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Abstract

This study investigates the impact of using multiple VIX indices with varying matur-

ities on the performance of GARCH models for volatility modeling. We incorporate VIX

indices with maturities of 9 days, 1 month, 3 months, 6 months, and 1 year, and estim-

ate the CBOE VIX with a new multivariate estimation approach. The models evaluated

are GARCH(1,1), EGARCH(1,1), CGARCH(1,1), and ACGARCH(1,1), and are estimated

under both the locally risk-neutral valuation relationship (LRNVR) and modified LRNVR

(mLRNVR) framework. The newly introduced multivariate VIX estimation approach gen-

erally does not yield better results than the traditional VIX estimation approach, except

for minor improvements in the CGARCH and ACGARCH models when using both returns

and VIX data. The EGARCH model under the mLRNVR, using the traditional estimation

approach with returns and VIX data, still provides the best fit for the CBOE VIX. Addi-

tionally, a comprehensive residual analysis of the EGARCH model indicates that normality

is firmly rejected for the error terms of both estimation methods.

1 Introduction

Modeling volatility in financial markets is a well-researched topic since it allows investors and

institutions to manage their risk more effectively. For example, forecasting this index accurately

allows for more precise option prices. A well-known measurement for volatility is the Chicago

Board Options Exchange (CBOE) VIX. This index measures the expected volatility over the

next 30 days and plays a crucial role in the pricing of VIX derivatives and options. In addition

to the VIX, the CBOE provides volatility indices with varying maturities.

Previous studies on GARCH option pricing models have primarily focused on the CBOE

VIX, which gives insight into the expected volatility for the upcoming month. However, con-

sidering that incorporating a volatility measure enhances model estimation, it is possible that

incorporating information from multiple VIX indices could improve the estimation of the CBOE

VIX.

In this paper, we aim to address the question: How does the use of multiple VIX indices

affect the performance of GARCH models compared to using a single VIX index? We answer

this question by considering a multivariate approach to estimate the CBOE VIX with different

VIX maturities for the GARCH models. More specifically, we consider the following maturities

for the VIX: 9 days, 1 month, 3 months, 6 months and 1 year. We evaluate the performance

of the indices with four GARCH models: the GARCH(1,1)-model, the EGARCH(1,1)-model,

the CGARCH(1,1)-model, and the ACGARCH(1,1)-model. We estimate the models under the

LRNVR and the mLRNVR.

Generally, the multivariate VIX estimation method does not yield improvements in fitting

the CBOE VIX. The error terms are only slightly smaller for the CGARCH and ACGARCH

models under the LRNVR when estimated with both returns and VIX data. Still, the implied

VIX of these models struggles to capture the statistical properties of the CBOE VIX. Addi-

tionally, a comprehensive residual analysis reveals that both the single VIX estimation and the

multivariate VIX estimation methods produce error terms for which normality is firmly rejected.

This highlights the inherent challenges of accurately modeling the CBOE VIX.

The remainder of this proposal is as follows: Section 2 gives an overview of previous research
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regarding GARCH option pricing models. Section 3 shows the data and descriptive statistics.

We describe our methods in Section 4. The results are discussed in Section 5, and we conclude

our findings in Section 6.

2 Literature Review

The compensation for the volatility risk premium has been extensively studied since the end of

the last century. Volatility in financial markets is time-varying, as shown by Schwert (1988).

GARCH-type models, initially proposed by Engle and Bollerslev (1986), are well-known for

accommodating time-varying volatility.

Option pricing models aim to model the volatility risk premium. A noteworthy framework is

developed by Black and Scholes (1973), introducing closed-form solutions for option valuation.

However, one of the assumptions of this model is constant volatility and neglects that volatility

is time-varying. Duan (1995) developed a completely new framework and introduced GARCH

option pricing models, which allow for time-varying volatility. He argued that, under certain

assumptions, options can be priced under a risk-neutral relationship (LRNVR) when the price

of an asset follows a GARCH process.

Since then, further research has extended the literature of GARCH option pricing models

under the LRNVR. For example, Heston and Nandi (2000) derived a closed-form option valuation

formula for a spot asset which follows a GARCH process. Additionally, various extensions of the

standard GARCH model have also been brought under the LRNVR, see e.g. Hao and Zhang

(2013). Many studies have used the LRNVR to price VIX derivatives and options, see e.g. Wang

et al. (2017) and Tong and Huang (2021).

Hao and Zhang (2013) incorporated both returns and VIX data for model estimation. To

accommodate both time series, they allowed for a discrepancy between the CBOE VIX and the

implied VIX from the GARCH models. Kanniainen et al. (2014) extended this idea by including

an autoregressive term in their VIX estimation approach. However, Zhang and Zhang (2020)

found that the extra autoregressive term is insignificant for most GARCH models. For this

reason, we adopt the simpler approach of Hao and Zhang (2013) for our analysis.

Furthermore, Hao and Zhang (2013) argued that the GARCH option pricing models under

the LRNVR fail to incorporate the volatility risk premium, since these models are only able

to capture the equity risk premium. They found that the implied VIX of the GARCH option

pricing models is underestimated when only returns are used, and that the estimated parameters

become distorted if the models are jointly estimated with the returns and the VIX.

To address these limitations, Zhang and Zhang (2020) modified Duan’s LRNVR, introducing

the modified LRNVR (mLRNVR). They found that the mLRNVR can capture the volatility

risk premium and recommend using the mLRNVR in combination with the EGARCH(1,1)

model with return and VIX data. Another way to capture the volatility risk premium is by

incorporating jump risk in the GARCH models.Christoffersen et al. (2012) introduced a new

class of models, which allow for dynamic volatility and jump intensity.

Parallel to these studies, Tong (2024) introduces a generalized LRNVR, where the spe-

cification of a pricing kernel is not necessary. Variance dependent pricing kernels are another

commonly used method to bring GARCH models under the risk-neutral measure. The concept
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of variance dependent pricing kernels for GARCH models has been introduced by Christoffersen

et al. (2013). Byun et al. (2015) have expanded the literature on this topic by introducing a

model with a variance dependent pricing kernel and the inclusion of jump risk.

The primary motivation for our research is based on Kanniainen et al. (2014), who found an

improvement when the CBOE VIX is considered for GARCH option pricing models. However,

this study only considered the VIX index with a 30-day maturity and does not evaluate VIX

indices with different maturities. Furthermore, the LRNVR is used for the GARCH models,

which do not capture the volatility risk premium, only the equity risk premium. We extend

the literature by incorporating information from multiple VIX indices with different maturities

under the LRNVR and mLRNVR.

Additionally, we bring a new GARCH model under the LRNVR: the ACGARCH(1,1)-model.

The ACGARCH (Asymmetric Component GARCH) model extends the CGARCH (Compon-

ent GARCH) model by adding an asymmetry component. The CGARCH model decomposes

volatility into long-run and short-run components, capturing both the long-term and transient

short-term effects of shocks on volatility. The ACGARCH model has an additional asymmetry

term, allowing for different impacts of positive and negative shocks on volatility.

3 Data

The dataset for this study consists of the S&P 500 closing price, the risk-free rate, and various

CBOE VIX measures with different maturities. Our sample starts from January 4, 2011, to 29

December, 2023, resulting in 3269 observations. The starting point of the dataset is determined

by the introduction of the VIX with 9-day maturity, which the Chicago Board Options Exchange

has provided since January 2011.

The data are obtained from three different sources. The closing price of the S&P 500 is

obtained from the CRSP. The risk-free rate is obtained from the Federal Reserve Economic

Data. Similar to Hao and Zhang (2013), we use the daily 3-month Treasury Bills secondary

market rate as the risk-free rate. The time series of the CBOE VIX indices are obtained directly

from the CBOE.

The VIX indices are popular measures of expected future volatility, calculated as a weighted

average of options of the S&P 500. More information about the calculation of the VIX indices

can be found on the website of the CBOE 1. The CBOE provides VIX indices with varying

maturities. The maturities of the VIX indices that are considered in this paper consist of 9

days, 1 month, 3 months, 6 months, and 1 year. Henceforth, we denote these variables as

VIX9D, VIX1M, VIX3M, VIX6M, and VIX1Y. Summary statistics for every variable can be

found in Table 1. These statistics provide an overview of the data distribution, including mean,

variance, skewness, kurtosis, and autocorrelations. Additionally, Figure 1 displays the S&P 500

closing price over time in panel 1a, and the VIX indices over the sample period in panel 1b.

To address missing observations of the risk-free rate, we opt for a simple approach where we

fill the missing observation with the value of the previous day. This approach is based on the

idea that the risk-free rate is very stable over time and the daily fluctuations are minimal.

1https://www.cboe.com/tradable products/vix/
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Table 1: Summary statistics of the S&P 500, risk-free rate and VIX indices

Data Mean Variance Skewness Kurtosis Max Min AR1 AR10 AR30

Return S&P500 (%) 0.05 1.21 −0.51 16.09 9.38 −11.98 −0.1276 −0.0286 0.0008
Risk-free rate 1.00 2.20 1.72 5.00 5.36 −0.05 0.9986 0.9847 0.9492
VIX9D 17.69 72.78 3.22 22.57 106.66 7.10 0.9398 0.6859 0.4003
VIX1M 18.30 51.06 2.45 14.24 82.69 9.14 0.9671 0.7926 0.5355
VIX3M 20.18 40.83 1.90 9.89 72.98 11.85 0.9815 0.8580 0.6661
VIX6M 21.62 32.98 1.30 5.42 61.11 13.75 0.9873 0.9009 0.7605
VIX1Y 22.58 22.31 0.79 2.84 41.93 15.56 0.9917 0.9383 0.8375

This Table shows summary statistics for S&P 500, risk-free rate, and VIX indices from January 4, 2011, to December 29, 2023.
The first column denotes the name of the variables, columns 2 to 7 show basic statistical properties, and the last three columns
showcase the autocorrelation coefficients for lag 1, 10, and 30, respectively.

Figure 1: The S&P 500 and VIX indices from January 2011 to December 2023

(a) The closing price of the S&P 500 (b) VIX indices with different maturities

4 Methodology

In this section, we define the GARCH models and the estimation methods. We commence by

explaining the return dynamics for the GARCH(1,1)-model, which will be the benchmark model.

After that, we specify the formulas for the other GARCH models. We then derive formulas for

the implied VIX of the GARCH models, and finish with the estimation methods.

4.1 Return dynamics of the GARCH(1,1)-model

4.1.1 Physical measure

We follow Duan (1995) and assume that the returns of the asset X follow a log normal distri-

bution under the physical pricing measure P as

ln
Xt

Xt−1
= r + λ

√
ht −

1

2
ht + ϵt, (1)

where Xt is the price of asset X at time t, r is the risk-free rate, λ is the asset risk premium,

and ϵt follows a GARCH(p, q) process with mean zero and ht as the conditional variance

ϵt | It−1 ∼ N (0, ht) under measure P

ht = α0 +

q∑
i=1

αiϵ
2
t−i +

p∑
j=1

βjht−j , (2)
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where It is the information set containing all the information up to time t; and with the restric-

tions α0 ≥ 0, αi ≥ 0 for i = 1, 2, . . . , q and βj ≥ 0 for j = 1, 2, . . . , p. In this paper, we only

consider the GARCH(1,1)-model, and equation 2 becomes

ht = αo + α1ϵ
2
t−1 + β1ht−1. (3)

4.1.2 Risk-neutrality under the LRNVR

In order to account for the heteroskedasticity of the returns, Duan (1995) proposed the locally

risk-neutral valuation relationship (LRNVR). The risk-neutral pricing measure Q of the asset

returns is denoted as

ln
Xt

Xt−1
= r − 1

2
ht + ξt, (4)

ξt | It−1 ∼ N (0, ht) under measure Q

ht = αo + α1 (ξt−1 − λht−1) + β1ht−1. (5)

4.1.3 Risk-neutrality under the mLRNVR

Zhang and Zhang (2020) modifies the LRNVR, intending to capture the volatility risk premium.

The asset returns satisfy the mLRNVR if it has the following form:

ln
Xt

Xt−1
= r − 1

2
ht + ξt, (6)

ht−1 = α0 + α1

(
ξt−1 − λ1

√
ht−1

)2
+
(
β1 −

√
2α1λ2

)
ht−1, (7)

where λ1 is the lambda of the LRNVR and λ2 is the volatility risk premium of the asset. We

assume a negative volatility risk premium in 7, consistent with empirical findings of Bollerslev

et al. (2009) and Carr and Wu (2009). The main difference between the mLRNVR and the

LRNVR is the persistence parameter, which is now β1 −
√
2α1λ2 in equation 7, whereas the

persistence parameter in equation 5 is β1. The theoretical justification for the adjustment can

be found in Zhang and Zhang (2020). The introduction of the second lambda does not require

additional data. The same dataset used for estimating the GARCH models under the LRNVR

is also applied to estimate the GARCH models under the mLNRVR.

4.1.4 Other models

In addition to the GARCH(1,1)-model, we also consider other models. More specifically, we con-

sider the exponential GARCH(1,1) (EGARCH) of Nelson (1991), the component GARCH(1,1)

(CGARCH) and asymmetric component GARCH(1,1) (ACGARCH) of Lee and Engle (1993).

The formulas for these models are shown below:
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EGARCH(1, 1) :

Physical measure :

lnht = α0 + β1 lnht−1 + α1zt−1 + κ
(
|zt−1| −

√
2/π

)
, zt = ϵt/

√
ht, (8)

LRNVR :

lnht = α0 + β1 lnht−1 + α1 (ut−1 − λ) + κ
(
|ut−1 − λ| −

√
2/π

)
, (9)

ut = ξt/
√
ht,

where ξt is a m.d.s. with conditional variance ht under the risk-neutral measure.

CGARCH(1, 1) :

Physical measure :

ht − qt = α1

(
ϵ2t−1 − qt−1

)
+ β1 (ht−1 − qt−1) , (10)

qt = α0 + ρqt−1 + ϕ
(
ϵ2t−1 − ht−1

)
,

LRNVR :

ht − qt = α1

[(
ξt−1 − λ

√
ht−1

)2
− qt−1

]
+ β1 (ht−1 − qt−1) , (11)

qt = α0 + ρqt−1 + ϕ

[(
ξt−1 − λ

√
ht−1

)2
− ht−1

]
,

ACGARCH(1, 1) :

Physical measure :

ht − qt = (α1 + θ1{ϵt−1≤0})
(
ϵ2t−1 − qt−1

)
+ β1 (ht−1 − qt−1) , (12)

qt = α0 + ρqt−1 + ϕ
(
ϵ2t−1 − ht−1

)
,

LRNVR :

ht − qt = (α1 + θ1{ϵt−1≤0})

[(
ξt−1 − λ

√
ht−1

)2
− qt−1

]
+ β1 (ht−1 − qt−1) , (13)

qt = α0 + ρqt−1 + ϕ

[(
ξt−1 − λ

√
ht−1

)2
− ht−1

]
.

We evaluate the GARCH and the EGARCH model also under the mLRNVR, as Zhang and

Zhang (2020) derived formulas for these models under the mLRNVR. The formulas for the

GARCH and EGARCH models can be found by substituting β1 = β1 −
√
2α1λ2 in the corres-

ponding formulas.

4.2 GARCH implied VIX

The CBOE VIX measures the market volatility and is calculated with SPX call and put options

prices. The GARCH implied VIX can be calculated as follows:
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(
VIXImp

t (τ0)

100

)2

=
1

n

n∑
k=1

EQ
t

(
h
t+

τ0k
n

)
(14)

where VIXImp
t (τ0) is the model implied VIX, and τ0 is equal to the amount of trading days. Note

that τ0 changes for the different VIX maturities. Since the CBOE VIX is denoted in calendar

days, we assume τ0 = 7, 21, 63, 121, 252 days for VIX9D, VIX1M, VIX3M, VIX6 and VIX1Y,

respectively. These transformations are commonly used in literature. Since we only use closing

time data for the underlying asset, we assume that τ0 is equal to n. We calculate the daily

variance of the S&P 500 with

Vt =
1

n

n∑
k=1

EQ
t (ht+k) , (15)

where Vt =
1

252

(
VIXImp

t (τ0)
100

)2

is a proxy for the daily variance.

Following Hao and Zhang (2013), we consider SR-SARV(p) models (Meddahi and Renault,

2004) to calculate the implied VIX as a conditional mean of future variance.

Definition 1: (Discrete time SR-SARV(p) model (Meddahi and Renault, 2004)). A stationary

square-integrable process {ϵt, t ∈ Z} is called a SR-SARV(p) process with respect to a filtration

Jt, t ∈ Z, if:

(i) ϵt is a martingale difference sequence with respect to Jt−1, that is E[ϵt | Jt−1] = 0,

(ii) the conditional variance process ft of ϵt+1 given Jt is a marginalization of a stationary

Jt-adapted VAR(1) of dimension p:

ft ≡ Var[ϵt+1 | Jt] = e′Ft, (16)

Ft = Ω+ ΓFt−1 + Vt, with E[Vt | Jt−1] = 0, (17)

where e ∈ Rp, Ω ∈ Rp and the eigenvalues of Γ have modulus less than one.

Hao and Zhang (2013) show that the GARCH(1,1), CGARCH(1,1) and EGARCH(1,1) mod-

els are SR-SARV(p) processes. Now we show that the ACGARCH(1,1) model is also an SR-

SARV(p) process. It is important to note that we assume that ϵt/
√
ht and ξt/

√
ht are i.i.d.

under both the physical and risk-neutral measure for the proof to hold.

Proposition 1: Let {ξt, t ∈ Z} be a m.d.s. with the conditional variance ht ≡ Var [ξt | ξτ , τ ≤
t− 1] under the LRNVR. If ut = ξt/

√
ht is i.i.d., the ACGARCH(1,1) model (13) is a

SR-SARV(2) process.

Proof. See Appendix A.1.

We calculate the implied VIX based on the methods derived in Hao and Zhang (2013). The

corresponding equations can be found in Appendix A.2.
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4.3 Estimation

We estimate the GARCH models using maximum likelihood estimation with three distinct ap-

proaches: considering only returns data, only VIX data, and a joint estimation using both

returns and VIX data. The first approach, using returns data, is estimated under the physical

measure P. The log-likelihood function (ln LR) for this approach is

lnLR = −T
2
ln(2π)− 1

2

T∑
t=1

{
ln (ht) +

[
ln (Xt/Xt−1)− r − λ

√
ht +

1

2
ht

]2
/ht

}
, (18)

where ht is updated by the respective GARCH process and T is the amount of observations.

For the second approach, we consider an estimation using the VIX. The approach of Hao and

Zhang (2013) is used as the benchmark approach and is denoted in this paper as the single VIX

estimation method. This approach allows a difference between the actual CBOE VIX index,

and the implied VIX by specifying

VIXMkt = VIXImp + µ, µ i.i.d. N(0, s2), (19)

where s2 is calculated as the sample variance of ŝ2 = VIXMkt − VIXImp. The reason for

including µ is that we also consider a joint estimation with returns and VIX, but the innovation

zt influences both the returns and the VIX. To accommodate this, we allow a difference between

these variables. The log-likelihood function based on the VIX (ln LV ) is formulated as

lnLV = −T
2
ln
(
2πŝ2

)
− 1

2ŝ2

T∑
t=1

(
VIXMkt

t −VIXImp
t

)2
. (20)

The log-likelihood function of the joint estimation is a sum of ln LR and ln LV , and is

specified as

lnLT = lnLR + lnLV . (21)

4.3.1 The multivariate VIX estimation approach

The new approach to VIX estimation, which extends the methodology of Hao and Zhang (2013),

considers multiple VIX indices simultaneously. Similar to the approach of Hao and Zhang (2013),

we allow for a difference between the CBOE VIX and implied VIX by defining

VIXMkt
i = VIXImp

i + µi, i ∈ 9D, 1M, 3M, 6M, 1Y, (22)

which can be written in vector form as

VIXMkt = VIXImp + µ, µ i.i.d.N(0,Σ), (23)

where µ = (µ9D, µ1M, µ3M, µ6M, µ1Y)
T and Σ is calculated as the sample variance

Σ̂ = (VIXMkt −VIXImp)(VIXMkt −VIXImp)′, (24)
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where VIXMkt and VIXImp are now the vectors from equation 23. This results in a multivariate

log-likelihood function, which can be specified as

lnLV = −pT
2

log(2π)−T

2
log(|Σ̂|)− 1

2

T∑
i=1

(
VIXMkt

t −VIXImp
t

)′
Σ̂−1

(
VIXMkt

t −VIXImp
t

)
(25)

where p is equal to the length of xi which is 5. However, we only consider VIX9D, VIX1M, and

VIX3M for the CGARCH and ACGARCH models to reduce computation time, which results

in p = 3.

We maximize these likelihoods subject to the stationary constraints under the risk-neutral

measure Q for each model, since these constraints are stricter than the constraints under the

physical measure P. The stationary constraints can be found in Appendix A.3.

5 Results

In this section, we analyze the parameter estimates and properties of the implied VIX for the

GARCH models. First, we present the results of the replication, followed by the outcomes under

the LNRVR framework. Subsequently, we analyze the estimation results under the mLRNVR

framework. Finally, we conduct a residual analysis of the EGARCH model, which demonstrates

the best performance under both the LRNVR and mLRNVR frameworks.

5.1 Replication

The replication results, based on data from January 2, 1990, to August 10, 2009, are largely

consistent with those reported by Hao and Zhang (2013). Only the CGARCH model shows

slight differences in parameters. Table 2 presents the parameter estimates, while Table 3 shows

the implied VIX characteristics. The parameter estimates are nearly identical for GARCH and

EGARCH, indicating a successful replication of those models. Additionally, the log-likelihood

values for each model are similar to those in the original paper, supporting the robustness of the

replication. The slight differences in parameter estimates and log-likelihoods can be explained by

different stopping criteria in the maximum likelihood estimation and differences in the dataset.

For example, there are some missing observations in the CBOE VIX and the risk-free rate time

series, but the treatment of missing observations is not discussed in Hao and Zhang (2013).

The CGARCH model shows the most notable differences in parameter estimates compared

to the original study. When using returns data or both datasets, the parameter estimates remain

very similar. However, when considering the VIX data, the parameters β1, and ϕ are signific-

antly larger. Meanwhile, the persistence parameter for the long-run volatility, ρ, is significantly

lower. Despite these differences, the log-likelihood values are consistent with the log-likelihood

values reported by Hao and Zhang (2013), indicating that the overall model performance is not

substantially affected.
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Table 2: The maximum likelihood estimates of the replication

Log-likelihoods

Model & Data α0 α1 β1 κ ρ ϕ λ Total Returns VIX

GARCH
Returns 7.1075e-07 0.0637 0.9310 - - - 0.0531 36653 16073 20580

(1.7900e-07) (0.0070) (0.0075) - - - (0.0144)
VIX 1.7146e-06 0.0366 0.9390 - - - 0.7890 38303 14456 23846

(3.9149e-08) (0.0009) (0.0012) - - - (0.0207)
Both 1.6919e-06 0.0471 0.9499 - - - 0.2080 39453 15844 23609

(4.3923e-08) (0.0011) (0.0012) - - - (0.0118)
EGARCH

Returns -0.1356 -0.0930 0.9851 0.0167 - - 0.1119 36700 16145 20525
(0.0181) (0.0079) (0.0019) (0.0101) - - (0.0143)

VIX -0.0788 -0.0614 0.9894 0.0904 - - -0.0299 40437 15993 24444
(0.0017) (0.0015) (0.0002) (0.0021) - - (0.0006)

Both -0.0838 -0.0611 0.9891 0.0111 - - 0.0954 40451 16014 24436
(0.0019) (0.0015) (0.0002) (0.0022) - - (0.0037)

CGARCH
Returns 2.0862e-07 0.0482 0.9129 - 0.9984 0.0241 0.0537 36456 16080 20376

(1.2261e-07) (0.0095) (0.0156) - (0.0012) (0.0081) (0.0135)
VIX 2.9439e-06 0.0040 0.9878 - 0.9380 0.0507 0.8752 38433 14179 24254

(8.0759e-08) (0.0003) (0.0005) - (0.0029) (0.0012) (0.0246)
Both 1.1028e-06 0.0636 0.8651 - 0.9971 0.0388 0.2653 39699 15872 23826

(3.0740e-07) (0.0148) (0.0354) - (0.0028) (0.0015) (0.0151)

This table displays the maximum likelihood estimates using returns, VIX or both, replicating the results of the GARCH, EGARCH, and
CGARCH models of Hao and Zhang (2013). The standard errors are given in parentheses and are calculated with the inverse of the
Hessian matrix. The bold values of the log-likelihood denote that this log-likelihood has been maximized.

The implied VIX characteristics for the GARCH and EGARCH are presented in Table 3.

Overall, the results correspond closely to the results in Hao and Zhang (2013), with nearly

identical error terms and autocorrelation values. Additionally, the variance, skewness, and

kurtosis are very similar, indicating that the implied VIX properties are consistent with Hao

and Zhang (2013). The p-values of the replication are lower than those reported in the original

paper, which can be explained by the assumption of equal variance between the CBOE VIX and

implied VIX in Hao and Zhang (2013). Important to note is that the statistical properties of

the actual CBOE VIX also differ slightly from the original paper, which indicates differences in

the original dataset.

Table 3: Implied VIX characteristics of the replication

Model & Data ME Std.Err. MAE MSE RMSE P-value Corr.Coef. AR1 AR10 AR30 Variance Skewness Kurtosis

GARCH
Returns 3.60 3.32 4.01 23.98 4.90 0.0000 0.93 0.9943 0.9350 0.7740 71.87 3.08 16.92
VIX 0.12 3.08 2.36 9.50 3.08 0.3597 0.93 0.9962 0.9551 0.8223 65.68 3.25 17.54
Both 0.26 3.22 2.39 10.46 3.23 0.0425 0.92 0.9967 0.9553 0.8158 66.89 3.26 17.85

EGARCH
Returns 3.59 3.14 3.73 22.73 4.77 0.0000 0.94 0.9887 0.9047 0.7424 47.02 2.17 10.83
VIX 0.00 2.73 2.10 7.46 2.73 0.9890 0.95 0.9953 0.9506 0.8282 63.28 2.15 10.46
Both 0.09 2.73 2.10 7.48 2.74 0.4601 0.95 0.9949 0.9473 0.8199 64.17 2.17 10.58

CGARCH
Returns 3.67 3.12 3.93 23.19 4.82 0.0000 0.93 0.9941 0.9438 0.8289 64.71 2.63 13.04
VIX 0.12 2.84 2.19 8.06 2.84 0.3361 0.94 0.9927 0.9361 0.8049 63.50 2.98 15.65
Both 0.22 3.09 2.32 9.58 3.09 0.0779 0.93 0.9917 0.9372 0.8232 65.94 3.01 15.53

CBOE VIX 0.9844 0.9161 0.7849 70.76 2.06 10.24

This table shows statistical properties and differences between the CBOE VIX and implied VIX of the GARCH models. The error is calculated as the
difference between the CBOE VIX and the implied VIX. The ME displays the daily average error. The standard error (Std.Err.) displays the standard
deviation of the error term. The MAE displays the daily mean absolute error. The MSE displays the daily mean squared error, and the RMSE displays
the daily root mean squared error. The P-value corresponds to the P-value for the null hypothesis that the average of the CBOE VIX and implied VIX
are equal, and is calculated with a t-test. The correlation coefficient (Corr.Coef.) displays the correlation between the CBOE VIX and the implied VIX.
The AR1, AR10, and AR30 display the autocorrelation coefficients for lag 1, 10, and 30. The last columns display additional statistical properties of the
CBOE VIX index and implied VIX.
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5.2 Estimation with different VIX measures under the LRNVR

This subsection analyses the differences in performance between the single VIX estimation

method and the multivariate VIX estimation method, during the period of using data from

January 4, 2011, to December 29, 2023. Notably, the lambda parameter, which captures the

equity risk premium, changes substantially depending on the estimation approach. The para-

meter estimates are presented in Table 4.

Table 4: The maximum likelihood estimates under the LRNVR

Log-likelihoods

Model & Data α0 α1 β1 κ ρ ϕ θ λ Total Returns VIX

Panel A: Single VIX estimation
Returns 3.9412e-06 0.1872 0.7815 - - - - 0.1109 25594 10879 14715

(5.2539e-07) (0.0157) (0.0167) - - - - (0.0150)
VIX 2.5771e-06 0.0439 0.9026 - - - - 0.9999 24856 9270 15586

(8.9203e-08) (0.0014) (0.0067) - - - - (0.0588)
Both 3.6407e-06 0.0867 0.8935 - - - - 0.1990 26166 10766 15400

(1.2260e-07) (0.0031) (0.0038) - - - - (0.0147)
EGARCH
Returns -0.3000 -0.1398 0.9677 0.1949 - - - 0.0531 26045 10932 15113

(0.3280) (0.0494) (0.0314) (0.0196) - - - (0.2572)
VIX -0.1432 -0.0953 0.9814 0.1226 - - - -0.1293 26733 10787 15946

(0.0053) (0.0029) (0.0006) (0.0053) - - - (0.0026)
Both -0.1722 -0.0890 0.9794 0.1393 - - - 0.0067 26797 10859 15938

(0.0047) (0.0031) (0.0005) (0.0047) - - - (0.0013)
CGARCH
Returns 5.6780e-07 0.1586 0.7716 - 0.9941 0.0256 - 0.1102 25690 10887 14803

(3.7653e-07) (0.0164) (0.0220) - (0.0031) (0.0168) - (0.0173)
VIX 2.5576e-06 0.0021 0.9920 - 0.8899 0.0724 - 0.9999 26039 9375 16664

(2.6362e-07) (0.0002) (0.0006) - (0.0039) (0.0034) - (0.0372)
Both 2.7196e-07 0.1298 0.8024 - 0.9978 0.0150 - 0.3368 26983 10753 16230

(3.8079e-08) (0.0039) (0.0054) - (0.0002) (0.0012) - (0.0171)
ACGARCH
Returns 6.5208e-06 0.0239 0.9714 - 0.9371 0.1675 5.8148e-09 0.1135 26011 10891 15121

(9.7322e-06) (0.0821) (0.0646) - (0.0157) (0.0432) (0.0389) (0.0353)
Both 2.6160e-07 0.1255 0.8093 - 0.9976 0.0141 3.9900e-05 0.3582 26991 10737 16254

(3.8334e-08) (0.0094) (0.0081) - (0.0002) (0.0017) (0.0047) (0.0260)

Panel B: Multiple VIX estimation
GARCH
VIX 5.6000e-06 0.0581 0.8594 - - - - 0.9999 98587 9215 89372

(3.2673e-07) (0.0014) (0.0088) - - - - (0.0685)
Both 5.7418e-06 0.0905 0.8746 - - - - 0.3283 99611 10629 88981

(1.2454e-07) (0.0026) (0.0032) - - - - (0.0124)
EGARCH
VIX -0.2852 -0.0951 0.9647 0.1092 - - - -0.1609 100346 10664 89682

(0.0037) (0.0026) (0.0004) (0.0031) - - - (0.0014)
Both -0.3000 -0.0903 0.9644 0.1123 - - - -0.0362 100410 10750 89660

(0.0213) (0.0044) (0.0025) (0.0167) - - - (0.0010)
CGARCH
VIX 1.5107e-07 0.0990 0.7596 - 0.9936 0.0022 - 0.9751 61860 9498 52363

(3.8118e-08) (0.0130) (0.0206) - (0.0007) (0.0009) - (0.0773)
Both 3.9260e-07 0.1432 0.7739 - 0.9961 0.0156 - 0.3991 62699 10699 52000

(1.5216e-08) (0.0041) (0.0063) - (0.0002) (0.0006) - (0.0071)
ACGARCH
Both 3.8698e-06 0.0012 0.9878 - 0.9542 0.1148 1.4071e-02 0.2870 63189 10770 52419

(8.0873e-08) (0.0007) (0.0003) - (0.0014) (0.0035) (0.0007) (0.0103)

This table displays the maximum likelihood estimates using returns, VIX or both datasets, showcasing the results of the GARCH, EGARCH, CGARCH,
and ACGARCH models. The VIX is estimated with equation 20 in Panel A and equation 25 in Panel B. The standard errors are given in parentheses
and are calculated with the inverse of the Hessian matrix. The bold values of the log-likelihood denote that this log-likelihood has been maximized.

For the GARCH model, lambda increases from 0.1109 (returns used) to 0.9999 (single VIX

estimation or multivariate VIX estimation) and reaches the upper bound. When returns and

VIX data are used, lambda increases to 0.1990 (single VIX estimation) or 0.3283 (multivariate

VIX estimation), based on the estimation method for lnLv. The persistence parameter β1

becomes lower with the multivariate VIX estimation method. For VIX data, it goes from 0.9026
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(single VIX estimation) to 0.8595 (multivariate VIX estimation), and for both datasets, it goes

from 0.8935 (single VIX estimation) to 0.8594 (multivariate VIX estimation). Meanwhile, α0

and α1 increase when the multivariate VIX estimation method is used.

The EGARCH model only reports a significant equity premium when returns and VIX data

are considered using the single VIX estimation method. Moreover, the EGARCH model reports

a negative risk premium (-0.1293) when VIX data and the single VIX estimation method are

used. Furthermore, when using the multivariate VIX estimation method, the model shows a

risk premium of -0.1609 for VIX data and -0.0362 for returns and VIX data. All the other

parameters decrease slightly when the multivariate VIX estimation is used, for VIX data and

returns and VIX data.

For the CGARCH and ACGARCH models, we see similar results as for the GARCH model:

the lambda parameter increases substantially when only VIX data is considered. Furthermore,

for the CGARCH model, ρ drops substantially from 0.0724 (single VIX estimation) to 0.0022

(multivariate VIX estimation), when VIX data is considered.

Estimating the newly introduced ACGARCH model poses challenges because the asymmetry

parameter θ becomes unidentifiable when only VIX data are used. When the single VIX es-

timation method is used, the asymmetric component is not significantly different from zero.

Meanwhile, when the multivariate VIX estimation method is used, the coefficient is significantly

different from zero. Furthermore, the log-likelihood values for the ACGARCH model are higher

than those of the CGARCH model, which is anticipated, since the ACGARCH model is a nested

model of the CGARCH model. However, the improvements in log-likelihood are very slim.

5.2.1 Implied VIX characteristics under the LRNVR

Table 5 displays the properties of the implied VIX for various models and estimation methods.

A notable observation is that the multivariate VIX estimation method mostly results in higher

mean errors compared to the benchmark approach of Hao and Zhang (2013). Additionally, the

single VIX estimations generally replicate the autocorrelations and statistical properties of the

CBOE VIX more accurately.

The models estimated with returns struggle to estimate the CBOE VIX well, since the mean

error is substantially higher than when the other datasets are used. This means that the models

tend to underestimate the CBOE VIX when returns data is used, which is in line with the results

of Hao and Zhang (2013). The mean errors are very similar for every model, with the minimum

error being 1.78 obtained by the EGARCH model, and the maximum 2.51, obtained by the

GARCH model. Furthermore, the statistical properties of the implied VIX differ substantially

from the actual properties of the CBOE VIX.

Models estimated exclusively with VIX data tend to produce the lowest errors, which is

expected since the VIX is directly targeted. However, the parameters become distorted in the

process, which is shown in table 4. Estimating with both returns and VIX data mostly yields

slightly higher errors than using only VIX data.

For the GARCH model, targeting the VIX directly with VIX data estimated with the single

VIX estimation method yields the lowest errors. Additionally, the correlation coefficient (0.89)

is the best compared to the other estimates of the GARCH model. The statistical properties of
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the implied VIX are still a bit different than those of the CBOE VIX, since the implied VIX has

a relatively lower variance and higher skewness and kurtosis. The multivariate VIX estimation

produces negative mean errors, suggesting that the implied VIX is overestimated. Consequently,

this leads to a higher RMSE, and the statistical properties are slightly less accurate than those

obtained with the single VIX estimation.

Table 5: Implied VIX characteristics under the LNRVR

Model & Data ME Std.Err. MAE MSE RMSE P-value Corr.Coef. AR1 AR10 AR30 Variance Skewness Kurtosis

Panel A: Single VIX estimation
GARCH

Returns 1.90 3.74 2.92 17.60 4.20 0.0000 0.86 0.9658 0.6658 0.2652 49.33 5.44 50.51
VIX 0.08 3.26 2.38 10.63 3.26 0.5608 0.89 0.9898 0.8369 0.4525 43.49 4.20 29.74
Both 0.23 3.44 2.51 11.90 3.45 0.0942 0.88 0.9885 0.7938 0.3686 44.83 5.02 40.83

EGARCH
Returns 1.78 3.24 2.64 13.67 3.70 0.0000 0.89 0.9690 0.7016 0.3358 35.48 2.48 15.78
VIX 0.01 2.92 2.18 8.52 2.92 0.9653 0.91 0.9883 0.8290 0.4773 42.66 2.56 15.45
Both 0.08 2.93 2.18 8.57 2.93 0.5520 0.91 0.9865 0.8129 0.4536 43.45 2.55 15.61

CGARCH
Returns 2.45 2.90 2.78 14.42 3.80 0.0000 0.91 0.9139 0.7488 0.4562 41.35 4.36 36.11
VIX 0.10 2.34 1.63 5.49 2.34 0.4385 0.95 0.9450 0.7957 0.4832 43.61 3.66 27.75
Both 0.28 2.66 1.86 7.17 2.68 0.0327 0.93 0.9796 0.7777 0.4907 47.05 3.92 31.46

ACGARCH
Returns 2.13 2.83 2.55 12.57 3.55 0.0000 0.92 0.9706 0.7360 0.4378 43.17 4.43 37.69
Both 0.28 2.64 1.85 7.06 2.66 0.0373 0.93 0.9295 0.7808 0.4898 46.80 3.93 31.35

Panel B: Multiple VIX estimation
GARCH

VIX -1.15 3.54 3.10 13.84 3.72 0.0000 0.87 0.9814 0.7562 0.3056 30.46 5.27 45.06
Both -0.93 3.51 2.96 13.17 3.63 0.0000 0.87 0.9849 0.7582 0.3115 35.66 5.58 49.19

EGARCH
VIX -0.99 3.72 3.13 14.84 3.85 0.0000 0.91 0.9839 0.7939 0.4303 18.09 2.54 15.74
Both -0.80 3.67 3.00 14.08 3.75 0.0000 0.91 0.9830 0.7897 0.4250 18.95 2.46 15.09

CGARCH
VIX 0.13 2.42 1.69 5.89 2.43 0.3413 0.94 0.9410 0.7554 0.4588 43.62 3.90 31.37
Both 0.03 2.66 1.91 7.08 2.66 0.8071 0.93 0.9762 0.7718 0.4989 47.05 3.98 31.93

ACGARCH
Both -0.25 2.49 1.71 6.28 2.51 0.0594 0.94 0.9394 0.7574 0.4796 52.23 3.91 31.02

CBOE VIX 0.9671 0.7925 0.5356 51.07 2.45 15.31

This table shows statistical properties and differences of the CBOE VIX maturities and implied VIX of the GARCH models. The error is calculated as
the difference between the CBOE VIX indices and the implied VIX. The ME displays the daily average error. The standard error (Std.Err.) displays the
standard deviation of the of the error term. The MAE displays the daily mean absolute error. The MSE displays the daily mean squared error, and the
RSME displays the daily root mean squared error. The P-value corresponds to the P-value for the null hypothesis that the average of the CBOE VIX index
and implied VIX are equal, and is calculated with a T-test. The correlation coefficient (Corr.Coef.) displays the correlation between the CBOE VIX index
and the implied VIX. The AR1, AR10 and AR30 display the autocorrelation coefficients for lag 1, 10 and 30. The last columns display additional statistical
properties of the CBOE VIX index and implied VIX.

For the EGARCH model, the single VIX estimation using the VIX dataset also provides

the best performance. It has a high correlation coefficient (0.91) and low error metrics. The

implied VIX closely mimics the CBOE VIX with autocorrelations (AR1: 0.9883, AR10: 0.8290,

AR30: 0.4773). Furthermore, the implied VIX of the EGARCH model is able to replicate the

moments of the CBOE VIX well, with skewness values of 2.56 (implied) versus 2.45 (actual) and

kurtosis values of 15.45 (implied) versus 15.31 (actual). However, the variance of the implied

VIX remains slightly lower. Similar to the GARCH model, the mean errors are negative for the

multivariate VIX estimation method, indicating an overestimation of the CBOE VIX.

Most importantly, the EGARCHmodel with both returns and VIX data is the best-performing

model, as it replicates the statistical properties of the CBOE VIX more accurately than any other

model, despite not having the lowest RMSE. In contrast, other models struggle to accurately

capture the skewness and kurtosis of the CBOE VIX.

For the CGARCH model, the single VIX estimation using the VIX dataset achieves the

highest correlation coefficient (0.95) and the lowest error metrics among all models. While the

implied VIX’s autocorrelations are close to the actual values, the statistical properties of the
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implied VIX differ. The skewness and the kurtosis are higher than the actual values. The

multivariate VIX estimation slightly improves the RMSE when both datasets are considered,

reducing it from 2.68 to 2.66. The mean errors are close to zero, in contrast to the GARCH and

EGARCH model with the multivariate approach. This might be due to excluding VIX6M and

VIX1Y in the estimation to reduce computation time.

For the ACGARCHmodel, the error terms become lower for the multivariate VIX estimation.

There is still a slight overestimation of the implied VIX, as the mean error is negative. The

variance of the implied VIX (52.23) closely matches the variance of the CBOE VIX (51.07),

performing the best of all models. However, the autocorrelations are slightly lower for every lag.

A visualization of the implied VIX of the ACGARCH model using both returns and VIX data is

shown in Figure 2. The left panels display the CBOE VIX and the implied VIX, and the right

panels display the ratio between the implied VIX and the CBOE VIX.

Figure 2: The comparison between the CBOE VIX and the implied VIX of the ACGARCH
model under the LRNVR estimated with both datasets

(a) Single VIX estimation: implied VIX (b) Single VIX estimation: implied VIX ratio

(c) Multivariate VIX estimation: implied VIX (d) Multivariate VIX estimation: implied VIX ratio

5.3 Estimation with different VIX measures under the mLRNVR

Next, we examine the results of the GARCH and EGARCH models under the mLRNVR. The

parameter estimates and implied VIX characteristics are shown in Table 6 and 7, respectively.

The original lambda of the LRNVR is denoted as λ1, while the additional lambda parameter

introduced for the mLRNVR is denoted as λ2. The results for the returns data are not included

here, as they are already provided in Table 4, as λ2 is zero under the physical measure. The most
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important observation is that λ1 still reaches high values for GARCH when VIX data is used,

even under the mLRNVR. Another key observation is that the multivariate VIX estimation

method tends to overestimate the CBOE VIX.

Table 6: The maximum likelihood estimates under the mLRNVR

Log-likelihoods

Model & Data α0 α1 β1 κ λ1 λ2 Total Returns VIX

Panel A: Single VIX estimation
GARCH
VIX 2.577e-06 0.0439 0.8753 - 0.9999 -0.4404 24856 9270 15586

(8.9886e-08) (0.0015) (0.0047) - (0.0487) (0.0152)
Both 3.6058e-06 0.0854 0.8604 - 0.1998 -0.2803 26165 10765 15400

(1.2080e-07) (0.0032) (0.0079) - (0.0150) (0.0259)
EGARCH
VIX -0.1556 -0.0867 0.9990 0.1263 -0.0353 -0.1484 26783 10832 15950

(0.0047) (0.0031) (0.0008) (0.0031) (0.0031) (0.0007)
Both -0.1722 -0.0890 0.9844 0.1393 0.0067 -0.0395 26797 10859 15938

(0.0052) (0.0035) (0.0005) (0.0043) (0.0148) (0.0009)

Panel B: Multiple VIX estimation
GARCH
VIX 5.5996e-06 0.0581 0.8510 - 0.9999 -0.1024 98587 9215 89372

(1.3097e-07) (0.0023) (0.0034) - (0.0167) (0.0122)
Both 5.7182e-06 0.0903 0.8304 - 0.3276 -0.3495 99611 10630 88981

(1.2136e-07) (0.0025) (0.0044) - (0.0151) (0.0051)
EGARCH
VIX -0.2853 -0.0951 0.9895 0.1092 -0.1606 -0.1839 100346 10664 89682

(0.0032) (0.0024) (0.0011) (0.0032) (0.0064) (0.0084)
Both -0.3160 -0.0904 0.9737 0.1212 -0.0210 -0.0865 100418 10764 89654

(0.0040) (0.0031) (0.0006) (0.0031) (0.0167) (0.0013)

This table displays the maximum likelihood estimates using VIX or both returns and VIX data, showcasing the results under
the mLRNVR. The VIX is estimated with equation 20 in Panel A and 25 in Panel B. The standard errors are given in
parentheses and are calculated with the inverse of the Hessian matrix. The bold values of the log-likelihood denote that this
log-likelihood has been maximized.

Panel A of Table 6 presents the parameter estimates obtained using the single VIX estimation

approach. In the GARCH model, the newly introduced parameter λ2, designed to capture the

volatility risk premium, is significant for both datasets. Specifically, λ2 is -0.4404 when only

VIX data is used and -0.2803 when both returns and VIX data are included. When VIX data

is considered under the mLRNVR, the equity risk premium λ1 remains high, which contrasts

with the findings of Zhang and Zhang (2020), where λ1 is significantly different from zero and

falls within a normal range. This difference is due to different time periods. 2

For the EGARCH model, λ2 remains significant for both datasets, with values of -0.1484

(using VIX data) and -0.0395 (using both datasets). Meanwhile, the equity risk premium para-

meter λ1 is negative when VIX data is used, and not significantly different from zero when both

datasets are considered.

The parameter estimates for the multivariate VIX estimation method are denoted in Panel

B of Table 6. The variance risk premium λ2 is significantly different than zero for all models

and datasets. Consistent with the single VIX estimation method, the GARCH model shows

high λ1 values when only VIX data is used. When both VIX and returns data are considered,

λ1 is significantly different from zero (0.3276). Similar to the results under the LNRVR, the

2The replication of the results of Zhang and Zhang (2020) was successful, and yields the same results as
reported in the paper.
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estimation with the EGARCH model results in a negative λ1 for every dataset.

5.4 Implied VIX characteristics under the mLRNVR

The implied VIX characteristics are shown in Table 7. The lowest MSE (8.50) is obtained

by the EGARCH model, estimated with the single VIX estimation method using VIX data.

Panel A of Table 7 illustrates that the EGARCH model consistently fits the CBOE VIX well

under the mLRNVR framework, regardless of the dataset used. Nevertheless, it is important to

keep in mind that the parameter estimates are distorted when only VIX data is used, therefore

estimation with returns and VIX data might be preferred. Interestingly, when the multivariate

VIX estimation method is used, the GARCH and EGARCH models tend to overestimate the

CBOE VIX, resulting in a negative mean error. Still, the EGARCH is better at fitting the

CBOE VIX considering the moments and autocorrelations of the implied VIX.

Table 7: Implied VIX characteristics under the mLRNVR

Model & Data ME Std.Err. MAE MSE RMSE P-value Corr.Coef. AR1 AR10 AR30 Variance Skewness Kurtosis

Panel A: Single VIX estimation
GARCH

VIX 0.08 3.26 2.38 10.63 3.26 0.5608 0.89 0.9898 0.8369 0.4525 43.49 4.20 29.74
Both 0.23 3.45 2.51 11.92 3.45 0.0985 0.88 0.9883 0.7915 0.3653 44.79 5.04 41.14

EGARCH
VIX 0.01 2.92 2.17 8.50 2.92 0.9556 0.91 0.9882 0.8276 0.4750 42.75 2.54 15.31
Both 0.08 2.93 2.18 8.57 2.93 0.5521 0.91 0.9865 0.8129 0.4536 43.45 2.55 15.61

Panel B: Multiple VIX estimation
GARCH

VIX -1.15 3.54 3.10 13.84 3.72 0.0000 0.87 0.9814 0.7561 0.3054 30.46 5.27 45.05
Both -0.92 3.51 2.95 13.15 3.63 0.0000 0.87 0.9849 0.7589 0.3124 35.70 5.57 49.08

EGARCH
VIX -1.00 3.72 3.13 14.84 3.85 0.0000 0.91 0.9839 0.7939 0.4302 18.09 2.54 15.74
Both -0.81 3.67 3.01 14.12 3.76 0.0000 0.91 0.9821 0.7822 0.4173 19.00 2.46 15.16

CBOE VIX 0.9671 0.7925 0.5356 51.07 2.45 15.31

This table shows statistical properties and differences of the CBOE VIX maturities and implied VIX of the GARCH models. The error is calculated as
the difference between the CBOE VIX indices and the implied VIX. The ME displays the daily average error. The standard error (Std.Err.) displays the
standard deviation of the error term. The MAE displays the daily mean absolute error. The MSE displays the daily mean squared error, and the RMSE
displays the daily root mean squared error. The P-value corresponds to the P-value for the null hypothesis that the average of the CBOE VIX index and
implied VIX are equal, and is calculated with a T-test. The correlation coefficient (Corr.Coef.) displays the correlation between the CBOE VIX index and
the implied VIX. The AR1, AR10, and AR30 display the autocorrelation coefficients for lag 1, 10, and 30. The last columns display additional statistical
properties of the CBOE VIX index and implied VIX.

Figure 3 shows the comparison between the CBOE VIX and the implied VIX, estimated

with the EGARCH model under the mLRNVR using both datasets. The left panels display the

CBOE VIX and the implied VIX, and the right panels display the ratio between the implied

VIX and the CBOE VIX. The ratio for the single VIX estimation, shown in panel 3b, is nicely

centered around 1. Meanwhile, the overestimation of the CBOE VIX is visible in panel 3d,

where the ratio is above 1 for a long period.
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Figure 3: The comparison between the CBOE VIX and the implied VIX of the EGARCH model
under the mLRNVR estimated with both datasets

(a) Single VIX estimation: implied VIX (b) Single VIX estimation: implied VIX ratio

(c) Multivariate VIX estimation: implied VIX (d) Multivariate VIX estimation: implied VIX ratio

5.5 Residual analysis of the EGARCH model

Since the EGARCH model is the best-performing model under both the LRNVR and mLRNVR,

we analyze the characteristics of the error term ut. The best-performing model means that the

implied VIX replicates the statistical properties of the CBOE VIX most accurately. The error

term of the EGARCH model is already standardized, as ut = ξt/
√
ht. An important observation

is that the single VIX estimation method produces higher Jarque-Bera test statistics than the

multivariate VIX estimation method, yet normality is firmly rejected for both models.

The moments of the error terms are shown in table table 8. The first three columns report

moments of the standardized residuals, estimated under the LRNVR. The fourth and the fifth

columns report the Jarque-Bera test statistic and its corresponding p-value, respectively. The

last five columns report the same statistics, instead estimated under the mLRNVR. Notably, the

implied characteristics under the mLRNVR closely resemble those observed under the LRNVR.

Table 8: Characteristics of the standardized residuals of the EGARCH model
LRNVR mLRNVR

Estimation Method & Data Mean Skewness Variance Kurtosis JB statistic P-value Mean Skewness Variance Kurtosis JB statistic P-value

Single VIX estimation
VIX 0.17 -0.76 0.79 5.44 1130.78 0.0000 0.07 -0.76 0.80 5.41 1108.71 0.0000
both 0.03 -0.76 0.81 5.42 1112.24 0.0000 0.03 -0.76 0.81 5.42 1112.22 0.0000

Multivariate VIX estimation
VIX 0.20 -0.70 0.68 5.28 977.49 0.0000 0.20 -0.70 0.68 5.28 977.32 0.0000
both 0.07 -0.71 0.70 5.24 955.54 0.0000 0.06 -0.70 0.71 5.21 935.09 0.0000

This table shows the statistical properties of the residuals of the EGARCH model, estimated with different datasets. The mean, skewness, variance, kurtosis, Jarque-Bera statistic,
and its corresponding p-value are provided for each model configuration.
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Every mean is close to zero, which is expected for standardized residuals. Using both datasets

to estimate the EGARCH model yields a smaller mean than only using VIX data. This shows

that the error terms when both returns and VIX data are used, are slightly better centered than

only using VIX data. The variances should be close to 1, but the values are somewhat lower

for every estimation method. Interestingly, the multivariate VIX estimation approach results in

lower variance values than the single VIX estimation approach. All of the skewness values are

negative, indicating that the tail is more on the left side of the distribution. Furthermore, the

skewness values do not differ a lot across the models, as the lowest value is -0.76 and the highest

value is -0.70. Every kurtosis value is higher than 3, meaning that the distribution has fatter

tails and a sharper peak than a standard normal distribution. This means that the standardized

residuals for every model contain more extreme values than a standard normal distribution.

The Jarque-Bera test statistic is high for all models, suggesting that the error terms are not

standard normally distributed. The single VIX estimation method does result in slightly higher

Jarque-Bera test statistics than the multivariate VIX estimation method, suggesting that the

standardized residuals deviate slightly more from normality. Still, these high Jarque-Bera test

statistics result in low p-values for both estimation methods, firmly rejecting the null hypothesis

and implying non-normality in the standardized residuals for all models.

Figure 4 illustrates the distribution of the standardized residuals under the LRNVR, es-

timated with both datasets. The red line in the density plots represents the standard normal

distribution. The higher kurtosis is visible for both estimation methods since both density plots

have a higher peak and fatter tails. The multivariate VIX estimation exhibits slightly lighter

tails and is marginally less left-skewed.

Figure 4: Density plots of the standardized residuals under the LRNVR, estimated with the
EGARCH model using both datasets

(a) Single VIX estimation (b) Multivariate VIX estimation

The first 20 autocorrelations of these models are shown in Figure 5. Both estimation methods

result in largely uncorrelated residuals. Only lag 15 exceeds the confidence bounds in panel 5b.

Overall, the majority of the autocorrelations are within the confidence bounds, suggesting that

the residuals are not correlated.
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Figure 5: Autocorrelations of the standardized residuals under the LRNVR, estimated with the
EGARCH model using both datasets

(a) Single VIX estimation (b) Multivariate VIX estimation

Figure 6 shows the behavior of the residual over time. The residuals for both estimation

methods are centered around zero, indicating that there is no systematic bias in the residuals.

Furthermore, the spread of the residuals appears to be consistent, suggesting homoscedasticity

in the standardized residuals. The overall behavior of the residuals over time is quite similar

between the two estimation methods, with no major differences in the observed characteristics.

Figure 6: Standardized residuals over time under the LRNVR, estimated with the EGARCH
model using both datasets

(a) Single VIX estimation (b) Multivariate VIX estimation

The residual analysis for the models under the mLRNVR yields results that are very similar

to those observed for the LRNVR models. The distributions of the standardized residuals,

autocorrelations, and the behavior of the residuals over time exhibit similar characteristics. The

standardized residuals have a higher kurtosis, minimal autocorrelation, and are consistent over

time. Given the similarity in results, detailed graphs for the mLRNVR models are provided in

the appendix A.4.
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6 Conclusion

In this paper, we examined whether a multivariate estimation approach with multiple VIX

measures could enhance the estimation of the CBOE VIX. We analyzed the new approach

with GARCH option pricing models under the framework of Duan (1995) and calculated the

implied VIX based on the methodology of Hao and Zhang (2013). Additionally, we evaluated the

approach under the mLRNVR framework of Zhang and Zhang (2020). We analyzed four different

types of GARCH models under the LRNVR and two GARCH models under the mLRNVR.

Under the LRNVR, the single VIX estimation method is generally preferred for most GARCH

models. However, the exceptions are the CGARCH and ACGARCH models when both VIX and

returns data are used for estimation. Similar to the results of Hao and Zhang (2013), parameters

become distorted to fit the CBOE VIX when only VIX data is considered for the estimation.

Nevertheless, the GARCH implied VIX for the CGARCH and ACGARCH models still fails to

match the statistical properties of the CBOE VIX. Furthermore, we see that the multivariate

VIX estimation method tends to overestimate the CBOE VIX for the GARCH and EGARCH

models, resulting in larger errors.

Under the mLRNVR, the single VIX estimation method yields better results than the mul-

tivariate VIX estimation method. In terms of fit and parameter estimates, the EGARCH model

estimated with the single VIX estimation method using both returns and VIX data yields the

best results in terms of fit. Similar to the estimation under the LRNVR, the GARCH and

EGARCH models tend to overestimate when the multivariate VIX estimation method is used.

The analysis of the error terms of the EGARCH model under the LRNVR and mLRNVR

reveals that the single VIX estimation method produces higher Jarque-Bera test statistics than

the multivariate VIX estimation method, yet normality is firmly rejected for both models.

To address the research question, our findings suggest that the multivariate VIX estimation

method generally does not provide a superior fit for the CBOE VIX. There is a slight improve-

ment only for the CGARCH and ACGARCH models when both returns and VIX data are used.

However, these models still struggle to replicate the autocorrelations and moments of the CBOE

VIX. Consequently, our findings align with those of Zhang and Zhang (2020). We recommend

estimating the CBOE VIX using the EGARCH model with the single VIX estimation method,

incorporating both returns and VIX data, as it yields the best fit.

Further research could explore the out-of-sample performance of these models and evaluate

their predictive power. Additionally, ARIMA-type models could be considered to model the

VIX directly, allowing for a comparison between GARCH and ARIMA models in estimating

and forecasting the CBOE VIX.
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A Appendix

A.1 Proof of Proposition 1

Let {ξt, t ∈ Z} be a m.d.s. with the conditional variance ht ≡ Var [ξt | ξτ , τ ≤ t− 1] under the

LRNVR. If ut = ξt/
√
ht is i.i.d., the ACGARCH(1,1) model (13) is a SR-SARV(2) process.

We can rewrite the ACGARCH(1,1) model as ht = e′Ft and Ft = Ω+ ΓFt−1 + Vt−1 with

e =

(
1

0

)
, Ft =

(
ht

qt

)
, Ω = α0

(
1

1

)
, Γ =

(
α1 + β1 + (ϕ+ α1)λ

2 + θS ρ− α1 − β1 − θS

ϕλ2 ρ

)
,

Vt = ht−1(u
2
t−1 − 2λut−1 − 1)

(
ϕ+ α1

ϕ

)
+ θht−1

[
(ut−1 − λ)2 1 (ut−1 < λ)− S

](1
0

)
.

If ut = ξt/
√
ht is i.i.d. N(0,1), we get S =

[
λ√
2π
e−

λ2

2 +
(
1 + λ2

)
N(λ)

]
. Since EQ

t−2(ut−1) = 0

and EQ
t−2(u

2
t−1) = 1, we have EQ

t−2(Vt−1) = 0.

A.2 Implied VIX formulas

We follow the approach of Hao and Zhang (2013), and calculate the implied VIX under the

properties of SR-SARV models Meddahi and Renault (2004). Hao and Zhang (2013) show that

the proxy Vt can be calculated as a linear function of the conditional variance of the next period,

ft and specify

Vt = ξ + ψft. (26)

Hao and Zhang (2013) derive the following implied VIX formulas for the GARCH models under

the LRNVR:

GARCH(1,1):

Vt = A+Bht+1, (27)

where

A =
α0

1− η
(1−B),

B =
1− ηn

n(1− η)
,

η = α1(1 + λ2) + β1.
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EGARCH(1,1):

Vt =
1

n

(
ht+1 +

n−1∑
k=1

(
k−1∏
i=0

ιi

)
h
βk
1

t+1

)
, (28)

where ιi is given by

ιi =e
βi
1

(
α0−κ

√
2/π

){
e−βi

1(α1−κ)λ+
[βi1(α1−κ)]

2

2 N
[
λ− βi1 (α1 − κ)

]
(29)

+e−βi
1(α1+κ)λ+

[βi1(α1+κ)]
2

2 N
[
βi1 (α1 + κ)− λ

]}

if ut is i.i.d. standard normal, which is assumed.

The implied VIX formulas for the GARCH and EGARCH models under the mLRNVR can

be found by substituting β1 = β1 −
√
2α1λ2.

CGARCH(1,1):

First, Hao and Zhang (2013) write the CGARCH(1,1) model as a SR-SARV(2) model and

denote:

ht = e′Ft and Ft = Ω+ ΓFt−1 + Vt−1 with

e =

(
1

0

)
, Ft =

(
ht

qt

)
, Ω = α0

(
1

1

)
, Γ =

(
α1 + β1 + (ϕ+ α1)λ

2 ρ− α1 − β1

ϕλ2 ρ

)
,

Vt = ht−1(u
2
t−1 − 2λut−1 − 1)

(
ϕ+ α1

ϕ

)
.

Subsequently, Hao and Zhang (2013) calculate the implied VIX with a numerical approach with

EQ
t (ft+k) = e′

(
k−1∑
i=0

ΓiΩ+ ΓkFt

)
(30)

and equation 15. Note that ft+k is ht+k, but we use the notation of Meddahi and Renault (2004)

in equation 30. We use the same approach to calculate the implied VIX for the ACGARCH(1,1)

model, with the corresponding matrices and parameters given in proof A.1. A detailed approach

of the derivation of the implied VIX formula in equation 26 can be found in Hao and Zhang

(2013).

A.3 Stationairy constraints for the GARCH models under the LRNVR

GARCH(1,1):

α1(1 + λ2) + β1 ≤ 1

EGARCH(1,1):

|β1| ≤ 1
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CGARCH(1,1):

The eigenvalues of the coefficient matrix

Γ =

(
α1 + β1 + (ϕ+ α1)λ

2 ρ− α1 − β1

ϕλ2 ρ

)
have a modules less than 1.

ACGARCH(1,1):

The eigenvalues of the coefficient matrix

Γ =

(
α1 + β1 + (ϕ+ α1)λ

2 + θS ρ− α1 − β1 − θS

ϕλ2 ρ

)
have a modules less than 1.

A.4 Residual graphs under the mLRNVR

Figure 7: Density plots of the standardized residuals under the mLRNVR, estimated with the
EGARCH model using both datasets

(a) Single VIX estimation (b) Multivariate VIX estimation

Figure 8: Autocorrelations of the standardized residuals under the mLRNVR, estimated with
the EGARCH model using both datasets

(a) Single VIX estimation (b) Multivariate VIX estimation
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Figure 9: Autocorrelations of the standardized residuals under the mLRNVR, estimated with
the EGARCH model using both datasets

(a) Single VIX estimation (b) Multivariate VIX estimation

B Code Appendix

This appendix lists all the code and data files used to compute the results presented in this

paper, along with a short explanation of each file.

• Data for the replication are located in Replication Dataset.

• Data for the estimation for the time period of January 4, 2011 to 29 December, 2023 are

located in Dataset.

• All results are computed using MATLAB code and saved to the excel file Results Thesis.

Each GARCH model has three associated files, where ‘[GARCH MODEL]’ should be re-

placed with the specific model name. The files used for estimation are:

– [GARCH MODEL] main.m is the main execution file for estimating the model.

The data is loaded here, sets up the initial parameters, and calls the other files for the

minimization of the negative log-likelihood. This file should be executed to obtain

the results.

– [GARCH MODEL] negLL.m calculates the negative log-likelihood and returns

it as output. It calls the [GARCH MODEL] filter.m file to obtain the volatility

estimates, and calculates the log-likelihood based on returns data, VIX data, or both

datasets.

– [GARCH MODEL] filter.m calculates the volatility for a given set of parameters.

– nonlcon.m contains non-linear constraints for optimizing the log-likelihood function

and is an additional file specifically for the CGARCH and ACGARCH models.

• Important to note that the feature to choose between LNRVR and mLRNVR in the

‘[GARCH MODEL] main.m’ has not been implemented yet. Therefore, the models under

the mLRNVR have an additional folder that estimates the models under the mLRNVR.
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• The following R-scripts are used to construct the graphs and to compute summary stats.

Note that datasets should be imported manually.

– Summary stats.rmd computes the summary stats, shown in the Data section

– Graphs CBOE VIX.rmd plots the graphs for every Figure in the paper and com-

putes the results for Table 8.
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