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Abstract

Assuring high interpretability is important in the validation of cluster analysis. Two
models have been previously introduced: a set covering and a partitioning model. These
models output optimal prototypes and corresponding true and false positive rates as their
interpretability. In addition, the Gaussian Mixture Model is introduced to relax the assump-
tion of data having circular clusters. It accounts for mean and covariance and allows elliptical
clusters under normal distribution. Both real-life data and simulated data are applied. The
results in the real-life data show that the Gaussian Mixture Model has worse interpretability
compared to the set covering model and the partitioning model, possibly due to the non-
normally distributed data. However, the simulated data presents that the set covering model
has the least interpretability compared to the partitioning model because its interpretabil-
ity is affected by the covariance of the data. The Gaussian Mixture Model showed greater

interpretability than the set covering but does not fully outperform the partitioning model.



1 Introduction

Cluster analysis summarises data into groups of subpopulations that have similar attributes.
There are many applications of cluster analysis in real life. For example, when businesses
have a large instance of customer information, cluster analysis can segment customers so that
similar customers are grouped. This helps them to have clearer targets and marketing goals
for their businesses. Another example is clustering biological patterns such as genetics (Liu et
al., 2022)) (Shi & Huang, 2017)). Cluster analysis helps identify subpopulations within a species,
which can be crucial for understanding genetic diversity and evolutionary relationships. Other
applications include clustering texts (Dransfield et al., 2004), identifying hydrogeological features
to aid groundwater interpretation (Ashley & Lloyd, 1978), grouping finance assets (Gibert &
Conti, [2014)), and analysis on data security (Corral et al., 2009).

Interpretability, which is the ability to explain the cluster, determines whether the observed
groupings are accurate. Commonly, there are two ways of interpreting clustering, namely, in-
trinsic and post-hoc models. Intrinsic models build explanations and clustering simultaneously
(Zeng et al., 2011), while the post-hoc approach starts with clustering, and then identifies the
explanation (Dronov & Evdokimov, 2018). This thesis focuses on the post-hoc approach, in
which the comprehension of each cluster can cause difficulty. One way of interpreting post-hoc
clustered models is via prototypes, a set of data points summarising a cluster’s characteristics.
Hence, selecting prototypes that achieve high interpretability are meaningful additions to the
cluster analysis.

In this thesis, two models are studied as a basis: the set covering model and the partitioning
model. The formulation of the set covering is based on the Location Analysis problems such
as by |Garcia & Marin| (2019), while the formulation of the partitioning model is inspired by
Marin & Pelegrin (2019)’s p-median problems. These two models output prototypes, allowing
us to determine the interpretability of a dataset. The clustering is established on the Euclidean
distance. Therefore, the closeness of the data points is a measure to find prototypes. The
difference between the models lies in the way it groups data points. The set covering model
outputs a radius of a circle with a prototype being the centre. If it is within the circle region,
the data point belongs to a cluster. Meanwhile, the partitioning model assigns a data point to
a cluster if it is the closest prototype available.

However, one of the limitations of the two models is that these only take the average distance
into account, as well as assume data as circular clusters when finding prototypes per cluster
Tkotun et al.| (2023]). To overcome this, we introduce the Gaussian Mixture Model (GMM). GMM
fits data into probabilistic distribution and finds clusters. GMM is usually performed in a normal
distribution. This model includes the expectation-maximisation algorithm (Patel & Kushwahal,
2020), using both the mean and the covariance, as well as detecting ellipsoidal-shaped clusters
based on maximum probability density estimations. These parameters of GMM can provide
direct information on mean, covariance and weights that define cluster characteristics. GMM
outperforms k-means clustering, a popular clustering technique, in complex data as well as soft
clustering, when clusters overlap. An example of when it has better performance is clustering
in cloud workloads (Patel & Kushwaha, 2020]) and high-speed machining (Z. Wang et al., [2019).

GMM is often applied to cluster bimodal patterns and environmental factors. For example, |Liu



et al| (2022) developed a new GMM to maximise information extracted from gene-expression
clustering. Optimising battery storage prototypes to improve electrical resilience using GMM is
researched by [Huang & Gou (2024]).

To contribute to the research of prototype optimisation for cluster analysis, the goal is to
have greater accuracy in selecting descriptive prototypes for explaining the clusters. While
general p-median clustering is based on uniform shapes and focuses on minimising the distance,
GMM allows greater flexibility in capturing the elliptical and complex cluster shapes. Hence,
this thesis attempts to recover set covering and partitioning models, as well as apply GMM to
find a set of prototypes that can optimise interpretability.

The rest of the sections are organised as follows. Section 2 is a literature review of this topic.
Section 3 explains the three models: set covering, partitioning and GMM. Section 4 introduces

the real-life data and simulated data. Sections 5 and 6 are the following results and conclusions.

2 Literature Review

As [Ullmann et al| (2021) outlines, there are many ways of interpreting post-hoc clusters such
as internal and external validations, stability analysis and visual inspection. Rousseeuw| (1987)
presented a graphical display technique that uses tightness and separation to form clusters.
Their work uses dissimilarities, which measure how far away the two objects are from each
other. This can be represented as a dissimilarity matrix of rows and columns at each data point.
Similarly to the Rousseeuw| (1987)), this thesis also constructs a dissimilarity matrix.

There are methods invented to improve the interpretability of clustering. For trace clustering,
which is a sequence of event logs, De Koninck et al. (2016) proposed an algorithm that finds the
key attributes of a cluster and moves instances if it does not have those. This provides clear,
concise rules that explain why a particular instance is part of a cluster. With clinical data,
Balabaeva & Kovalchuk| (2020]) applied Bayesian inference to compare the prior and posterior
distribution of features. This approach works for any clustering algorithm, however, refining
features with medical experts is necessary as human interpretation differs from algorithmic
interpretation. Furthermore, the set covering model and partitioning model constructed by
Carrizosa et al. (2022) are verified that these are explanatory in terms of true positive rate
(TPR) and false positive rate (FPR). TPR is the fraction of total individual data points that
actually correspond to the classified groups, also known as true positive cases, divided by the
number of data in its subpopulations. FPR is the fraction of total individual data points that
are incorrectly classified, known as false positive cases, divided by the number of data in its
subpopulations. This thesis utilises these two measures for interpretability.

Meanwhile, GMM has been researched in many studies, both in improving the model and
application to real data. Implementing GMM to different data has been researched, such as
GMM prototype modelling with fruit images |Gerstenberger et al. (2023)). They introduced a
gradient-based GMM layer to detect prototypes when identifying images. GMM is also applied
to cluster words in correct groups Chen et al. (2015)). For example, the word ” Apple” can be
interpreted as a fruit or an electronic company, and GMM is used to correctly cluster words
related to it.

There are a few shortcomings with GMM, such as reliance on a pre-defined number of clusters



and sensitivity to initial parameters. |[Yang et al| (2012)) focused on finding the optimal number
of clusters by producing robust algorithms that automatically obtain an optimal number of
clusters. Nonetheless, due to complexity, a general algorithm along with information criterion
is applied, as suggested by [Patel & Kushwaha (2020) in this thesis. |P. Wang & Wang (2017)
introduced a density peak clustering to ensure the cluster captures the global optimum, which
identifies noise according to the outlier degree of the point. The result showed that this algorithm
is more effective. Patel & Kushwaha| (2020]) highlighted that capturing global optimum can be
possible by initialising multiple times as well, which is incorporated as testing different numbers
of clusters in this thesis. Other unique methods introduced are as follows. GMM can also
be applied by clustering with rankings over a finite set of predefined labels, as [Zhou et al.
(2014) built a method that has similar predictive accuracy as other approaches. Combining
Gaussian distribution and beta distribution leads to beta-GMM that Dai et al.| (2009) invented,
where results show that the proposed method has meaningful outcomes compared to separately
modelling the two distributions.

Henceforth, the application of GMM in cluster analysis has been acknowledged, however,
identifying its interpretability in terms of TPR and FPR is not well-researched, which is why it
is intriguing to research for this thesis. If GMM can identify meaningful prototypes that yield
good TPR and FPR, greater accuracy and reliability for handling real-life data are assured.

3 Model

This section starts with an explanation of the interpretation of clusters in terms of TPR and
FPR, followed by the formulations of the three models: set covering, partitioning and GMM.
The first two models are based on the formulation described by the paper|Carrizosa et al.| (2022).
Application to larger instances is described after introducing the two models. The GMM is based
on Reynolds| (2009) and Wan et al.| (2019).

As explained in the previous section, TPR is the fraction of total individual data points
that correspond to the classified groups, also known as true positive cases. FPR is the fraction
of total individual data points that are incorrectly classified, known as false positive cases. To
visualise this, see Figure[l]where the red and blue dots are the data points, corresponding colours

represent the actual cluster and the circle represents the allocated clusters.
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Figure 1: Explanation of TPR and FPR in a cluster



In Figure the TPR of the red cluster is 0.8 since four out of five data points are selected,
and the FPR is 0.0 as no blue points are within the red circle. However, in Figure TPRis 1.0
since all the red points are within the red circle, but FPR is 0.25 as one blue data point is also
within the red circle. Hence, there is often a trade-off between TPR and FPR when conducting
cluster analysis. The aim is to have as high TPR and as low FPR as possible.

The three models aim to identify prototypes that maximise the TPR minus FPR. Note that
an individual is covered by a cluster if it is close enough to a prototype. Later, GMM is explained
to define how prototypes are selected based on probability distribution. The difference between
the two models and GMM is that the two models use Euclidean distance and its dissimilarities to
determine the optimal prototypes, while GMM estimates a probability distribution and accounts
for both mean and variance, as explained previously.

Mathematical notation which applies to both set covering and partitioning models is as
follows. Predefined sets of clusters C' determine how the individuals are allocated into each of
c € C. We have an individual n € N, where N = | Ne. Hence, a set of individuals belonging
to a cluster c is defined as N.. Each prototype ¢ is drawn from a set of prototype candidates
I. € N. with I = {J.cc 1. To determine optimal prototypes, dissimilarities are necessary to
quantify differences between the data points. This helps to group similar data points, meaning
the combination of points with low dissimilarities. Multiple formulas can be applied, such as
Manhattan distance and Cosine dissimilarity. In this thesis, Euclidean distance is selected to
calculate the dissimilarity matrix d;,, for every ¢ € I and n € N. The subsections below explain
the three models.

3.1 Set Covering Formulation

This model considers that individuals are covered by cluster ¢ if the dissimilarity is below a
threshold value. The threshold value is a radius r. for cluster ¢, of which the centre is the
corresponding prototype, chosen when the model is optimised from prototype candidates i € I..
The value of the radius can differ for each cluster. The radius takes a discrete amount of values.
This approach can lead to cases where individuals are covered by more than one radius, while
some individuals may not be covered at all. Hence, constraints are added to verify that an
individual belongs to only one prototype. Note that an extension to more than one prototype
is possible. We aim to find optimal sets of cluster radii r. and the prototypes.

This model is a Mixed Integer Linear Programming (MILP) formulation. There are four
decision variables of which the first three are binary: m,, zi, ¥%in, and r.. Let us formally
introduce each variable. A binary decision variable m;, takes a value of 1 only if individual
n € N lies in the ball of radius 7. centred at prototype ¢ € I. z; is a binary decision variable
that becomes 1 if the selected prototype ¢ € I. is an optimal prototype, and 0 otherwise. y;, is a
binary decision variable introduced to avoid bi-linear formulation by setting y;,, = 7 2;, inspired
by the Fortet transformation |[Fortet| (1960). Throughout the paper, we use bold typesetting to
denote the vectors, e.g., z = (z;)icr.

With the variables defined above, the TPR and FPR can be formulated as follows. The

number of true positive cases in cluster c is Zie I Zne N, TinZi- Hence, the TPR of a cluster ¢
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The objective function is equal to a maximisation of the total number of true positives



minus the total number of false positives. The trade-off parameter 6 weighs the importance
of TPR over FPR with 6 > 0. Constraint 4] certifies that only one prototype is assigned per
cluster. Constraint [5| ensures individuals are assigned to cluster c¢ if the dissimilarity between
an individual and a selected prototype is below the radius r., avoiding the case where m;;, = 1
when 7. < &;,. Constraint [] makes sure that if the individuals do not fall under the radius
Te < Oin, then they will fall under other clusters. Constraints [7] and [8| are constraints to ensure
TPR above the threshold of the parameter A and FPR below the threshold parameter p. These
two thresholds can take any value on the grid A € [0.0,1.0] and p € [0.0,1.0]. Constraints[9]
and [I1] define the decision variables.

min

win - as the minimum value of dissimilarity values between two

In this thesis, we assign 7
different data points, r. = min{d;, | ¢ € I;,n € N¢,i # n} and r*** as the maximum value of
dissimilarity values between two different data points, r. = max{d;, | i € I.,n € N, i # n}.
As explained previously, the decision variable y;, linearizes the bi-linear terms m;,z;. This is
ensured by Constraints 12-15. Hence, the set covering model with the above constraints is an
MILP with |I| x |N| + |I| binary and |C| continuous decision variables, and |I| x |N| + 4|C]|

linear constraints. Note that it is separable on the clusters.

3.2 Partitioning Model

The partitioning model does not have a threshold value and explains the prototype selection
based on the closeness. It is also MILP. A new binary variable is introduced, namely p;,, which
is 1 only if prototype i is the closest one to individual n from the chosen ones and 0 otherwise.
This variable allocates each individual to prototypes. z; variable is defined the same as before
to select a prototype for each cluster ¢ € I.. The TPR and FPR can be calculated similarly.
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Similarly, as in set covering, the objective function is equal to a maximisation of the total
number of true positives minus the total number of false positives. Again, 6 represents the trade-
off parameter between TPR and FPR. Constraint [L9| ensures that only one prototype is selected
per cluster, similar to Constraint [4 in set covering. Constraint [20]is an assignment constraint
formed based on (Wagner & Falkson, 1975)), to make sure each individual is assigned to the
closest prototype and there cannot be another closer prototype. Constraint [21] follows up by
certifying that individuals are assigned to prototypes that are selected as optimal. Constraint
ensures that exactly one prototype is assigned to each individual. Finally, constraints|23|and
are parameters controlling for TPR lower bound and FPR upper bound, followed by constraints
and representing binary variables explained previously. Hence, the partitioning model
with the above constraints is a MILP with [I| x |N| + || binary and |C| continuous decision
variables, and 2|I| x |[N| + 3|C| + |N| linear constraints. Note that it is again separable on the

clusters.

3.3 Application to larger instances

To solve a large instance with the above two models, we use a reduction technique which has
three steps: (1) perform a reduced model, (2) find solutions to larger instances, and (3) assess
the quality.

For (1), we form a reduced model based on a sample drawn from the large dataset. To do
so, perform hierarchical clustering on N., based on dissimilarity drawn from Euclidean distance.
Choose a threshold that yields \]\76], where N, € N, . Next, randomly select a point from
each cluster, yielding a total of |N,| points. These |N,| points are the representative of the
cluster with weights w,,, which is the number of data points in the cluster. Hence, the randomly
selected point becomes an individual in N,. To find a prototype candidate, we follow a similar
approach where we perform hierarchical clustering on I.. Choose a threshold that yields ]fC]
where fc C I.. Then, randomly select a point from each of the .fc, which becomes the total

number of ]fC] prototype candidates. The equations for the reduced model for set covering are



shown below.
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We solve the model with N, I, and assigning weights @, to replace |N.| in the TPR and
FPR boundary constraints. In other words, change from constraints [7] and [8] to [30] and
Furthermore, w, also replaces the denominator in the TPR formula in equation [1| and FPR
formula in equation [2], as shown in equations The weights also need to be multiplied for
both TPR and FPR in the objective function as shown above.

Once the model is solved, store the optimal solution of r’* and z% for i € I., ¢ € C. In this
thesis, z* only stored the data point that yields 1.0; in other words, the data points that are
selected as the optimal prototypes. This is a partial solution for the original problem with larger
instances.

In (2), we apply r” = rf and z° = z®. Since having greater instances could only reduce
the TPR and or increase FPR, rf® and zf already satisfy constraints [7] and |8, acting as an
upper bound of TPR and lower bound of FPR. Hence, we can drop these two constraints when
conducting the larger instances. Also, note that weights are removed in this model, so the
original models described in previous sections are used. Moreover, since the z* only contains
one value per cluster, all the equations above with z; are replaced by z., d;, as d,., and m;, as
T..n. This implies removing any ), ;. and Vi € I.. By default, equation {4 is eliminated.

In (3), recalculation of TPR and FPR are conducted with the corresponding optimal decision
variables derived from solving (2). The formulas of TPR and FPR are the same as above, which
are Equations [T and

For the partitioning model, reduction techniques explained in the set covering model can be
applied. The difference is that it only stores z% for i € I, ¢ € C' in (1). This is a partial solution
for the original problem with larger instances. In (2), we apply z9 = zf and similar procedures

take place for the constraints and variables.

3.4 Gaussian Mixture Models (GMMs)

GMM is a probabilistic model for representing sub-populations within the total population that
is normally distributed. A Gaussian distribution is defined by its mean vector p and covariance

matrix ¥. The probability density function (pdf) of a D-dimensional Gaussian distribution is



given below.

N(XI %) = ez o (5o = )" (X =)

w is the mean vector, 3 determines the shape of the distribution and is constructed by
the D x D covariance matrix. [¥| defines the determinant of ¥. GMM in cluster analysis
forms ellipsoidal shaped clusters based on probability density estimations, where each cluster is
modelled as a Gaussian distribution. Hence, GMM in clustering is a linear combination of the
Gaussian probability distribution where K is the number of clusters (or known as components)
and 7, known as a mixing coefficient, is an estimate of each Gaussian component. Hence, each

component k is described by consisting of mean g, covariance ¥ and mixing coefficient 7.

K
p(X) =Y mN (x|p, Tr)

k=1
For a given set of N independent and identically distributed observations {z1,z2,...,2n}

The log-likelihood function can be written as:

N K
Inp(X|m, 1, %) => In (Z ﬂ'kN(xn/ikka)>
k=1

n=1
The Expectation Maximisation (EM) algorithm finds Maximum Likelihood estimates (MLE)
for GMM. This algorithm is an iterative method of MLE with latent variables. The steps are

described below.

Algorithm 1 EM Algorithm for GMM

Initialize the parameters 6 = (g, pg, L) randomly.

repeat
E-step: Compute the responsibilities using the current parameter values.
for each data point x; do

for each cluster k£ do
Vik = TN (3| e, Zie)
’ oy N (il g, %)
end for
end for
M-step: Update the parameters using the current responsibilities.

for each cluster k£ do
1 —N
Tk = N Zizl Vik

_ XN vk
i=1 Yik
Y, = SN vie(i—pe) (@i—px)T
k= S ik
=1 I
end for

until No further changes in cluster assignment

It consists of two main steps, the Expectation step (E-step) and the Maximisation step (M-
step). In the E-step, the values of the latent variables are estimated, with the values of model
parameters fixed. In the M-step, new values for the model parameters are estimated to minimise

an error function. Repeat these two steps until a convergence criterion is met. The algorithm is

10



said to converge when there are no further cluster assignment changes.

In this thesis, the GMM is used to find a local optimal set of prototypes by fitting the data
into a probability distribution. The idea is as follows. First, the initial parameters p and ¥ are
generated from the data. Second, Algorithm [I]is conducted to find the optimal piopt and ept
for every cluster. As it is known to be computationally large, we utilise a sklearn package in
Python. Finally, the data points closest to popt and Xept are selected as optimal prototypes,
per cluster. The set of optimal prototypes acts as I. to the models above to find TPR and FPR.

GMM accounts for both mean and variance, which allows us to define clusters in various
shapes, such as ellipses. However, this implies that applying selected prototypes by GMM to
set covering formulation is not possible, since the radius is only defined to be spherical. In other
words, even if GMM detects a non-spherical shape, individuals are only covered if it is within the
sphere, which can worsen TPR and FPR. Therefore, GMM is only applied to the partitioning

model in this thesis. Adjusting the models to have non-spherical clusters is for further research.

4 Data

Two datasets are used in this thesis: a real-life data set of Canadian daily average temperature,

and a simulated data.

4.1 Canadian Weather

The first data is real-life data of Canadian weather representing the 365 daily average temperat-
ures of Canadian cities. This can be extracted from the “fda” package in R. It is composed of 35
cities and 4 regions. In this case, the predefined clustering of the cities is based on the regions
[“Atlantic”, “Pacific”, “Arctic” and “Continental”] the city is located in. Hence, N = 35 and
C = 4. Figure [2] illustrates the data where the x-axis is the days and the y-axis represents the
average temperatures. The cities are coloured according to what cluster they belong to: blue
for Atlantic, purple for Continental, red for Pacific, and green for Arctic. Before applying the
models, the dissimilarity matrix is calculated. By taking Euclidean distance between each city,

a dissimilarity matrix with dimensions 35 x 35 is created.

Temperature (+C)
|

Figure 2: Canadian weather data.

Regarding the Canadian weather data, its distribution is unknown to us. As GMM is de-
signed for normal distribution, testing the dataset is helpful to identify the accuracy of the

results. First, the Kolmogorov-Smirnov Test is conducted, which rejects the null hypothesis

11



that it is a normal distribution, see Table [l The “fitter” package in Python is utilised to verify.
The package allows 80 distributions to be fitted. Here, gamma, lognormal, beta, normal, and
exponential distributions are fitted to the average daily temperatures. This package outputs a
sum of squared residuals (SSR), with lower values indicating a greater fit. The beta distribution

is well-fitted compared to the other distributions as a normal distribution.

Table 1: Results of the tests to determine the distribution of Canadian Weather

SSR of fitted distributions
Kolmogorov Smirnov Test statistics (p-value) Normal Distrib. Exponential Distrib. Gamma Distrib. Lognorm Distrib. Beta Distrib.
0.097(0.002) 0.075 0.073 0.075 0.075 0.027

Although GMM is designed for normally distributed datasets, the daily average temperature
of Canadian cities is beta-distributed as shown above. This leads to poor model fitting and inac-
curacy because it does not capture the underlying structure of the data. To resolve this, inverse
normal transformation is used before applying GMM. Applying for the Beta Mixture Model
(BMM) is beyond the scope of the bachelor thesis as it has not been commonly researched and
the published previous literature is based on specific data (such as|Fu et al.| (2010])). Generalising
BMM is a further extension to be considered. Furthermore, GMM with beta-distributed data
has been discussed by Dai et al| (2009) as mentioned earlier, however, this paper incorporates

both Gaussian and beta-distributed data in its methodology which is not applicable here.

4.2 Simulated Data

The second data is simulated data to justify the interpretability with a larger dataset. It is three
normally distributed data points with the mean and covariance described below. The predefined
clusters are C' = 3. The demonstration of the scatter plot is in Figure 3] Here, N = 10000 are

plotted with corresponding clusters which are coloured in red, blue, and green.

+  Cluster1
- Cluster 2
- Cluster3

08 10 12 14 16 18 20 22
X-axis

Figure 3: Simulated data

The values of mean and covariance are shown below. Notice that the covariance and the

mean differences increase from cluster 1,2,3 respectively.
1.45 1.80 1.40
/61 = ’ 162 = ’ 163 =
1.50 1.60 2.00
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5 Results

This section is composed of three subsections. First, a general setting of the results, such as the
PC I used and adjustments of the initial parameters are described. Second, the shortcoming
of the GMM is mentioned. Finally, the results of Canadian weather and simulated data are

presented.

5.1 General setting

First, to solve the mathematical optimisation we use the Gurobi package in Python on a PC
Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz, 8GB of RAM. Furthermore, scikit — learn
package is used to solve the prototypes for GMM. Refer to the Appendix and the replication
codes for further details.

Regarding the time limit, |Carrizosa et al.| (2022) had a maximum of 4.3GHz and set a time
limit of 300 seconds. Since the laptop only has 1.8GHz, computational time can be much longer.
For this purpose, the time limit is adjusted to 600 seconds when necessary.

Due to the low GHz and greater computational time, some models are infeasible within
the 600-second time limit. For example, for the reduced partitioning model in simulated data,
the optimal solution is only found for one of the clusters under 600 seconds. Meanwhile, all
the models are feasible as the time limit increases to 1000 seconds. The Appendix shows the
evidence in Table 2l

Furthermore, the model records feasible values if it does not reach the optimal solution after
600 seconds, hence, it is likely that the overall results differ with a PC with high computational
power. Hence, the weak computational power is one of the reasons why the results can differ
from |Carrizosa et al. (2022) in simulated data. Hence, the detailed comparison of this thesis
and |Carrizosa et al.| (2022)) is only possible for the Canadian Weather Data as all the results are
collected in under 300 seconds.

Throughout this thesis, 8 = 1. The results are created based on the heatmap package in
Python. The white background represents model infeasibility. In the following section, for each

dataset, the results of set covering and partitioning models are shown first, followed by GMM.

5.2 GMM results interpretation

The shortcomings with interpreting the results from GMM is that it has many infeasible solu-
tions, and the reasoning is as follows. GMM pre-selects an optimal prototype based on the
distribution of the data. Hence, z is predefined containing one data point assigned as a proto-
type per cluster when running the model. Meanwhile, the set covering model and the partitioning
model described above are designed to assign optimal prototypes that maximise interpretability.

This implies that the prototypes that are selected by GMM may contradict the prototypes that
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are selected by the models for a given A and p. It may result in infeasible solutions for some
combinations of these as it may not satisfy the lower bound of TPR and upper bound of FPR
constraints. To determine whether GMM optimises prototype selection, only the feasible results
will be interpreted and compared in this thesis. Finding a method to implement GMM in the

above two models is potential future research to be considered.

5.3 Canadian Weather data

The results of the Canadian Weather data are presented below where A and p vary on the
grid [0.0,1.0] x [0.0, 1.0]. Generally, the set covering model has good interpretability, shown in
Figure [d In other words, there exist some trade-off between FPR and TPR depending on the
combination of A and u. For example, (A, u) = (0.80,0.20) then we have T PR Ayqantic = 0.80,
TPRpgcific = 0.80, whereas F'P R gtjantic = 0.00, FPRpqc;pic = 0.03. However, when we increase
the lower bound of TPR, such as (A, 1) = (0.90,0.30), then we have greater values in 2 clusters,
namely, increase by 0.13 for T'PR atantic and 0.2 for TPRpgeific. On the other hand, the FPR
increased for those clusters by 0.15 for F'PR ayantic and 0.20 for FPRpye;fic. To summarise, the
higher the value of lambda which restricts TPR value, the worse the FPR. For the Arctic, the

values stay the same regardless of the combination of A and p.

On the other hand, Carrizosa et al,| (2022)’s set covering model does not have exactly the

pattern. For example, they find different combinations of A\ and p. as TPRpgsific = 0.6
and FPRpgsific = 0.0. One possible reason is the use of different versions of the Gurobi

package. This thesis uses a newer package which may result in more advanced and accurate

outcomes. Another possible cause is the calculation of distances, since |Carrizosa et al. (2022])

does not mention how they calculated the distance precisely, it may have resulted in a different

dissimilarity matrix. The results of the partitioning model is explained below.
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Figure 4: Set covering for Canadian weather data. A and p vary on the grid [0.0,0.1] x [0.0, 1.0]

The result of the partitioning model shown in Figure [5| is straightforward; there is simply
no trade-off with greater TPR for worse FPR since TPR values do not alter regardless of the
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combination of A and p. However, there is a trade-off between what FPR to choose depending
on the regional interpretation. Specifically, if we look at the pattern of the FPR, Pacific and
Arctic have the same values, whereas for Atlantic the pattern is the same but the FPR values
differ. For example, if we choose (A, ) = (0.80,0.10) then the result is FPRayqntic = 0.10,
FPRpgcific = 0.00, FPR gretic = 0.00. However, when we choose (A, 1) = (0.70,0.10) the value
of F'PR gtiantic decreases by 0.1 while FPRpgc;fic and F PR rctic increase by 0.03. Hence, while
TPR values do not change throughout, FPR can vary depending on the region to focus on.

On the other hand, (Carrizosa et al.| (2022)’s partitioning model does not have the same

pattern because they found one FPR value per region which does not vary across A or u. The
same reasoning as the set covering model can be applied, where the versions of the Gurobi

package and the calculation of distances may influence the results.
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Figure 5: Partitioning model for Canadian Weather data. A and p vary on the grid [0.0,0.1] x
[0.0,1.0]

Next, the results of GMM applied to the partitioning model are shown. As explained in
the previous section, GMM resulted in more infeasible regions, meaning a greater white back-
ground in the heatmap. In the following, the outcomes of the two models are shown. First, the
results of regular GMM are presented, followed by the results from GMM with inverse normal
transformation.

Figure [6] shows the TPR and FPR derived based on the model with the optimal prototypes
selected by GMM. The result is worse than the regular partitioning model (Figure [f). For
example, FPR is generally higher, especially noticeable with F'PR Agantic = 0.25. Except for
Continental where it improved by 0.09. TPR is the same for all except deterioration by 0.34
in Continental. This is expected as Canadian Weather data fitted S-distribution well, while
GMM is designed for Normal distribution.
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Figure 6: Gaussian Mixture Model with Canadian Weather data. A and p vary on the grid
[0.0,0.1] x [0.0,1.0]

We focus on Figure [7] where the data is inversely normally transformed to apply GMM.
Compared to the original partitioning model in Figure [§] Figure [7] three models worsened by
approximately 0.3 for T PRcontinentals 1 PRArctic and F'PR ayqntic. However, some models im-

proved, in comparison to the results obtained by |Carrizosa et al.| (2022) and partitioning model
(Figure [5), which are TPRauantic; F PRpacific and FPRayctic, by 0.03 or 0.06. Compared to
the previous model which is GMM without inverse normal transformation (Figure [6]), it has
favourable results for T PR ayantic and smaller FPR for FPRpgcific and FPR gpctic. Nonethe-
less, it has worse T PR Arctic, FPRAtiantic and F PRoontinental- Lherefore, if we want greater

improvement for the specific regions, GMM with inverse normal transformation is preferred,
while the importance is equal for all, the original model is preferred. In other words, there is
a trade-off between putting more importance on T'PRasantic, F'PRpacific and F'PR arctic, or
FPRcontinentals T PR Arctic and F PR ayantic. Overall, the inversely normally transformed data
gave mixed results that caused some of the FPR to improve while worsening TPR and visa

versa.
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Figure 7: Gaussian Mixture Model with Inverse Normal Transformed Canadian Weather data.
A and p vary on the grid [0.0,0.1] x [0.0, 1.0]

Before moving on to Simulated data, the summary of this section is given. The results of

set covering and partitioning models are similar to Carrizosa et al| (2022). However, the results

of a few combinations of A and p do alter, despite using the same data. This is likely due to
differences in Gurobi packages and ambiguity in calculating Euclidean distance and constructing
dissimilarity matrix.

Next, we summarise the implementation of GMM. First, simple GMM resulted in a worse
than regular partitioning model, despite an improvement in F'PRcontinental- Second, GMM
with Inverse normal transformation had mixed results. The values improved in T PR Aqantics
FPRpgcific and F'PRApctic, however, worsened in T'PRoontinentals TP Rarctic and FPR agantic-
Hence, despite some improvements, the regular partitioning model and set covering model (Fig-
ure (4| and [5)) are favoured seeing the overall TPR and FPR values, however, if the focus is on
particular regions, GMM with inverse normal transformation could be beneficial. Application

of GMM to non-normal distributed data is a possible further extension for the future.

5.4 Simulated data

As explained in the previous section, two steps are involved in simulated data. First, the
reduction technique is conducted to get a reduced model, and second, large instances are applied
to this model.

(Carrizosa et al. (2022) applied this technique to |N| € 10%,10%, 105 with |N,| = 125, |I.| =

25. However, it is not possible with the current PC, due to the weak computational power that

led to hours to get one optimal solution, and most importantly, a memory error occurs when
creating a dissimilarity matrix for larger instances from |N| € 10*. Hence, to present that the
methodology is valid, the reduction technique is conducted with a smaller dataset of |[N| = 300
with |N,| = 50, |I.| = 15. (See Appendixfor the attempt on reduced model with |N| = 104
with |N,| = 125, |I.| = 25.) The values of A and p vary on the grid [0.05,0.1] x [0.85,0.9]. We

now discuss the results of the set covering model followed by the partitioning model, then GMM.
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The set covering model with a sample of 300 datasets is shown in Figure 8. Seeing ]N| = 50,
the values vary in each cluster in TPR and FPR, especially in cluster 1. This is possibly due
to the smaller dataset causing larger distances between each cluster, resulting in different sets
of prototypes per combination of A and u. It is also clear here that the trade-off between high
TPR and low FPR exists, as a higher lower bound on TPR (implying higher \) implies greater
TPR but also with larger FPR.

In general, it is clear that | N| = 300 leads to worse outcomes compared to the reduced model.
Specifically, cluster 3 has TPR of 0.5 and 0.57 which is considerably low compared to |Carrizosa
et al| (2022)), where the lowest TPR value recorded is 0.85. Meanwhile, FPR values do increase
but by a small amount. For example, cluster 3 does not change except from 0.05 to 0.06, and
part of cluster 1 changed from 0.08 to 0.09 and 0.10. This implies that having a small dataset
does not affect the FPR as much as TPR. Most likely this is because of the higher covariance
and larger mean differences in clusters 2 and 3, resulting in more scattered data points with low
concentration around the mean (see Data Section).

Three factors could have affected the results of the | N| = 300. First, a small dataset implies
more scattered data points. The weights do account for the selected data points in the reduced
model, however, the selection of a point for each of the 50 clusters as well as for 15 prototypes
might have led to the undesirable summarisation of the data leading to lower TPR, and high
FPR, compared to Carrizosa et al.| (2022) where they used |N| = 10%. Second, the randomisation
of selecting data points from each of the 50 hierarchical clusters as well as 15 prototypes could
highly have led to different optimisation than the Carrizosa et al.| (2022)) which makes it difficult
to compare. Finally, the elimination of the lower bound of TPR and the upper bound of FPR
constraints for the |N| = 300, as explained in the Model Section. This could have resulted in a
much lower TPR and higher FPR than expected.
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The results of the partitioning model are shown below in Figure @ Seeing |N | = 50, the
TPR value reduces when A increases in clusters 2 and 3. Meanwhile, cluster 1 still follows the
same trend as the results in the set covering model, where a rise in A leads to greater TPR along
with a worse FPR. With |N| = 300, the results worsened or stayed the same for most of the
values. For example, FPR values of cluster 1 rise by 0.02 in the larger dataset for some areas of
0.06 and 0.08 in the reduced model. On the other hand, some combinations of A and p led to
a strangely favourable outcome, such as the rise in TPR from 0.88 to 0.89 for clusters 1 and 2
1 = 0.06 region. The possible reason for this irregular pattern is due to the same reasoning as
the first factor in the previous paragraph, where summarising clusters with weights might have
led to unrealistic data points.

Compared with the set covering model, the overall results seem stable with the partitioning
model when conducting the reduction technique and then applying it to larger instances. Spe-
cifically, as A rises, the results of the partitioning model are not as elevated as the set covering
model and only two values are recorded in the feasible region. Furthermore, the TPR in set
covering does not reduce to below 0.86 in clusters 2 and 3 when applying to |[N| = 300. Some
regions in FPR are more favourable in the set covering than the partitioning models, though it

depends on the values of A and pu.
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The results of GMM are shown below in Figure There are many infeasible regions as
expected, due to applying only one set of prototypes to the entire combination of A and pu.
Overall results are analysed by comparing to the previous two models.

Unlike the results in |N| = 300 in the set covering model (Figure [§)), the GMM has a single
value throughout its feasible region. Overall, it showed a larger TPR compared to the set
covering model. To be precise, the TPR values of clusters 2 and 3 are greater by at least 0.1 and
0.31 but worse by 0.04 for cluster 1 in GMM compared to the set covering model. GMM has
a slightly mixed outcome for FPR, as it improved by 0.04 in cluster 2 but worsened by 0.02 in
cluster 3. However, the general improvement in TPR is much larger than the changes in FPR.

Moving on to comparing the results in |N| = 300 of the partitioning model( Figure@ against
GMM, the interpretability does improve for two clusters but is slightly worse for one of them.
Especially the TPR values improved for clusters 1 by 0.05 and 3 by 0.02 under the same A and
1 combinations. However, it worsened by 0.03 for cluster 2. The values of FPR do not change
for cluster 1, improved by 0.04 in cluster 2, worsened by 0.02 in cluster 3. Hence, the GMM

does not have a clear improvement when compared to the partitioning model.
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Figure 10: GMM with simulated data. True Positive Rate and False Positive Rate. A and p
vary on the grid [0.05,0.1] x [0.85,0.9]

To summarise the simulated data section, when the reduction technique is conducted with
|N| = 50 and then with |N| = 300, the set covering results in much worse TPR outcomes when
the data is more dispersed (as cluster 3 has larger covariance compared to the other two). On
the other hand, FPR values are not affected or are affected by a small amount compared to the

changes in TPR. Hence, especially with the small and dispersed dataset, the set covering model
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has the least favourable performance. Meanwhile, the partitioning model has relatively stable
results when the reduced model is applied to the larger instances (|N| = 300), as its TPR does
not reduce below 0.86. The recorded FPR values are similar, hence, the more favourable model
depends on the values of A and u. Generally, GMM showed a greater improvement in TPR
values compared to the set covering model, but with slightly worsened regions in FPR. Finally,
comparing GMM with the partitioning model shows mixed results, where for some clusters the

TPR or FPR are better, but for others, it is the same or worse.

6 Conclusion

In this thesis, the interpretation of post-hoc clustered models is analysed in terms of TPR
and FPR. Two models are studied as a basis: the set covering model and the partitioning
model. These two models output prototypes, allowing us to determine the interpretability of a
dataset. The goal is to select prototypes that achieve high interpretability, which is high TPR
and low FPR as possible. The clustering is established on the Euclidean distance. Therefore,
the closeness of the data points is a measure to find prototypes. To tackle the limitation of the
two models that these only take the average distance into account, as well as assume data as
circular clusters, the GMM is introduced, which uses both the mean and the covariance, as well
as detecting ellipsoidal-shaped clusters based on maximum probability density estimations. As
GMM is designed for normally distributed data, the inverse normal transformation is applied to
beta-distributed real-life data.

The results of set covering and partitioning models in the real-life (Canadian weather) data
are similar to (Carrizosa et al| (2022). However, due to differences in Gurobi packages and
ambiguity in calculating Euclidean distance, the results were not exactly the same.

Implementing GMM in real-life data does not improve all the results, even with the inverse
normal transformation. Some of the regions had better results than the partitioning and the set
covering models, which resulted in a trade-off between which regions to give more importance
to. Therefore, GMM with inverse normal transformation is only better than the regular two
models if the importance lies on particular regions.

In the simulated data, the reduction technique is conducted with |[N| = 50 and then with
|N| = 300. This is due to the memory error when constructing the large dissimilarity matrix
with |N| = 10000 for the reduced model as done by the original author |Carrizosa et al.| (2022).
In general, the results of the set covering result in much lower TPR outcomes when the data is
more dispersed (as cluster 3 has a larger covariance compared to the other two). Especially with
the small and dispersed dataset, the set covering model has the least favourable performance.
Meanwhile, the partitioning model has relatively stable results when the reduced model is applied
to the larger instances (|N| = 300), as its TPR does not reduce below 0.86. Generally, GMM
showed a greater improvement in TPR values compared to the set covering model but compared
to the partitioning model it shows mixed results.

The three possible areas of further research are as follows. Firstly, find a method to directly
implement GMM in the above two models, since there is only one set of prototypes selected by
GMM, it may contradict the prototypes that the models selected. It resulted in many infeasible

solutions as it does not satisfy the lower bound of TPR and upper bound of FPR constraints.
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Secondly, research into fitting Canadian data into the Beta Mixture Model. Generalising this
model may improve the interpretability of the Canadian data, and extend towards research in
the Beta Mixture Models. Finally, extend the set covering model that allows adjusting to the
non-spherical radius, for example, by allowing two radii of different sizes. This is beneficial as

it will capture the cluster characteristics.
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A Appendix

A.1 Evidence of time limit leading to infeasibility

Table 2: The TPR and FPR of each cluster when A = 0.89 and p = 0.08 with time limit of 1000
seconds

Cluster TPR FPR Selected prototype index in seed(150)

1 0.89  0.07 1046,6316,8761
2 0.90  0.05 1046,6316,8761
3 0.90  0.04 1046,6316,8761

As presented above, the TPR and FPR are present for all clusters when the time limit is set as
1000 seconds. Compared to the Figure below, the A = 0.89 and p = 0.08 are missing in Cluster

1 and 3 when setting the time limit as 600 seconds.

TPR Heatmap for 0 Cluster TPR Heatmap for 1 Cluster TPR Heatmap for 2 Cluster
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FPR Heatmap for 0 Cluster FPR Heatmap for 1 Cluster FPR Heatmap for 2 Cluster

0.05 0.06 0.07 0.08 0.09 0.10 0.05
Mu

(b) |IN|| = 375, FPR for cluster 1,2,3

(c) Partitioning model with reduction technique. True Positive Rate and False Positive Rate in set
covering with the increasing data size. A and p vary on the grid [0.05,0.1] x [0.85,0.9]

A.2 Reduced model with |N| = 10*

The attempt to solve a reduced model as described in Carrizosa et al.| (2022)) is presented below.
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B Programming code

Hardware information: PC Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz, 8GB of RAM.

Step 1: Download Pycharm version 2024.1.4 from https://www. jetbrains.com/pycharm/
download/?section=windows.

Step 2: Download R version 4.3.3 from https://cran.rstudio.com/

Step 3: Download the IDE compatible with R version 4.3.3 called Rstudio from https://
posit.co/download/rstudio-desktop/

Step 4: Download Rtools43 from https://cran.rstudio.com/bin/windows/Rtools/rtools43/
rtools.html

Step 5: Run the code

Description of the code:

thesis(Rcode): extracts Weather data in R.

thesis_figl.py: produces Figure 1 to explain TPR and FPR

thesis_figure2.py: produces Figure 2
e heatmap.py: produces heatmaps for all the csv filed results from Canadian Weather Data

heatmap_simulated.py:produces heatmaps for all the csv filed results from simulated
data
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extension-GMM _partitioning weather.py: produces GMM without inverse normal

transformation in weather data.

extension-GMM _partitioning_weather_with_Inv_Norm.py: produces GMM with

inverse normal transformation in weather data.
extension-GMM_with_small_dataset.py: produces GMM results with |N| = 300
extension-simulation_partitioning.py: produces GMM with |N| = 10000

extension_dissimilarity_matrix.py verifies the memory error of 10000 x 10000 dissim-

ilarity matrix

thesis_dissim_matrix.py: produces dissimilarity matrix for each region in Canadian
Weather data

thesis_simulated_datacollection.py: produces simulated data scatter plot

trial_partitioning_simulation.py: produces the output of reduced technique for parti-
tioning model with |N| = 10000

trial_partitioning_simulation_with_small _dataset.py: produces the output of reduced

technique for set covering model with |N| = 300

trial_partitioning _simulation_with_small dataset_reduced _model.py: produces out-

put with reduced technique for partitioning model with |[N| = 300 and |[N| = 50.

trial_partitioning_weather.py: produces the output for weather data for partitioning

model

trial_set_covering_simulation.py: produces the output for simulated data for the set
covering model for |[N| = 10000

trial_set_covering_simulation_with_small_dataset.py: produces the output of reduced

technique for partitioning model with |N| = 300

trial_set_covering_simulation_with_small dataset_reduced_model.py:produces out-

put with reduced technique for set covering model with |[N| = 300 and |N| = 50.

trial_set_covering _weather.py: produces the output for weather data for the set cover-

ing model

weather_data_analysis: produces output of the Kolmogorov Smirnov test and fitter

package in Python
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