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Abstract

Assuring high interpretability is important in the validation of cluster analysis. Two

models have been previously introduced: a set covering and a partitioning model. These

models output optimal prototypes and corresponding true and false positive rates as their

interpretability. In addition, the Gaussian Mixture Model is introduced to relax the assump-

tion of data having circular clusters. It accounts for mean and covariance and allows elliptical

clusters under normal distribution. Both real-life data and simulated data are applied. The

results in the real-life data show that the Gaussian Mixture Model has worse interpretability

compared to the set covering model and the partitioning model, possibly due to the non-

normally distributed data. However, the simulated data presents that the set covering model

has the least interpretability compared to the partitioning model because its interpretabil-

ity is affected by the covariance of the data. The Gaussian Mixture Model showed greater

interpretability than the set covering but does not fully outperform the partitioning model.
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1 Introduction

Cluster analysis summarises data into groups of subpopulations that have similar attributes.

There are many applications of cluster analysis in real life. For example, when businesses

have a large instance of customer information, cluster analysis can segment customers so that

similar customers are grouped. This helps them to have clearer targets and marketing goals

for their businesses. Another example is clustering biological patterns such as genetics (Liu et

al., 2022) (Shi & Huang, 2017). Cluster analysis helps identify subpopulations within a species,

which can be crucial for understanding genetic diversity and evolutionary relationships. Other

applications include clustering texts (Dransfield et al., 2004), identifying hydrogeological features

to aid groundwater interpretation (Ashley & Lloyd, 1978), grouping finance assets (Gibert &

Conti, 2014), and analysis on data security (Corral et al., 2009).

Interpretability, which is the ability to explain the cluster, determines whether the observed

groupings are accurate. Commonly, there are two ways of interpreting clustering, namely, in-

trinsic and post-hoc models. Intrinsic models build explanations and clustering simultaneously

(Zeng et al., 2011), while the post-hoc approach starts with clustering, and then identifies the

explanation (Dronov & Evdokimov, 2018). This thesis focuses on the post-hoc approach, in

which the comprehension of each cluster can cause difficulty. One way of interpreting post-hoc

clustered models is via prototypes, a set of data points summarising a cluster’s characteristics.

Hence, selecting prototypes that achieve high interpretability are meaningful additions to the

cluster analysis.

In this thesis, two models are studied as a basis: the set covering model and the partitioning

model. The formulation of the set covering is based on the Location Analysis problems such

as by Garćıa & Maŕın (2019), while the formulation of the partitioning model is inspired by

Maŕın & Pelegŕın (2019)’s p-median problems. These two models output prototypes, allowing

us to determine the interpretability of a dataset. The clustering is established on the Euclidean

distance. Therefore, the closeness of the data points is a measure to find prototypes. The

difference between the models lies in the way it groups data points. The set covering model

outputs a radius of a circle with a prototype being the centre. If it is within the circle region,

the data point belongs to a cluster. Meanwhile, the partitioning model assigns a data point to

a cluster if it is the closest prototype available.

However, one of the limitations of the two models is that these only take the average distance

into account, as well as assume data as circular clusters when finding prototypes per cluster

Ikotun et al. (2023). To overcome this, we introduce the Gaussian Mixture Model (GMM). GMM

fits data into probabilistic distribution and finds clusters. GMM is usually performed in a normal

distribution. This model includes the expectation-maximisation algorithm (Patel & Kushwaha,

2020), using both the mean and the covariance, as well as detecting ellipsoidal-shaped clusters

based on maximum probability density estimations. These parameters of GMM can provide

direct information on mean, covariance and weights that define cluster characteristics. GMM

outperforms k-means clustering, a popular clustering technique, in complex data as well as soft

clustering, when clusters overlap. An example of when it has better performance is clustering

in cloud workloads (Patel & Kushwaha, 2020) and high-speed machining (Z. Wang et al., 2019).

GMM is often applied to cluster bimodal patterns and environmental factors. For example, Liu
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et al. (2022) developed a new GMM to maximise information extracted from gene-expression

clustering. Optimising battery storage prototypes to improve electrical resilience using GMM is

researched by Huang & Gou (2024).

To contribute to the research of prototype optimisation for cluster analysis, the goal is to

have greater accuracy in selecting descriptive prototypes for explaining the clusters. While

general p-median clustering is based on uniform shapes and focuses on minimising the distance,

GMM allows greater flexibility in capturing the elliptical and complex cluster shapes. Hence,

this thesis attempts to recover set covering and partitioning models, as well as apply GMM to

find a set of prototypes that can optimise interpretability.

The rest of the sections are organised as follows. Section 2 is a literature review of this topic.

Section 3 explains the three models: set covering, partitioning and GMM. Section 4 introduces

the real-life data and simulated data. Sections 5 and 6 are the following results and conclusions.

2 Literature Review

As Ullmann et al. (2021) outlines, there are many ways of interpreting post-hoc clusters such

as internal and external validations, stability analysis and visual inspection. Rousseeuw (1987)

presented a graphical display technique that uses tightness and separation to form clusters.

Their work uses dissimilarities, which measure how far away the two objects are from each

other. This can be represented as a dissimilarity matrix of rows and columns at each data point.

Similarly to the Rousseeuw (1987), this thesis also constructs a dissimilarity matrix.

There are methods invented to improve the interpretability of clustering. For trace clustering,

which is a sequence of event logs, De Koninck et al. (2016) proposed an algorithm that finds the

key attributes of a cluster and moves instances if it does not have those. This provides clear,

concise rules that explain why a particular instance is part of a cluster. With clinical data,

Balabaeva & Kovalchuk (2020) applied Bayesian inference to compare the prior and posterior

distribution of features. This approach works for any clustering algorithm, however, refining

features with medical experts is necessary as human interpretation differs from algorithmic

interpretation. Furthermore, the set covering model and partitioning model constructed by

Carrizosa et al. (2022) are verified that these are explanatory in terms of true positive rate

(TPR) and false positive rate (FPR). TPR is the fraction of total individual data points that

actually correspond to the classified groups, also known as true positive cases, divided by the

number of data in its subpopulations. FPR is the fraction of total individual data points that

are incorrectly classified, known as false positive cases, divided by the number of data in its

subpopulations. This thesis utilises these two measures for interpretability.

Meanwhile, GMM has been researched in many studies, both in improving the model and

application to real data. Implementing GMM to different data has been researched, such as

GMM prototype modelling with fruit images Gerstenberger et al. (2023). They introduced a

gradient-based GMM layer to detect prototypes when identifying images. GMM is also applied

to cluster words in correct groups Chen et al. (2015). For example, the word ”Apple” can be

interpreted as a fruit or an electronic company, and GMM is used to correctly cluster words

related to it.

There are a few shortcomings with GMM, such as reliance on a pre-defined number of clusters

3



and sensitivity to initial parameters. Yang et al. (2012) focused on finding the optimal number

of clusters by producing robust algorithms that automatically obtain an optimal number of

clusters. Nonetheless, due to complexity, a general algorithm along with information criterion

is applied, as suggested by Patel & Kushwaha (2020) in this thesis. P. Wang & Wang (2017)

introduced a density peak clustering to ensure the cluster captures the global optimum, which

identifies noise according to the outlier degree of the point. The result showed that this algorithm

is more effective. Patel & Kushwaha (2020) highlighted that capturing global optimum can be

possible by initialising multiple times as well, which is incorporated as testing different numbers

of clusters in this thesis. Other unique methods introduced are as follows. GMM can also

be applied by clustering with rankings over a finite set of predefined labels, as Zhou et al.

(2014) built a method that has similar predictive accuracy as other approaches. Combining

Gaussian distribution and beta distribution leads to beta-GMM that Dai et al. (2009) invented,

where results show that the proposed method has meaningful outcomes compared to separately

modelling the two distributions.

Henceforth, the application of GMM in cluster analysis has been acknowledged, however,

identifying its interpretability in terms of TPR and FPR is not well-researched, which is why it

is intriguing to research for this thesis. If GMM can identify meaningful prototypes that yield

good TPR and FPR, greater accuracy and reliability for handling real-life data are assured.

3 Model

This section starts with an explanation of the interpretation of clusters in terms of TPR and

FPR, followed by the formulations of the three models: set covering, partitioning and GMM.

The first two models are based on the formulation described by the paper Carrizosa et al. (2022).

Application to larger instances is described after introducing the two models. The GMM is based

on Reynolds (2009) and Wan et al. (2019).

As explained in the previous section, TPR is the fraction of total individual data points

that correspond to the classified groups, also known as true positive cases. FPR is the fraction

of total individual data points that are incorrectly classified, known as false positive cases. To

visualise this, see Figure 1 where the red and blue dots are the data points, corresponding colours

represent the actual cluster and the circle represents the allocated clusters.

(a) Clustering option 1 (b) Clustering option 2

Figure 1: Explanation of TPR and FPR in a cluster
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In Figure 1a, the TPR of the red cluster is 0.8 since four out of five data points are selected,

and the FPR is 0.0 as no blue points are within the red circle. However, in Figure 1b, TPR is 1.0

since all the red points are within the red circle, but FPR is 0.25 as one blue data point is also

within the red circle. Hence, there is often a trade-off between TPR and FPR when conducting

cluster analysis. The aim is to have as high TPR and as low FPR as possible.

The three models aim to identify prototypes that maximise the TPR minus FPR. Note that

an individual is covered by a cluster if it is close enough to a prototype. Later, GMM is explained

to define how prototypes are selected based on probability distribution. The difference between

the two models and GMM is that the two models use Euclidean distance and its dissimilarities to

determine the optimal prototypes, while GMM estimates a probability distribution and accounts

for both mean and variance, as explained previously.

Mathematical notation which applies to both set covering and partitioning models is as

follows. Predefined sets of clusters C determine how the individuals are allocated into each of

c ∈ C. We have an individual n ∈ N , where N =
⋃

c∈C Nc. Hence, a set of individuals belonging

to a cluster c is defined as Nc. Each prototype i is drawn from a set of prototype candidates

Ic ⊆ Nc with I =
⋃

c∈C Ic. To determine optimal prototypes, dissimilarities are necessary to

quantify differences between the data points. This helps to group similar data points, meaning

the combination of points with low dissimilarities. Multiple formulas can be applied, such as

Manhattan distance and Cosine dissimilarity. In this thesis, Euclidean distance is selected to

calculate the dissimilarity matrix δin, for every i ∈ I and n ∈ N . The subsections below explain

the three models.

3.1 Set Covering Formulation

This model considers that individuals are covered by cluster c if the dissimilarity is below a

threshold value. The threshold value is a radius rc for cluster c, of which the centre is the

corresponding prototype, chosen when the model is optimised from prototype candidates i ∈ Ic.

The value of the radius can differ for each cluster. The radius takes a discrete amount of values.

This approach can lead to cases where individuals are covered by more than one radius, while

some individuals may not be covered at all. Hence, constraints are added to verify that an

individual belongs to only one prototype. Note that an extension to more than one prototype

is possible. We aim to find optimal sets of cluster radii rc and the prototypes.

This model is a Mixed Integer Linear Programming (MILP) formulation. There are four

decision variables of which the first three are binary: πin, zi, yin, and rc. Let us formally

introduce each variable. A binary decision variable πin takes a value of 1 only if individual

n ∈ N lies in the ball of radius rc centred at prototype i ∈ I. zi is a binary decision variable

that becomes 1 if the selected prototype i ∈ Ic is an optimal prototype, and 0 otherwise. yin is a

binary decision variable introduced to avoid bi-linear formulation by setting yin = πinzi, inspired

by the Fortet transformation Fortet (1960). Throughout the paper, we use bold typesetting to

denote the vectors, e.g., z = (zi)i∈I .

With the variables defined above, the TPR and FPR can be formulated as follows. The

number of true positive cases in cluster c is
∑

i∈Ic
∑

n∈Nc
πinzi. Hence, the TPR of a cluster c
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(TPRc) is

TPRc =

∑
i∈Ic

∑
n∈Nc

πinzi

|Nc|
(1)

The number of false positive cases in cluster c is
∑

i∈Ic
∑

n∈N\Nc
πinzi and the FPR can be

shown as

FPRc =

∑
i∈Ic

∑
n∈N\Nc

πinzi

|N \Nc|
(2)

Below are the objective functions and constraints and each is explained afterwards.

max
z,π,r

∑
c∈C

∑
i∈Ic

∑
n∈Nc

yin − θ
∑
c∈C

∑
i∈Ic

∑
n∈N\Nc

yin

s.t.

(3)

∑
i∈Ic

zi = 1, ∀c ∈ C (4)

rc ≥ δinπin, ∀(i, n) ∈ Ic ×Nc,∀c ∈ C (5)

rc ≤ δin + (rmax
c − δin)πin, ∀(i, n) ∈ Ic × (N \Nc), ∀c ∈ C (6)

∑
i∈Ic

∑
n∈Nc

πinzi ≥ ⌈λc|Nc|⌉, ∀c ∈ C (7)

∑
i∈Ic

∑
n∈N\Nc

πinzi ≤ ⌊µc|N \Nc|⌋, ∀c ∈ C (8)

rmin
c ≤ rc ≤ rmax

c , ∀c ∈ C (9)

zi ∈ {0, 1}, ∀i ∈ Ic, ,∀c ∈ C (10)

πin ∈ {0, 1}, ∀(i, n) ∈ Ic ×N, ∀c ∈ C (11)

yin ≤ πin, ∀(i, n) ∈ Ic ×N, ∀c ∈ C (12)

yin ≤ zi, ∀(i, n) ∈ Ic ×N, ∀c ∈ C (13)

yin ≥ πin + zi − 1, ∀(i, n) ∈ Ic ×N, ∀c ∈ C (14)

yin ∈ {0, 1}, ∀(i, n) ∈ Ic ×N, ∀c ∈ C (15)

The objective function is equal to a maximisation of the total number of true positives
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minus the total number of false positives. The trade-off parameter θ weighs the importance

of TPR over FPR with θ ≥ 0. Constraint 4 certifies that only one prototype is assigned per

cluster. Constraint 5 ensures individuals are assigned to cluster c if the dissimilarity between

an individual and a selected prototype is below the radius rc, avoiding the case where πin = 1

when rc < δin. Constraint 6 makes sure that if the individuals do not fall under the radius

rc < δin, then they will fall under other clusters. Constraints 7 and 8 are constraints to ensure

TPR above the threshold of the parameter λ and FPR below the threshold parameter µ. These

two thresholds can take any value on the grid λ ∈ [0.0, 1.0] and µ ∈ [0.0, 1.0]. Constraints 9, 10,

and 11 define the decision variables.

In this thesis, we assign rmin
c as the minimum value of dissimilarity values between two

different data points, rc = min{δin | i ∈ Ic, n ∈ Nc, i ̸= n} and rmax
c as the maximum value of

dissimilarity values between two different data points, rc = max{δin | i ∈ Ic, n ∈ Nc, i ̸= n}.
As explained previously, the decision variable yin linearizes the bi-linear terms πinzi. This is

ensured by Constraints 12-15. Hence, the set covering model with the above constraints is an

MILP with |I| × |N | + |I| binary and |C| continuous decision variables, and |I| × |N | + 4|C|
linear constraints. Note that it is separable on the clusters.

3.2 Partitioning Model

The partitioning model does not have a threshold value and explains the prototype selection

based on the closeness. It is also MILP. A new binary variable is introduced, namely ρin, which

is 1 only if prototype i is the closest one to individual n from the chosen ones and 0 otherwise.

This variable allocates each individual to prototypes. zi variable is defined the same as before

to select a prototype for each cluster i ∈ Ic. The TPR and FPR can be calculated similarly.

The number of true positive cases in cluster c is
∑

i∈Ic
∑

n∈Nc
ρin which implies TPR is

TPRc =

∑
i∈Ic

∑
n∈Nc

ρin

|Nc|
(16)

Meanwhile, the number of false positive cases in cluster c is
∑

i∈Ic
∑

n∈N\Nc
ρin and

FPRc =

∑
i∈Ic

∑
n∈N\Nc

ρin

|N \Nc|
(17)

The partitioning model is described below.

max
z,ρ

∑
c∈C

∑
i∈Ic

∑
n∈Nc

ρin − θ
∑
c∈C

∑
i∈Ic

∑
n∈N\Nc

ρin

s.t.

(18)

∑
i∈Ic

zi = 1, ∀c ∈ C (19)

∑
j∈Ic:δjn≤δin

zj +
∑

j∈I:δjn>δin

ρjn ≤ 1, ∀(i, n) ∈ Ic ×N, ∀c ∈ C (20)
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ρin ≤ zi, ∀(i, n) ∈ I ×N (21)

∑
i∈I

ρin = 1, ∀n ∈ N (22)

∑
i∈Ic

∑
n∈Nc

ρin ≥ ⌈λc|Nc|⌉, ∀c ∈ C (23)

∑
i∈Ic

∑
n∈N\Nc

ρin ≤ ⌊µc|N \Nc|⌋, ∀c ∈ C (24)

zi ∈ {0, 1}, ∀i ∈ I (25)

ρin ∈ {0, 1}, ∀(i, n) ∈ I ×N (26)

Similarly, as in set covering, the objective function is equal to a maximisation of the total

number of true positives minus the total number of false positives. Again, θ represents the trade-

off parameter between TPR and FPR. Constraint 19 ensures that only one prototype is selected

per cluster, similar to Constraint 4 in set covering. Constraint 20 is an assignment constraint

formed based on (Wagner & Falkson, 1975), to make sure each individual is assigned to the

closest prototype and there cannot be another closer prototype. Constraint 21 follows up by

certifying that individuals are assigned to prototypes that are selected as optimal. Constraint 22

ensures that exactly one prototype is assigned to each individual. Finally, constraints 23 and 24

are parameters controlling for TPR lower bound and FPR upper bound, followed by constraints

25 and 26 representing binary variables explained previously. Hence, the partitioning model

with the above constraints is a MILP with |I| × |N | + |I| binary and |C| continuous decision

variables, and 2|I| × |N |+ 3|C|+ |N | linear constraints. Note that it is again separable on the

clusters.

3.3 Application to larger instances

To solve a large instance with the above two models, we use a reduction technique which has

three steps: (1) perform a reduced model, (2) find solutions to larger instances, and (3) assess

the quality.

For (1), we form a reduced model based on a sample drawn from the large dataset. To do

so, perform hierarchical clustering on Nc, based on dissimilarity drawn from Euclidean distance.

Choose a threshold that yields |Ñc|, where Ñc ⊂ Nc . Next, randomly select a point from

each cluster, yielding a total of |Ñc| points. These |Ñc| points are the representative of the

cluster with weights w̃n, which is the number of data points in the cluster. Hence, the randomly

selected point becomes an individual in Ñc. To find a prototype candidate, we follow a similar

approach where we perform hierarchical clustering on Ic. Choose a threshold that yields |Ĩc|
where Ĩc ⊂ Ic. Then, randomly select a point from each of the Ĩc, which becomes the total

number of |Ĩc| prototype candidates. The equations for the reduced model for set covering are
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shown below.

TPRc =

∑
i∈Ĩc

∑
n∈Ñc

πinziw̃n∑
n∈Ñc

w̃n
(27)

FPRc =

∑
i∈Ĩc

∑
n∈Ñ\Ñc

πinziw̃n∑
n∈Ñ\Ñc

w̃n
(28)

max
z,π,r

∑
c∈C

∑
i∈Ĩc

∑
n∈Ñc

yinw̃n − θ
∑
c∈C

∑
i∈Ĩc

∑
n∈Ñ\Ñc

yinw̃n (29)

∑
i∈Ĩc

∑
n∈Ñc

πinziw̃n ≥ ⌈λc

∑
n∈Ñc

w̃n⌉, ∀c ∈ C
(30)

∑
i∈Ĩc

∑
n∈Ñ\Nc

πinziw̃n ≤ ⌊µc

∑
n∈Ñ\Ñc

w̃n⌋, ∀c ∈ C
(31)

We solve the model with Ñc, Ĩc and assigning weights w̃n to replace |Nc| in the TPR and

FPR boundary constraints. In other words, change from constraints 7 and 8 to 30 and 31.

Furthermore, w̃n also replaces the denominator in the TPR formula in equation 1 and FPR

formula in equation 2, as shown in equations 27, 28. The weights also need to be multiplied for

both TPR and FPR in the objective function as shown above.

Once the model is solved, store the optimal solution of rR and zR for i ∈ Ĩc, c ∈ C. In this

thesis, zR only stored the data point that yields 1.0; in other words, the data points that are

selected as the optimal prototypes. This is a partial solution for the original problem with larger

instances.

In (2), we apply rO = rR and zO = zR. Since having greater instances could only reduce

the TPR and or increase FPR, rR and zR already satisfy constraints 7 and 8, acting as an

upper bound of TPR and lower bound of FPR. Hence, we can drop these two constraints when

conducting the larger instances. Also, note that weights are removed in this model, so the

original models described in previous sections are used. Moreover, since the zR only contains

one value per cluster, all the equations above with zi are replaced by zc, δin as δzcn and πin as

πzcn. This implies removing any
∑

i∈Ic and ∀i ∈ Ic. By default, equation 4 is eliminated.

In (3), recalculation of TPR and FPR are conducted with the corresponding optimal decision

variables derived from solving (2). The formulas of TPR and FPR are the same as above, which

are Equations 1 and 2.

For the partitioning model, reduction techniques explained in the set covering model can be

applied. The difference is that it only stores zR for i ∈ Ĩc, c ∈ C in (1). This is a partial solution

for the original problem with larger instances. In (2), we apply zO = zR and similar procedures

take place for the constraints and variables.

3.4 Gaussian Mixture Models (GMMs)

GMM is a probabilistic model for representing sub-populations within the total population that

is normally distributed. A Gaussian distribution is defined by its mean vector µ and covariance

matrix Σ. The probability density function (pdf) of a D-dimensional Gaussian distribution is
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given below.

N (X|µ,Σ) = 1

(2π)D/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(X − µ)

)
µ is the mean vector, Σ determines the shape of the distribution and is constructed by

the D × D covariance matrix. |Σ| defines the determinant of Σ. GMM in cluster analysis

forms ellipsoidal shaped clusters based on probability density estimations, where each cluster is

modelled as a Gaussian distribution. Hence, GMM in clustering is a linear combination of the

Gaussian probability distribution where K is the number of clusters (or known as components)

and πk, known as a mixing coefficient, is an estimate of each Gaussian component. Hence, each

component k is described by consisting of mean µk, covariance Σk and mixing coefficient πk.

p(X) =

K∑
k=1

πkN (x|µk,Σk)

For a given set of N independent and identically distributed observations {x1, x2, . . . , xN}
The log-likelihood function can be written as:

ln p(X|π, µ,Σ) =
N∑

n=1

ln

(
K∑
k=1

πkN (xn|µk,Σk)

)
The Expectation Maximisation (EM) algorithm finds Maximum Likelihood estimates (MLE)

for GMM. This algorithm is an iterative method of MLE with latent variables. The steps are

described below.

Algorithm 1 EM Algorithm for GMM

Initialize the parameters θ = (πk, µk,Σk) randomly.
repeat
E-step: Compute the responsibilities using the current parameter values.
for each data point xi do
for each cluster k do
γik = πkN (xi|µk,Σk)∑K

j=1 πjN (xi|µj ,Σj)

end for
end for
M-step: Update the parameters using the current responsibilities.
for each cluster k do
πk = 1

N

∑N
i=1 γik

µk =
∑N

i=1 γikxi∑N
i=1 γik

Σk =
∑N

i=1 γik(xi−µk)(xi−µk)
T∑N

i=1 γik
end for

until No further changes in cluster assignment

It consists of two main steps, the Expectation step (E-step) and the Maximisation step (M-

step). In the E-step, the values of the latent variables are estimated, with the values of model

parameters fixed. In the M-step, new values for the model parameters are estimated to minimise

an error function. Repeat these two steps until a convergence criterion is met. The algorithm is
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said to converge when there are no further cluster assignment changes.

In this thesis, the GMM is used to find a local optimal set of prototypes by fitting the data

into a probability distribution. The idea is as follows. First, the initial parameters µ and Σ are

generated from the data. Second, Algorithm 1 is conducted to find the optimal µopt and Σopt

for every cluster. As it is known to be computationally large, we utilise a sklearn package in

Python. Finally, the data points closest to µopt and Σopt are selected as optimal prototypes,

per cluster. The set of optimal prototypes acts as Ic to the models above to find TPR and FPR.

GMM accounts for both mean and variance, which allows us to define clusters in various

shapes, such as ellipses. However, this implies that applying selected prototypes by GMM to

set covering formulation is not possible, since the radius is only defined to be spherical. In other

words, even if GMM detects a non-spherical shape, individuals are only covered if it is within the

sphere, which can worsen TPR and FPR. Therefore, GMM is only applied to the partitioning

model in this thesis. Adjusting the models to have non-spherical clusters is for further research.

4 Data

Two datasets are used in this thesis: a real-life data set of Canadian daily average temperature,

and a simulated data.

4.1 Canadian Weather

The first data is real-life data of Canadian weather representing the 365 daily average temperat-

ures of Canadian cities. This can be extracted from the “fda” package in R. It is composed of 35

cities and 4 regions. In this case, the predefined clustering of the cities is based on the regions

[“Atlantic”, “Pacific”, “Arctic” and “Continental”] the city is located in. Hence, N = 35 and

C = 4. Figure 2 illustrates the data where the x-axis is the days and the y-axis represents the

average temperatures. The cities are coloured according to what cluster they belong to: blue

for Atlantic, purple for Continental, red for Pacific, and green for Arctic. Before applying the

models, the dissimilarity matrix is calculated. By taking Euclidean distance between each city,

a dissimilarity matrix with dimensions 35× 35 is created.

Figure 2: Canadian weather data.

Regarding the Canadian weather data, its distribution is unknown to us. As GMM is de-

signed for normal distribution, testing the dataset is helpful to identify the accuracy of the

results. First, the Kolmogorov-Smirnov Test is conducted, which rejects the null hypothesis

11



that it is a normal distribution, see Table 1. The “fitter” package in Python is utilised to verify.

The package allows 80 distributions to be fitted. Here, gamma, lognormal, beta, normal, and

exponential distributions are fitted to the average daily temperatures. This package outputs a

sum of squared residuals (SSR), with lower values indicating a greater fit. The beta distribution

is well-fitted compared to the other distributions as a normal distribution.

Table 1: Results of the tests to determine the distribution of Canadian Weather

SSR of fitted distributions
Kolmogorov Smirnov Test statistics (p-value) Normal Distrib. Exponential Distrib. Gamma Distrib. Lognorm Distrib. Beta Distrib.

0.097(0.002) 0.075 0.073 0.075 0.075 0.027

Although GMM is designed for normally distributed datasets, the daily average temperature

of Canadian cities is beta-distributed as shown above. This leads to poor model fitting and inac-

curacy because it does not capture the underlying structure of the data. To resolve this, inverse

normal transformation is used before applying GMM. Applying for the Beta Mixture Model

(BMM) is beyond the scope of the bachelor thesis as it has not been commonly researched and

the published previous literature is based on specific data (such as Fu et al. (2010)). Generalising

BMM is a further extension to be considered. Furthermore, GMM with beta-distributed data

has been discussed by Dai et al. (2009) as mentioned earlier, however, this paper incorporates

both Gaussian and beta-distributed data in its methodology which is not applicable here.

4.2 Simulated Data

The second data is simulated data to justify the interpretability with a larger dataset. It is three

normally distributed data points with the mean and covariance described below. The predefined

clusters are C = 3. The demonstration of the scatter plot is in Figure 3. Here, N = 10000 are

plotted with corresponding clusters which are coloured in red, blue, and green.

Figure 3: Simulated data

The values of mean and covariance are shown below. Notice that the covariance and the

mean differences increase from cluster 1,2,3 respectively.

β1 =

(
1.45

1.50

)
, β2 =

(
1.80

1.60

)
, β3 =

(
1.40

2.00

)
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Σ1 =

(
0.01 0.00

0.00 0.02

)
, Σ2 =

(
0.02 0.00

0.00 0.02

)
, Σ3 =

(
0.03 0.00

0.00 0.04

)

5 Results

This section is composed of three subsections. First, a general setting of the results, such as the

PC I used and adjustments of the initial parameters are described. Second, the shortcoming

of the GMM is mentioned. Finally, the results of Canadian weather and simulated data are

presented.

5.1 General setting

First, to solve the mathematical optimisation we use the Gurobi package in Python on a PC

Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz, 8GB of RAM. Furthermore, scikit − learn

package is used to solve the prototypes for GMM. Refer to the Appendix and the replication

codes for further details.

Regarding the time limit, Carrizosa et al. (2022) had a maximum of 4.3GHz and set a time

limit of 300 seconds. Since the laptop only has 1.8GHz, computational time can be much longer.

For this purpose, the time limit is adjusted to 600 seconds when necessary.

Due to the low GHz and greater computational time, some models are infeasible within

the 600-second time limit. For example, for the reduced partitioning model in simulated data,

the optimal solution is only found for one of the clusters under 600 seconds. Meanwhile, all

the models are feasible as the time limit increases to 1000 seconds. The Appendix shows the

evidence in Table 2.

Furthermore, the model records feasible values if it does not reach the optimal solution after

600 seconds, hence, it is likely that the overall results differ with a PC with high computational

power. Hence, the weak computational power is one of the reasons why the results can differ

from Carrizosa et al. (2022) in simulated data. Hence, the detailed comparison of this thesis

and Carrizosa et al. (2022) is only possible for the Canadian Weather Data as all the results are

collected in under 300 seconds.

Throughout this thesis, θ = 1. The results are created based on the heatmap package in

Python. The white background represents model infeasibility. In the following section, for each

dataset, the results of set covering and partitioning models are shown first, followed by GMM.

5.2 GMM results interpretation

The shortcomings with interpreting the results from GMM is that it has many infeasible solu-

tions, and the reasoning is as follows. GMM pre-selects an optimal prototype based on the

distribution of the data. Hence, z is predefined containing one data point assigned as a proto-

type per cluster when running the model. Meanwhile, the set covering model and the partitioning

model described above are designed to assign optimal prototypes that maximise interpretability.

This implies that the prototypes that are selected by GMM may contradict the prototypes that
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are selected by the models for a given λ and µ. It may result in infeasible solutions for some

combinations of these as it may not satisfy the lower bound of TPR and upper bound of FPR

constraints. To determine whether GMM optimises prototype selection, only the feasible results

will be interpreted and compared in this thesis. Finding a method to implement GMM in the

above two models is potential future research to be considered.

5.3 Canadian Weather data

The results of the Canadian Weather data are presented below where λ and µ vary on the

grid [0.0, 1.0] × [0.0, 1.0]. Generally, the set covering model has good interpretability, shown in

Figure 4. In other words, there exist some trade-off between FPR and TPR depending on the

combination of λ and µ. For example, (λ, µ) = (0.80, 0.20) then we have TPRAtlantic = 0.80,

TPRPacific = 0.80, whereas FPRAtlantic = 0.00, FPRPacific = 0.03. However, when we increase

the lower bound of TPR, such as (λ, µ) = (0.90, 0.30), then we have greater values in 2 clusters,

namely, increase by 0.13 for TPRAtlantic and 0.2 for TPRPacific. On the other hand, the FPR

increased for those clusters by 0.15 for FPRAtlantic and 0.20 for FPRPacific. To summarise, the

higher the value of lambda which restricts TPR value, the worse the FPR. For the Arctic, the

values stay the same regardless of the combination of λ and µ.

On the other hand, Carrizosa et al. (2022)’s set covering model does not have exactly the

pattern. For example, they find different combinations of λ and µ. as TPRPasific = 0.6

and FPRPasific = 0.0. One possible reason is the use of different versions of the Gurobi

package. This thesis uses a newer package which may result in more advanced and accurate

outcomes. Another possible cause is the calculation of distances, since Carrizosa et al. (2022)

does not mention how they calculated the distance precisely, it may have resulted in a different

dissimilarity matrix. The results of the partitioning model is explained below.

(a) Atlantic TPR (b) Continental TPR (c) Pacific TPR (d) Arctic TPR

(e) Atlantic FPR (f) Continental FPR (g) Pacific FPR (h) Arctic FPR

Figure 4: Set covering for Canadian weather data. λ and µ vary on the grid [0.0, 0.1]× [0.0, 1.0]

The result of the partitioning model shown in Figure 5 is straightforward; there is simply

no trade-off with greater TPR for worse FPR since TPR values do not alter regardless of the
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combination of λ and µ. However, there is a trade-off between what FPR to choose depending

on the regional interpretation. Specifically, if we look at the pattern of the FPR, Pacific and

Arctic have the same values, whereas for Atlantic the pattern is the same but the FPR values

differ. For example, if we choose (λ, µ) = (0.80, 0.10) then the result is FPRAtlantic = 0.10,

FPRPacific = 0.00, FPRArctic = 0.00. However, when we choose (λ, µ) = (0.70, 0.10) the value

of FPRAtlantic decreases by 0.1 while FPRPacific and FPRArctic increase by 0.03. Hence, while

TPR values do not change throughout, FPR can vary depending on the region to focus on.

On the other hand, Carrizosa et al. (2022)’s partitioning model does not have the same

pattern because they found one FPR value per region which does not vary across λ or µ. The

same reasoning as the set covering model can be applied, where the versions of the Gurobi

package and the calculation of distances may influence the results.

(a) Atlantic TPR (b) Continental TPR (c) Pacific TPR (d) Arctic TPR

(e) Atlantic FPR (f) Continental FPR (g) Pacific FPR (h) Arctic FPR

Figure 5: Partitioning model for Canadian Weather data. λ and µ vary on the grid [0.0, 0.1]×
[0.0, 1.0]

Next, the results of GMM applied to the partitioning model are shown. As explained in

the previous section, GMM resulted in more infeasible regions, meaning a greater white back-

ground in the heatmap. In the following, the outcomes of the two models are shown. First, the

results of regular GMM are presented, followed by the results from GMM with inverse normal

transformation.

Figure 6 shows the TPR and FPR derived based on the model with the optimal prototypes

selected by GMM. The result is worse than the regular partitioning model (Figure 5). For

example, FPR is generally higher, especially noticeable with FPRAtlantic = 0.25. Except for

Continental where it improved by 0.09. TPR is the same for all except deterioration by 0.34

in Continental. This is expected as Canadian Weather data fitted β-distribution well, while

GMM is designed for Normal distribution.
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(a) Atlantic TPR (b) Continental TPR (c) Pacific TPR (d) Arctic TPR

(e) Atlantic FPR (f) Continental FPR (g) Pacific FPR (h) Arctic FPR

Figure 6: Gaussian Mixture Model with Canadian Weather data. λ and µ vary on the grid
[0.0, 0.1]× [0.0, 1.0]

We focus on Figure 7 where the data is inversely normally transformed to apply GMM.

Compared to the original partitioning model in Figure 5, Figure 7 three models worsened by

approximately 0.3 for TPRContinental, TPRArctic and FPRAtlantic. However, some models im-

proved, in comparison to the results obtained by Carrizosa et al. (2022) and partitioning model

(Figure 5), which are TPRAtlantic, FPRPacific and FPRArctic, by 0.03 or 0.06. Compared to

the previous model which is GMM without inverse normal transformation (Figure 6), it has

favourable results for TPRAtlantic and smaller FPR for FPRPacific and FPRArctic. Nonethe-

less, it has worse TPRArctic, FPRAtlantic and FPRContinental. Therefore, if we want greater

improvement for the specific regions, GMM with inverse normal transformation is preferred,

while the importance is equal for all, the original model is preferred. In other words, there is

a trade-off between putting more importance on TPRAtlantic, FPRPacific and FPRArctic, or

FPRContinental, TPRArctic and FPRAtlantic. Overall, the inversely normally transformed data

gave mixed results that caused some of the FPR to improve while worsening TPR and visa

versa.
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(a) Atlantic TPR (b) Continental TPR (c) Pacific TPR (d) Arctic TPR

(e) Atlantic FPR (f) Continental FPR (g) Pacific FPR (h) Arctic FPR

Figure 7: Gaussian Mixture Model with Inverse Normal Transformed Canadian Weather data.
λ and µ vary on the grid [0.0, 0.1]× [0.0, 1.0]

Before moving on to Simulated data, the summary of this section is given. The results of

set covering and partitioning models are similar to Carrizosa et al. (2022). However, the results

of a few combinations of λ and µ do alter, despite using the same data. This is likely due to

differences in Gurobi packages and ambiguity in calculating Euclidean distance and constructing

dissimilarity matrix.

Next, we summarise the implementation of GMM. First, simple GMM resulted in a worse

than regular partitioning model, despite an improvement in FPRContinental. Second, GMM

with Inverse normal transformation had mixed results. The values improved in TPRAtlantic,

FPRPacific and FPRArctic, however, worsened in TPRContinental, TPRArctic and FPRAtlantic.

Hence, despite some improvements, the regular partitioning model and set covering model (Fig-

ure 4 and 5) are favoured seeing the overall TPR and FPR values, however, if the focus is on

particular regions, GMM with inverse normal transformation could be beneficial. Application

of GMM to non-normal distributed data is a possible further extension for the future.

5.4 Simulated data

As explained in the previous section, two steps are involved in simulated data. First, the

reduction technique is conducted to get a reduced model, and second, large instances are applied

to this model.

Carrizosa et al. (2022) applied this technique to |N | ∈ 104, 105, 106 with |Ñc| = 125, |Ĩc| =
25. However, it is not possible with the current PC, due to the weak computational power that

led to hours to get one optimal solution, and most importantly, a memory error occurs when

creating a dissimilarity matrix for larger instances from |N | ∈ 104. Hence, to present that the

methodology is valid, the reduction technique is conducted with a smaller dataset of |N | = 300

with |Ñc| = 50, |Ĩc| = 15. (See Appendix A.2 for the attempt on reduced model with |N | = 104

with |Ñc| = 125, |Ĩc| = 25.) The values of λ and µ vary on the grid [0.05, 0.1]× [0.85, 0.9]. We

now discuss the results of the set covering model followed by the partitioning model, then GMM.
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The set covering model with a sample of 300 datasets is shown in Figure 8. Seeing |Ñ | = 50,

the values vary in each cluster in TPR and FPR, especially in cluster 1. This is possibly due

to the smaller dataset causing larger distances between each cluster, resulting in different sets

of prototypes per combination of λ and µ. It is also clear here that the trade-off between high

TPR and low FPR exists, as a higher lower bound on TPR (implying higher λ) implies greater

TPR but also with larger FPR.

In general, it is clear that |N | = 300 leads to worse outcomes compared to the reduced model.

Specifically, cluster 3 has TPR of 0.5 and 0.57 which is considerably low compared to Carrizosa

et al. (2022), where the lowest TPR value recorded is 0.85. Meanwhile, FPR values do increase

but by a small amount. For example, cluster 3 does not change except from 0.05 to 0.06, and

part of cluster 1 changed from 0.08 to 0.09 and 0.10. This implies that having a small dataset

does not affect the FPR as much as TPR. Most likely this is because of the higher covariance

and larger mean differences in clusters 2 and 3, resulting in more scattered data points with low

concentration around the mean (see Data Section).

Three factors could have affected the results of the |N | = 300. First, a small dataset implies

more scattered data points. The weights do account for the selected data points in the reduced

model, however, the selection of a point for each of the 50 clusters as well as for 15 prototypes

might have led to the undesirable summarisation of the data leading to lower TPR and high

FPR, compared to Carrizosa et al. (2022) where they used |N | = 104. Second, the randomisation

of selecting data points from each of the 50 hierarchical clusters as well as 15 prototypes could

highly have led to different optimisation than the Carrizosa et al. (2022) which makes it difficult

to compare. Finally, the elimination of the lower bound of TPR and the upper bound of FPR

constraints for the |N | = 300, as explained in the Model Section. This could have resulted in a

much lower TPR and higher FPR than expected.
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TPR |Ñ | = 50 for cluster 1,2,3

TPR |N | = 300 for cluster 1,2,3

FPR |Ñ | = 50 for cluster 1,2,3

FPR |N | = 300 for cluster 1,2,3

Figure 8: Set covering model with reduction technique. True Positive Rate and False Positive
Rate in the set covering the increasing data size. λ and µ vary on the grid [0.05, 0.1]× [0.85, 0.9]
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The results of the partitioning model are shown below in Figure 9. Seeing |Ñ | = 50, the

TPR value reduces when λ increases in clusters 2 and 3. Meanwhile, cluster 1 still follows the

same trend as the results in the set covering model, where a rise in λ leads to greater TPR along

with a worse FPR. With |N | = 300, the results worsened or stayed the same for most of the

values. For example, FPR values of cluster 1 rise by 0.02 in the larger dataset for some areas of

0.06 and 0.08 in the reduced model. On the other hand, some combinations of λ and µ led to

a strangely favourable outcome, such as the rise in TPR from 0.88 to 0.89 for clusters 1 and 2

µ = 0.06 region. The possible reason for this irregular pattern is due to the same reasoning as

the first factor in the previous paragraph, where summarising clusters with weights might have

led to unrealistic data points.

Compared with the set covering model, the overall results seem stable with the partitioning

model when conducting the reduction technique and then applying it to larger instances. Spe-

cifically, as λ rises, the results of the partitioning model are not as elevated as the set covering

model and only two values are recorded in the feasible region. Furthermore, the TPR in set

covering does not reduce to below 0.86 in clusters 2 and 3 when applying to |N | = 300. Some

regions in FPR are more favourable in the set covering than the partitioning models, though it

depends on the values of λ and µ.
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TPR |Ñ | = 50 for cluster 1,2,3

TPR |N | = 300 for cluster 1,2,3

FPR |Ñ | = 50 for cluster 1,2,3

FPR |N | = 300 for cluster 1,2,3

Figure 9: Partitioning model with reduction technique. True Positive Rate and False Positive
Rate with the increasing data size. λ and µ vary on the grid [0.05, 0.1]× [0.85, 0.9]
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The results of GMM are shown below in Figure 10. There are many infeasible regions as

expected, due to applying only one set of prototypes to the entire combination of λ and µ.

Overall results are analysed by comparing to the previous two models.

Unlike the results in |N | = 300 in the set covering model (Figure 8), the GMM has a single

value throughout its feasible region. Overall, it showed a larger TPR compared to the set

covering model. To be precise, the TPR values of clusters 2 and 3 are greater by at least 0.1 and

0.31 but worse by 0.04 for cluster 1 in GMM compared to the set covering model. GMM has

a slightly mixed outcome for FPR, as it improved by 0.04 in cluster 2 but worsened by 0.02 in

cluster 3. However, the general improvement in TPR is much larger than the changes in FPR.

Moving on to comparing the results in |N | = 300 of the partitioning model( Figure 9) against

GMM, the interpretability does improve for two clusters but is slightly worse for one of them.

Especially the TPR values improved for clusters 1 by 0.05 and 3 by 0.02 under the same λ and

µ combinations. However, it worsened by 0.03 for cluster 2. The values of FPR do not change

for cluster 1, improved by 0.04 in cluster 2, worsened by 0.02 in cluster 3. Hence, the GMM

does not have a clear improvement when compared to the partitioning model.

TPR|N | = 300 for cluster 1,2,3

FPR |N | = 300 for cluster 1,2,3

Figure 10: GMM with simulated data. True Positive Rate and False Positive Rate. λ and µ
vary on the grid [0.05, 0.1]× [0.85, 0.9]

To summarise the simulated data section, when the reduction technique is conducted with

|Ñ | = 50 and then with |N | = 300, the set covering results in much worse TPR outcomes when

the data is more dispersed (as cluster 3 has larger covariance compared to the other two). On

the other hand, FPR values are not affected or are affected by a small amount compared to the

changes in TPR. Hence, especially with the small and dispersed dataset, the set covering model
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has the least favourable performance. Meanwhile, the partitioning model has relatively stable

results when the reduced model is applied to the larger instances (|N | = 300), as its TPR does

not reduce below 0.86. The recorded FPR values are similar, hence, the more favourable model

depends on the values of λ and µ. Generally, GMM showed a greater improvement in TPR

values compared to the set covering model, but with slightly worsened regions in FPR. Finally,

comparing GMM with the partitioning model shows mixed results, where for some clusters the

TPR or FPR are better, but for others, it is the same or worse.

6 Conclusion

In this thesis, the interpretation of post-hoc clustered models is analysed in terms of TPR

and FPR. Two models are studied as a basis: the set covering model and the partitioning

model. These two models output prototypes, allowing us to determine the interpretability of a

dataset. The goal is to select prototypes that achieve high interpretability, which is high TPR

and low FPR as possible. The clustering is established on the Euclidean distance. Therefore,

the closeness of the data points is a measure to find prototypes. To tackle the limitation of the

two models that these only take the average distance into account, as well as assume data as

circular clusters, the GMM is introduced, which uses both the mean and the covariance, as well

as detecting ellipsoidal-shaped clusters based on maximum probability density estimations. As

GMM is designed for normally distributed data, the inverse normal transformation is applied to

beta-distributed real-life data.

The results of set covering and partitioning models in the real-life (Canadian weather) data

are similar to Carrizosa et al. (2022). However, due to differences in Gurobi packages and

ambiguity in calculating Euclidean distance, the results were not exactly the same.

Implementing GMM in real-life data does not improve all the results, even with the inverse

normal transformation. Some of the regions had better results than the partitioning and the set

covering models, which resulted in a trade-off between which regions to give more importance

to. Therefore, GMM with inverse normal transformation is only better than the regular two

models if the importance lies on particular regions.

In the simulated data, the reduction technique is conducted with |Ñ | = 50 and then with

|N | = 300. This is due to the memory error when constructing the large dissimilarity matrix

with |N | = 10000 for the reduced model as done by the original author Carrizosa et al. (2022).

In general, the results of the set covering result in much lower TPR outcomes when the data is

more dispersed (as cluster 3 has a larger covariance compared to the other two). Especially with

the small and dispersed dataset, the set covering model has the least favourable performance.

Meanwhile, the partitioning model has relatively stable results when the reduced model is applied

to the larger instances (|N | = 300), as its TPR does not reduce below 0.86. Generally, GMM

showed a greater improvement in TPR values compared to the set covering model but compared

to the partitioning model it shows mixed results.

The three possible areas of further research are as follows. Firstly, find a method to directly

implement GMM in the above two models, since there is only one set of prototypes selected by

GMM, it may contradict the prototypes that the models selected. It resulted in many infeasible

solutions as it does not satisfy the lower bound of TPR and upper bound of FPR constraints.
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Secondly, research into fitting Canadian data into the Beta Mixture Model. Generalising this

model may improve the interpretability of the Canadian data, and extend towards research in

the Beta Mixture Models. Finally, extend the set covering model that allows adjusting to the

non-spherical radius, for example, by allowing two radii of different sizes. This is beneficial as

it will capture the cluster characteristics.
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A Appendix

A.1 Evidence of time limit leading to infeasibility

Table 2: The TPR and FPR of each cluster when λ = 0.89 and µ = 0.08 with time limit of 1000
seconds

Cluster TPR FPR Selected prototype index in seed(150)

1 0.89 0.07 1046,6316,8761
2 0.90 0.05 1046,6316,8761
3 0.90 0.04 1046,6316,8761

As presented above, the TPR and FPR are present for all clusters when the time limit is set as

1000 seconds. Compared to the Figure below, the λ = 0.89 and µ = 0.08 are missing in Cluster

1 and 3 when setting the time limit as 600 seconds.

(a) ∥N∥ = 375, TPR for cluster 1,2,3

(b) ∥N∥ = 375, FPR for cluster 1,2,3

(c) Partitioning model with reduction technique. True Positive Rate and False Positive Rate in set
covering with the increasing data size. λ and µ vary on the grid [0.05, 0.1]× [0.85, 0.9]

A.2 Reduced model with |N | = 104

The attempt to solve a reduced model as described in Carrizosa et al. (2022) is presented below.
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(a) ∥N∥ = 375, TPR for cluster 1,2,3

(b) ∥N∥ = 375, FPR for cluster 1,2,3

(c) Set covering model with reduction technique. True Positive Rate and False Positive Rate in set
covering with the increasing data size. λ and µ vary on the grid [0.05, 0.1]× [0.85, 0.9]

(a) ∥N∥ = 375, TPR for cluster 1,2,3

(b) ∥N∥ = 375, FPR for cluster 1,2,3

(c) Partitioning model with reduction technique. True Positive Rate and False Positive Rate in set
covering with the increasing data size. λ and µ vary on the grid [0.05, 0.1]× [0.85, 0.9]
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(a) ∥N∥ = 375, TPR for cluster 1,2,3

(b) ∥N∥ = 375, FPR for cluster 1,2,3

(c) Gaussian Mixture Model. True Positive Rate and False Positive Rate in partitioning model with the
increasing data size. λ and µ vary on the grid [0.05, 0.1]× [0.85, 0.9]

B Programming code

Hardware information: PC Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz, 8GB of RAM.

Step 1: Download Pycharm version 2024.1.4 from https://www.jetbrains.com/pycharm/

download/?section=windows.

Step 2: Download R version 4.3.3 from https://cran.rstudio.com/

Step 3: Download the IDE compatible with R version 4.3.3 called Rstudio from https://

posit.co/download/rstudio-desktop/

Step 4: Download Rtools43 from https://cran.rstudio.com/bin/windows/Rtools/rtools43/

rtools.html

Step 5: Run the code

Description of the code:

• thesis(Rcode): extracts Weather data in R.

• thesis fig1.py: produces Figure 1 to explain TPR and FPR

• thesis figure2.py: produces Figure 2

• heatmap.py: produces heatmaps for all the csv filed results from Canadian Weather Data

• heatmap simulated.py:produces heatmaps for all the csv filed results from simulated

data
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• extension-GMM partitioning weather.py: produces GMM without inverse normal

transformation in weather data.

• extension-GMM partitioning weather with Inv Norm.py: produces GMM with

inverse normal transformation in weather data.

• extension-GMM with small dataset.py: produces GMM results with |N | = 300

• extension-simulation partitioning.py: produces GMM with |N | = 10000

• extension dissimilarity matrix.py verifies the memory error of 10000 × 10000 dissim-

ilarity matrix

• thesis dissim matrix.py: produces dissimilarity matrix for each region in Canadian

Weather data

• thesis simulated datacollection.py: produces simulated data scatter plot

• trial partitioning simulation.py: produces the output of reduced technique for parti-

tioning model with |N | = 10000

• trial partitioning simulation with small dataset.py: produces the output of reduced

technique for set covering model with |N | = 300

• trial partitioning simulation with small dataset reduced model.py: produces out-

put with reduced technique for partitioning model with |N | = 300 and |Ñ | = 50.

• trial partitioning weather.py: produces the output for weather data for partitioning

model

• trial set covering simulation.py: produces the output for simulated data for the set

covering model for |N | = 10000

• trial set covering simulation with small dataset.py: produces the output of reduced

technique for partitioning model with |N | = 300

• trial set covering simulation with small dataset reduced model.py:produces out-

put with reduced technique for set covering model with |N | = 300 and |Ñ | = 50.

• trial set covering weather.py: produces the output for weather data for the set cover-

ing model

• weather data analysis: produces output of the Kolmogorov Smirnov test and fitter

package in Python

31


	Introduction
	Literature Review
	Model
	Set Covering Formulation
	Partitioning Model
	Application to larger instances
	Gaussian Mixture Models (GMMs)

	Data
	Canadian Weather
	Simulated Data

	Results
	General setting
	GMM results interpretation
	Canadian Weather data
	Simulated data

	Conclusion
	Appendix
	Evidence of time limit leading to infeasibility
	Reduced model with |N| = 104

	Programming code

