cases as
∑

i∈Ic

∑
n∈Nc

yin and the true positive rate
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as: TPRc =
∑

i∈Ic

∑
n∈Nc

yin
|Nc| . Similarly, we can write down the number of false positive cases as∑

i∈Ic

∑
n∈N \Nc

yin and the false positive rate as: FPRc =
∑

i∈Ic

∑
n∈N \Nc

yin

|N \Nc| .

Given all notation, the set covering model consists of the following equations:

max
y,r

∑
c∈C

∑
i∈Ic

∑
n∈Nc

yin − θ
∑
c∈C

∑
i∈Ic

∑
n∈N \Nc

yin, (1)

s.t.
∑
i∈Ic

zi = 1, ∀c ∈ C , (2)

rc ≥ δinπin, ∀(i, n) ∈ Ic × Nc,∀c ∈ C , (3)

rc ≤ δin + (rmax
c − δin)πin, ∀(i, n) ∈ Ic × N \ Nc,∀c ∈ C , (4)∑

i∈Ic

∑
n∈Nc

πinzi ≥ ⌈λc|Nc|⌉, ∀c ∈ C , (5)

∑
i∈Ic

∑
n∈N \Nc

πinzi ≤ ⌊µc|N \ Nc|⌋, ∀c ∈ C , (6)

rmin
c ≤ rc ≤ rmax

c , ∀c ∈ C , (7)

yin ≤ πin, ∀(i, n) ∈ Ic ×N , ∀c ∈ C, (8)

yin ≤ zi, ∀(i, n) ∈ Ic ×N , ∀c ∈ C, (9)

yin ≥ πin + zi − 1, ∀(i, n) ∈ Ic ×N , ∀c ∈ C, (10)

yin ∈ {0, 1}, ∀(i, n) ∈ Ic ×N , ∀c ∈ C, (11)

zi ∈ {0, 1}, ∀i ∈ Ic,∀c ∈ C , (12)

πin ∈ {0, 1}, ∀(i, n) ∈ Ic × N ,∀c ∈ C . (13)

The objective function (1) maximises the number of true positive cases over all clusters while

minimising the number of false positive cases over all clusters with penalty term θ. Constraints

(2) ensure that for each cluster exactly one prototype is chosen. Constraints (3) and (4) make

sure that πin is well defined. Whenever an individual is farther away from the prototype than

the threshold rc, πin has to equal 0. This is ensured by constraints (3). For all individuals

outside of cluster c, we need to make sure that if rc > δin then πin equals 1. In the case that

rc = δin, πin = 1 for the individuals that are in cluster c and πin = 0 for the individuals

who are not. The constraints (5) and (6) allow for a minimum or maximum requirement for

the TPR and FPR respectively. We can adjust this requirement by varying the parameter

values of λc ∈ [0, 1] or µc ∈ [0, 1]. Lastly, constraints (7) indicate that rc must always be

between the minimum and maximum value for the radius. We define these bounds as, rmin
c =

min(i,n)∈Ic×Nc,i ̸=n δin and rmax
c = max(i,n)∈Ic×Nc

δin. Constraints (8), (9) and (10) are the result

of the Fortet transformation and ensure that yin is well defined as the product of the decision

variables πin and zi. Constraints (11), (12) and (13) indicate that zi, πin and yin are binary

variables.

We provide an additional approach for instances that have many individuals. The essence of

this approach revolves around using a partial solution with a smaller number of individuals to

optimise the larger instance. To obtain the partial solution we apply a sampling procedure to
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select a smaller group of prototypes and individuals Ĩc ⊂ Ic and Ñc ⊂ Nc. We use these newly

defined sets to solve a ’reduced’ covering model with chosen prototypes zRi and radii rRc . We

use this solution as the partial solution for the larger original problem and define zO = zR and

rO = rR. The solution (zO, πO, rO) is found when constraints (5) and (6) are satisfied. This

procedure is applicable to the partitioning model too.

4.2 The partitioning model

In the partitioning model, the cluster c consists of the individuals that are closest to the prototype

of cluster c out of all the prototypes of the other clusters. We define one extra variable ρin which

indicates whether individual n is closest to prototype i:

ρin =

1 if individual n is closest to prototype i,

0 otherwise.

For this formulation, the true positive cases are calculated as
∑

i∈Ic

∑
n∈Nc

ρin and the false

positive cases similarly as
∑

i∈Ic

∑
n∈N \Nc

ρin. Due to this change the TPRc and FPRc become

TPRc =
∑

i∈Ic

∑
n∈Nc

ρin
|Nc| and FPRc =

∑
i∈Ic

∑
n∈N \Nc

ρin

|N \Nc| .

We formulate the partitioning model as follows:

max
z,ρ

∑
c∈C

∑
i∈Ic

∑
n∈Nc

ρin − θ
∑
c∈C

∑
i∈Ic

∑
n∈N\Nc

ρin, (14)

s.t.
∑
i∈Ic

zi = 1, ∀c ∈ C, (15)

∑
j∈Ic:δjn≤δin

zj +
∑

j∈I:δjn>δin

ρjn ≤ 1, ∀(i, n) ∈ Ic ×N ,∀c ∈ C, (16)

ρin ≤ zi, ∀(i, n) ∈ I ×N , (17)∑
i∈I

ρin = 1, ∀n ∈ N , (18)∑
i∈Ic

∑
n∈Nc

ρin ≥ ⌈λc|Nc|⌉, ∀c ∈ C, (19)

∑
i∈Ic

∑
n∈N\Nc

ρin ≤ ⌊µc|N \ Nc|⌋, ∀c ∈ C, (20)

zi ∈ {0, 1}, ∀i ∈ I, (21)

ρin ∈ {0, 1}, ∀(i, n) ∈ I ×N . (22)

The objective function for this formulation is similar to the one in the covering model, only

πinzi, which is equal to yin, is replaced by ρin. The objective function also maximises the TPR

and minimises the FPR that is weighted by θ. Constraints (15) are equal to constraints (2)

and also ensure that for each cluster exactly one prototype is selected. Constraints (19) and

(20) have the same function in controlling the TPRc and the FPRc using λ and µ as in (5)

and (6). The main differences here are in constraints (16)-(18). Constraints (16) realise that

an individual is assigned to the closest prototype by leveraging that for each cluster only one
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prototype is chosen. Constraints (17) ensure that individuals can only be considered closest to

prototypes that are selected in the optimisation. Constraints (18) ensure that each individual

is closest to exactly one prototype. Lastly, constraints (21) and (22) define the nature of the

decision variables.

When the number of individuals is large, we can apply the same reduction technique that is

used for the covering model. We take the same steps, first reducing the original data Ĩc ⊂ Ic

and Ñc ⊂ Nc. Then, using these smaller sets to find a partial solution to the larger problem.

To obtain a feasible solution for the larger instance we use the found partial solution.

4.3 Distance models

To increase interpretability further, we introduce an extra term in the objective function of the

covering model. This extra term encourages the model to find an optimal set of prototypes that

are far apart. In this way the cluster representatives will be more distinct, and therefore make

interpretation of the different clusters easier. We need the distance term to only penalise or

reward for prototypes that are part of the selected set. A logical choice would be to multiply

zi with zj to only consider selected prototypes, but then we obtain a quadratic formulation

which is less efficient than a linear formulation. Therefore, we introduce binary decision variable

hij = zizj again using a Fortet transformation (Fortet, 1960).

We propose a penalty term that can be added to the existing objective function, with two

variations represented by
∑

i,j∈I ,i ̸=j hijP (δij). To obtain the penalty term, we define P (δij) for

each model.

The first expression is an inverse distance penalty, which we introduce as:

−α
∑

i,j∈I ,i ̸=j

hij
1

δij
.

Thus, for the inverse penalty model, P (δij) = −α 1
δij

. We sum over all combinations of

prototypes where i ̸= j. In the summation, we multiply hij with the inverse of the distance

between prototype i and prototype j, where δij is the distance between prototype i and j. This

distance originates from the dissimilarity matrix δ that was introduced at the beginning of the

methodology. By taking the inverse distance, we strongly penalise prototypes that are close

together, thus encouraging solutions with prototypes that lie far apart from each other.

The second expression is the squared distance term, which we define as:

β
∑

i,j∈I ,i ̸=j

hijδ
2
ij .

Thus, for the squared distance model, P (δij) = βδ2ij . As in the inverse distance penalty, we

sum over all combinations of i and j without them being equal. In this expression, we multiply

hij with the squared distance. By multiplying with the squared distance, we encourage the

model to select prototypes that are far apart. The parameters α and β ensure that the penalty

terms are of the same magnitude as the TPR and FPR for the given problem.
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Below, we display the newly introduced constraints that should be added to the covering

model:

max
y,r

∑
c∈C

∑
i∈Ic

∑
n∈Nc

yin − θ
∑
c∈C

∑
i∈Ic

∑
n∈N \Nc

yin +
∑

i,j∈I ,i ̸=j

hijP (δij), (23)

hij ≤ zi, ∀i ∈ I, (24)

hij ≥ zi + zj − 1, ∀(i, j) ∈ I, (25)

hij ∈ {0, 1}, ∀(i, j) ∈ I. (26)

Lastly, we introduce a measure to showcase the difference between found sets of optimal

prototypes. This measure consists of the summed distances between all individuals in the optimal

set. The dissimilarity matrix δ contains the distances between all individuals, including the

prototypes. It is important to note that during the calculation of this dissimilarity matrix, the

variables are scaled so that no single variable contributes disproportionately to the distance.

Given the dissimilarity matrix δ, we can define a pairwise distance between the prototypes

in the optimal set which we name Total Dissimilarity. We denote the set of selected prototypes

as O. The measure is defined as:

Total Dissimilarity =

O∑
i=1

O∑
j=i+1

dij .

5 Numerical results

In this section, we elaborate on the results we find. Firstly, we try to replicate the results

that were originally presented for the covering and partitioning model for the indicated data-

sets (Carrizosa et al., 2022) and we discuss the differences we obtain. Then, we consider the

improvements we find on the interpretability by adding the distance terms in the objective func-

tion. The numerical results section is separated on datasets. Hence we discuss the Canadian

weather dataset first, then we discuss the simulated data instances and lastly, we elaborate on

the findings for the marketing dataset.

To solve the mathematical optimisation models, we use Gurobi (version 11.0.2) with Python

(version 3.12.0) on a MacBook Pro 2020 with an Apple M1 chip and 8GB of memory. We

implement the models in the same way as done in the original work, ensuring that we can either

prove optimality or demonstrate infeasibility within a reasonable time frame.

5.1 Canadian weather data

The results that we find for the Canadian weather dataset are similar to the results reported in

the original work. We follow the same procedure that is described, but still get minor variations

on the numeric values of TPR and FPR compared to the original work. For the example

used in the original work where λc = 0.8 and µc = 0.2 we obtain the same values for TPR and
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FPR. Furthermore, the selected prototypes for the parameters set at these values are Charlottvl,

Uranium City, Victoria and Resolute which are the same prototypes that are selected in the

original work.

Figure 3: The results for the replication of the covering model. The y-axis and x-axis represent
the variation of λc and µc both variables range from [0, 1]. The white background represents
that the model is infeasible. Every graph denotes the TPR (left-side) or the FPR (right-side)
for each of the 4 clusters.

For the Atlantic and Arctic cluster our results do not deviate from the original results as can

be seen in figure 3. The Continental and Pacific cluster however have minor deviations from the

original results. For the Continental cluster we observe that for the values of µ = 0.2 the TPR is

equal to 0.75 instead of 0.67. This indicates that our implementation actually performed slightly

better in classifying individuals to the correct prototypes, we do however also see a slight loss

for the FPR in the same cluster given that also for the same value of µ the value increases from
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0.04 to 0.09. The biggest differences occur for the Pacific cluster. We see that the output is

mostly the same, but the area where the TPR and FPR change from 0.8 to 0.6 or from 0.0 to

0.03 is different.

As we implement the model exactly as stated in the original work, the origin of the found

differences are not immediately clear. We do however think that a difference in optimisation

settings in the used software could be one of the explanations as well as the versions of the

software used. Furthermore, we find that not all of the modelling choices are clearly documented,

making it harder to exactly replicate the results. The main reason for differing results could

be due to a slight difference in the dissimilarity matrix that was used to calculate the distances

between individuals. Especially, the rounding of variables could play a role as this influences

the optimal solution if changes are big enough.
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Figure 4: The results for the replication of the partitioning model. The y-axis and x-axis
represent the variation of λc and µc both variables range from [0, 1]. The white background
represents that the model is infeasible. Every graph denotes the TPR (left-side) or the FPR
(right-side) for each of the 4 clusters.

For the partitioning model we obtain similar results to the original work for the TPR for all

4 clusters, as can be seen in figure 4. For the FPR however, we only get identical results for

the Continental cluster. For the other 3 clusters we see a similar pattern as to where the graph

differs from the original results. Figure 3f and 3h show exactly the same pattern for a differing

value from 0.03 to 0.0, whereas 3b shows the inverse pattern for a FPR of 0.1 instead of 0.0.

As we use the same software and the same dissimilarity matrix for the partitioning model as for

the covering model. The reasons for difference in results for the covering model can be applied

here too. What is notable here, is that the TPR results are the same while FPR results differ.

This can be interpreted as our model being consistent with the original results for individuals

that are close to the prototype, but inconsistent for individuals that are just on the boundary of
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being the closest to one prototype or another. That is why especially in this case the different

rounding in the calculation of the dissimilarity matrix, could play a role in the difference in

results.

5.2 Simulated data

In this section we elaborate on the results that we find for running the covering and par-

titioning model on the simulated dataset. Firstly, we must further specify the parameter

values and the data reduction technique that we implement from the original work. The

parameter values that control the TPR and the FPR are on a smaller grid namely: λ ∈
{0.85, 0.86, .087, 0.88, 0.89, 0.90} and µ ∈ {0.05, 0.06, 0.07, 0.08, 0.09, 0.1}. We choose this smal-

ler interval because we want to verify whether the model works properly for relevant values,

rather than verifying its workings for all parameter values. To apply the reduction technique, we

firstly apply hierarchical clustering with Euclidean distance as a dissimilarity measure between

the individuals. We do this for the entire dataset per cluster c and from Nc we create Ñc. We

then choose a threshold that yields exactly
∣∣∣Ñc

∣∣∣ groups of individuals. From these
∣∣∣Ñc

∣∣∣ groups,
we choose one representative with a weight w̃n that corresponds to the number of individuals in

its group. All selected individuals together then form Ñ . We use a similar approach to reduce

the set of prototypes. Again, we firstly use hierarchical clustering to form Ĩc from Ic. We

then split Ĩc into
∣∣∣Ĩc

∣∣∣ groups of prototypes. From these groups we select a prototype that then

becomes a member of Ĩc.

Following the original work, we choose the instances of the prototypes and the individuals

to be
∣∣∣Ñc

∣∣∣ = 125 and
∣∣∣Ĩc

∣∣∣ = 25. In figure 5, the results can be found for the covering model and

in figure 6 for the results for the partitioning model.

14



Figure 5: These results demonstrate how the covering model’s performance in terms of TPR
and FPR changes across different parameter settings for the reduced simulated data. The
parameters vary from λc ∈ [0.85; 0.9] and µc ∈ [0.05; 0.1]. The white background represents that
the model is infeasible.

Looking at figure 5, we again see that we obtain largely the same results. For all graphs the

region of infeasibility is slightly smaller than in the original results. We also see that although we

observe a similar trend in the rise of both TPR and FPR as λ increases, the values for TPR and

FPR do not exactly correspond to the values presented in the original work. One of the main

reasons as to why the results do not exactly match is that the seed of the generated data points

is not given. This makes it impossible to generate exactly the same points and consequently

causes the dissimilarity matrix to be different. Through the difference in dissimilarity and the

difference in original points the optimal solution can change. Similarly, the data reduction

technique can affect the results. Within this approach there are two points of uncertainty, one

being the random selection of individuals and prototypes and the other being the associated

weights passed on to the individuals. Both of these events lead to different output, this could

lead to a larger feasible region and it can also be the main cause of the numerical results to not

match one to one.
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Figure 6: These results demonstrate how the partitioning model’s performance in terms of
TPR and FPR changes across different parameter settings for the reduced simulated data. The
parameters vary from λc ∈ [0.85; 0.9] and µc ∈ [0.05; 0.1]. The white background represents that
the model is infeasible.

In figure 6 we see similar differences to the original results as in figure 5. The feasibility

region is bigger and the values are similar in pattern but not exactly the same as reported in the

original work. Again, this is most likely largely due to the randomness used in the simulated

data.

5.3 Notes on the replication

We attempt to replicate the larger instances of the reduction method described in the original

work, which involves constructing and solving models with 104, 104, 106 individuals. However,

our replication efforts are unsuccessful due to a memory error encountered when constructing

the dissimilarity matrix. The dissimilarity matrix, which is needed for the hierarchical cluster-

ing process, requires significant computational power. This high memory demand exceeds the

capacity that is at our disposal, leading to failures during the matrix construction phase. We

are therefore unable to replicate all figures from the original work.
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5.4 Distance models

In this section, we show the results we obtain for the covering model when implementing the

extra terms that we propose in section 4 on the mall customer dataset.

We choose to take all individuals to be eligible as prototypes to extend the choice of possible

prototypes. We implement the models by adding the distance terms and run the model for an

example case of λ = 0.8 and µ = 0.2. We take α = 100 and β = 10. To be able to see the effect

of our extra terms we introduce a benchmark model. This model is the standard covering model

as it is described in 4.1.

Cluster TPRb TPRIP TPRSD FPRb FPRIP FPRSD

0 0.89 0.93 0.93 0.00 0.02 0.04

1 0.84 0.84 0.81 0.03 0.035 0.11

2 0.93 0.93 0.80 0.04 0.04 0.07

3 1.00 1.00 0.95 0.00 0.00 0.06

4 0.80 0.80 0.83 0.01 0.02 0.14

Table 1: This table shows the difference in TPR and FPR across three different models per
cluster. b represents the benchmark model, IP represents the inverse penalty model and SD
represents the squared distance model.

Table 1 shows that the inverse penalty model slightly improves the categorisation of indi-

viduals, with the TPRIP of cluster 0 increasing by 0.04 compared to TPRb, while the other

clusters remain unchanged. In contrast, the TPRSD decreases for three clusters but shows

slight improvements for the other two, with the largest loss in accuracy of 0.13 observed in

cluster 2. The FPR shows a similar pattern of variation between the two models. Specifically,

the FPRIP is marginally higher for three clusters, whereas the FPRSD significantly increases

across all clusters.

Model Chosen Prototypes Total Dissimilarity

Benchmark [57, 39, 140, 192, 68] 35.943

Inverse Penalty [10, 39, 140, 192, 41] 39.316

Squared Distance [8, 7, 12, 198, 185] 44.941

Table 2: This table shows the total dissimilarity between the chosen prototypes for each model.
In the column of chosen prototypes the difference in selected prototypes can be observed. The
numbers correspond to the indices of the 200 prototypes in the mall customer dataset.

Table 2 further highlights the differences between the models. The benchmark model achieves

a total dissimilarity of 35.943. In comparison, the inverse penalty model’s dissimilarity increases

to 39.316, with two out of five prototypes chosen differently, therefore showing a 9.4% increase

in total dissimilarity. Despite this higher dissimilarity, the TPR and FPR remain similar to

the benchmark, indicating that the selected prototypes are farther apart, and therefore become

more distinct and interpretable, while maintaining high TPR and low FPR.
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For the squared distance model, the total dissimilarity increases by 25.0% to 44.941. Al-

though this model shows a slight decrease in TPR and an increase in FPR, the obtained

difference in solution is significant, therefore showing a potentially better suited optimal set for

interpretation. The model also demonstrates a trade-off between prototype interpretability and

classification performance. The results suggest that it is possible to identify a set of optimal

prototypes that are more widely separated while still meeting the constraints defined by the λ

and µ values, balancing interpretability and performance effectively.

6 Conclusion

To improve the interpretability of CA, we propose a new formulation of the covering model

initially suggested by (Carrizosa et al., 2022). By introducing additional penalty terms, specific-

ally the inverse distance penalty and the squared distance term, we aim to increase the distance

between selected prototypes, making the clusters more distinct and easier to interpret. Using a

Canadian weather dataset, a simulated dataset, and a mall customer dataset, we demonstrate

the effectiveness of our approach.

For the inverse penalty model, we achieve a 9.4% increase in the distance between selected

prototypes compared to the benchmark solution. Additionally, we observe a slight improvement

in the TPR for certain clusters while maintaining a comparable FPR, indicating equal categor-

isation quality without losing overall accuracy. The squared distance model, despite showing

some decrease in TPR for certain clusters, significantly increases the total dissimilarity between

prototypes by 25.0%, enhancing interpretability at the cost of a slight reduction in classification

performance as showed by the increase in FPR and the slight decrease in TPR.

In future work, we aim to consider a wider scope of parameter values for λ and µ to evaluate

our proposed method’s performance under different restrictions. Additionally, we would like to

introduce a fine-tuning approach for selecting α and β to generalise our methodology to other

datasets.
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A Programming code

In the provided programming code, all python and R files can be found that were used to obtain

the results stated in this thesis. The files can be divided into 3 categories per dataset used,

and then furthermore divided into two by the kind of model used. One of the models being the

covering and the other one being the partitioning. The code contains some inline comments for

clarification.
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