Heterogeneity Analysis in Microcredit Financing: Application of Machine Learning Inference Methods

Sem van Embden (599366se)

- zafing

Supervisor:	(Max) M.F.O. Welz
Second assessor:	Prof. dr. Ph.H.B.F. (Philip Hans) Franses
Date final version:	1st July 2024

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.

Abstract

Microcredit financing has been shown to be a powerful tool for economic empowerment and poverty reduction. In this study, we use newly developed methods to analyze, estimate, and infer the heterogeneous effects in two randomized control trials (RCTs) conducted in Morocco and Bosnia and Herzegovina, where microcredit financing was introduced. By making use of key features such as the Best Linear Predictor (BLP), Group Average Treatment Effects (GATES), and Classification Analysis (CLAN), we estimate and interpret the varied treatment effects of microcredit on outcome variables related to e.g. outstanding credit, employment, and business outcomes. Using machine learning methods such as Random Forest and Boosting to estimate the Conditional Average Treatment Effect (CATE) I show that in Morocco, microcredit significantly increases the loan amount (p < 0.01) by 1, although the impact on output, profits and consumption is modest increasing by 5.2, 1.4 and -62Moroccan Dhirams, respectively, and not statistically significant (p-values of 0.153, 0.486, and 0.425), with the significant heterogeneity in the amount of loans and profit (p < 0.1) primarily driven by fixed effects present in the data rather than individual characteristics. In Bosnia and Herzegovina, microcredit also shows varied impacts in outcome variables with most notably a significant increase in the amount of loans by $0.4 \ (p < 0.01)$, and decrease in savings by 456 Bosnian Marks (p < 0.1), yet the heterogeneity is less pronounced, only being close to significant for savings (p = 0.13). These findings highlight the importance of considering heterogeneous effects in microfinance program evaluations, suggesting that while microcredit can aid economic development, its effectiveness may depend on targeting and contextual factors.

1 Introduction

Microfinance, particularly microcredit, has become a significant instrument for economic empowerment and poverty reduction. Its roots trace back to Bangladesh, where the Grameen Bank, founded by Muhammad Yunus in 1983, aimed to provide small loans to the impoverished on favorable terms. For his work, Yunus was awarded the Nobel Peace Prize in 2006¹.

Numerous randomized control trials (RCTs) and studies have explored the effectiveness of microcredit. These studies have generally found that microcredit significantly improves the livelihoods of poor individuals who lack access to formal financial institutions. For instance, Aslam et al. (2020) demonstrated the positive impacts of microfinance on Grameen Bank borrowers, while Alemu and Ganewo (2023) found that microcredit significantly increased the income of borrowers in Ethiopia.

Additional studies have evaluated microcredit impacts through RCTs conducted in various countries, including Mexico, Mongolia, Bosnia and Herzegovina, Morocco, and Nepal (Angelucci et al., 2015; Attanasio et al., 2015; Augsburg et al., 2015; Banerjee et al., 2015; Crépon et al., 2015; Dhungana et al., 2022).

The effects of microcredit, however, are often moderate rather than great and vary depending on individual characteristics (Armendáriz de Aghion and Morduch, 2005). This heterogeneity suggests that while some individuals benefit greatly from microcredit, others see less impact. This study seeks to measure this heterogeneity using data from two RCTs: one by Crépon et al. (2015) and another by Augsburg et al. (2015).

The concept of heterogeneity in microcredit effects is not new. Kolstad et al. (2017) analyzed the relationship between group heterogeneity and microcredit group exit rates in Angola, while Banerjee et al. (2015) found that heterogeneity persisted years after microfinance was introduced, with more significant impacts on those who had pre-existing businesses compared to those without.

Traditional methods for analyzing heterogeneity include subgroup analysis, which compares effects between treatment groups across various patient subsets (Christensen et al., 2021), and the sorted effects method; a semi-parametric inference method for characterizing heterogeneity (Chernozhukov et al., 2018). Recently, innovative strategies have been developed to estimate and infer key features of heterogeneous effects in randomized experiments, including machine learning techniques to predict effects and sort average effects by impact groups (Chernozhukov et al., 2020). These new methods do not rely on strong assumptions, can be used with various machine learning and statistical techniques, and are valid in high dimensional settings. Furthermore, for inference, these approaches employ a variational inference method where medians of pvalues and medians of confidence intervals, resulting from numerous data splits, are adjusted to ensure uniform validity. This method effectively quantifies the uncertainty arising from both parameter estimation and data splitting, offering a robust and reliable means to understand treatment effects across heterogeneous populations. Understanding how these treatment effects vary by covariates such as gender and age is crucial for assessing program impacts and underlying mechanisms.

In this study, I apply these machine learning methods to analyze heterogeneous treatment

¹https://www.nobelpeaceprize.org/laureates/2006

effects in the RCTs conducted by Crépon et al. (2015) and Augsburg et al. (2015). While the latter briefly considers heterogeneity, focusing on education and business-related variables, this study expands this analysis to include additional baseline variables. I aim to provide a more comprehensive analysis of heterogeneity, replicating the analysis form and applying the methods developed by Chernozhukov et al. (2020).

I find that, for the Moroccan dataset, there is significant heterogeneity present for the outcome variables Amount of Loans and Output. This heterogeneity is however mainly driven by fixed effects existing in the data, rather than individual characteristics of households. Concerning Bosnia, no significant heterogeneity is found. Nonetheless, significant differences with respect to baseline covariates are observed across the affected quantile groups for certain outcome variables.

This study contributes to the literature by demonstrating the utility of machine learning methods in understanding heterogeneous treatment effects and providing nuanced insights for more effective policy design. The comparison between the - at the time - more developed Bosnia and Herzegovina and steadily developing Morocco further emphasizes that microcredit programs must be context-specific to maximize their effectiveness and impact on economic development.

The structure of this paper is as follows: Section 2 discusses the data used, Section 3 outlines the methodology, Section 4 presents the results, and Section 5 concludes the paper.

2 Data

The data used in this study is from two randomized control trials (RCTs) conducted in Morocco, and Bosnia and Herzegovina. Further explanation of the data is divided into the two corresponding subsections.

2.1 Randomized Experiment in Morocco

I first analyze the presence of heterogeneity in the data from an RCT conducted in Morocco. Originally from the paper by Crépon et al. (2015), this analysis has been done before by Chernozhukov et al. (2017). The RCT was carried out with 81 village pairs with similar characteristics, of which one assigned to control and one to treatment. My data is obtained from the replication package² and in total at endline contains 5513 households. This is less than the dataset used by aforementioned authors, whose sample contains 5,551 households.

I consider the treatment as the introduction of microcredit, given that there was no other access to microcredit in these villages before and during the study period. Similar to Chernozhukov et al. (2017), we consider the following outcome variables Y: Amount of Loans, Output, Profit, and Consumption. With D being an indicator that identifies whether a household resides in a treated village. The covariates, Z, encompass various baseline household characteristics, such as the number of members, the number of adults, the age of the head, and indicators for households engaged in animal husbandry or other non-agricultural activities. Additionally, Z includes whether the household had an outstanding loan in the past 12 months, if the household spouse responded to the survey, if another household member (excluding the head) responded to the

 $^{^{2}}$ https://github.com/mwelz/GenericML/tree/main/slides/data

survey, and controls for 81 village pair - in which randomization took place - fixed effects. Summary statistics for the data are presented in the Appendix, Table 11.

2.2 Randomized Experiment in Bosnia and Herzegovina

The second dataset is from an RCT conducted in Bosnia and Herzegovina, originally analyzed by Augsburg et al. (2015). This field experiment was carried out during 2008 to 2010 in collaboration with a large Bosnian microfinance institution (MFI) established in the mid-nineties, serving a client base of 36,000 across the country at the time of the baseline survey. The MFI extended microcredit to a marginal segment of the population, individuals who would typically be rejected for loans but might be considered if slightly more risk was accepted.

As taken from Augsburg et al. (2015), the baseline survey revealed that the average marginal applicant did not meet 2.6 out of the 6 main requirements for regular loans, with 77% lacking sufficient collateral or failing one or more other requirements. Around one-third of these marginal clients were judged to have weak business proposals, and loan officers were concerned about repayment capacity in about a quarter of the cases. Additionally, 28.2% of the sample lived in urban areas with populations exceeding 50,000. At baseline, 78% had some income from self-employment, distributed across trade (27%), services (29%), agriculture (38%), and manufacturing (6%).

The experiment involved offering loans similar to the MFI's regular products, with an interest rate of 22% Annual Percentage Rate (APR) and maturities averaging 57 weeks. The loan amounts ranged from BAM³ 300 to BAM 3,000, with a mean of BAM 1,653 (approximately US1,012 at the baseline exchange rate at that time).

In total after the follow-up, 995 observations remained. In their paper, Augsburg et al. (2015) indicate that there are no statistically significant differences between treatment and control group - except a small difference in the number of household members - and conclude that there is no systematic overall difference between the two groups and no evidence of imbalance.

The outcome variables in this study are divided into subcategories, namely impact on Credit Outstanding at Endline; impact on Self-Employment Activities; impact on Income; impact on Hours Worked by Household Members; and lastly impact on Consumption and Savings. We omit the Social Impact outcome variables, as data on these variables is not available. Furthermore, for the outcome variables related to the number of hours worked, we only focus on the hours worked for all adults and teens (aged 16 to 64), as the data for the age group 16 to 19 does not contain enough non-zero observations to make meaningful inferences, or the data is not available in the case of the number of staff members. An overview of all the outcome variables and their descriptions is presented in the Appendix and summary statistics are given in Table 12 in the Appendix. In this table is also included the summary statistics for the covariates, of which a full list with descriptions is also given in the Appendix.

Not all outcome variables are available for all observations. The authors of the original paper set some of these missing values to zero. In some cases this is logical, as it is likely that the missing values for, par example, the act of starting a business (dummy variable) are zero. However, this is also done for the profit, revenue, and expenses which is not necessarily the

³BAM: Bosnia and Herzegovina convertible mark.

case and might heavily impact the results. Therefore, when we apply the methods described in Section 3 to these three outcome variables we drop these around 600 missing observations.

3 Methodology

In this section, I outline the methods for estimating and making inferences on heterogeneous treatment effects using machine learning proxies. I describe the Best Linear Predictor (BLP), Group Average Treatment Effects (GATES), and Classification Analysis (CLAN). For more detailed information on these features, I refer to Chernozhukov et al. (2020). The advantage of these methods is that they are not reliant on strong assumptions. Additionally, they are flexible, allowing for the use of numerous machine learning and statistical techniques, and are also valid in high dimensional settings. This approach is versatile regarding the ML method employed and does not depend on its formal properties.

3.1 Model

I first define the model by Chernozhukov et al. (2020). I consider data $(Y_i, Z_i, D_i)_{i=1}^N$, which consists of i.i.d. copies of the random vector (Y, Z, D) with probability law \mathbb{P} . Here, Y represents the outcome of interest, D is a binary treatment indicator, and Z is a possibly high-dimensional vector of covariates that characterize the observational units. The expectation operator is denoted by \mathbb{E} . Furthermore, I let Y(1) and Y(0) be the potential outcomes under treatment and control, respectively.

Then the main causal functions are the Baseline Conditional Average (BCA) defined as

$$b_0(Z) := \mathbb{E}[Y(0) \mid Z],$$

and the Conditional Average Treatment Effect (CATE) defined as

$$s_0(Z) := \mathbb{E}[Y(1) - Y(0) \mid Z] = \mathbb{E}[Y(1) \mid Z] - \mathbb{E}[Y(0) \mid Z]$$

I make the following assumptions. First that the treatment D is randomly assigned conditional on Z, with the probability of assignment depending on a subvector of stratifying variables $Z_1 \subseteq Z$:

$$D \perp (Y(1), Y(0)) \mid Z,$$

and secondly that the propensity score p(Z) is known, defined as $P[D = 1 | Z] = \mathbb{P}[D = 1 | Z_1]$, and is bounded away from zero or one:

$$p(Z) \in [p_0, p_1] \subset (0, 1)$$
 a.s.

The observed outcome is modeled as:

$$Y = DY(1) + (1 - D)Y(0)$$

Under the stated assumptions, the causal functions are identified by the components of the

regression function of Y given D and Z:

$$Y = b_0(Z) + Ds_0(Z) + U, \quad \mathbb{E}[U \mid Z, D] = 0,$$

where:

$$b_0(Z) = \mathbb{E}[Y \mid D = 0, Z],$$
$$s_0(Z) = \mathbb{E}[Y \mid D = 1, Z] - \mathbb{E}[Y \mid D = 0, Z].$$

This framework supports the use of predictive machine learning methods to learn $\mathbb{E}[Y|D, Z]$ and subsequently estimate the CATE using the derived formula.

3.2 Agnostic Approach

Let (M, A) denote a random partition of the set of indices $\{1, \ldots, N\}$. The strategies considered involve randomly splitting the data $(Y_i, D_i, Z_i)_{i=1}^N$ into a main sample, denoted by $\text{Data}_M = (Y_i, D_i, Z_i)_{i \in M}$, and an auxiliary sample, denoted by $\text{Data}_A = (Y_i, D_i, Z_i)_{i \in A}$. It is assumed but not theoretically required that the main and auxiliary samples are approximately equal in size.

From the auxiliary sample A, ML estimators of the baseline and treatment effects are obtained, referred to as proxy predictors:

$$z \mapsto B(z) = B(z; \text{Data}_A)$$
 and $z \mapsto S(z) = S(z; \text{Data}_A)$

These are potentially biased and noisy predictors of $b_0(z)$ and $s_0(z)$, and in principle, consistency for $b_0(z)$ and $s_0(z)$ is not required. These estimates are treated as proxies, which are post-processed to estimate and make inferences on the features of the CATE $z \mapsto s_0(z)$. The analysis conditions on the auxiliary sample Data_A, considering these maps as fixed when working with the main sample.

3.3 Best Linear Predictor (BLP)

The goal of the BLP is to estimate the best linear predictor of the CATE using machine learning proxies. The BLP of $s_0(Z)$ is estimated using a weighted linear projection:

$$Y = \alpha' X_1 + \beta_1 (D - p(Z)) + \beta_2 (D - p(Z)) (S - \mathbb{E}[S]) + \varepsilon,$$

where S = S(Z) is the ML proxy predictor mentioned earlier, $X = (X_1, X_2)$ with $X_1 = [1, B(Z)]$ and $X_2 = [D - p(Z), (D - p(Z))(S - \mathbb{E}[S])]$, and ε the error term.

OLS is then used to estimate the coefficients. The coefficients β_1 and β_2 are identified by solving:

$$\mathbb{E}[w(Z)\varepsilon X] = 0,$$

with the weight being defined as:

$$w(Z) = \{p(Z)(1 - p(Z))\}^{-1}.$$

The BLP of the CATE is then given by:

$$BLP[s_0(Z) \mid S(Z)] = \beta_1 + \beta_2(S(Z) - \mathbb{E}[S(Z)])$$

Here β_1 represents the average treatment effect (ATE), while β_2 captures the heterogeneity (HET) in the treatment effect explained by the machine learning proxy S(Z), indicating how this effect varies with the covariates. Another estimation technique using a Horvitz-Thompson transformation exists, but I will not consider this in our analysis and therefore omit the details in this paper, referring to Chernozhukov et al. (2020) for more information.

3.4 Group Average Treatment Effects (GATES)

GATES focuses on estimating the average treatment effects for groups defined by the ML proxy predictor S(Z). The groups G_k are defined by sorting S(Z) into K non-overlapping intervals.

I recover the GATES parameters from the weighted linear projection, where again OLS can be used for estimation:

$$Y = \gamma_0' X_1 + \sum_{k=1}^K \gamma_k (D - p(Z)) 1(G_k) + \nu,$$

where $G_k = \{S(Z) \in I_k\}$, i.e. the range of S(Z) is divided into K non-overlapping intervals $I_k = [\ell_{k-1}, \ell_k)$, with boundaries $\ell_1, \ell_2, \ldots, \ell_K$, such that $-\infty = \ell_0 < \ell_1 < \ldots < \ell_K = +\infty$. By dividing the range of S(Z) into intervals, the GATES model captures the heterogeneity in treatment effects across different segments of the population. Each group G_k represents a different range of predicted CATE's, allowing for analysis of how treatment effects vary. The error term is defined by ν .

The GATES parameters γ_k are identified by:

$$\gamma_k = \mathbb{E}[s_0(Z) \mid G_k].$$

Again, I refer to Chernozhukov et al. (2020) for more detailed information on the GATES, and the Horvitz-Thompson transformation.

3.5 Classification Analysis (CLAN)

CLAN aims to identify the characteristics of the most and least affected units based on S(Z). The average characteristics, with g(Y, D, Z) representing a vector of characteristics for each observational unit, of the most and least affected groups G_1 and G_K are compared:

$$\delta_1 = \mathbb{E}[g(Y, D, Z) \mid G_1],$$

$$\delta_K = \mathbb{E}[g(Y, D, Z) \mid G_K]$$

The differences $\delta_K - \delta_1$ provide insights into the characteristics that correlate with the heterogeneity in treatment effects.

3.6 Variational Estimation and Inference

To ensure robust estimates, the methodology relies on data splitting to account for two sources of uncertainty: estimation uncertainty conditional on the data split and uncertainty induced by the random partitioning of data.

For point estimates, the median of the estimated key features over different random splits is reported:

$$\hat{\theta} = \operatorname{Med}[\hat{\theta}_A \mid \operatorname{Data}].$$

Here $\hat{\theta}_A$ represents the estimate of a key feature of the CATE based on a specific random partition of the data into an auxiliary sample A and a main sample M. For confidence intervals:

$$[l, u] = [\operatorname{Med}[L_A \mid \operatorname{Data}], \operatorname{Med}[U_A \mid \operatorname{Data}]],$$

where $[L_A, U_A]$ are the conditional confidence intervals.

This variational inference method, where medians of p-values and medians of confidence intervals - resulting from numerous data splits - are adjusted ensure uniform validity.

3.7 Goodness of Fit Measures

The paper employs several goodness of fit measures to evaluate the effectiveness of machine learning (ML) models in predicting Conditional Average Treatment Effects (CATE).

3.7.1 Best Linear Predictor (BLP) Measure

For evaluating the fit of the CATE, Chernozhukov et al. (2020) introduces a measure denoted by Λ . This measure is defined as:

$$\Lambda := |\beta_2|^2 \operatorname{Var}(S(Z)) = \operatorname{Corr}(s_0(Z), S(Z))^2 \operatorname{Var}(s_0(Z)).$$

Maximizing Λ is equivalent to maximizing the correlation between the ML proxy predictor S(Z) and the true CATE $s_0(Z)$, which in turn is equivalent to maximizing the R^2 in the regression of $s_0(Z)$ on S(Z). Therefore, an ML method that attains a higher Λ is considered superior.

3.7.2 Group Average Treatment Effects (GATES) Measure

Analogously, for the GATES analysis, the measure $\overline{\Lambda}$ is defined as:

$$\overline{\Lambda} := \mathbb{E}\left(\sum_{k=1}^{K} \gamma_k \mathbb{1}(S \in I_k)\right)^2 = \sum_{k=1}^{K} \gamma_k^2 \mathbb{P}(S \in I_k).$$

This measure captures the part of the variation in $s_0(Z)$ explained by S(Z) across K quantiles. Choosing the ML proxy S(Z) to maximize $\overline{\Lambda}$ is equivalent to maximizing the R^2 in the regression of $s_0(Z)$ on the grouped predictor S(Z) (without a constant). If the groups

 $G_k = \{S \in I_k\}$ have equal size, the measure simplifies to:

$$\overline{\Lambda} = \frac{1}{K} \sum_{k=1}^{K} \gamma_k^2.$$

An ML method achieving a higher $\overline{\Lambda}$ is preferred as it indicates a better fit.

3.7.3 Empirical Versions

The empirical versions of the above measures are calculated as:

$$\hat{\Lambda} = |\hat{\beta}_2|^2 \mathbb{E}_{N,M} (S_i - \mathbb{E}_{N,M} S_i)^2,$$
$$\hat{\overline{\Lambda}} = \sum_{k=1}^K \hat{\gamma}_k^2 \mathbb{E}_{N,M} \mathbb{1}\{S_i \in I_k\}.$$

Here S_i denotes the value of the ML proxy predictor S(Z) for the *i*-th observation. It is the predicted value of the CATE for each individual in the dataset. Furthermore, $E_{N,M}$ represents the empirical expectation over the main sample M of size n. Specifically, for a given function $h(X_i)$, the empirical expectation is computed as:

$$E_{N,M}[h(X_i)] = \frac{1}{n} \sum_{i \in M} h(X_i).$$

These empirical versions are used to compare and select among different ML methods. From hereafter written as Λ and $\hat{\Lambda}$

3.8 Estimation Algorithm

The following steps outline the procedure for estimating and making inferences on heterogeneous treatment effects using the BLP, GATES, and CLAN methods described earlier. Below algorithm ensures robust and valid estimates by incorporating repeated data splitting and machine learning proxies and is taken and modified from Chernozhukov et al. (2020).

3.8.1 Algorithm

The inputs are given by the data $\{(Y_i, D_i, Z_i, p(Z_i))\}$ on units $i \in [N] = \{1, \ldots, N\}$. Fix the number of splits N_S and the significance level α , e.g. $N_S = 250$ and $\alpha = 0.05$. Fix a set of ML or Causal ML methods.

3.9 Application

I apply the methodology to the two datasets, Morocco, and Bosnia and Herzegovina, to estimate and make inferences on the heterogeneous treatment effects of microcredit availability using the R package GenericML⁴. The code to replicate the analysis on the Bosnia and Herzegovina dataset can be found on GitHub⁵. I use the ML methods Random Forest, Elastic Net, Support Vector

⁴https://github.com/mwelz/GenericML

 $^{^{5}} https://github.com/svembden/Thesis_ML_Inference_Morocco_and_Bosnia$

Algorithm 1 Inference Algorithm

1: Step 1: Randomly partition the dataset $\{(Y_i, D_i, Z_i)\}_{i=1}^N$ into two parts: a main sample Data_M and an auxiliary sample Data_A. Repeat this process N_S times.

```
2: for each split s = 1, 2, \ldots, N_S do
```

- 3: Step 2: Using the auxiliary sample $Data_A$, train each machine learning (ML) method and output predictions B and S for the main sample $Data_M$.
- 4: Step 3: Choose the best ML method or aggregate multiple ML methods.
- 5: **Step 4:** Estimate the Best Linear Predictor (BLP) parameters.
- 6: Step 5: Estimate the Group Average Treatment Effects (GATES) parameters.
- 7: Step 6: Estimate the Characteristics of Heterogeneous Effects (CLAN) parameters.
- 8: Step 7: Compute the goodness of fit measures in the main sample $Data_M$.
- 9: end for

Machines, and Boosting in our estimation, making use of the mlr3 package in R. All code is run on a 6 core AMD Radeon CPU. All estimations are run with a propensity score (p(Z)) of 0.5 and 100 splits.

4 Results

In this section I consider the results of the application of the methods and algorithm developed by Chernozhukov et al. (2020).

4.1 Morocco

I first consider the results of the Crépon et al. (2015) study. Similar to Chernozhukov et al. (2017), I find an unconditional average treatment effect of 1127, 5222, 1839, -31 for the outcome variables Amount of Loans, Output, Profit, and Consumption, respectively.

Table 1 shows the results of the first step of Algorithm 1. According to the results, the Random Forest and Elastic Net methods generally perform the best across multiple outcome variables, again similar to the findings of Chernozhukov et al. (2017). Therefore, I will focus on these two methods for further analysis. The difference in the values of Λ and $\overline{\Lambda}$ with the original paper is due to the use of different machine learning methods, packages, or arguments.

Table 2 shows the results of the BLP for the CATE using machine learning proxies S(Z) for the four different outcome variables. The table provides estimates for the coefficients β_1 and β_2 , which represent the Average Treatment Effect (ATE) and the heterogeneity loading (HET) parameters in the BLP model, respectively. Adjusted p-values for the hypothesis that the parameter equals zero are displayed in brackets, with the confidence intervals shown in parentheses. The ATE's are consistent with those of Augsburg et al. (2015).

	Elastic Net	Boosting	\mathbf{SVM}	Random Forest
Amount of Loans				
Best BLP (Λ)	$619,\!553$	546,749	490,394	$2,\!159,\!715$
Best GATES $(\bar{\Lambda})$	$2,\!116,\!754$	$2,\!013,\!715$	$2,\!218,\!404$	$2,\!838,\!066$
Output				
Best BLP (Λ)	$53,\!820,\!920$	10,758,691	35,026,890	$14,\!296,\!479$
Best GATES $(\bar{\Lambda})$	$150,\!213,\!345$	$90,\!597,\!248$	$94,\!268,\!166$	106,729,646
Profit				
Best BLP (Λ)	8,988,006	$2,\!957,\!196$	9,076,746	$14,\!617,\!825$
Best GATES $(\bar{\Lambda})$	$20,\!616,\!495$	$17,\!165,\!554$	29,702,737	$35,\!019,\!824$
Consumption				
Best BLP (Λ)	5,046	$12,\!950$	18,611	4,894
Best GATES $(\bar{\Lambda})$	36,244	$27,\!535$	36,079	31,073

Table 1: Comparison of ML Methods: Moroccan Microfinance Availability

Notes: Medians over 100 splits.

	Elasti	Elastic Net		Forest
	ATE (β_1)	HET (β_2)	ATE (β_1)	HET (β_2)
Amount of Loans	1,065	0.211	1,064	0.346
	(231, 1, 917)	(-0.165, 0.605)	(273, 1, 915)	(-0.035, 0.690)
	[0.012]	[0.237]	[0.009]	[0.078]
Output	5,292	0.256	4,584	0.106
	(-1,974, 12,693)	(-0.033, 0.537)	(-2,724, 12,040)	(-0.146, 0.340)
	[0.153]	[0.077]	[0.209]	[0.372]
Profit	$1,\!473$	0.281	1,413	0.184
	(-2,622, 5,658)	(-0.170, 0.672)	(-2,675, 5,564)	(-0.043, 0.427)
	[0.486]	[0.170]	[0.482]	[0.103]
Consumption	-61.88	0.106	-65.28	0.075
	(-203, 91)	(-0.250, 0.442)	(-220, 94)	(-0.247, 0.388)
	[0.425]	[0.513]	[0.406]	[0.651]

Table 2: BLP of Moroccan Microfinance Availability

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.

P-values for the hypothesis that the parameter is equal to zero in brackets.

All monetary variables are expressed in Moroccan Dirhams, or MAD.

The exchange rate at baseline was US\$1 to MAD 8.06.

The results are comparable to the findings of Chernozhukov et al. (2017), the ATE not differing significantly from the results of this paper. However, in these results the ATE of Output does not seem to be significant at the 10% level. This difference could attributed to the use of less intricate machine learning methods, or the fact that our dataset misses some observations compared to those of the original paper. The ATE of the variables Profit and Consumption is not significant at the 10% level. Implying that the treatment effect is not significantly different from

zero and drawing the same conclusion as Crépon et al. (2015) that the availability of microcredit does not have a significant effect on the profit and consumption. For the heterogeneity loading parameter, I find two cases where the hypothesis that HET (β_2) is zero is rejected at the 10% level. For the Amount of Loans the Random Forest method suggests that there is significant heterogeneity in the treatment effect at the 10% level, and for Profit the Elastic Net method suggests that there is significant heterogeneity in the treatment effect at the 10% level. These results are also found in Chernozhukov et al. (2017), but they find that the heterogeneity is also significant for Output and that both machine learning methods suggest that there is significant heterogeneity in the treatment effect for these variables, with the exception for Output. The authors of the original paper suggest that microfinance availability has heterogeneous impacts on business-related outcomes that do not directly affect the business owner's standard of living measured through consumption. Crépon et al. (2015) give as a possible explanation that this is due to a reduction in labor supply when microcredit is available and leads to higher profits.

The GATES offer a more comprehensive understanding of the heterogeneity. In Table 3 I present the results of the GATES for the four different outcome variables, comparing the most and least affected groups. Furthermore, Figures 9-12 in the Appendix present visually the estimated GATES coefficients $\gamma_1 - \gamma_5$ along with joint confidence bands. Analyzing the results in the table, I note that similar to the original analysis in Chernozhukov et al. (2017), I find that the difference in GATES between the most and least affected groups is significantly different from zero at least at the 10% level for the Amount of Loans and Profit according to the Random Forest proxy, and significant at 10% for the Elastic Net proxy for Output, whereas I fail to reject the hypothesis that this difference is zero at conventional levels for all proxies of consumption. These differences in significance level could again be down to the differences in machine learning choices. Furthermore, I also find no significant negative impacts the profit of the households, and insignificant negative Consumption for the least affected group. For this fact I present the same explanation the authors give that households decrease their consumption to increase their investment.

In their paper, Chernozhukov et al. (2017) find that village pair fixed effects have a much stronger predictive power for treatment effect heterogeneity compared to baseline household characteristics. Specifically, the R-squares from their regressions indicate that village pair fixed effects account for a substantial portion of the variation in the treatment effects across different outcomes (Amount of Loans, Output, and Profit). For instance, the R-squares for village pair fixed effects are significantly higher (ranging from 0.72 to 0.98 across different methods and outcomes) compared to the baseline household covariates (ranging from 0.08 to 0.35). This suggests that the heterogeneity in treatment effects is more strongly driven by village-level factors and the dynamics of the branch managers rather than by individual household characteristics. For the sake of time, I do not replicate this analysis, but do make mention of this interesting finding and refer to the original paper for further details.

		Elastic Net		Random Forest		
	20% Most (γ_5)	20% Least (γ_1)	Difference $(\gamma_5 - \gamma_1)$	20% Most (γ_5)	20% Least (γ_1)	Difference $(\gamma_5 - \gamma_1)$
Amount of Loans	$2021.5 \\ (101.2, 3966) \\ [0.0388]$	425.2 (-1446.5, 2356) [0.5756]	$1646.7 \\ (-1219.9, 4458) \\ [0.2517]$	2804.8 (759.9, 4912) [0.0088]	-169.4 (-2548.5, 2090) [0.9195]	3002.5 (-21.3, 6085) $[0.0513]$
Output	22161 (2900, 42018) [0.0243]	-1155 (-13459, 10708) [0.7966]	22086 (-1074, 46080) [0.0609]	$18692.3 \\ (77.1, 39058) \\ [0.0485]$	583.5 (-15794.6, 15580) [0.8872]	18018.6 (-7523.6, 43616) [0.1707]
Profit	5826.1 (-3068.9, 14997) [0.204]	56.2 (-8072.4, 9593) [0.967]	$5853.5 \\ (-6554.4, 18862) \\ [0.338]$	11183.9 (-538.8, 21851) [0.0594]	-975.3 (-10687.4, 6945) [0.8052]	$11637.8 \\ (-1669.2, 25621) \\ [0.0796]$
Consumption	$17.1 \\ (-288.9, 300.3) \\ [0.834]$	$\begin{array}{c} -309.5\\(-745.0,\ 129.5)\\[0.175]\end{array}$	303.6 (-298.9, 849.7) $[0.293]$	-7.0 (-377.7, 363.7) [0.974]	-250.3 (-649.1, 137.3) [0.200]	213.3 (-387.2, 799.9) [0.474]

Table 3: GATES of 20% Most and Least Affected Groups

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.

P-values for the hypothesis that the parameter is equal to zero in brackets.

Lastly, I examine what drives this heterogeneity in the data using CLAN. I only consider the variables for which I have found significant heterogeneity. As mentioned before, it is found that these baseline characteristics do not have as much predictive power as the village pair fixed effects. Still, as their contribution to the heterogeneity is not zero, I consider them in my analysis. The results of the CLAN are presented in Table 4. The CLAN for the 20% least and most affected groups defined by the quantiles of the CATE proxy S(Z), as well as the difference between the two are shown. I show the three baseline covariates per outcome variable that are most correlated with the CATE. I find that households with younger heads, fewer members, and an agricultural related self employment activity are more likely to borrow. As Chernozhukov et al. (2017) I also find that households with fewer adult members are more likely to borrow, but this is omitted for brevity. For profit, I find that households with a non animal husbandry self-employment activity and fewer households members are more likely to have a higher profit, noting that the difference in head age is not significant by any of the two learners. This is similar to the findings of Crépon et al. (2015), which indicate that access to microcredit resulted in a notable rise in profit for self-employment activities, primarily animal husbandry and agriculture. One possible explanation for these findings is that households with fewer members may have a higher dependency on individual contributions to the household income, making them more likely to take risks such as borrowing to invest in self-employment activities. Additionally, younger household heads might be more inclined to innovate. The increase in profit related to above self-employment activities could be because for these households, for instance in agricultural activities, access to credit might allow for the purchase of better seeds, fertilizers, or equipment, leading to higher yields and, consequently, increased profits.

		Elastic Net			Random Forest	
	20% Most	20% Least	Difference	20% Most	20% Least	Difference
	(δ_5)	(δ_1)	$(\delta_5 - \delta_1)$	(δ_5)	(δ_1)	$(\delta_5$ - $\delta_1)$
Amount of Loans						
Head Age	33.655	39.502	-6.428	25.520	36.570	-11.490
	(31.446, 35.863)	(37.498, 41.506)	(-9.443, -3.465)	(23.200, 27.778)	(34.600, 38.470)	(-14.560, -8.437)
	-	-	[0.000]	-	-	[0.000]
Number of Household Members	3.583	4.021	-0.478	2.773	4.170	-1.351
	(3.313, 3.853)	(3.756, 4.294)	(-0.855, -0.091)	(2.472, 3.073)	(3.916, 4.425)	(-1.743, -0.960)
	-	-	[0.016]	-	-	[0.000]
Non-agricultural self-emp.	0.039	0.148	-0.127	0.027	0.096	-0.072
	(0.023, 0.055)	(0.118, 0.178)	(-0.160, -0.091)	(0.013, 0.041)	(0.070, 0.119)	(-0.099, -0.044)
	-	-	[0.000]	-	-	[0.000]
Profit						
Animal Husbandry self-emp.	0.381	0.447	-0.072	0.379	0.473	-0.095
	(0.339, 0.421)	(0.401, 0.489)	(-0.139, -0.014)	(0.338, 0.419)	(0.431, 0.515)	(-0.153, -0.036)
	-	-	[0.0152]	-	-	[0.001]
Head Age	35.495	36.248	-0.808	31.105	33.727	-2.098
	(33.468, 37.610)	(34.053, 38.410)	(-3.857, 2.210)	(28.905, 33.294)	(31.317, 36.137)	(-5.341, 1.107)
	-	-	[0.596]	-	-	[0.202]
Number of Household Members	3.822	3.836	-0.049	3.289	3.702	-0.445
	(3.555, 4.071)	(3.546, 4.120)	(-0.424, 0.334)	(2.998, 3.577)	(3.415, 3.990)	(-0.859, -0.040)
	-	-	[0.803]	-	-	[0.031]

Table 4: CLAN of Microfinance Availability

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.

P-values for the hypothesis that the parameter is equal to zero in brackets.

4.2 Bosnia and Herzegovina

Next, I consider the results of the analysis of the Bosnia and Herzegovina dataset. The results are divided into five subsections corresponding to the grouped outcome variables.

4.2.1 Credit Outstanding at Endline

The scores for the Credit Outstanding at Endline variables are presented in Table 5. The definition of the outcome variables is given in the Appendix. The low Λ scores for are explained by the outcome variables being binary, considering the low variation in these variables. Amount of Loans also exhibits low variation (variation of 1).

The results of the BLP for the CATE using machine learning proxies for the Credit Outstanding at Endline variables are presented in Table 6. For all outcome variables except Outstanding loan bank, the ATE is significant. The higher number of outstanding loans for the treatment group indicates improved access to liquidity. This improvement likely stems from the treatment group's ability to secure more funding and/or loans with longer maturities. Therefore, as Augsburg et al. (2015), I conclude that the treatment group had significantly better access to liquidity compared to the control group. I find no significant heterogeneity in any of the outcome variables.

	Elastic Net	Boosting	\mathbf{SVM}	Random Forest
Loan				
Best BLP (Λ)	0.675	0.650	1.427	1.984
Best GATES $(\bar{\Lambda})$	43.460	43.040	42.330	42.220
Amount of Loans				
Best BLP (Λ)	3.015	4.026	2.467	3.928
Best GATES $(\bar{\Lambda})$	223.500	222.600	217.700	228.100
Outstanding loan MFI				
Best BLP (Λ)	0.554	1.115	2.121	2.185
Best GATES $(\bar{\Lambda})$	202.000	204.000	204.500	204.300
Outstanding loan bank				
Best BLP (Λ)	0.188	0.206	0.168	0.179
Best GATES $(\bar{\Lambda})$	5.106	5.016	4.969	4.727

Table 5: Comparison of ML Methods: Credit Outstanding at Endline

Notes: Medians over 100 splits.

Actual values are $\times 10^{-3}$.

	SV	M	Random	Forest
	ATE (β_1)	HET (β_2)	ATE (β_1)	HET (β_2)
Loan	0.191	0.185	0.191	0.264
	(0.122, 0.262)	(-0.177, 0.518)	(0.120, 0.263)	(-0.165, 0.692)
	[0.000]	[0.303]	[0.000]	[0.206]
Amount of Loans	0.431	-0.061	0.434	0.094
	(0.251, 0.614)	(-0.323, 0.216)	(0.256, 0.616)	(-0.357, 0.554)
	[0.000]	[0.690]	[0.000]	[0.668]
Outstanding loan MFI	0.444	0.166	0.444	0.236
	(0.365, 0.523)	(-0.131, 0.461)	(0.365, 0.523)	(-0.181, 0.680)
	[0.000]	[0.262]	[0.000]	[0.249]
Outstanding loan bank	-0.057	0.035	-0.057	-0.065
	(-0.101, -0.012)	(-0.724, 0.766)	(-0.100, -0.013)	(-0.567, 0.419)
	[0.013]	[0.910]	[0.012]	[0.803]

Table 6: BLP of Credit Outstanding at Endline

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.

P-values for the hypothesis that the parameter is equal to zero in brackets.

Finally, I show the GATES results in Table 7. Here the results of the best learner per variable is shown. The results show that the difference in GATES between the most and least affected groups is not significantly different from zero. I only show the CLAN for the Amount of Loans and Outstanding loan MFI in the Appendix because of the lack of significant heterogeneity in the treatment effects. This is done for the top 3 most correlated variables with the CATE. The rest of this paper follows this approach of presentation too. I note that households with more employed members, less retired members, and less members aged 16-19 are significantly more likely to have a higher number of loans - possibly daring to take on more risk.

	20% Most (γ_5)	20% Least (γ_1)	Difference $(\gamma_5 - \gamma_1)$
		Elastic Net	
Loan	0.186	0.192	-0.005
	(0.030, 0.341)	(0.035, 0.351)	(-0.224, 0.219)
	[0.018]	[0.016]	[0.965]
		Random Forest	
Amount of Loans	0.443	0.357	0.077
	(0.068, 0.812)	(-0.048, 0.779)	(-0.504, 0.647)
	[0.020]	[0.082]	[0.769]
		SVM	
Outstanding loan MFI	0.483	0.397	0.085
	(0.309,0.658)	(0.215, 0.577)	(-0.169, 0.332)
	[0.000]	[0.000]	[0.497]
		Elastic Net	
Outstanding loan bank	-0.057	-0.052	0.007
	(-0.156, 0.037)	(-0.151, 0.044)	(-0.126, 0.140)
	[0.230]	[0.284]	[0.885]

Table 7: GATES of Credit Outstanding at Endline

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.

P-values for the hypothesis that the parameter is equal to zero in brackets.

4.2.2 Self-Employment Activities

Table 14 in the Appendix shows the Λ scores for the Self-Employment Activities. I note again low scores for the binary outcome variables. I take a closer look at the BLP in Table 15 in the Appendix. For these outcome variables, I find no significant ATE and HET, except a significant ATE at the 10% level for Inventory. Meaning the treated group is more likely to hold inventory compared to the control group. I note that Asset Value decreases for the treatment group, this is consistent with the findings of Augsburg et al. (2015) better presented in their online Appendix, but contrasting to Crépon et al. (2015), who find that asset value increases for treated households. This could be down to how the authors have defined the asset value, the latter including the stock of livestock as well, but this is not made clear enough to draw a conclusion. Interestingly, similar to Augsburg et al. (2015), no significant ATE is discovered for the business related variables. The authors discuss whether this 14-month period is too short to see any significant impact here, but conclude that that is not the case. One possible explanation for this low significance is the low number of observations in the dataset, Profit as an example containing only 329 observations, split into 196 treated and 133 control observations. This could lead to a lack of statistical power to detect significant treatment effects. Unfortunately, I do not have access to more observations, so I cannot draw any further conclusions. The authors do perform a trimming for the top 1% of profits and then find significance, therefore I present GATES in Table 16 in the Appendix and show the GATES for Asset Value and Business Profit in Figures 1 and 2. Interestingly enough, I do see that the most affected quantile does in fact have the highest profit, but that the group before the most affected would have negative profit impact. The least affected group also does contain the lowest profit, but due to the low amount of observations, different from the original authors, I cannot safely say that there has been a positive impact on profit by access to microcredit. Furthermore, I note that the most affected group had less Business Expenses than the other groups, and that Asset Value actually increased for the least affected group, decreasing as we reach more affected groups. This could give a better explanation as to the different findings by both previously mentioned studies about the increment of asset value for the treated group.

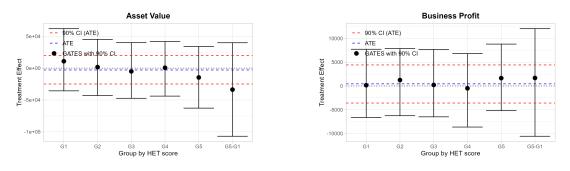


Figure 1: GATES of Asset Value

Figure 2: GATES of Business Profit

4.2.3 Income

The Λ scores for the Income outcome variables are presented in Table 17 in the Appendix. Looking at the BLP results also in the Appendix, Table 18 I find no significant ATE or HET for any of the outcome variables. Here I find the only difference with the analysis by the authors. They find that the likelihood of receiving income from wages is significant at the 5% level, indicating a shift in activity towards self-employment and away from wage employment, similar to the findings of Crépon et al. (2015). However, because of the lack of significance I cannot draw the same conclusion.

Concerning GATES, presented in the Appendix, I don't find any significant differences or interesting patterns between the groups, but do find a small decline in the income received from wages between the least and most affected shown in Figure 4. Also included in Figure 3 is the Wages Likelihood. While not significant, this could be an indication that the availability of microcredit has a negative impact on the income received from wages, due to the fact that the availability of microcredit allows individuals to start their own business, or work more on their self-employment activities, which would be consistent with the findings mentioned above. Lastly, from CLAN (Table 20 in the Appendix) I find that for the amount of remittance received, households who are more likely to own a dwelling and a business, and of which the respondent is less likely to be a female receive more remittance. Family members abroad may prefer to send money to households where they feel is more collateral present.

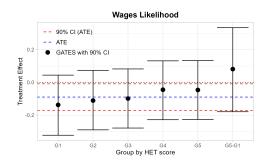


Figure 3: GATES of Wages Likelihood

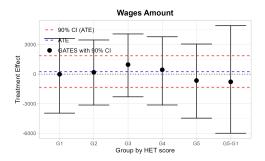


Figure 4: GATES of Wages Amount

4.2.4 Hours Worked

As mentioned in Section 2, for the outcome variables related to the number of hours worked, I only focus on the hours worked for all adults and teens (aged 16 to 64). The Λ scores for the Hours Worked are presented in Table 21 in the Appendix. The results of the BLP are also there, presented in Table 22. Similar to Augsburg et al. (2015), I find no significant ATE for any of the outcome variables. While not significant I do note that the hours worked in the business increased, while the hours spent on other activities decreased, perhaps because starting a business replaced other work activities. This same finding is present in Augsburg et al. (2015). Furthermore, as is evident from the table there is no significant heterogeneity in the treatment effects for any of the outcome variables. Lastly, GATES is presented in the Appendix, Table 23, I note that the least affected group spends considerably more hours on business, and secondly that the most affected group works a sizeable amount less than the least affected group (about 18 hours) and also about 8 hours less than the second most affected group. Both visualized in Figures 5 and 6. It seems that those most effected by the availability of microcredit reduce their labor supply as is consistent with other studies, Crépon et al. (2015). Interestingly, for the total hours worked, see Table 24 in the Appendix, the group that is most affected generally have younger children and are older. This age difference is most notable for the number of hours worked on other activities. This makes sense if you consider that younger children take more supervision and care, and older people on average might have more and different priorities than younger people.

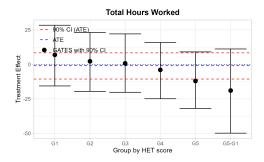


Figure 5: GATES of Total Hours Worked

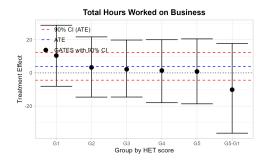


Figure 6: GATES of Total Hours Worked on Business

4.2.5 Consumption and Savings

Finally, I consider the heterogeneity in the impact on Consumption and Savings. Again, I present the BLP scores in Table 25 in the Appendix. Concerning the ATE and HET for the variables it is shown in the Appendix in Table 26 that the ATE is significant at the no more than the 10% significance level for the Home durable good index (HDGI) and the Savings. The HDGI is an index created by the authors for a list of ownership of 18 home durable goods where each asset is given a weight using the coefficients of the first factor of a principal component analysis. More information can be found in the variable definitions in the Appendix, Table 10. Similar to Crépon et al. (2015) and other studies, there is a negative impact on Consumption.

Furthermore, unlike the authors of Augsburg et al. (2015) who find no significance in any of the outcome variables, I do for the HDGI and Savings. For the latter the authors give as a possible explanation that when a loan becomes accessible, it may enable a profitable investment by combining the loan with household savings. So therefore, the impact on Savings could, like Consumption, be negative. I do find significance at the 10% level to support this. This difference in significance level could very well be down to the fact there might be heterogeneity present, as savings is influenced by a variety of household-specific factors such as income variability, risk preferences, and financial literacy. This could be supported by the fact that the β_2 parameter is close to significant at the 10% level. The same theory could possibly be said for the HDGI. In fact, looking at the GATES for the variable Savings in Figure 7 and Table 27 in the Appendix, I do note stark differences between the least and most affected group, the same goes for HDGI presented in Figure 8. Therefore, I look further into these variables and present the CLAN in Table 28. Also, by GATES I see a decrease in Durables consumption for the more affected group. Finally, the authors find that for individual commodities food consumption declined among the lower educated differing from that of the higher educated (p-value of 0.02). I however find, while the education level is most correlated with the CATE, no significant differences between the groups.

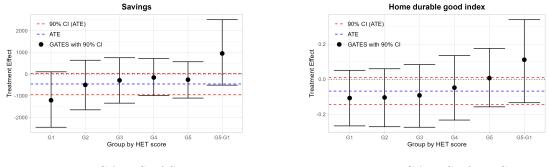


Figure 8: GATES of HDGI

In Table 28 I show the top 3 most correlated variables with the CATE for Savings and HDGI. For both outcome variables, the differences are significant for all three variables. I find that households where predominately the respondent was female, fewer number of employed household members and fewer household members attending school were more likely to spend savings. This could be because woman were less able to retrieve as large of loans as men, which

even in the US is still a common issue⁶. Additionally, with fewer sources of income, households may need to dip into savings to cover basic expenses or households may prioritize spending their savings on expanding the business rather than having members attend education. For the HDGI, I note that households who own their house rather than rent, have fewer female members and fewer members attending school are more likely to have a lower HDGI. Households that own their homes might rather allocate resources towards maintenance, or in general be less dependent on durable goods.

	$\begin{array}{c} 20\% \text{ Most} \\ (\delta_5) \end{array}$	20% Least (δ_1)	Difference $(\delta_5 - \delta_1)$
		XGBoost	
Asset Value			
Number of hh members attending school	0.690	0.980	-0.280
	(0.509, 0.882)	(0.775, 1.188)	(-0.537, 0.002)
	-	-	[0.052]
Number of female hh members	1.655	1.860	-0.190
	(1.474, 1.853)	(1.659, 2.068)	(-0.473, 0.094)
	-	-	[0.190]
Respondent age	37.100	39.450	-2.530
	(34.460, 39.692)	(37.030, 41.922)	(-6.040, 1.057)
	-	-	[0.166]
		XGBoost	
Business in Services			
Highest respondent grade is a university level	0.075	0.025	0.055
	(0.020, 0.120)	(-0.008, 0.048)	(-0.001, 0.120)
	-	-	[0.051]
Dwelling ownership	0.825	0.885	-0.065
	(0.744, 0.896)	(0.816, 0.944)	(-0.156, 0.033)
	-	-	[0.208]
House ownership	0.795	0.845	-0.055
	(0.710, 0.870)	(0.768, 0.912)	(-0.158, 0.051)
	-	-	[0.353]

Table 8: CLAN of Asset Value and Business in Services

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.

P-values for the hypothesis that the parameter is equal to zero in brackets.

4.2.6 Discussion of Significance

In general, for the Bosnian and Herzegovina dataset I do not find significant heterogeneity. It could very well be possible that there is none, but a few other reasons could also attribute to this lack of significance. Firstly, a lot of the outcome variables are binary and exhibit low variation, which could impact the performance and reliability of ML methods. Furthermore, when there is little variation within a variable, it can be challenging to identify significant differences between treatment and control groups or within subgroups. Additionally, the dataset has a limited number of observations for certain variables, such as Profit, which contains only 329 observations split between the treated and control groups. This small sample size reduces the statistical power to detect significant treatment effects and heterogeneity. In addition to

⁶https://attorney-newyork.com/business-loan-statistics/

this, some variables like Profit contain some outliers, - see the Appendix, Figures 13 and 14 for a histogram and box plot - which could affect the significance. Lastly, while the authors of Augsburg et al. (2015) address this for the variable Profit, the study duration of 14 months may be insufficient to observe significant impacts for some other certain business-related variables. Some effects, especially in business and economic activities, might require a longer period to manifest significantly.

5 Conclusion

This study investigated the heterogeneous effects of microcredit on various economic outcomes by analyzing data from randomized control trials (RCTs) conducted in Morocco and Bosnia and Herzegovina. Using machine learning based techniques developed by Chernozhukov et al. (2020), I sought to understand the differential impacts of microcredit on households, focusing on metrics such as loan amounts, profits, consumption, and savings.

The analysis of the Moroccan dataset reveals that microcredit increases the amount of loans and output, though the impact on profits and consumption remains modest. The presence of significant heterogeneity suggests that these effects vary among different demographic groups. Notably, the Random Forest method identified significant heterogeneity in the treatment effect on the amount of loans and profits, emphasizing the nuanced impact of microfinance initiatives. It is shown however, that this heterogeneity is not namely caused by individual baseline characteristics, but rather by village pair fixed effects. In Bosnia and Herzegovina, the impact of microcredit was similarly varied. While I observed a significant positive effect in the treatment for numerous outcome variables, the presence of heterogeneity is not significant. A possible explanation for the lack of heterogeneity in these outcome variables could be due to the fact that the microcredit availability in Bosnia and Herzegovina was targeted at a marginal segment of the population, individuals who would typically be rejected for loans but might be considered if slightly more risk was accepted. This could mean that the treatment effect is more homogeneous across the population. The uniform effect indicates that these households shared similar economic conditions or reacted similarly to the availability of credit, suggesting that microfinance programs designed for specific, narrowly-defined groups might result in more uniform outcomes. This is analogous with Angelucci et al. (2015) who also find no significant heterogeneity at the community level from a group lending expansion, where only for revenues, profits, and household decision-making power stronger effects at the upper end of the distribution are found.

Still despite this, our study underscores the importance of considering heterogeneity when evaluating microfinance programs. The differential impacts observed suggest that microcredit can be a valuable tool for economic empowerment, particularly when targeted effectively. However, the moderate effects on for example consumption and the lack of significant impact on some business-related outcomes indicate that microcredit alone may not be sufficient to drive substantial economic transformation for all recipients.

Future research should explore the more long-term effects of microcredit and investigate additional variables that may influence its effectiveness. Moreover, policymakers should account for potential heterogeneous effects when designing and implementing microfinance programs.

References

- Alemu, A. and Ganewo, Z. (2023). Impact analysis of formal microcredit on income of borrowers in rural areas of sidama region, ethiopia: A propensity score matching approach. *Journal of* the Knowledge Economy, 14(1):65–85.
- Angelucci, M., Karlan, D., and Zinman, J. (2015). Microcredit impacts: Evidence from a randomized microcredit program placement experiment by compartamos banco. American Economic Journal: Applied Economics, 7(1):151–182.
- Armendáriz de Aghion, B. and Morduch, J. (2005). Microfinance: A critical literature survey.
- Aslam, M., Kumar, S., and Sorooshian, S. (2020). Impact of microfinance on poverty: Qualitative analysis for grameen bank borrowers. *International Journal of Financial Research*, 11(1):49–59.
- Attanasio, O., Augsburg, B., De Haas, R., Fitzsimons, E., and Harmgart, H. (2015). The impacts of microfinance: Evidence from joint-liability lending in mongolia. American Economic Journal: Applied Economics, 7(1):90–122.
- Augsburg, B., De Haas, R., Harmgart, H., and Meghir, C. (2015). The impacts of microcredit: Evidence from bosnia and herzegovina. *American Economic Journal: Applied Economics*, 7(1):183–203.
- Banerjee, A., Duflo, E., Glennerster, R., and Kinnan, C. (2015). The miracle of microfinance? evidence from a randomized evaluation. *American Economic Journal: Applied Economics*, 7(1):22–53.
- Chernozhukov, V., Demirer, M., Duflo, E., and Fernández-Val, I. (2017). Generic machine learning inference on heterogeneous treatment effects in randomized experiments, with an application to immunization in india.
- Chernozhukov, V., Demirer, M., Duflo, E., and Fernández-Val, I. (2020). Generic machine learning inference on heterogeneous treatment effects in randomized experiments, with an application to immunization in india.
- Chernozhukov, V., Fernandez-Val, I., and Luo, Y. (2018). The sorted effects method: Discovering heterogeneous effects beyond their averages.
- Christensen, R., Bours, M. J., and Nielsen, S. M. (2021). Effect modifiers and statistical tests for interaction in randomized trials. *Journal of Clinical Epidemiology*, 134:174–177.
- Crépon, B., Devoto, F., Duflo, E., and Parienté, W. (2015). Estimating the impact of microcredit on those who take it up: Evidence from a randomized experiment in morocco. *American Economic Journal: Applied Economics*, 7(1):123–50.
- Dhungana, B. R., Timlasina, A., Thapa, B., and Tiwari, D. R. (2022). Effects of microfinance services on economic status improvement: A case of skbbl, pokhara, nepal. Quest Journal of Management and Social Sciences, 4(2):200–209.

Kolstad, I., Garcia Pires, A. J., and Wiig, A. (2017). Within-group heterogeneity and group dynamics: Analyzing exit of microcredit groups in angola. Oxford Development Studies, 45(3):338–351.

A Variable Description

	Variable	Description
Baseline Covariates	$\rm ccm_resp_activ$	=1 if spouse of head responded to self-employment section
	$other_resp_activ$	=1 if other member responded to self-employment section
	$borrowed_total_bl$	=1 if borrowed from any source
	$act_livestock_bl$	=1 if declared animal husbandry self-employment activity
	$act_business_bl$	=1 if declared non-agricultural self-employment activity
	$members_resid_bl$	Number of hh members
	$nadults_resid_bl$	Number of members 16 years old or older
	head_age_bl	Head age
	head_age_d_bl	$=1$ if head_age missing
	$members_resid_d_bl$	=1 if missing obs at baseline
	$nadults_resid_d_bl$	=1 if missing obs at baseline
	$act_livestock_d_bl$	=1 if missing obs at baseline
	$act_business_d_bl$	=1 if missing obs at baseline
	borrowed_total_d_bl	=1 if missing obs at baseline
	$ccm_resp_activ_d$	=1 if ccm_resp_activ missing
	$other_resp_activ_d$	=1 if other_resp_activ missing
Outcome Variables	Amount of Loans	Total Amount of Loans
	Output	Total output from self-employment activities (past 12 months)
	Profit	Total profit from self-employment activities (past 12 months)
	Consumption	Total monthly consumption

Table 9: Description of Variables: Morocco

	Variable	Description
Baseline Covariates	b_resp_female	=1 if respondent is female, 0 male
	b_resp_age	Age of respondent
	b_resp_ms	Marital status of respondent
	b_resp_es	Economic status of respondent
	b_resp_ss	=1 if highest respondent grade is a secondary school grade (incl vocational)
	b_resp_ul	=1 if highest respondent grade is a university level
	b_resp_school	Respondent currently attending school, 0/1
	b_hhmem_female	Number of female household members
	b_kids_05	Number of kids 5yrs or younger
	b_kids_610	Number of kids older than 5 and younger than 11
	b_kids_1116	Number of kids older than 10 and younger than 17
	b_kids_1619	Number of kids age 16-19
	b_hhmem_school	Number of household members attending school
	b_hhmem_employed	Number of employed household members
	b_hhmem_retired	Number of retired household members
	b_dw_house	=1 if primary dwelling is a house
	b_dw_own	=1 if primary dwelling is owned
	b_bm_own	=1 if respondent owns a business
Outcome variables	Loan	=1 if respondent has any loan outstanding
	Amount of Loans	Number of loans outstanding
	Outstanding loan MFI	=1 if household has any loan outstanding from an MFI at endline
	Outstanding loan bank	=1 if household has any loan outstanding from a bank at endline
	Asset value	Current market value (at time of analysis) of the household's assets (in BAM)
	Ownership of Inventory	=1 if the household owns inventory
	Any Self-employment Income	=1 if the respondent gets income from self-employment
	Business Ownership	=1 if the respondent owns a business
	Business in Services	=1 if the respondent owns a business in services
	Business in Agriculture	=1 if the respondent owns a business in agriculture
	Has Started a Business in Last 14 Months	=1 if the household started a business since the baseline survey
	Has Closed a Business in Last 14 Months	=1 if the household closed a business since the baseline survey
	Business Profit	Amount of profit (BAM) from the respondent's main business
	Business Revenue	Amount of revenue (BAM) from the respondent's business
	Business Expenses	Amount of expenses (BAM) made by the respondent's main business
	Self-Employment	=1 if at least one household member is self-employed
	Self-Employment Amount	Amount of profit (BAM) from self-employment for the entire household
	Wages	=1 if at least one household member receives income from salaried work
	Wages Amount	Total salary (BAM) received from wages
	Remittance	=1 if at least one household member receives remittance
	Remittance Amount	Total (BAM) received from remittances
	Government Benefits	=1 if at least one household member receives benefits from the government (e.g. welfare)
	Government Benefits Amount	Total (BAM) received from benefits
	Total Hours Worked	Number of hours worked by all household members in the last week aged 16-64
	Total Hours Worked on Business	Number of hours worked on the business by all household members in the last week aged 16-64
	Total Hours Worked on Other Activities	Number of hours worked on other activities by all household members in the last week aged 16-64
	Total consumption per capita	Total yearly expenditures (BAM) of the household per household member
	Durables	Expenditures (BAM) on durable items in the last 12 months
	Nondurable	Expenditures (BAM) on non-durable items in the last month
	Food	Amount (BAM) spent on food (inside and outside the house) by the household in the last week
	Education	Expenditures (BAM) on education in the last month
	Cigarettes and alcohol	Amount (BAM) spent on cigarettes and alcohol by the household in the last week
	Recreation	Expenditures (BAM) on recreation in the last month
	Home durable good index	Index calculated for a list of 18 home durable goods (stock, not flow variable). Each asset is given a weight using
		the coefficients of the first factor of a principal component analysis. The index, for a household i, is calculated
		as the weighted sum of standardized dummies equal to 1 if the household owns the durable good.
	Savings	Total savings of the household. Savings data was collected in ranges
		and to calculate average savings allocated the midpoint of indicated ranges to the households.

Table 10: Description of Variables: Bosnia and Herzegovina

B Summary Statistics

	Observations	All	Treated	Control
Baseline Covariates	5			
ccm_resp_activ	5513	0.067	0.074	0.061
other_resp_activ	5513	0.044	0.047	0.041
borrowed_total_bl	5513	0.211	0.225	0.197
$act_livestock_bl$	5513	0.415	0.426	0.404
act_business_bl	5513	0.146	0.128	0.163
members_resid_bl	5513	3.879	3.870	3.887
nadults_resid_bl	5513	2.604	2.600	2.608
head_age_bl	5513	35.950	35.900	36.010
head_age_d_bl	5513	0.257	0.266	0.248
$members_resid_d_bl$	5513	0.257	0.266	0.248
nadults_resid_d_bl	5513	0.257	0.266	0.248
$act_livestock_d_bl$	5513	0.257	0.266	0.248
$act_business_d_bl$	5513	0.257	0.266	0.248
borrowed_total_d_bl	5513	0.257	0.266	0.248
ccm_resp_activ_d	5513	0.134	0.131	0.136
$other_resp_activ_d$	5513	0.134	0.131	0.136
Outcome variables				
Amount of Loans	5513	2364	2934	1807
Output	5513	32559	35198.9	29976
Profit	5513	10120	11050.4	9210
Consumption	5513	3011.9	2996	3027

Table 11: Summary Statistics: Morocco

All monetary variables are expressed in Moroccan Dirhams, or MAD. The exchange rate at baseline was US\$1 to MAD 8.06.

	Observations	All	Treated	Control
Baseline Covariates				
b_resp_female	994	0.410	0.414	0.404
b_resp_age	994	37.810	38.390	37.100
b_resp_ms	994	2.146	2.172	2.113
b_resp_es	994	1.826	1.842	1.806
b_resp_ss	994	0.624	0.615	0.634
b_resp_ul	994	0.045	0.042	0.050
b_resp_school	994	0.028	0.033	0.023
b_hhmem_female	994	1.717	1.721	1.713
b_kids_05	994	0.285	0.269	0.305
b_kids_610	994	0.287	0.290	0.282
b_kids_1116	994	0.355	0.407	0.291
b_kids_1619	994	0.263	0.283	0.237
b_hhmem_school	994	0.805	0.869	0.725
b_hhmem_employed	994	1.138	1.169	1.099
b_hhmem_retired	994	0.312	0.312	0.312
b_dw_house	994	0.838	0.835	0.842
b_dw_own	994	0.877	0.893	0.858
b_bm_own	994	0.623	0.632	0.612
Outcome Variables				
Loan	994	0.805	0.893	0.695
Amount of Loans	994	1.311	1.504	1.070
Outstanding loan MFI	994	0.571	0.768	0.325
Outstanding loan bank	994	0.064	0.040	0.095
Asset value	994	109041	107282	111229
Ownership of Inventory	994	0.120	0.142	0.093
Any Self-employment Income	994	0.701	0.728	0.668
Business Ownership	994	0.542	0.572	0.506
Business in Services	994	0.188	0.203	0.169
Business in Agriculture	994	0.259	0.276	0.237
Has Started a Business in Last 14 Months	994	0.136	0.145	0.124
Has Closed a Business in Last 14 Months	994	0.216	0.205	0.230
Business Profit	329	9887	10035	9669
Business Revenue	326	15644	16239	14770
Business Expenses	324	6053	6334	5639
Self-Employment	994	0.701	0.728	0.728
Self-Employment Amount	994	6152	6177	6177
Wages	994	0.651	0.615	0.615
Wages Amount	994	7037	7149	7149
Remittance	994	0.212	0.202	0.202
Remittance Amount	994	583	575	575
Government Benefits	994	0.302	0.281	0.281
Government Benefits Amount	994	546	489	489
Total Hours Worked	994	77.780	77.590	78.000
Total Hours Worked on Business	994	40.800	42.580	38.600
Total Hours Worked on Other Activities	994	36.970	35.010	39.400
Total consumption per capita	994	3788	3483	4167
Durables	994	2212	2204	2221
Nondurable	993	188.400	182	196.400
Food	994	115.600	114.100	117.500
Education	994	416.900	390.800	449.400
Cigarettes and alcohol	994	13.780	12.620	15.230
Recreation	994	43.970	40.230	48.620
Home durable good index	994	0.453	0.421	0.492
Savings	994	943.700	743.200	1193

Table 12: Summary Statistics: Bosnia and Herzegovina

C Credit Outstanding at Endline

	$\begin{array}{c} 20\% \text{ Most} \\ (\delta_5) \end{array}$	20% Least (δ_1)	Difference $(\delta_5 - \delta_1)$
		Random Forest	
Amount of Loans			
Number of employed hh members	1.430	0.755	0.640
	(1.262, 1.604)	(0.592, 0.934)	(0.410, 0.872)
	-	-	[0.000]
Number of retired hh members	0.135	0.430	-0.270
	(0.056, 0.207)	(0.327, 0.553)	(-0.416, -0.135)
	-	-	[0.000]
Number of hh members aged 16-19	0.120	0.430	-0.315
	(0.048, 0.190)	(0.305, 0.555)	(-0.460, -0.173)
	-	-	[0.000]
		SVM	
Outstanding Loan MFI			
Highest respondent grade is a university level	0.035	0.125	-0.090
	(0.000, 0.064)	(0.056, 0.184)	(-0.163, -0.015)
	-	-	[0.021]
Number of retired hh members	0.225	0.495	-0.275
	(0.134, 0.317)	(0.364, 0.623)	(-0.432, -0.108)
	-	-	[0.001]
Economic status of respondent	1.760	2.260	-0.530
-	(1.532, 1.987)	(1.963, 2.560)	(-0.907, -0.153)
	-	-	[0.005]

Table 13: CLAN of Amount of Loans and Outstanding Loan MFI

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.

D Self-Employment Activities

	Model	Best BLP (λ)	Best GATES $(\bar{\lambda})$	Observations
Asset Value (BAM)	Random Forest	211,070,886	$584,\!555,\!496$	994
	Elastic Net	$103,\!318,\!069$	590,827,826	
	SVM	$71,\!300,\!562$	$550,\!175,\!821$	
	Boosting	$98,\!520,\!074$	$609,\!229,\!523$	
Ownership of Inventory $[Yes = 1]^*$	Random Forest	0.288	5.074	994
	Elastic Net	0.399	5.298	
	SVM	0.299	4.777	
	Boosting	0.247	5.090	
Any Self-employment Income (HH) $[Yes = 1]^*$	Random Forest	0.593	8.952	994
	Elastic Net	0.484	9.609	
	SVM	0.750	10.094	
	Boosting	0.645	9.746	
Business Ownership $[Yes = 1]^*$	Random Forest	0.583	9.435	994
	Elastic Net	1.191	9.977	
	SVM	1.664	14.275	
	Boosting	0.824	10.394	
Business in Services $[Yes = 1]^*$	Random Forest	0.830	5.401	994
	Elastic Net	0.548	5.670	
	SVM	0.959	5.294	
	Boosting	0.654	6.192	
Business in Agriculture $[Yes = 1]^*$	Random Forest	0.421	6.117	994
	Elastic Net	0.677	7.070	
	SVM	0.784	6.730	
	Boosting	0.733	6.932	
Has Started a Business in Last 14 Months*	Random Forest	1.153	4.419	994
	Elastic Net	1.581	3.831	
	SVM	0.796	3.762	
	Boosting	0.675	3.777	
Has Closed a Business in Last 14 Months [*]	Random Forest	0.361	4.896	994
	Elastic Net	0.515	6.030	
	SVM	0.525	6.292	
	Boosting	0.828	5.168	
Business Expenses (BAM)	Random Forest	783,241	22,736,441	324
	Elastic Net	2109007	24,097,763	
	SVM	1,649,447	24,625,438	
	Boosting	2,013,669	23,707,611	
Business Profit (BAM)	Random Forest	646,261	14,717,100	329
	Elastic Net	1,486,803	14,934,754	
	SVM	1,396,432	15,118,520	
	Boosting	1,843,465	19,193,780	
Business Revenue (BAM)	Random Forest	2,279,012	55,120,555	326
Dusiness nevenue (DAWI)	Elastic Net	2,279,012 7,589,317	48,289,716	520
	SVM	3,580,122	54,205,159	
	Boosting	3,636,313	52,564,872	

Table 14: Comparison of ML Methods: Self-Employment Activities

Notes: Medians over 100 splits.

BAM: Bosnia and Herzegovina convertible mark. The exchange rate at baseline was US\$1 to BAM 1.634.

*Actual values are times $\times 10^{-3}$

	Best Les	arner	Second Best	Learner
	ATE (β_1)	HET (β_2)	ATE (β_1)	HET (β_2)
	Random	Forest	Elastic 1	Net
Asset Value (BAM)	-3190.000	-0.292	-2143.000	-0.122
	(-25990.000, 19263.519)	(-0.760, 0.216)	(-25200.000, 20467.360)	(-0.904, 0.735)
	[0.780]	[0.258]	[0.851]	[0.793]
	Elastic	Net	SVM	
Ownership of Inventory $[Yes = 1]$	44.548	-40.162	46.087	-159.983
	(-9.459, 100.000)	(-771.216, 705.000)	(-9.231, 101.000)	(-718.668, 369.000
	[0.101]	[0.920]	[0.099]	[0.568]
	SVN	1	Boostir	ıg
Any Self-employment Income (HH) [Yes $= 1$]	63.630	-83.330	56.980	11.150
	(-17.080, 144.000)	(-396.600, 248.000)	(-22.590, 137.000)	(-179.250, 204.000
	[0.116]	[0.623]	[0.157]	[0.910]
	SVN	1	Elastic 1	Net
Business Ownership [Yes $= 1$]	38.760	-89.330	37.800	37.980
	(-38.140, 115.000)	(-423.120, 272.000)	(-37.300, 114.000)	(-699.230, 800.000)
	[0.302]	[0.653]	[0.309]	[0.903]
	$_{\rm SVM}$		Random Forest	
Business in Services $[Yes = 1]$	31.110	169.190	32.560	-176.580
	(-35.860, 100.000)	(-223.950, 559.000)	(-35.190, 98.000)	(-657.170, 311.000)
	[0.357]	[0.388]	[0.339]	[0.446]
	SVM		Boosting	
Business in Agriculture [Yes $= 1$]	38.760	-89.330	35.600	-56.660
	(-38.140, 115.000)	(-423.120, 272.000)	(-39.410,112.000)	(-238.570, 127.000)
	[0.302]	[0.653]	[0.351]	[0.558]
	Elastic	Net	Random F	orest
Has Started a Business in Last 14 Months	31.660	562.050	25.460	255.040
	(-18.990, 82.000)	(-703.770, 1741.000)	(-26.150, 77.000)	(-410.600, 938.000)
	[0.213]	[0.392]	[0.320]	[0.431]
	Elastic	Net	SVM	
Has Closed a Business in Last 14 Months	-31.290	209.140	-32.760	-95.130
	(-97.790, 35.000)	(-860.960,1336.000)	(-105.400, 39.000)	(-511.870, 301.000)
	[0.355]	[0.652]	[0.374]	[0.611]
	Elastic Net		Boosting	
Business Expenses (BAM)	731.700	48.560	750.800	0.219
	(-3927.000,5325.535)	(-1.113, 1.088)	(-3784.000, 5378.432)	(-0.190, 0.221)
	[0.695]	[0.879]	[0.665]	[0.959]
	Boosting		Elastic N	Net
Business Profit (BAM)	442.900	44.140	451.900	51.230
	(-3591.000, 4421.957)	(-0.139, 0.201)	(-3538.000, 4328.143)	(-1.326, 1.265)
	[0.811]	[0.631]	[0.812]	[0.937]
	Elastic	Net	Boostir	ng
Business Revenue (BAM)	1661.000	8.826	1678.000	9.662
	(-5590.000, 8739.771)	(-1.213, 1.268)	(-5604.000, 8964.463)	(-0.204, 0.214)
	[0.595]	[0.972]	[0.637]	[0.915]

Table 15: BLP of Self-Employment Activities

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.

	Best I	earner		
	20% Most (γ_5)	20% Least (γ_1)	Difference $(\gamma_5 - \gamma_1)$	
		XGBoost		
Asset Value (BAM)	-14626.5	10837.7	-33729.1	
	(-62817.1, 33981.0)	(-35674.9, 62007.0)	(-106985.5, 39870.0)	
	[0.559]	[0.601]	[0.327]	
		Elastic Net		
Ownership of Inventory $[Yes = 1]$	0.048	0.051	-0.006	
	(-0.073, 0.176)	(-0.071, 0.174)	(-0.182, 0.164)	
	[0.400]	[0.416]	[0.949]	
		SVM		
Any Self-employment Income (HH) [Yes $= 1$]	0.046	0.109	-0.074	
	(-0.144, 0.231)	(-0.079, 0.297)	(-0.334, 0.191)	
	[0.603]	[0.255]	[0.583]	
		SVM		
Business Ownership [Yes $= 1$]	0.012	0.161	-0.143	
	(-0.181, 0.208)	(-0.034, 0.356)	(-0.418, 0.132)	
	[0.871]	[0.104]	[0.306]	
		XGBoost		
Business in Services $[Yes = 1]$	0.014	0.071	-0.064	
	(-0.150, 0.170)	(-0.084, 0.221)	(-0.295, 0.153)	
	[0.845]	[0.351]	[0.573]	
		Elastic Net		
Business in Agriculture $[Yes = 1]$	0.031	0.035	0.011	
,	(-0.144, 0.201)	(-0.124, 0.193)	(-0.225, 0.244)	
	[0.702]	[0.648]	[0.918]	
		Random Forest		
Has Started a Business in Last 14 Months	0.105	0.008	0.073	
	(-0.070, 0.289)	(-0.126, 0.154)	(-0.157, 0.305)	
	[0.215]	[0.906]	[0.529]	
		SVM		
Has Closed a Business in Last 14 Months	-0.054	0.004	-0.073	
	(-0.218, 0.114)	(-0.150, 0.167)	(-0.303, 0.163)	
	[0.533]	[0.958]	[0.540]	
		SVM		
Business Expenses (BAM)	85.830	1358.730	-2156.790	
	(-7498.260, 7295.000)	(-4903.830, 7678.000)	(-12880.770, 10278.000)	
	[0.941]	[0.594]	[0.788]	
		XGBoost		
Business Profit (BAM)	1648.600	157.500	1681.700	
	(-5191.400, 8807.000)	(-6643.000, 7724.000)	(-10574.800, 12051.000)	
	[0.663]	[0.945]	[0.773]	
		Random Forest		
Business Revenue (BAM)	3731.000	4068.000	1066.000	
	(-9122.000, 15763.000)	(-7995.000, 16888.000)	(-19644.000, 20184.000)	
	[0.523]	[0.573]	[0.909]	

Table 16: GATES of Self-Employment Activities

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.

E Income

	Model	Best BLP (Λ)	Best GATES $(\bar{\Lambda})$	Observations
Self-employment Likelihood*	Random Forest	0.5929	8.952	994
	Elastic Net	0.4841	9.609	
	SVM	0.7495	10.094	
	Boosting	0.6447	9.746	
Self-employment Amount (BAM)	Random Forest	215308	2335121	994
	Elastic Net	235749	2825106	
	SVM	134352	2553007	
	Boosting	275719	2891504	
Wages Likelihood*	Random Forest	0.9931	13.71	994
	Elastic Net	0.6528	13.49	
	SVM	0.4237	14.31	
	Boosting	1.1889	15.07	
Wages Amount (BAM)	Random Forest	232099	2042054	994
	Elastic Net	313385	2477025	
	SVM	216850	2788649	
	Boosting	242469	2238628	
Remittances Likelihood*	Random Forest	0.3332	5.613	994
	Elastic Net	0.5308	5.707	
	SVM	0.4284	5.493	
	Boosting	0.5666	5.847	
Remittances Amount (BAM)	Random Forest	27753	171649	994
	Elastic Net	24261	164098	
	SVM	30308	145685	
	Boosting	12290	163481	
Government Benefits Likelihood*	Random Forest	0.5975	8.704	994
	Elastic Net	0.7204	9.677	
	SVM	0.5207	7.116	
	Boosting	0.4855	7.472	
Government Benefits Amount (BAM)	Random Forest	5573	73969	994
· · · ·	Elastic Net	6403	66417	
	SVM	11726	62092	
	Boosting	5190	61859	

Table 17: Comparison of ML Methods: Income

Notes: Medians over 100 splits.

BAM: Bosnia and Herzegovina convertible mark. The exchange rate at baseline was US\$1 to BAM 1.634.

*Actual values are times $\times \, 10^{-3}$

	Best Lear	mer	Second Best I	earner		
	ATE (β_1)	HET (β_2)	ATE (β_1)	HET (β_2)		
	SVM		Boosting	Boosting		
Self-employment Likelihood	$0.001 \\ (-0.121, 0.041) \\ [0.331]$	$\begin{array}{c} 0.010 \\ (-0.237, \ 0.335) \\ [0.836] \end{array}$	$0.001 \\ (-0.122, 0.038) \\ [0.311]$	$\begin{array}{c} 0.010 \\ (-0.210, \ 0.189) \\ [0.904] \end{array}$		
	Boostin	ıg	Elastic N	et		
Self-employment Amount (BAM)	275719 (-1477.000, 1762.620) [0.832]	2891504 (-0.338, 0.283) [0.917]	$235749 \\ (-1564.000, 1692.189) \\ [0.892]$	2825106 (-0.781, 0.797) [0.942]		
	Boostin	ıg	Random Fo	rest		
Wages Likelihood	$0.001 \\ (-0.096, 0.051) \\ [0.535]$	$\begin{array}{c} 0.015 \\ (-0.181, \ 0.175) \\ [0.987] \end{array}$	$0.001 \\ (-0.097, 0.048) \\ [0.498]$	$0.014 \\ (-0.558, 0.421) \\ [0.810]$		
	Elastic Net		Elastic Net		Boosting	
Wages Amount (BAM)	313385 (-1330.000, 1860.079) [0.769]	$2477025 \\ (-0.352, 0.301) \\ [0.813]$	$242469 \\ (-1489.000, 1683.246) \\ [0.869]$	$2238628 \\ (-0.235, 0.163) \\ [0.802]$		
	Boostin	ıg	Elastic N	et		
Remittances Likelihood	$\begin{array}{c} 0.001 \\ (-0.097, \ 0.048) \\ [0.498] \end{array}$	$0.006 \\ (-0.558, 0.421) \\ [0.810]$	$\begin{array}{c} 0.001 \\ (-0.095, \ 0.048) \\ [0.513] \end{array}$	$\begin{array}{c} 0.006\\ (-0.739,\ 0.856)\\ [0.870]\end{array}$		
	SVM		Random Forest			
Remittances Amount (BAM)	$\begin{array}{c} 30.308 \\ (-0.420,\ 358.636) \\ [0.895] \end{array}$	$145.685 \\ (-0.640, 0.586) \\ [0.938]$	27.753 (-0.426, 362.847) [0.945]	$ \begin{array}{r} 171.649\\ (-0.174, \ 0.095)\\ [0.584]\end{array} $		
	Elastic N	Vet	Random Fo	rest		
Government Benefits Likelihood	$0.001 \\ (-0.130, 0.029) \\ [0.221]$	$\begin{array}{c} 0.010 \\ (-1.248, \ 0.984) \\ [0.821] \end{array}$	$0.001 \\ (-0.129, 0.028) \\ [0.211]$	$0.009 \\ (-0.607, 0.376) \\ [0.647]$		
	Elastic N	Vet	Random Fo	rest		
Government Benefits Amount (BAM)	$6.403 \\ (-0.361, 85.594) \\ [0.233]$	66.417 (-0.809, 0.817) [0.943]	5.573 (-0.377, 65.340) [0.166]	$73.969 \\ (-0.434, 0.670) \\ [0.706]$		

Table 18: BLP of Income

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.

	20% Most (γ_5)	20% Least (γ_1)	Difference $(\gamma_5 - \gamma_1)$
		Elastic Net	
Government Benefits Likelihood	-0.082	-0.032	-0.053
	(-0.251, 0.086)	(-0.215, 0.149)	(-0.313, 0.208)
	[0.327]	[0.742]	[0.670]
		XGBoost	
Remittances Likelihood	-0.039	-0.021	-0.022
	(-0.201, 0.120)	(-0.183, 0.143)	(-0.238, 0.204)
	[0.610]	[0.785]	[0.849]
		SVM	
Self-employment Likelihood	0.046	0.109	-0.074
	(-0.144, 0.231)	(-0.079, 0.297)	(-0.334, 0.191)
	[0.603]	[0.255]	[0.583]
		XGBoost	
Wages Likelihood	-0.047	-0.138	0.081
	(-0.227, 0.133)	(-0.323, 0.044)	(-0.179, 0.334)
	[0.614]	[0.138]	[0.536]
		Random Forest	
Government Benefits Amount (BAM)	-201.170	-330.090	98.470
	(-570.630, 184.900)	$(-922.690, \ 303.800)$	(-609.500, 855.900)
	[0.300]	[0.302]	[0.750]
		Random Forest	
Remittances Amount (BAM)	-302.110	244.390	-641.940
	(-1363.290, 657.000)	(-501.020, 975.500)	(-1952.510, 669.600)
	[0.468]	[0.520]	[0.362]
		XGBoost	
Self-employment Amount (BAM)	-139.100	379.800	-244.700
	(-3896.900, 3686.000)	(-3574.800, 4259.000)	(-5523.000, 5289.000)
	[0.950]	[0.808]	[0.929]
		SVM	
Wages Amount (BAM)	-651.630	-13.820	-777.960
	(-4462.390, 3055.000)	(-3954.140, 3628.000)	(-5994.710, 4916.000)
	[0.717]	[0.987]	[0.807]

Table 19: GATES of Income

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.

	$\begin{array}{c} 20\% \text{ Most} \\ (\delta_5) \end{array}$	20% Least (δ_1)	Difference $(\delta_5 - \delta_1)$
		Random Forest	
Remittances Amount			
Dwelling ownership	0.905	0.705	0.186
	(0.841, 0.959)	(0.610, 0.790)	(0.083, 0.296)
	-	-	[0.000]
Ownnership of business	0.745	0.495	0.245
	(0.654, 0.826)	(0.392, 0.588)	(0.120, 0.378)
	-	-	[0.000]
Respondent is female	0.255	0.525	-0.255
	(0.165, 0.335)	(0.426, 0.624)	(-0.384, -0.120)
	-	-	[0.000]
		Elastic Net	
Government Benefits Likelihood			
Number of hh members attending school	0.775	0.920	-0.110
	(0.598, 0.959)	(0.732, 1.111)	(-0.370, 0.150)
	-	-	[0.407]
Number of kids aged 6-10	0.245	0.360	-0.075
	(0.141, 0.348)	(0.229, 0.490)	(-0.234, 0.083)
	-	-	[0.371]
Number of kids aged 11-16	0.310	0.380	-0.045
2	(0.198, 0.417)	(0.260, 0.513)	(-0.217, 0.117)
	-	-	[0.612]

Table 20: CLAN of Remittances Amount and Government Benefits Likelihood

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.

P-values for the hypothesis that the parameter is equal to zero in brackets.

F Hours-Worked

	Model	Best BLP (Λ)	Best GATES $(\bar{\Lambda})$	Observations
Total Hours Worked	Random Forest	50.07	119.60	994
	Elastic Net	13.04	106.30	
	SVM	41.92	126.40	
	Boosting	17.39	99.00	
Total Hours Worked on Business	Random Forest	10.11	88.21	994
	Elastic Net	6.07	93.77	
	SVM	5.47	75.60	
	Boosting	10.15	99.58	
Total Hours Worked on Other Activities	Random Forest	7.69	70.69	994
	Elastic Net	3.86	71.62	
	SVM	10.09	71.45	
	Boosting	6.50	62.84	

Table 21: Comparison of ML Methods: Hours Worked

Notes: Medians over 100 splits.

	Best L	earner	Second Bes	t Learner		
	ATE (β_1)	HET (β_2)	ATE (β_1)	HET (β_2)		
	Random	ı Forest	SVI	M		
Total Hours Worked	-2.243	-0.333	-0.913	-0.295		
	(-11.605, 7.519)	(-0.830, 0.144)	(-10.600, 8.405)	(-0.749, 0.155)		
	[0.659]	[0.172]	[0.852]	[0.194]		
	Elastic Net		Elastic Net		XGBo	oost
Total Hours Worked on Business	4.208	-0.026	3.922	-0.056		
	(-4.209, 12.750)	(-0.762, 0.880)	(-4.383, 12.319)	(-0.240, 0.131)		
	[0.325]	[0.948]	[0.342]	[0.572]		
	Elastic Net		SVI	M		
Total Hours Worked on Other Activities	-5.342	-0.258	-4.241	-0.166		
	(-12.063, 1.467)	(-2.048, 1.404)	(-11.255, 2.830)	(-0.588, 0.253)		
	[0.124]	[0.712]	[0.245]	[0.449]		

Table 22: BLP of Hours Worked

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.

P-values for the hypothesis that the parameter is equal to zero in brackets.

	20% Most (γ_5)	20% Least (γ_1)	Difference $(\gamma_5 - \gamma_1)$
		SVM	
Total Hours Worked	-11.989	6.985	-18.940
	(-31.938, 9.087)	(-15.598, 28.428)	(-49.847, 11.212)
	[0.246]	[0.509]	[0.233]
		XGBoost	
Total Hours Worked on Business	0.830	10.443	-10.126
	(-18.651, 20.520)	(-8.061, 28.760)	(-36.348, 17.770)
	[0.931]	[0.244]	[0.465]
		Elastic Net	
Total Hours Worked on Other Activities	-7.913	-5.125	-3.487
	(-21.933, 6.271)	(-21.853, 10.172)	(-26.367, 19.209)
	[0.269]	[0.475]	[0.779]

Table 23: GATES of Hours Worked

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.

	$\begin{array}{c} 20\% \mathrm{Most} \\ (\delta_5) \end{array}$	$\begin{array}{c} 20\% \text{ Least} \\ (\delta_1) \end{array}$	Difference $(\delta_5 - \delta_1)$
	SVM		
Total Hours Worked			
Number of kids aged 0-5	0.385	0.145	0.240
	(0.261, 0.524)	(0.074, 0.226)	(0.088, 0.401)
	-	-	[0.002]
Number of kids aged 11-16	0.255	0.495	-0.220
	(0.146, 0.366)	(0.365, 0.632)	(-0.400, -0.048)
	-	-	[0.012]
Respondent age	39.810	35.755	5.040
	(37.601, 42.071)	(33.324, 38.021)	(1.768, 8.282)
	-	-	[0.002]
		Elastic Net	
Total Hours Worked on Other Activities			
Respondent age	43.200	33.560	9.170
	(40.781, 45.900)	(31.385, 35.810)	(5.854, 12.630)
	-	-	[0.000]
Number of employed hh members	0.990	1.133	-0.143
	(0.792, 1.188)	(0.958, 1.307)	(-0.407, 0.121)
	-	-	[0.289]
Number of kids aged 16-19	0.210	0.350	-0.122
	(0.125, 0.300)	(0.237, 0.477)	(-0.275, 0.028)
	_	-	[0.112]

Table 24: CLAN of Total Hours Worked and Total Hours Worked on Other Activities

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.

G Consumption and Savings

	Model	Best BLP (Λ)	Best GATES $(\bar{\Lambda})$	Observations
Total consumption per capita (BAM)	Random Forest	78799	1330812	994
	Elastic Net	85600	1251915	
	SVM	147244	1426732	
	Boosting	106975	1300171	
Durables (BAM)	Random Forest	70808	1185298	994
	Elastic Net	86347	1054495	
	SVM	99363	1051619	
	Boosting	91651	1228525	
Nondurable (BAM)	Random Forest	266.7	1704	993
	Elastic Net	424.8	2174	
	SVM	141.6	2018	
	Boosting	211.5	2216	
Food (BAM)	Random Forest	27.05	247.7	994
	Elastic Net	25.26	291.3	
	SVM	17.60	264.7	
	Boosting	25.78	274.0	
Education (BAM)	Random Forest	6492	45497	994
	Elastic Net	6467	49283	
	SVM	8092	57420	
	Boosting	6298	53072	
Cigarettes and alcohol (BAM)	Random Forest	2.316	19.67	994
	Elastic Net	1.438	20.66	
	SVM	1.500	20.16	
	Boosting	2.198	19.92	
Recreation (BAM)	Random Forest	153.0	1637	994
	Elastic Net	217.0	1900	
	SVM	218.3	1474	
	Boosting	352.2	1687	
Home durable good index*	Random Forest	1.268	11.479	994
	Elastic Net	0.755	10.896	
	SVM	0.483	9.378	
	Boosting	0.303	10.091	
Savings (BAM)	Random Forest	56944	483652	994
	Elastic Net	40114	437093	
	SVM	150878	593797	
	Boosting	45062	499930	

Table 25: Comparison of ML Methods: Consumption and Savings

Notes: Medians over 100 splits.

BAM: Bosnia and Herzegovina convertible mark. The exchange rate at baseline was US\$1 to BAM 1.634.

*Actual values are times $\times \; 10^{-3}$

	Best Learner		Second Best Learner		
	ATE (β_1)	HET (β_2)	ATE (β_1)	HET (β_2)	
	SVM		Boosting		
Total consumption per capita (BAM)	-729.038 (-1625.438, 230.606) [0.133]	$\begin{array}{c} 0.240 \\ (-0.409, 0.879) \\ [0.410] \end{array}$	-641.900 (-1609.000, 265.839) [0.152]	$\begin{array}{c} -0.013 \\ (-0.187, \ 0.162) \\ [0.853] \end{array}$	
	SVM		Boosting		
Durables (BAM)	$-26.994 \\ (-1010.366, 987.238) \\ [0.947]$	$0.148 \\ (-0.737, 0.935) \\ [0.741]$	$\begin{array}{r} -45.180 \\ (-1009.000, \ 983.380) \\ [0.908] \end{array}$	$\begin{array}{c} -0.035 \\ (-0.211, \ 0.129) \\ [0.653] \end{array}$	
Nondurable (BAM)	Elastic Net		Random Forest		
	-15.785 (-58.998, 25.908) [0.454]	$\begin{array}{c} 0.023 \\ (-0.815, \ 0.752) \\ [0.930] \end{array}$	-17.036 (-58.699, 24.929) [0.420]	$\begin{array}{c} -0.171 \\ (-0.637, \ 0.289) \\ [0.485] \end{array}$	
Food (BAM)	Random Forest		Elastic Net		
	$\begin{array}{c} -4.380 \\ (-19.640, 11.534) \\ [0.596] \end{array}$	$\begin{array}{c} 0.132 \\ (-0.349, \ 0.613) \\ [0.575] \end{array}$	-2.951 (-19.182, 12.554) [0.722]	$\begin{array}{c} -0.057 \\ (-0.810, \ 0.758) \\ [0.891] \end{array}$	
	SVM		Elastic Net		
Education (BAM)	-58.433 (-252.619, 150.928) [0.537]	$\begin{array}{c} 0.340 \\ (-0.386, \ 1.049) \\ [0.357] \end{array}$	$\begin{array}{r} -49.796 \\ (-250.968, \ 167.283) \\ [0.656] \end{array}$	-0.025 (-0.676, 0.599) [0.930]	
	Random F	òrest	Elastic Net		
Cigarettes and alcohol (BAM)	$\begin{array}{r} -2.475 \\ (-5.912, 1.172) \\ [0.182] \end{array}$	$\begin{array}{c} -0.159\\ (-0.623,\ 0.349)\\ [0.527]\end{array}$	-2.571 (-5.998, 1.023) [0.167]	$\begin{array}{c} 0.019 \\ (-0.720, \ 0.792) \\ [0.931] \end{array}$	
Recreation (BAM)	Elastic Net		SVM		
	-7.523 (-46.548, 31.848) [0.725]	$\begin{array}{c} -0.013 \\ (-0.730, \ 0.688) \\ [0.965] \end{array}$	$-8.197 \\ (-47.449, 31.372) \\ [0.669]$	$\begin{array}{c} -0.397 \\ (-2.091, 1.342) \\ [0.666] \end{array}$	
Home durable good index	Random Forest		Elastic Net		
	$\begin{array}{c} -0.068 \\ (-0.144, \ 0.009) \\ [0.085] \end{array}$	$\begin{array}{c} 0.204 \\ (-0.223, \ 0.628) \\ [0.368] \end{array}$	-0.071 (-0.148, 0.011) [0.088]	-0.004 (-0.774, 0.783) [0.980]	
Savings (BAM)	SVM		Boosting		
	$\begin{array}{r} -456.470 \\ (-952.182, \ 32.633) \\ [0.069] \end{array}$	$0.735 \\ (-0.222, 1.767) \\ [0.125]$	$\begin{array}{r} -461.203 \\ (-945.529, 42.915) \\ [0.074] \end{array}$	$0.031 \\ (-0.133, 0.217) \\ [0.642]$	

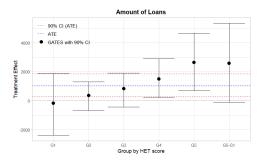
Table 26: BLP of Consumption and Savings

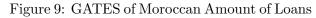
Notes: Medians over 100 splits. 90% confidence interval in parenthesis.

	20% Most (γ_5)	20% Least (γ_1)	Difference $(\gamma_5 - \gamma_1)$
		SVM	
Total consumption per capita (BAM)	-233.2 (-1655.8, 1376.1) [0.734]	-1212.5 (-2983.0, 568.5) [0.181]	929.6 (-1333.9, 3537.2) [0.391]
		XGBoost	
Durables (BAM)	$\begin{array}{c} -379.0 \\ (-2034.1, 1470.0) \\ [0.662] \end{array}$	533.8 (-1177.4, 2272.0) [0.510]	-1167.0 (-3673.9, 1725.0) [0.385]
		XGBoost	
Nondurable (BAM)	-52.472 (-139.271, 36.770) [0.252]	-12.078 (-109.406, 89.190) [0.867]	-35.454 (-165.980, 98.060) [0.636]
Food (BAM)		Elastic Net	
	-1.994 (-35.392, 33.270) [0.908]	-3.833 (-36.767, 30.830) [0.837]	-1.631 (-50.586, 47.520) [0.948]
Education (BAM)		SVM	
	$-6.131 \\ (-218.281, 268.000) \\ [0.964]$	-229.865 (-689.281, 214.800) [0.318]	243.820 (-271.025, 787.200) [0.322]
		Elastic Net	
Cigarettes and alcohol (BAM)	-1.386 (-8.518, 5.791) [0.661]	$\begin{array}{c} -2.491 \\ (-9.530, \ 5.520) \\ [0.491] \end{array}$	$ \begin{array}{r} 1.059 \\ (-10.087, 11.373) \\ [0.836] \end{array} $
		Elastic Net	
Recreation (BAM)	-11.132 (-92.655, 52.830) [0.787]	-8.159 (-77.078, 60.460) [0.797]	-5.306 (-115.419, 100.890) [0.922]
Home durable good index		Random Forest	
	$\begin{array}{c} 0.007 \\ (-0.157, \ 0.176) \\ [0.929] \end{array}$	$\begin{array}{c} -0.107 \\ (-0.266, \ 0.051) \\ [0.174] \end{array}$	$\begin{array}{c} 0.111\\ (-0.134,\ 0.340)\\ [0.359] \end{array}$
		SVM	
Savings (BAM)	-261.7 (-1108.2, 567.3) [0.515]	-1208.9 (-2453.5, 102.3) [0.072]	950.1 (-511.0, 2508.1) [0.187]

Table 27: GATES of Consumption and Savings

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.


	20% Most (δ_5)	20% Least (δ_1)	Difference $(\delta_5 - \delta_1)$
	< - /	SVM	· · · /
Savings			
Respondent is female	0.565	0.240	0.310
	(0.462, 0.658)	(0.156, 0.324)	(0.182, 0.438)
	-	-	[0.000]
Number of employed hh members	1.045	1.395	-0.360
	(0.877, 1.229)	(1.196, 1.596)	(-0.623, -0.084)
	-	-	[0.010]
Number of hh members attending school	0.675	1.075	-0.410
	(0.513, 0.846)	(0.875, 1.289)	(-0.677, -0.140)
	-	-	[0.002]
	Random Forest		
HDGI			
Dwelling ownership	0.975	0.645	0.315
	(0.936, 0.999)	(0.545, 0.735)	(0.220, 0.417)
	-	-	[0.000]
Number of female hh members	1.405	1.850	-0.465
	(1.236, 1.595)	(1.664, 2.066)	(-0.758, -0.176)
	-	-	[0.001]
Number of hh members attending school	0.470	0.990	-0.530
0	(0.316, 0.625)	(0.793, 1.205)	(-0.774, -0.268)
	-	-	[0.000]


Table 28: CLAN of Savings and HDGI

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.

P-values for the hypothesis that the parameter is equal to zero in brackets.

H Other

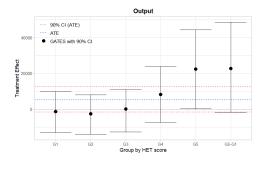


Figure 10: GATES of Moroccan Output

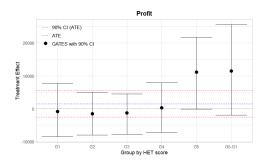


Figure 11: GATES of Moroccan Profit

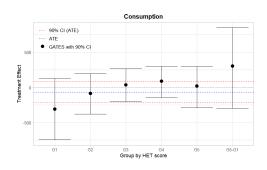


Figure 12: GATES of Moroccan Consumption

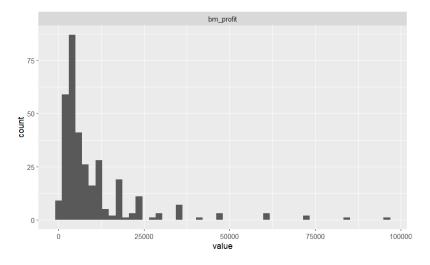


Figure 13: Histogram of Profit (Bosnia)

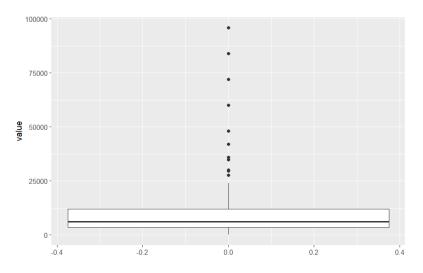


Figure 14: Box plot of Profit (Bosnia)