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Abstract

We present Bayesian modelling approaches to the estimation of the distribution of billionaire

wealth using the Forbes list of billionaires from 1997 to 2023. Models with Pareto, Truncated

Weibull and Generalised Pareto distributions are considered. First, we show that measure-

ment error has no important effect on the conclusion that the Pareto distribution is a poor fit

to the billionaire wealth distribution. We compare Bayesian models that impose regularisa-

tion on the shape parameter of the wealth distribution to frequentist estimation techniques.

As evaluated by the Kolmogorov-Smirnov goodness of fit test, Bayesian models based on the

Generalised Pareto distribution provide the best fit to the empirical billionaire wealth distri-

bution. We show that the Pareto distribution is a good fit for a smaller subset of top wealth,

but a poor fit to overall billionaire wealth, as can be seen by the empirical cumulative hazard

rate. We further introduce covariates for the variation in the scale of the wealth distribution,

and conduct out-of-sample forecasts. We show that over half of the time-series variance in the

change in scale of the top wealth distribution can be explained by changes in gross domestic

product per capita and returns of the regional stock market. In forecasting, the Weibull

distribution models provide the best forecasts for mean wealth. Using comparisons of results

across countries, we draw conclusions on the effects of tax policies on top wealth.

The views stated in this thesis are those of the author and not necessarily those of the supervisor,

second assessor, Erasmus School of Economics or Erasmus University Rotterdam.



1 Introduction

There will be the world’s first trillionaire by 2034. At least, this is a prediction of Oxfam in

their most recent “Inequality Inc.” report (Riddell et al., 2024). Although the purpose of this

statement may be to simply draw attention to global inequality, rather than to make an optimal

prediction, it does raise the question of how top wealth can be studied from a statistical point

of view.

1.1 Literature

Much research has been conducted on the distribution of wealth. Prominently, the ‘Pareto

principle’, also known as the ‘80-20 rule’, states that 20% of the population controls 80% of the

wealth. Originally, Pareto (1896) used this principle to describe inequality of wealth and income.

More recently, Thomas Piketty’s Capital in the Twenty-First Century (2014) emphasises the

drastic increase in wealth concentration in the top 1% in the recent decades.

For the larger part of history, models for the wealth distribution have both assumed and mo-

tivated Paretianity. Stiglitz (1969) proposes a simple capital accumulation model of an economy

with inheritance. In this model, the upper tail of the wealth distribution possesses a Pareto

shape. Expanding, Atkinson and Harrison (1979) provide an explicit formula for the Pareto

index in Stiglitz’ model as a function of population growth, taxes and savings, and relate it

to empirical data from the United Kingdom. With a stronger focus on the very top end of the

wealth distribution, both Drăgulescu and Yakovenko (2001) and Klass et al. (2006) show that the

distribution of billionaires in the United States (US) and globally, respectively, is well described

by a power law. This suggests a common pattern in the top wealth distribution across countries,

with only a difference in the magnitude of parameters. Finally, Vermeulen (2018) utilises rich

lists about billionaires to demonstrate Paretianity in the top wealth distribution.

However, the consensus about the Pareto shaped wealth distribution has been opposed. Using

data from the Forbes list of billionaires, Teulings and Toussaint (2023) argue that the Pareto

distribution is a poor fit for top wealth above one billion dollars. The authors develop a new test

for Paretianity that utilises the R̂k statistic dependent on the sample moments of observations.

Further, they observe that the empirical cumulative hazard rate of log wealth is exponentially

increasing, and thus argue that a truncated Weibull distribution with this property provides

a better fit. In fact, Teulings and Toussaint are not the first to investigate models using the

Weibull distribution. Jacobi and Tzur (2020) study the fit of the Weibull distribution to wealth,

but come to the conclusion that a Burr XII distribution is a comparatively better fit to the data.

A natural extension to the Pareto distribution is the Generalised Pareto Distribution (GPD).

The Generalised Pareto Distribution finds a strong mathematical foundation in an Extreme Value

Theory (EVT) theorem from Pickands III (1975), Balkema and De Haan (1974), guaranteeing

that for a large class of distributions, the conditional excess distribution over a sufficiently high

threshold converges to a GPD. Based on this result, one may expect the distribution of excess

wealth above one billion dollars to be well modelled by a GPD. Correspondingly, Blanchet et al.

(2022) use generalised Pareto curves to model the overall wealth distribution. With a stronger

focus on top wealth, Charpentier and Flachaire (2022) argue that the GPD fits the data better

than a simple Pareto model.
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In the context of top wealth, measurement error is an issue that must be addressed. Teulings

and Toussaint (2023) argue that their newly defined R̂k test statistic preserves important prop-

erties under unbiased and homoskedastic measurement error. To adapt any test statistic to

measurement error, Capehart (2014) suggests to estimate measurement error empirically by

comparing wealth estimates for the same individuals across different sources.

Finally, the growth in the wealth of the world’s billionaires has been considerable and per-

sistent over the last two decades, as noted by Bagchi and Svejnar (2015) and Flanigan and

Freiman (2022). The causes for this growth are generally assumed to be economic growth and

returns from capital markets. For instance, Gandhi and Walton (2012) display via exploratory

analysis the seeming correlation between Indian billionaire wealth and Indian gross domestic

product (GDP), as well as the Indian stock market. Cross-sectionally, differences in the number

of billionaires across countries can largely be explained by differences in GDP per capita too, as

shown by Popov (2018).

1.2 Research question

The literature in Section 1.1 exhibits three key gaps. First, while the measurement error relevant

for top wealth data is often acknowledged, it is rarely addressed. Second, on the topic of which

distribution best fits top wealth, most studies on billionaires from the later 2010s reject the earlier

consensus of Paretianity. It is therefore worth studying the top end of the wealth distribution

using Forbes’ billionaire lists not only in a single country in a given year, but across the world

and over time. Third, while there has been work done in describing the evolution of top wealth

over time, there have been no attempts to statistically measure the effects of macroeconomic

variables on the wealth distribution. Covariate analysis is limited to cross-sectional settings, but

has not yet been performed in a panel setting.

Summarising, there is disagreement on the shape of the top wealth distribution, and a lack

of studies of its evolution over time. Thus, the following research question arises.

Research Question

What is the shape of the wealth distribution of the world’s billionaires,

how does it change over time, and what factors underly the changes?

In order to resolve the open questions mentioned above, this research innovates in several

ways. First, on the topic of measurement error in top net worth, this research adapts the approach

of Capehart (2014) to not only estimate the measurement error on billionaire wealth, but to also

study its impact on the R̂k statistics from Teulings and Toussaint (2023). The Paretianity tests

are improved by using the more powerful Kolmogorov-Smirnov goodness-of-fit test, as suggested

by Chu et al. (2019).

To infer which distribution best describes billionaire wealth, this research considers not only

a Pareto model, but also a truncated Weibull and a Generalised Pareto model. As the literature

suggests common patterns in the shape of the wealth distribution around the world, this research

innovates by estimating models for top wealth in a Bayesian setting. As such, we allow for a

form of regularisation when characterising the distribution of billionaire wealth.

Finally, the evolution of the top wealth distribution over time has received very limited at-

tention thus far. Hence, we consider Bayesian time series models that incorporate stock market
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returns and GDP growth into the data generating processes. We let the covariates take influ-

ence on the unobserved scale parameter of the wealth distribution. This allows conclusions on

the economic importance of the aforementioned covariates. Further, it facilitates distribution

forecasts of future wealth, an exercise not touched upon in the literature thus far.

In brief, we find that the global overall increase of wealth, and subsequent increase in the

number of billionaires, has resulted in a wealth distribution among billionaires that can no longer

be characterised as Pareto. However, when considering a smaller subset of the world’s wealthiest,

Paretianity seems to still be valid. The best fit to the top wealth distribution is provided by

a Bayesian model utilising the Generalised Pareto Distribution, closely followed by the Weibull

sister model.

This research finds that over 60% of the variance in the changes of the scale of the top wealth

distribution over time can be explained by changes in GDP and returns of the stock market.

Billionaire wealth is positively related but inelastic to both the stock market and GDP growth.

Out-of-sample forecasts for mean billionaire wealth using a Bayesian time series model based on

the truncated Weibull distribution outperform random walk forecasts. This suggests that top

wealth is predictable to the extent that the macro-economy is.

1.3 Scientific and economic implications

Understanding the shape of the top wealth distribution is of scientific importance. Besides

simple interest in whether Bayesian methods are more adequate to understand billionaire wealth

than conventional frequentist techniques, it allows conclusions on how wealth is generated. For

example, it indicates whether the upper tail of wealth is mainly the result of economic diffusion

processes - combinations of return on capital and exogenous income - that can be modelled by

random difference equations as in Gabaix (2009), or whether it originates from different data

generating processes. If top wealth is Pareto, it is evidence in favour of diffusion processes, but

in case of other, economic theory must be revised.

In direct relation to diffusion processes, the research is also of social relevance. Kesten (1973)

and Goldie (1991) show that for random difference equations, only the renewal rate determines

the shape of the upper tail. As a direct consequence, one may conclude that the shape of top

wealth is only impacted by taxes on capital, such as a wealth tax, but not by taxes on income.

In addition, the value of shape parameters is relevant for optimal taxation rates as well.

Saez and Zucman (2019) show that the revenue maximising wealth tax rate depends on the

heavy-tailedness of the wealth distribution.

Moreover, estimates of the influence that covariates have on the high tail of wealth do not

only provide economic interpretation, but also a practical advantage. For governments using a

wealth tax, they can provide tax revenue forecasts for many years ahead by making simplifying

assumptions on economic growth. The coefficient estimates also help understanding the risk of

changes in tax revenue during economic downturns.

The remainder of this paper is organised as follows. Section 2 presents the data used in this

study, together with key exploratory insights. Section 3 outlines the estimation and evaluation

methods required for the analysis. Section 4 presents the results in detail, and Section 5 presents

economic implications from the results. Section 6 summarises the main findings and concludes.
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2 Data

2.1 Billionaire lists

Similar to Teulings and Toussaint (2023), we use the Forbes List of Billionaires for the years

1997-20231. Among other information, Forbes offers an annual estimate of an individual’s net

worth, rounded to 100 million $US, as well as the citizenship of individuals. We can classify

individuals into regions based on nationality, using the geographical classification from Teulings

and Toussaint (2023), shown in Appendix A, Table 4.

Table 1: Summary statistics of Forbes billionaires data grouped by region

Mean N Mean Net Worth Mean Log Net Worth Min N Max N
Region

Central Eurasia 78.2 3.7 0.9 5 132
China 211.4 3.2 0.8 1 698
East Asia 133.3 2.7 0.8 2 306
Europe 248.8 4.1 1.1 3 509
India 61.9 4.0 0.9 1 169
Middle East 53.2 2.9 0.8 1 90
North America 471.7 4.2 1.0 176 800
South America 55.5 4.0 0.9 1 113
Rest of World 11.1 3.5 1.0 2 23

Note: ‘N’ refers to the number of billionaires. Mean values are averaged by pooling observations
from all years, 1997 up to and including 2023.

Table 1 shows some summary statistics for the Forbes dataset. There are significant differ-

ences across regions. There are many more billionaires in North America than in Europe, despite

roughly equal populations. Further, billionaires in some regions are on average richer than bil-

lionaires in other regions. As besides North America, not all regions have a substantial number of

billionaires in the beginning of the sample, all models in this research are only estimated starting

in 2005.

More importantly, the same billionaires show up every year. Every year, around 80% of

the world’s billionaires were also billionaires the year before. Details can be found in Appendix

B, Table 6. This implies that observations of the top wealth distribution are dependent across

time. From a modelling perspective, this encourages a form of regularisation when estimating

distribution parameters to prevent overfitting.

Further, we use a list of the 500 richest people in the year 2021 based on the Bloomberg

Billionaires Index2. Similarly to Forbes, Bloomberg estimates net worth to a precision of 100

million $US. This list is leveraged to estimate measurement error. Note that since this dataset

orders billionaires and only preserves the top 500 observations, the means are much higher than

in Forbes’ data. Details can be found in Appendix B, Table 7.

1Retrieved from: https://www.kaggle.com/datasets/guillemservera/forbes-billionaires-1997-2023
2Retrieved from: https://www.kaggle.com/datasets/frtgnn/500-richest-people-2021
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2.2 Covariates

In addition to data on individuals’ net worth, the literature prompts us to focus on two key

covariates to model changes in the top wealth distribution: GDP per capita and stock indices.

For the former, we use annual data for GDP per capita from the World Bank on a country

level, reaching until 20223. As for most use cases of this research, we aggregate countries into

larger sub-regions to have a sufficient number of observations in a group, we compute the popu-

lation weighted GDP per capita in a sub-region. The sub-region classification of countries follows

Teulings and Toussaint (2023), and can be found in Appendix A, Table 5. Global population

data are available from Worldometers4.

Furthermore, we use several stock market indices. When possible, we use a market index with

a geographical focus on the countries of a respective sub-region. That is, the CAC40 for France,

the DAX for Germany, the FTSE100 for the British Islands, the MOEX for Russia, the NIFTY

for India, the OMX40 for Scandinavia, the S&P500 (SPX) for the United States, and the SSE for

China. For all other sub-regions, we opt to use the MSCI World for simplicity. Historical data

for all of the above indices are available on Yahoo Finance’s Quote page at a monthly frequency5.

3 Methodology

This section outlines the different estimation techniques used for the distribution of billionaire

wealth. We begin with frequentist techniques, and subsequently move to more appropriate

Bayesian estimation techniques, ultimately integrating covariates into the models.

3.1 Frequentist models

3.1.1 Notation

We follow the notation of Teulings and Toussaint (2023). Let absolute wealth be denoted by X.

The lower bound on wealth is Ω = 109 (one billion $US). We define W ≡ X
Ω , x ≡ lnX, ω ≡ lnΩ,

and hence w ≡ x − ω = lnW . Further, let Y denote the excess wealth of an individual beyond

a billion $US, then we denote Y ≡ X −Ω. To clarify the meaning of parameters when denoting

probability distributions, all are shown in Appendix C.

3.1.2 Pareto and truncated Weibull

In Teulings and Toussaint (2023), the authors investigate two distribution fits. Specifically,

Y ∼ Pareto(α), (1)

and

Y ∼ TruncatedWeibull(γ, α).

3https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
4https://www.kaggle.com/datasets/whenamancodes/world-population-live-dataset
5https://finance.yahoo.com/lookup
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Naturally, the thresholds for the Pareto and truncated Weibull distribution are chosen to be 1.

The parameters of the truncated Weibull distribution can be estimated by maximum likelihood

(ML) and using the parameter relationships shown by Teulings and Toussaint (2023).

Extreme Value Theory (EVT) proposes a natural extension to the model in (1): the Gener-

alised Pareto Distribution (GPD). If Y ∼ GPD(γ, σ), we have the probability density function

(PDF) of Y,

f(γ,σ)(y) =
1

σ

(
1 +

γ

σ
· y
)(− 1

γ
−1

)
,

for y ≥ 0 when γ ≥ 0, and 0 ≤ y ≤ −σ
γ when γ < 0. It may be noted that the regular Pareto

distribution is a special case of the GPD.

The GPD appears as the natural excess distribution function for a large class of probability

distributions. In particular, define Fu(y) = P (Y −u ≤ y|Y > u) the cumulative density function

(CDF) of the excesses. Then an important result of EVT stemming from Balkema and De Haan

(1974) and Pickands III (1975) states that this excess distribution function can be approximated

by the GPD.

Theorem 1 (Balkema and de Haan, 1974, Pickands, 1975). For a large class of distributions, a

function σ(u) can be found such that

lim
u→ȳ

sup
0≤y<ȳ−u

∣∣Fu(y)−Gγ,σ(u)(y)
∣∣ = 0,

where Gγ,σ(u) is the cumulative distribution funtion of the GPD, ȳ is the rightmost point of the

distribution, u is the threshold and Fu is the excess distribution function.

Parameters of the GPD may generally be estimated by maximum likelihood for adequate

values of γ > 0 (infinite supremum of the distribution). A separate technique for γ only is

provided by the Hill estimator (Hill, 1975). In the context of this research, a natural choice of

the threshold is one billion $US.
As outlined multiple times before, one would expect the shape of the wealth distribution

across countries and time to be roughly similar. When estimating any of the three frequentist

models - Pareto, truncated Weibull, or Generalised Pareto - a form of regularisation is required

for the shape parameter. In this case, as suggested in Teulings and Toussaint (2023), we can first

jointly estimate shape and scale for all sub-region/year combinations, and then fix the shape

parameter to a single value, in this case the median of all estimated shape parameters. In a

second step, we then estimate the scale parameters.

3.2 Bayesian estimation

A key feature of the Forbes data is that we can divide billionaires into geographical sub-groups.

It is reasonable to assume that the shape parameter of the top wealth distribution will be stable

within a country across time, and similar across countries, while the scale may be totally different,

for example due to differences in economic development.

Bayesian Hierarchical Models (BHMs) enable the integration of prior distributions at various

levels within a hierarchical framework (Lindley & Smith, 1972). This capability is particularly

advantageous for analysing group-level effects. A key benefit of BHMs in this scenario is their
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ability to leverage information across time and different geographical groups, particularly when

dealing with limited data. In our case, the number of billionaires in a single year and region may

be somewhat small, but the total number of billionaires is quite large.

Let θ be a vector of parameters of a model, for example the parameters of a distribution, y the

observed dependent variable and X a set of observations from covariates. Then we are interested

in finding θ | y, X, so the distribution of θ given our data. For some simple BHMs, it is possible

to analytically derive the posterior distribution θ | y, X by using conjugate priors. However,

for more complex models, deriving the posterior distribution analytically becomes challenging or

even infeasible. The key idea for numerically estimating this distribution relies on

P(θ | y, X) =
P(y, X | θ) · P(θ)

P(y, X)
∝ P(y, X | θ) · P(θ).

While the numerator is easily computed, the denominator is not. Fortunately, when using

the Metropolis-Hastings method to sample from the posterior distribution, the denominator

cancels out in the ratio of likelihoods. Metropolis-Hastings is a specific type of Markov Chain

Monte Carlo (MCMC) methods, a broader class of techniques that can numerically estimate the

posterior distribution by generating a Markov chain of samples.

We present Bayesian hierarchical approaches for all three considered distributions: Pareto,

Weibull and Generalised Pareto. We further present those in two settings: a cross-sectional

estimation, where we estimate distributions year by year, ignoring information across years, and

a panel approach.

In the coming sections, we always use the following notation. Yi,j,t is the excess wealth as

defined in Section 3.1.1 of individual i ∈ I, in sub-region j ∈ J at time (i.e. year) t ∈ T .

3.2.1 Un-regularised cross-sectional estimation

Naturally, we can estimate Bayesian models for single combinations of a sub-region and year,

allowing for different shape parameters across groups and across years. We estimate the cross-

sectional Pareto BHM without regularisation with the following specification,

Yi,j,t | αj,t
i.i.d.∼ Pareto(αj,t),

αj,t | α, β ∼ InverseGamma(α, β).

The choice of the Inverse Gamma distribution prior for αj is natural as it is a conjugate prior.

That is, it can be shown that the posterior distribution of αj will also be an Inverse Gamma

distribution. This is one of the rare cases where the posterior parameter distribution can be

derived analytically, see the proof in Appendix D.

We estimate the cross-sectional Weibull BHM without regularisation with the following spec-

ification, for a given t ∈ T ,

Yi,j,t | γj,t, αj,t
i.i.d.∼ TruncatedWeibull(γj,t, αj),

γj,t ∼ InverseGamma(αγ , βγ),

αj,t ∼ Γ(αα, βα).
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Note that from here onwards, Γ(·) denotes the Gamma function, and Γ(·, ·) denotes the

Gamma distribution. The choice for the priors in this case can be motivated as if one parameter

is known (shape or scale), then the prior distribution of the other would again be a conjugate

prior.

Finally, we estimate the cross-sectional GPD BHM without regularisation with the following

specification, for a given t ∈ T ,

Yi,j,t | γj,t, σj,t
i.i.d.∼ GPD(γ, σj),

γj,t = γfj,t −
1

2
,

γfj,t ∼ Γ(αγ , βγ),

σj,t ∼ Γ(ασ, βσ).

As noted by Diebolt et al. (2005), there exists no Bayesian conjugate class for the GPD.

However, the choice of priors is not arbitrary. In particular, Dombry et al. (2023) show that if

the priors on the parameters fulfil some regularity conditions, then the posterior distribution is

asymptotically normal with asymptotically nominal coverage. Two (shifted) Gamma distribu-

tions fulfil these conditions. These properties are important, as they ensure that one will obtain

non-degenerate posterior distributions when sampling using Markov-Chain Monte Carlo.

The hyperparameters of the above models can be chosen to be informative or uninformative.

In our case, it makes sense to impose informative priors on the shape parameters, as those can

be assumed to be similar across countries, and uninformative priors on scale parameters. A

possible way of doing this is to fit an Inverse Gamma and shifted Gamma distribution to all the

maximum likelihood estimates across years and sub-regions of the Weibull and Generalised Pareto

distributions respectively. Whilst an unconventional approach for setting hyperparameters in

Bayesian statistics, it is adequate in this context to ensure that the prior predictive distribution

of each model is plausible. For the Generalised Pareto Distribution, we know that the mean

does not exist for shape values larger than one, and that the distribution is bounded for negative

shapes, and hence a shape prior with the coverage focused on the interval from zero to one is

desirable in the context of wealth data.

3.2.2 Regularised cross-sectional estimation

Note that the model specifications in Section 3.2.1 are even more flexible than the frequentist

approaches, as they allow the shape parameters to vary not only across groups, but also across

time within a group. However, this can produce strongly varying shape estimates within a group,

which is an unrealistic model, and prone to overfitting to single years. A more parsimonious

approach is to impose further regularisation by restricting the shape parameters of the Weibull

and Generalised Pareto models to be constant across time. That is, for all j, we have

γj,1997 = γj,2000 = ... = γj,2023. (2)

This allows for variation in scale (expansion or contraction of wealth), but estimates an

individual γ for each sub-region, utilising all observations for that region across time.
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3.2.3 Time series estimation

We already discussed the imposition of regularisation on parameters in the previous subsection.

One may however criticise that even a regularised BHM with the restriction from Relation 2

ignores a key feature of the data. That is, that the wealth observations are serially correlated.

Therefore, one would expect the scale parameter of the distribution of a particular sub-region

not to change drastically from one year to the next.

Again, for the Pareto, truncated Weibull and Generalised Pareto Distributions, we model

this additional aspect as follows. For the Pareto distribution, we specify

Yi,j,t | αj,t
i.i.d.∼ Pareto(αj,t),

αj,t=0 | αα, ββ ∼ InverseGamma(αα, βα),

lnαj,t+1 = lnαj,t + x′j,t+1βj + ϵj,t+1,

βj ∼ N (0, σβ
j ),

ϵj,t ∼ N (0, σϵ
j),

σβ
j , σ

ϵ
j
i.i.d.∼ Γ(1, 1).

For the Weibull distribution, we specify

Yi,j,t | γj , αj,t
i.i.d.∼ TruncatedWeibull(γj , αj),

γj ∼ InverseGamma(αγ , βγ),

αj,t=0 | αα, ββ ∼ Γ(αα, βα),

lnαj,t+1 = lnαj,t + x′j,t+1βj + ϵj,t+1,

βj ∼ N (0, σβ
j ),

ϵj,t ∼ N (0, σϵ
j),

σβ
j ∼ Γ(1, 1),

σϵ
j ∼ Γ(1, 1).

For the Generalised Pareto distribution, we specify

Yi,j,t | γj,t, σj,t
i.i.d.∼ GPD(γ, σj),

γj,t = γfj,t −
1

2
,

σj,t=0 | ασ, βσ ∼ Γ(ασ, βσ),

lnσj,t+1 = lnσj,t + x′j,t+1βj + ϵj,t+1,

γfj,t ∼ Γ(αγ , βγ),

βj ∼ N (0, σβ
j ),

ϵj,t ∼ N (0, σϵ
j),

σβ
j , σ

ϵ
j
i.i.d.∼ Γ(1, 1).

In other words, we assume that the log-shape parameter in one period equals, in expectation,

the log-shape parameter from the previous period, plus the effect of some covariates. In the

context of top wealth, the log structure can be well motivated. To begin, this parameterisation

ensures that the shape parameters are always strictly greater than zero, thus ensuring a finite

likelihood when estimating the models by Markov Chain Monte Carlo. In addition, the log model

is intuitive from an economic interpretation point of view. For the sake of top wealth, we will

consider three covariates: a constant (i.e. trend component), the log GDP growth, and the log

return of the corresponding regional stock market index. Now consider the population mean of

the Generalised Pareto Distribution µGPD = σ
1−γ ∝ σ. As the mean is clearly proportional to

the scale parameter, the coefficients of a log-log model have a simple economic interpretation -

they indirectly show the elasticity of mean billionaire wealth to the stock market and economic

output. In other words, a 1% change in the stock market has a β% impact on the mean wealth

of billionaires.

Again, the above models have to be estimated numerically - recall that unlike in conventional

time series models, the scale parameters are now unobserved. Further, the high level of depen-

dence of the model parameters makes sampling from the posterior distribution computationally
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expensive. In practice, we thus limit ourselves to an estimation window of at most 15 years. This

hardly results in a loss of data, as besides the United States nearly no countries have a sufficient

number of billionaires for reliable estimation prior to 2005 anyways. The exact time frames can

be found in Appendix E.

Finally, the time series models offer a forecasting capacity. Of course, it would be unreason-

able to assume that stock market returns can be forecasted accurately for one, if not more, years

ahead. However, GDP growth numbers are usually forecasted to a reasonable degree of accuracy

for a year in advance (in the absence of extreme shocks like financial crisis, that is). This yields

a pseudo-forecasting exercise: fit a model until a given year with only a constant and the GDP

per capita growth covariate, and assume future GDP growth is known. Then use the estimated

parameters and the model specification to perform h-step ahead distribution forecasts.

3.3 Evaluating fit

This subsection focuses on different ways to evaluate the fit of the aforementioned models.

3.3.1 R̂k statistics

Teulings and Toussaint (2023) use the R̂k statistics defined in Equation 3 to test for Paretianity,

Rk :=
E
[
wk
]

k! · E [w]k
, R̂k :=

wk

k! · wk
. (3)

The authors show that if w follows an exponential distribution, that is, if W follows a Pareto

distribution, then all Rk statistics are one.

Theorem 2 (Teulings and Toussaint, 2023). Assume w is exponentially distributed. Then,

for any integer k ≥ 1, Rk defined in Equation 3 satisfies Rk = 1, while E
[
R̂k

]
= 1 +

N−1
(
(2k)!
k!2

− 3k2−k+2
2

)
+O

(
N−2

)
and Var

[
R̂k

]
= N−1

(
(2k)!
k!2

− k2 − 1
)
+O

(
N−2

)
, where N is

the sample size.

Further, Teulings and Toussaint (2023) give an explicit formula for the population mean of

the truncated Weibull distribution.

Theorem 3 (Teulings and Toussaint, 2023). Assume W is TruncatedWeibull(γ, α) distributed.

Then, the moments for k ∈ N, k > 0 of W read E
[
W k
]
= (αγ)k/γ e(αγ)

−1
Γ
(
1 + k/γ, (αγ)−1

)
,

where Γ(·, ·) is the upper incomplete Gamma function.

3.3.2 Kolmogorov-Smirnov test

Using R̂k statistics to test for the GPD is unfortunately problematic, as the k-th non-central

moment only exists if γ < 1
k (Hosking & Wallis, 1987). To test for generalised Paretianity, we

must therefore resort to other tests, such as the Kolmogorov-Smirnov (KS) test as described in

Chu et al. (2019). The Kolmogorov-Smirnov statistic for a sample of size n with empirical CDF

Fn and null hypothesis CDF F is Dn = supx |Fn(x) − F (x)|. In simple terms, the KS-statistic

penalises the maximum difference between the CDFs. Note also that the KS-statistic can easily

be modified to a two-sample test by replacing the analytical CDF by a second empirical CDF,
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then testing whether two samples came from the same distribution. This proves especially useful

for evaluating the fit of Bayesian models, where no analytical posterior distribution is tractable.

3.3.3 Bayesian R-squared

For the time series models presented in Section 3.2.3, it is of interest to know what portion of

the variance in the scale parameters is explained by our chosen covariates. As the year-on-year

change in variance is estimated but unobserved, we must use a different metric. We resort to the

proposal of Gelman et al. (2019) to use an alternative version of the R-squared, namely

Alternative R2 =
Explained variance

Explained variance + Residual Variance
=

V T−1
t=1 ln

σpred
t+1

σpred
t

V T−1
t=1 ln

σpred
t+1

σpred
t

+ V T−1
t=1 ϵpredt+1

.

That is, we use the posterior predictive for the scale and residuals to compute a measure of

explained variance, for which we obtain a distribution of R2 values by doing so across all MCMC

samples.

3.4 Measurement error

Data on billionaire wealth from Forbes suffer from two types of measurement error. First,

the values are rounded to the nearest $US 100 million. Second, there is uncertainty in the

estimates themselves. This can be seen when comparing Forbes’ data from April 2021 to the

data from Bloomberg in May 2021. Whilst Teulings and Toussaint (2023) show that symmetric

and independent measurement errors of w have no impact on the R̂k statistics, they ignore

rounding errors.

We consider the Bloomberg dataset on the world’s 500 richest people. These data are meant

to be a snapshot corresponding to the state of affairs in May 2021. The Forbes data from that

year are from April, so the measurements of the same individuals should be quite close. Mea-

surement errors cannot be observed, but we can obtain an idea of their magnitude by comparing

measurements of the same person’s net worth across both lists.

Capehart (2014) suggests a method to adjust statistical tests for this measurement error:

fit a kernel density to the log-ratio between Forbes and Bloomberg estimates for individual

billionaires, and draw measurement errors from this kernel density to compute the distribution

of the test statistic when sampled from a given distribution contaminated by these measurement

errors. Capehart shows that the significance of KS-tests shrinks under this procedure. We may

apply the same procedure to the R̂k statistics.

4 Results

4.1 Assessing Paretianity under measurement error

We begin by presenting the results of testing for Paretianity using the methods from Teulings

and Toussaint (2023), but adjusted for measurement error.
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As discussed before, we proxy measurement error by comparing the lists from Bloomberg and

Forbes in the same year, 2021. Figure 1 shows a histogram of the differences in measurements

between Forbes and Bloomberg.

Figure 1: Difference between measurements
of the same individuals between Forbes and
Bloomberg with fitted kernel density, 2021

Figure 2: Absolute log differences between
Forbes and Bloomberg against estimated
log wealth, with OLS regression line

We may notice two issues. First, the log-error distribution is not symmetric: the left tail

is much longer than the right tail. Second, its mean is far from zero: On average, Forbes

estimates wealth to be around 15% higher than Bloomberg. This violates one of Teulings and

Toussaint’s (2023) assumptions of mean zero errors. The mean of the log error series is −0.15,

which corresponds to a t-statistic of −6.54 and a P-value of 0.000 against the null hypothesis

that the mean error is zero.

One may be curious whether some outlier errors can be explained, and should thus be removed

from the data. However, upon examination of the top five most ‘misestimated’ individuals, both

on the side where Forbes estimates higher than Bloomberg and vice-versa, no simple explanation

for the drastic difference in wealth could be found, either by news exploration or exploratory

analysis of the stock price evolution of companies owned by the respective people. The only

individual for whom a clear explanation was evident was Ugur Sahin, whose shares in Covid

vaccine manufacturer BioNTech soared 110% between April and May 2021. In general, there is

no clear evidence that the perceived measurement error is driven by actual changes in wealth

instead of disagreements between Forbes and Bloomberg.

Next, we examine whether the differences are homoskedastic. Figure 2 shows a scatterplot of

absolute differences between log wealth measurements from the two sources. Clearly, the higher

an individual’s net worth is, the lower the disagreement on their log wealth. Indeed, the slope

coefficient of the red regression line is significant with a P-value of 0.000. That is, Bloomberg

and Forbes have stronger agreement on the net worth of richer billionaires. Therefore, we may

conclude that the assumptions needed for the results from Teulings and Toussaint (2023) on

measurement errors are not satisfied in billionaire data.

We can demonstrate how drastically the distribution of R̂k statistics changes when mea-
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surement error is added. Figure 3 shows, on the left, a plot of the distribution under the null

hypothesis of Paretianity with the test statistic for the U.S. in 2021, under the assumption of no

measurement errors. As we can see, the distribution under the null hypothesis is well centred

at 1, and the test statistic of around 0.78 results in left-sided P-value of 0.000, clearly rejecting

Paretianity. Now observe the right plot. Here, we estimate the measurement error distribution

by first trimming the observed log measurement errors’ top and bottom deciles, then shifting the

location of the remaining errors such that their mean is zero, and then fitting a Gaussian kernel

density using Fast Fourier Transform. The distribution of the test statistics under the null hy-

pothesis is now bootstrapped by sampling from a Pareto distribution, and adding measurement

errors from the kernel density to the simulated observations. As the effect of rounding to one

decimal is negligible, it is omitted. The result is a test statistic distribution that is shifted far

to the left, with a mean of 0.73. The null hypothesis of Paretianity can no longer be rejected

from the left, but from the right with a P-value of 0.011. Therefore, even a very conservative

measurement error has drastic consequences for the properties of the R̂k statistics.

Figure 3: Comparison of distribution of the R̂2 statistic with and without trimmed and centred
measurement error for the 724 billionaires in the U.S. in 2021

Now of course the question arises: do the findings on measurement errors re-validate the

Paretianity that Teulings and Toussaint (2023) rejected? For that, we perform individual tests

for Paretianity using the R̂2 and R̂3 statistics with different set-ups: with and without rounding,

with measurement errors from the kernel density of the full error sample, a 10% trimmed error

sample, and a normalised error sample, centred to have mean zero. We then perform tests for

individual sub-region/year pairs, and plot the empirical CDF of the two-sided p-values. If the

top wealth samples stemmed from Pareto distributions, the CDFs would resemble the CDF of a

uniform distribution, plotted in dotted-red. The results are in Figure 4.

As one can see, all CDFs exhibit a bulge above the diagonal, indicating that the data are not

Paretian. One does notice that for small significance levels, the null hypothesis of Paretianity is

rejected less often for the R̂3 statistic than for the R̂2 statistic. Further, one can notice that for

the R̂2 statistics, the null hypothesis can be rejected even more often when measurement error

is accounted for, over 50% of times even at the 1% significance level.

Summarising, one can see that whether measurement error is accounted for or not, Paretianity

is clearly rejected by the R̂k statistics, thus providing clear motivation for alternative models.
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Note: ‘Full Density’ means measurement errors are drawn from the kernel density of all observations.
‘Trimmed density’ means measurement errors are drawn from the kernel density of observations that are
not in the top and bottom decile. ‘Normalised’ means measurement errors are drawn from the full kernel
density shifted to satisfy a mean of zero.

Figure 4: Empirical Cumulative Density Functions of all P-values from sub-region/year pair tests
for Paretianity using different measurement error distributions, using R̂k statistics

4.2 Frequentist model evaluation

Let us now make a first comparison of a Pareto model against alternative models. Similarly to

Teulings and Toussaint (2023), we begin by estimating, for each sub-region/year combination of

more than 64 billionaires, the shape and scale parameters of the Pareto, Weibull and Generalised

Pareto model using maximum likelihood estimation. For the Generalised Pareto model, we

also estimate γ using Hill’s (1975) estimator6. Subsequently, we fix the shape parameter for

the Weibull and Generalised Pareto model and solely estimate the scale. The corresponding

histograms of the estimates can be found in Figures 5 and 6.

From Figures 5 and 6, we obtain mean and median estimates for the shape parameters of

the Weibull and Generalised Pareto distributions. The mean and median Weibull γ estimates

are both 0.29. For the Generalised Pareto distribution, we notice the Hill estimates are slightly

higher than the ML estimates. This is likely caused by the imperfect selection of the index for

the estimator, and the resulting bias in estimates. We hence opt to use the ML mean and median

estimates, which are 0.60 and 0.57 respectively. For subsequent estimation of the scale, we fix

the shape to the median.

From the histograms of the estimated parameters, we may also directly compute the hyperpa-

rameters for the informative distribution priors used in later Bayesian models. Simple maximum

likelihood estimates suggest a Γ(41, 44) distribution for the Pareto α, an InverseGamma(12, 14)

distribution for the Weibull γ, and a Γ(37, 33) distribution for the GPD γ, shifted by 1
2 as

described in Dombry et al. (2023).

6To pick the index for the estimator, as visual inspection for over 200 estimates is impractical, we choose the
middle of the region of range 20 with the smallest standard deviation in estimates (stable region).
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Figure 5: Density histograms of the Pareto α and Weibull γ estimates, with fitted kernel densities

Figure 6: Density histograms of the Generalised Pareto MLE and Hill γ estimates

We now estimate the scale parameters for all observation with more than 20 billionaires using

the fixed median shape parameters. Detailed summary statistics can be found in Appendix F,

Table 9.

For each sub-region/year pair, we test the empirical distribution against our three distribu-

tions, and plot the cumulative P-value distribution. The GPD’s overall better fit can best be seen

in the cumulative P-value plot of the KS-tests shown in Figure 7, where the Generalised Pareto

distribution has the mildest bulge above the main diagonal. The Pareto distribution offers the

worst fit.

An important argument must be made in favour of the Pareto model that has been standard

in literature for long. Whether top wealth is Pareto shaped is inherently dependent on what one
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Figure 7: Empirical CDFs of KS-test P-values for different distributions estimated fitted by
maximum likelihood

defines to be ‘top’. In 2002, less than one in a million Americans was a billionaire. By 2022, the

share quadrupled. Being a billionaire has become less special. Essentially, the threshold for being

‘top’ has shifted. This can be visualised well with plots of the empirical cumulative hazard rate of

the log transformed wealth data, computed from the Kaplan-Meier estimator (Kaplan & Meier,

1958), alongside the fitted cumulative hazard rates of the fitted log-transform distributions, as

shown in Figure 8.

Figure 8: Cumulative Hazard for the U.S. across time and sub-samples using the Kaplan-Meier
estimator and fitted frequentist models

We clearly see that in 2002, the Pareto distribution (log-transform is exponential) was an

outstanding fit to billionaire net worth, whereas it is not in 2022. However, if we only take the

top 203 observations in 2022 that correspond to a 0.6 in a million share of the population, we

again obtain a good fit with a straight line (Exponential overlaps with Gompertz in the figure).

Simply said, ‘top’ wealth as it was understood in 2002 may still be Pareto today, but billionaire

wealth is not.
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4.3 Bayesian cross sectional model evaluation

We now move to the evaluation of Bayesian cross-sectional models. Whenever we refer to a

‘regularised’ model, we mean a model with a common shape parameter for a sub-region across

time, as explained in Section 3.2.1. Non-regularised models are such where the shape parameter

is allowed to differ across years.

For each year/sub-group combination, we now perform a two sample KS-test of the true data

against a large sample from the estimated posterior wealth distribution. Again, we can plot the

KS-statistics as well as the cumulative densities of the P-values to get an impression of overall

fit. The results are in Figure 9. We observe that the empirical P-value distribution of the GPD

is almost uniform, thus indicating a very good fit. Further, the results for the Pareto distribution

have barely improved compared to the frequentist alternative.

Figure 9: Cumulative P-values for non-regularised cross-sectional Bayes models

One thing to notice is that the Weibull shape estimates of the non-regularised models are

quite stable over time, as can be seen in Figure 10. This suggests that allowing for flexibility

in the shape estimates mainly adds noise, especially for the Weibull distribution, thus further

motivating the regularised cross-sectional approach.

We now turn to the evaluation of the regularised Bayesian models to see if a more parsi-

monious approach improves the results. Note that since there is no parameter to regularise

across time, the results for the regularised Pareto distribution are identical to its non-regularised

counterpart (in fact, the models are identical).

In general, the results are much better than for the non-regularised models. Notably, the

fit of the regularised Weibull model is much better than that of its non-regularised counterpart.

Similarly to the non-regularised models, we present the results in Figure 11.

We can further briefly evaluate in-sample mean wealth predictions. ‘In-sample’ forecast in

this context means that we use the posterior predictive distribution of a given year and simply

take its mean. Teulings and Toussaint (2023) have already shown that Pareto performs terribly

in this metric. The replication of this result can be found in Appendix G.2, Table 10. In Table

2, we can observe summary statistics of the absolute forecast errors of Weibull and the GPD,

aggregating all sub-regions and years. The GPD performs well, much better than Pareto, but still

worse than Weibull. However, the Weibull model’s performance worsens under regularisation,
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Figure 10: Non-regularised Weibull γ estimates over time for different sub-regions

Figure 11: Cumulative P-values for regularised cross-sectional Bayes models

while that of the GPD model improves. Worth noting are also the outliers. They are not only

much larger for the GPD models, but also occur mostly in France and Russia, the countries with

the highest tail indices. This may be expected, because as the GPD shape parameter tends to

1, and exceeds it some samples in the posterior, the first moment of the GPD cedes to exist,

or tends to infinity in sampling practice. Across time, Figure 12 shows that in-sample forecast

errors are temporarily much larger in 2008 than in other years, which can be expected as the

wealth distribution is perturbed by the financial crisis.

Finally, let us look at the estimated shape coefficients. This is necessary for two reasons.

First, we can understand if the informative priors we imposed on the shape coefficients were still

flexible enough to allow for differences across groups. If the distributions overlapped too much,

it would be an indication that the priors were too strict. Second, we can get an impression of

the coverage of the distributions, and thus of the confidence of the coefficient estimates, which

is not directly possible for frequentist models. The densities of the GPD γ estimates are shown

in Figure 13. The interested reader can find the Weibull estimates in Appendix H, Table 18.
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Table 2: Summary statistics of the mean absolute errors of in-sample mean wealth predictions
from different models

Unregularised Regularised
GPD Weibull GPD Weibull

count 250 250 406 406
mean 1.68 0.13 1.08 0.37
std 3.37 0.23 2.04 0.54
min 0.04 0.00 0.00 0.00
25% 0.69 0.02 0.21 0.07
median 0.96 0.06 0.47 0.16
75% 1.43 0.16 1.11 0.41
max 30.10 2.16 25.06 3.45

Note: Un-regularised model predictions are limited to sub-region/year pairs with at least 20 observations.

Figure 12: Mean absolute errors for in-sample wealth forecasts of regularised models over time

There is significant variation and limited overlap between the posterior distributions. As

expected, we also notice differences in the coverage of the posteriors. For countries with more

observations, such as the United States, we notice that the distribution becomes much tighter.

This is expected: as one collects more data, one should gain confidence and give less importance

to the prior. It is further important that the posteriors are well restricted between 0 and 1, as

for values smaller than 0, the tail of the GPD becomes bounded, and for values above 1, the

distribution has no moments. Neither of the two is the case.

We can also test the GPD posterior distributions for the property of asymptotic normality

established by Dombry et al. (2023). Indeed, for the country with the largest sample, the United

States, a Jarque-Bera test cannot reject the null hypothesis of normality even at a 10% level

(JB-statistic of 1.30, P-value of 0.52). The null hypothesis of normality is rejected for all other
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Figure 13: GPD γ posterior distributions across sub-regions

countries at a 1% significance level, indicating that in other cases the sample size is too small for

the posterior to sufficiently converge to the normal distribution.

Summarising, regularisation imposed in the Bayesian models seems to clearly improve their fit

to the data, on top of avoiding risks of overfitting. The results favour the Weibull and Generalised

Pareto distribution, and clearly disapprove of the Pareto models.

4.4 Bayesian time series model evaluation

Last but not least, we evaluate the Bayesian time series models, as specified in Section 3.2.3.

Let us first get an impression of the overall in and out of sample fit resulting from the further

restriction of the Bayesian models. That is illustrated in the usual cumulative P-value plots of

Figure 14.

Three observations can be made from the plots. First, as in all cases before, we notice that

the Pareto distribution provides a poor fit to the data, both in and especially out of sample.

Second, we see that the in-sample fit of the Weibull and GPD models is compromised by the

regularisation via covariates, but not drastically. Of course, a certain loss in fit is expected, as we

cannot claim that a trend component, and the growth in GDP per capita and the stock market

can explain the entire variation in scale parameters. However, the fact that the overall fit is still

this good indicates that the chosen covariates explain a significant part of the variation. Third,

the out-of-sample fit is worse than the in-sample fit, as should be expected.

Next, we consider whether the covariate models have out of sample predictive power for

mean wealth forecasts. For this, we compare the means of the forecasted posterior distributions,

both for Weibull and GPD, to the naive ‘random walk’ forecast, equal to the mean wealth of

the previous year. For the sake of realism, we use only the covariate for GDP growth, as stock
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Figure 14: In and out-of-sample (one step ahead) KS-test P-values for Bayesian time series
models

market returns are not predictable. Comparative statistics of the predictions for Weibull and

GPD are available in Table 3. The exact estimation and prediction windows can be found in

Appendix E.

Table 3: Summary statistics of the absolute residuals for the Weibull and Generalised Pareto
time series model mean wealth predictions, one year ahead

Weibull Model Generalised Pareto Model
Model Mean Random Walk Mean Model Mean Random Walk Mean

Absolute Residual Absolute Residual Absolute Residual Absolute Residual

count 35 35 34 34
mean 0.43 0.46 0.71 0.45
std 0.40 0.36 0.90 0.36
min 0.01 0.01 0.00 0.01
25% 0.12 0.23 0.22 0.22
median 0.31 0.38 0.34 0.37
75% 0.56 0.57 0.76 0.53
max 1.54 1.28 3.64 1.28

In brief, we see that the mean wealth predictions of the Generalised Pareto model with

covariates cannot outperform simple random walk forecasts. However, the Weibull model does

outperform the random walk, decreasing the mean forecast error by about 7% compared to the

random walk. By the standard deviation, we do notice that the variance in the Weibull residuals
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is greater than in the random walk residuals. For practitioners, this shows that while the most

accurate predictions are obtained from the Weibull model, random walk estimates are more

stable.

We can further interpret the model coefficients. We omit presenting results on the constants,

as their posteriors are tight around zero for all models. Further, we omit presenting results for

the Pareto and Weibull models’ slope coefficients, as they are similar to the results for the GPD

model. The interested reader can find plots of all posterior distributions in Appendix I. Figures

15 and 16 show the slope coefficient posterior distributions for the British Islands, Germany and

the United States.

Figure 15: Slope coefficients for GDP per capita log growth

Figure 16: Slope coefficients for stock market log returns

The mean of all posteriors, both for the change in GDP and for stock market returns, is

positive across all three countries. Although the effects are most pronounced for the three chosen

countries, their choice is hardly cherry picking. The means of the slope posteriors are almost all

positive, with the exception of only a few countries. In fact, the stock market coefficient is only

negative for one country, India. Again, details can be found in Appendix I.

Further, we evaluate how important the chosen covariates are using the Bayesian R-squared.

We focus on the best fitting model that utilises the Generalised Pareto Distribution. When

including only a constant and the change in GDP, we find those two variables explain, on average

across countries, 56% of the variance in the log scale changes, with the lowest median R2 being

50% for China, and the highest being 71% for the British Islands. Adding the stock market index
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returns, we obtain an explained variance of log scale changes of 63% across countries, with the

lowest median being 51% for Brazil, and again the highest median being in the British Islands

with 81%, closely followed by the United States. In brief, a majority share of the variance in

changes in log scale of the top wealth distribution can be explained by just a constant, the growth

in GDP, and the local stock market. Detailed summary statistics can be found in Appendix J,

Tables 14 and 15.

5 Implications

This section explores some of the practical economic interpretations and implications of the

results described above, that go beyond the purely statistical view.

To begin, we comment on the estimated elasticity figures of billionaire wealth to GDP growth

and the stock market. The latter also allows us to comment on the long term outlook on billionaire

wealth, and ultimately judge whether Oxfam’s prediction of the existence of the first trillionaire

by 2034 (Riddell et al., 2024) is realistic or not.

We then show the consequences of our findings on the best fitting models for the top wealth

distribution, which directly relate to the effectiveness of taxation policies. Finally, we move to

a closer analysis of the estimated model parameters, with a particular focus on the tail index

estimates from the Generalised Pareto models. The latter translate directly into the fatness of

the wealth tail, telling us how likely it is to observe extreme wealth in a country. We can relate

this to individual countries’ political and economical environments.

5.1 Consequences from covariate results

We now move to a closer interpretation of the estimated elasticities of the billionaire wealth

scale parameters to GDP per capita and the corresponding regional stock markets. As the slope

coefficients do not differ greatly between the related Weibull or Generalised Pareto models, we

focus on the latter.

We begin with regional stock market indices. Here, we observed in the results that, besides

India’s scale elasticity to the NIFTY, which is only slightly negative, all other slope coefficients

are positive in mean and median. This is what one would expect: billionaires are almost always

shareholders of large corporations, which are consequently constituents of the important stock

market indices. In France, for example, Oxfam estimates that the ten richest French families

control 29 per cent of the national stock market (Jacobs, 2015). Hence, as stock indices tick up,

so does billionaire wealth, and thus the scale coefficient increases.

Although the slopes are clearly positive, their magnitude is surprising. Under the assumption

that all billionaire wealth exists in the form of companies that are also listed on the exchanges,

one would expect unit elasticity: As the stock market ticks up, billionaire wealth would tick

up proportionately. Such is a result that Gandhi and Walton (2012) find with exploratory

analysis of aggregate Indian billionaire wealth. Further, Freund and Oliver (2016) find that only

about one in eight billionaire’s wealth can be classified as ‘diversified’ across assets. However,

our results show a very low elasticity of the scale to the stock market, with only the US and

corresponding SPX exceeding a median coefficient of 0.5. Thus, the distribution of top wealth
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is inelastic to returns of the stock market. Two explanations may be considered for this finding.

For one, billionaires may be diversified geographically, or not even do business in their country

of origin - little prevents a French citizen from founding a business in the United States, and

thus not owning stock in the french CAC40. However, as indices correlate strongly, this cannot

be the full explanation. One may thus take this finding as an indication that top wealth is very

well hedged. Especially people with inherited fortunes, often less connected to the source of the

family’s wealth, may naturally consider growing, but also protecting their wealth, via appropriate

financial instruments.

Moving onto the GDP coefficients, again one finds they are positive across all countries.

Again, this is expected, similarly to as we discussed before for the stock index covariate, and in

line with the findings from Gandhi and Walton (2012).

There is a feature in the posteriors that is specific to only a few countries. The posteriors of

the GDP and stock market coefficients of the three countries displayed in Figures 15 and 16 have

not only a positive mean, but a very clear positive skew. They are the only countries exhibiting

this behaviour. Hence, for the UK, Germany and the US, while it seems clear that economic

growth and positive stock market returns have a positive effect on the scale of the billionaire

distribution, it is unclear how strong this effect really is. Why one observes this posterior calls

for speculation, but the most likely explanation lies in the asymmetry of reactions. As already

shown by Gandhi and Walton (2012), aggregate billionaire wealth can react disproportionately

in recessions, such as for example in 2008. In our case, our data contain two recessions, the

financial crisis and Covid-19, and it is likely that these two very strong observations of a shift in

scale skew the posterior distribution, inducing the uncertainty. From a practical perspective, this

has an important implication for policy makers considering a wealth tax. Most forms of taxation

are proportional to economic output, that is, GDP. Think, for example, of VAT or income tax,

which are levied in proportion to all spent or earned. If GDP drops by roughly 5%, one expects

VAT revenue to drop by roughly 5% too. This seems to be very different for a wealth tax, if

wealth reacts disproportionately to GDP. Therefore, governments should recall that even though

a given wealth tax may help balancing state budgets in regular times, its revenues will fall short

in times of recessions, and thus force a government to run even larger short term deficits.

Finally, a brief comment on the constant coefficients. They are all very close to and centred

around zero. In other words, there is no evidence of ‘natural’ growth of the scale of top wealth

simply as time progresses, without economic or capital markets growth causing it. Popov (2018)

and Prinz and Bollacke (2018) show that cross-sectional differences in the number and wealth

of billionaires can mainly be explained by GDP per capita, but our research is the first to

demonstrate that this relationship also holds true across time within the same country. Further,

we also show using residuals that the implemented covariates explain over 60% of the variance

in the scale coefficient changes. It is thus unlikely that the remaining variance can be explained

by further factors such as GDP and capital markets that grow over time, but rather by factors

unrelated to time, such as for example changes in taxation.

Last but not least, we can attempt to answer the question teased in the introduction: will

there be a trillionaire by 2034? To answer this question, we make some simplifying assumptions.

We restrict ourselves to billionaires in the United States. We assume the US economy grows

about 3.4% per year, and that the S&P500 delivers a 5.7% per cent return every year after 2022.
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Further, we assume the number of billionaires in the U.S. grows by a number of just over 26

per year. These numbers are historical averages over the range of our dataset. This leads to an

expected 1024 billionaires in the U.S. in 2034.

We now estimate a time series model from 2008 up to and including 2022 in the U.S., and make

a twelve step ahead forecast of the wealth distribution in 2034 using the estimated posteriors.

In a simulation exercise, we draw many times a total of 1024 observations from the predicted

posterior, and report whether a trillionaire is present. Over ten thousand simulations, we find

that at least one trillionaire exists in about 19% of the simulations. Considering that about

half of the world’s billionaires currently live in the U.S., one may say that the existence of a

trillionaire by 2034 is by no means guaranteed, but very much realistic. The figure is also a solid

reality check for the model, as it is roughly in line with the expert judgements from the Oxfam

study.

One should note that, unlike suggested by Riddell et al. (2024), the possibility of the existence

of a trillionaire does not imply an increase in inequality, or a loss of economic prosperity. Quite

the opposite, our research has shown that not only does billionaire wealth react in-elastically to

growth, but it is indeed very much dependent on economic growth. The existence of a trillionaire

in 2034 is very dependent on whether the world economy grows as quickly as it has over the past

two decades.

5.2 Consequences from the shape

To understand why it matters whether the top wealth distribution is Pareto, Weibull, or Gener-

alised Pareto, one has to understand which underlying economic processes result in the respective

top wealth distributions.

Teulings and Toussaint (2023) have indeed already argued that, as the Gompertz (log of

Weibull) distribution has an exponentially increasing hazard rate, it lends itself to interpretation

in the sense of a capacity constraint in network models. Notably, as proven by Tishby et al. (2016),

the distribution of self-avoiding random walks in Erdös–Rényi–Gilbert networks is Gompertz. If

one views a network as an economy with nodes as individuals, then one could view the length of

such a walk as a capacity constraint to entrepreneurs - a company can only sell its product to

each individual a finite number of times. If the assumption of Weibull were to be found fitting,

it would thus imply an exponentially increasing hazard rate on wealth. In other words, it would

indicate that we are unlikely to observe much more extreme net worth in the future, possibly

due to economic capacity constraints.

Our results, however, have shown that the Generalised Pareto distribution is overall the

better fit for top wealth. In particular, we have shown that when considering only a subset of

billionaires, or equivalently, the wealth distribution in the early 2000s when billionaires were

rarer, the Pareto distribution does become a much better fit. As discussed, this is not a surprise.

As outlined by Charpentier and Flachaire (2022), the GPD behaves like a Pareto distribution

above a higher threshold. Hence, when selecting a smaller elite of billionaires, a Generalised

Pareto distribution will resemble the conventional Pareto counterpart.

From an economic perspective, the Pareto distribution lends itself as the result of much

simpler and realistic economic processes than the Weibull distribution. Notably, these include
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simple diffusion processes, as pointed out by Gabaix (2009). Of particular interest is a random

difference equation model.

There are two ways for an individual to grow wealth. Either, one generates a return on one’s

own wealth (e.g. a growth in a stock portfolio), or one earns some exogenous form of income,

like salary. Denote such a model with wealth W as Wt+1 = At+1 ·Wt + Bt+1, where At+1 and

Bt+1 are the return on existing wealth and exogenous income, both random, respectively.

Two important results follow. First, under some loose regularity conditions, Kesten (1973)

and later Goldie (1991) show that as one lets wealth go to infinity, the shape of the excess wealth

distribution follows a power law (i.e., Pareto). Translated into the real economy, this is a strong

theoretical foundation to expect the top wealth distribution to be Pareto, (virtually) irrespective

of what the return distribution on wealth is, and more importantly, also irrespective of the income

distribution. In other words, no matter what income redistribution policy a government adapts,

the shape of the top wealth distribution should always resemble a Pareto distribution.

The second, even more practically relevant result from the work of Kesten (1973) and Goldie

(1991), is that the shape parameter of the limiting Pareto distribution is independent, to a large

extent, of the distribution of Bt, and dependent on the distribution of At. What does this mean

in practice? Essentially, any perturbation to the income distribution, for example via a form of

taxation, has no influence on the shape parameter of the top wealth distribution. So while higher

income tax may be effective at reducing inequality in the more general population, it should be

unsuccessful at reducing the frequency and magnitude of extreme net worth. This is consistent

with empirical research, as for example Berman et al. (2016) have shown that changes in the

income distribution have no significant impact on the wealth distribution. On the other hand,

the theoretical results suggest that taxes like a wealth tax or a capital gains tax should indeed

have an impact on the shape of the top wealth distribution. As a simple example, if one imposes

a 1% annual wealth tax on everyone, the expected value of At decreases by 0.01. That is, any tax

affecting the return on wealth will result in less extreme wealth observations within the subset

of billionaires.

Summarising, as our results show a better fit of the GPD over Weibull, and we showed that

the very top end of wealth does indeed resemble a Pareto distribution, this is an indication that

wealth can be modelled by a simple diffusion process. In turn, this implies that while income

tax policies should have no impact on extreme wealth, wealth or capital gains taxes should.

The results also have direct implications not only on the adequate form, but also on the

optimal rate of taxation. Teulings and Toussaint (2023) have already noted that the optimal

marginal income tax as derived by Diamond (1998) and Saez (2001) on the richest individual

is constant under the assumption of Paretianity, but converges to zero when assuming Weibull

due to the exponentially increasing hazard rate. In the same application, assuming a GPD

again implies an constant non-zero optimal tax rate. That is because while the hazard rate of

the exponentiated GPD (log of GPD) increases exponentially for small log-wealth, it quickly

converges to a constant as log-wealth increases. Making cardinal estimates of the optimal tax

rates requires strong assumptions on the income elasticity, and is thus not the focus of this

research.

What about an optimal wealth tax? Assume one decides to impose tax τ on the net worth

of billionaires that gets levied once a year, on the full estate. In this simple set-up, Saez and
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Zucman (2019) derive that the optimal (i.e., revenue maximising) wealth tax rate is given by

τR =
1

1 + eT
,

where eT is the average number of years that a billionaire is exposed to the tax rate, weighted

by his wealth, in the T -th year that the tax is implemented. Hence, the tax rate may change

over time, and converge to e∞. In the case of a thin-tailed distribution, like Weibull, the set of

billionaires will be relatively elastic, as ‘small’ fortunes are eradicated relatively quickly, resulting

in a low e∞. In contrast, with a heavy tailed distribution, higher weights are placed on longer

lasting billionaires, resulting in a higher average e∞. This leads to a counter-intuitive result: as

we found that the billionaire wealth distribution is best described by a heavy-tailed generalised

Pareto distribution, the revenue maximising wealth tax is higher than that for a thin tailed

distribution. One may note that in practice, one can also compute an instantaneous estimate of

e∞ based on historical billionaire data. Indeed, Saez and Zucman (2019) have shown that for

the United States in the year 2018, the revenue maximising wealth tax would have been around

6%. Of course, one may consider more complicated, possibly marginal wealth taxes.

Let us now move to a more in-depth interpretation of the estimated tail indices. We have

already presented the results on the parameter estimates for the Generalised Pareto Distribution

in Figure 13. A couple of straightforward observations can be made. First, the large majority of

countries have similar tail index values of between 0.4 and 0.6, suggesting strong similarity in the

likelihood of extreme net worth across the world. Second, one can observe that the width of the

posterior distributions - a metric for the level of confidence in the parameter - is much narrower

for the countries with more billionaires, like the United States, China and Germany. This is

expected, as with more observations the estimate of a parameter should have less variance.

Of more economic interest are the top and bottom observations in the tail indices. On the

very high end, France and Russia have a tail index posterior distribution with a median around

0.85. This is significantly higher than the tail indices in other countries. Economically, they

indicate that in France and Russia, observing extreme net worth among the class of billionaires

is more likely than in other countries. In other words, inequality among billionaires is most

pronounced in the two nations. Note this does not imply anything on the actual magnitude of

the observations, as that is determined by the scale parameter.

What can explain these estimates? For France, this result should come as a particularly

important surprise, as France is one of just five OECD countries implementing a wealth tax on

individuals as of 20217. If anything, one should therefore expect the tail index to be particularly

low. A hint for an explanation for the high value is given by the width of the posterior - it is indeed

the broadest across all countries, despite a considerable number of observations. The cause can be

found in the outliers: Bernard Arnault and Françoise Bettencourt, respectively main shareholders

of LVMH and L’Oréal. The gap between them and the remainder of French billionaires is

unusually large: Bernard Arnault has over twice the wealth of Françoise Bettencourt, who in

turn has around three times the wealth of the next richest French billionaire. In this sense, it is

reasonable to conclude that the high tail index in France is a result of two outliers, rather than

structural factors in the French economy. Indeed, dropping the top two outliers from the sample

7https://stats.oecd.org/Index.aspx?DataSetCode=RS GBL
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results in a tail index around 0.6, similar to the rest of the world.

The conclusion is different for Russia. Many publications highlight the evolution of the

Russian elite after the falling apart of the Soviet Union. In particular, Treisman (2007) and

Djankov (2015) emphasise how under Russian President Vladimir Putin, the former oligarchs

have lost property, whilst assets were redistributed to people close to the President, often with

a background in the Russian or formerly Soviet secret services. While Treisman (2016) also

highlights that the modern Russian billionaires are more integrated into the market economy

than they used to be two decades ago, he acknowledges a substantial proportion of wealth is

still a relic of political forces. Therefore, one can easily conclude that the exceptional shape of

Russia’s top wealth distribution is not a result of usual market forces, but rather a consequence

of manual interference by political leadership.

On the opposite side, the by far lowest tail index can be observed for the Alps, which for top

wealth essentially corresponds to a population of Swiss billionaires. At first sight, the especially

low tail index may defy the stereotype of the ultra-rich Swiss, but recall that this only concerns

the inequality amongst billionaires. In other words, extreme net worths are unlikely to be

observed in Switzerland. This cannot be explained by supposed tax evasion from foreign nationals

migrating to Switzerland, as this paper’s geographical classifications are based on citizenship, not

residency. The literature proposes two explanations for unexpectedly high ‘equality’ in the tail

of the Swiss wealth distribution. For one, Baselgia and Mart́ınez (2024) show that an unusually

high proportion of over 60% of Swiss billionaires are heirs, a ratio twice as high as for example

in the United States. However, it is unclear whether this is a cause or a result of the low tail

index: maybe concentration of generational wealth limits its expansion, but an economy with

a low propensity to extreme wealth also results in a naturally higher share of heirs. A better

explanation of the flat wealth tail may be Switzerland’s wealth tax, which although avoidable for

foreign nationals, is more difficult to circumvent for Swiss citizens. This is supported by empirical

studies. For instance, Brülhart et al. (2022) estimate that indeed, wealth in Switzerland is very

elastic to changes in the wealth tax rate, as can be investigated using inter-cantonal differences

in the tax policy. While this is no conclusive proof that a Swiss-model wealth tax succeeds in

reducing extreme wealth, it is a significant indication thereof.

6 Conclusion

To conclude, we summarise the essence of our findings. First and foremost, all parts of the results

show that the Pareto distribution is a poor fit for billionaire wealth data, across all countries.

These results are independent of the structure of the underlying tested model, whether Bayesian

or frequentist. Paretianity is extensively tested for using both the Rk statistics from Teulings and

Toussaint (2023), as well as the conventional Kolmogorov-Smirnov test. However, as highlighted

before, this result is very sensitive to the threshold. When increasing the threshold substantially

beyond the one billion dollar mark, the empirical hazard rate of the log-transform again appears

linear, and the Pareto distribution provides good fit.

Furthermore, we provide a detailed investigation of measurement errors in the context of top

wealth. We compare independent measurements from Bloomberg and Forbes and find substantial

differences in wealth estimations for the same individuals. By sampling errors from kernel density
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estimates of the measurement error distribution, we see that such measurement errors invalidate

essential properties of theRk, such as a mean at 1. Nevertheless, conclusions rejecting Paretianity

withstand even the most substantial contamination by measurement error.

Moving on, we introduced a model using the Generalised Pareto Distribution (GPD) for

excess wealth beyond a billion $US. Whilst this is a standard approach in the more general

context of Extreme Value Theory, it has hardly been applied to the wealth distribution. We find

that even with simple frequentist maximum likelihood methods, the GPD is a better fit to the

data than both the Pareto distribution and the Weibull distribution.

Next, we examined a set of Bayesian models with informative priors on the shape of the

studied distributions. It is clear that when regularisation across time is imposed on the shape

parameters of the Weibull and Generalised Pareto distributions, both models fit the data re-

markably well. In general, whether in a frequentist or Bayesian context, the Weibull distribution

provides by far the best in and out of sample predictions for mean billionaire wealth.

Finally, we constructed Bayesian time series models in which the scale parameters follow a log-

autoregressive process with macroeconomic covariates. We find that both GDP per capita growth

and stock index returns have significant positive impact on the scale of the wealth distribution,

with the slope coefficients having high upside entropy. Hence, changes in the wealth distribution

of billionaires can be explained in large parts by changes in GDP per capita and returns of

the regional stock market. One year ahead predictive distribution forecasts using these models

provide good out of sample fit to future wealth data, and can be used to forecast mean wealth

better than a simple random walk model. Answering the question from the opener, we conclude

that having a trillionaire by 2034 is by no means guaranteed, but still realistic.

It is worth mentioning the limitations of the analysis. A clear methodological issue of this

research is correlation across countries. Our own analysis shows this: the key factors driving

changes in the wealth distribution are similar in all sub-regions of the analysis. If changes in

the distribution across countries are correlated, so will be the outcomes of any statistical tests.

Further regularisation could solve this. For example, one may consider imposing cross-country

correlation restrictions on coefficients, with priors based, for instance, on empirical correlations,

geographical proximity, or the economic closeness between countries as measured by trade flows.

One could for instance introduce a model where the shape parameters of countries are not

independently drawn from a common hyper-prior, but instead from a multivariate distribution

with a covariance structure.

Further, whilst the forecasting component of the research is not its centrepiece, it is still valid

to criticise it on several levels. First, as we mentioned ourselves, the covariates employed are not

known a priori in a forecasting environment. GDP may be forecasted well, but only in standard

economic conditions. Financial crisis and Covid-19 are not predictable. Further, the data at

hand forced us to focus out-of-sample forecasting on the years 2019 to 2022 only, and so it is

difficult to generalise the findings from the exercise. Performing the same covariate analysis but

with variables known in advance, possibly lags of the ones in this paper, used on a broader time

horizon with Forbes data prior to 1997 would be desirable. One should further consider models

allowing for asymmetric reactions to positive and negative growth.

The findings of this research have direct implications for policy. In particular, they suggest

that only taxes on capital stock, or simply said, wealth directly, can have an impact on the
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shape of the top wealth distribution. We have further outlined the importance that the fatness

of the tail of the distribution has on the revenue maximising wealth tax rate. There are also

very important differences across countries, particularly in the tail indices. Crucially, we point

out the low tail index in Switzerland, and proposed it may be due to Switzerland being the most

prominent example of a developed country with an important wealth tax.

Some of these results definitely merit follow-up. In particular, the large discrepancy in the

slope estimates for GDP growth and stock returns across countries merits a separate study in

its own. Possible explanations include, for example, discrepancies in taxation schemes across

countries. If wealth, or additions to it, are taxed at a higher rate, one would expect the elasticity

of a billionaire’s wealth to a change in macroeconomic conditions, or to a change in the valuation

of his business, to be attenuated heavily. That is, the elasticity of the scale of the wealth

distribution may be strongly driven by tax rates. This would require to take a more thorough

approach to the Forbes data, as one should then determine where a billionaire’s wealth generating

activities are located, what exact tax scheme they are subject to, and make adjustments for

changes in exchange rates.

Finally, a natural follow-up to forecasting entire distributions would be to instead forecast

the wealth distribution by modelling the individual. A problem with forecasting distributions

in our context is that the observation threshold is fixed in nature: we only look at billionaires,

but not at anyone with a net worth of $999 million. This is an issue for policy makers too.

Whilst this research can be used to forecast the mean wealth of billionaires, it cannot forecast

the index, that is, how many billionaires there will be. This number, however, is just as essential

when forecasting tax revenue. Moreover, over a very long time horizon, as a larger share of the

population becomes billionaires, one should expect the fit of the Generalised Pareto distribution

to deteriorate.

In the view of the lack of public data, it would thus be reasonable to perform simulation

experiments of a simple economy that reproduce the empirical top wealth distribution. This is

not a new idea. In particular, Coelho et al. (2005) have constructed a family network model, in

which total wealth is constant, agents only spend money on raising their children, and expenses

are redistributed to other agents in a fashion favouring agents with higher wealth. In this

simulation setting, the upper 5% of the artificial society indeed exhibits a wealth distribution

with a Pareto shape, and the estimated Pareto index matches the measurements of real UK

population data. Similar Paretian results were obtained by Bouchaud and Mézard (2000), who

add a stochastic wealth growth component in a similar setting as Coelho et al. (2005). As the

sizes of the networks in these studies are about four orders of magnitude too small to produce

results that in the real world would include billionaires, one should consider similar set-ups with

more computational capacity.
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A Regions and sub-regions

Table 4: Countries by Region

Region Countries

North America United States, Canada

Europe Germany, United Kingdom, Ireland, Cyprus, Czech Repub-

lic, Czechia, Denmark, Austria, Belgium, Spain, France,

Greece, Italy, Netherlands, Norway, Poland, Portugal, Swe-

den, Switzerland, Liechtenstein, Lithuania, Monaco, Es-

tonia, Finland, Slovakia, Romania, Hungary, Bulgaria,

Guernsey, Iceland

China China, Hong Kong, Macau, Macao

East Asia Thailand, Malaysia, Singapore, Taiwan, Philippines, In-

donesia, South Korea, Japan, Australia, Vietnam, New

Zealand

India India

Central Eurasia Russia, Kazakhstan, Ukraine, Armenia, Georgia

South America Brazil, Chile, Argentina, Peru, Venezuela, Colombia,

Uruguay, Guatemala, Panama, Barbados, Belize, Mexico

Middle East Turkey, Egypt, Israel, Saudi Arabia, United Arab Emirates,

Kuwait, Qatar, Oman, Lebanon
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Table 5: Countries by Sub-Region

Sub-Region Countries

U.S. United States

Canada Canada

Germany Germany

British Islands United Kingdom, Ireland

Scandinavia Denmark, Norway, Sweden, Finland

France France, Monaco

Alps Switzerland, Liechtenstein, Austria

Italy Italy

China China, Hong Kong

Southeast Asia Thailand, Malaysia, Singapore

Asian Islands Taiwan, Philippines, Indonesia

South Korea South Korea

Japan Japan

Australia Australia

India India

Russia Russia

Brazil Brazil

Israel + Turkey Israel, Turkey
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B Supplementary summary statistics

Table 6: Changes in the number of billionaires in the Forbes dataset over time

N Change New Left list Remained Share remained

Year

1997 2 0 0 0 0 0.00

1998 1 -1 1 2 0 0.00

1999 8 7 7 0 1 0.12

2000 8 0 5 5 3 0.38

2001 335 327 332 5 3 0.01

2002 333 -2 27 29 306 0.92

2003 332 -1 38 39 294 0.89

2004 432 100 101 1 331 0.77

2005 530 98 101 3 429 0.81

2006 628 98 108 10 520 0.83

2007 761 133 147 14 614 0.81

2008 908 147 223 76 685 0.75

2009 738 -170 39 209 699 0.95

2010 1011 273 354 81 657 0.65

2011 1209 198 255 58 953 0.79

2012 1226 17 212 195 1013 0.83

2013 1426 200 304 104 1121 0.79

2014 1645 219 360 141 1284 0.78

2015 1826 181 347 167 1477 0.81

2016 1811 -15 255 270 1554 0.86

2017 2043 232 375 143 1666 0.82

2018 2208 165 392 226 1815 0.82

2019 2153 -55 275 331 1876 0.87

2020 2095 -58 257 315 1836 0.88

2021 2755 660 851 191 1902 0.69

2022 2668 -87 418 505 2248 0.84

2023 2640 -28 286 314 2352 0.89

Note: ‘N’ refers to the number of billionaires. ‘Left list’ indicates how many billionaires were

removed from a list in a year. ‘Remained’ indicates how many billionaires were also on the list

in the previous year.
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Table 7: Summary statistics of the Bloomberg 500 richest people dataset, 2021

N Mean Net Worth Mean Log Net Worth

region

Central Eurasia 28.0 14.1 2.5

China 95.0 15.5 2.6

East Asia 39.0 13.0 2.4

Europe 112.0 13.7 2.3

India 17.0 19.9 2.7

Middle East 8.0 8.8 2.1

North America 170.0 19.6 2.5

South America 14.0 16.6 2.6

Rest of World 15.0 13.9 2.3

Note: ‘N’ refers to the number of billionaires.

C Definitions of distributions

This section defines the distributions and corresponding notation as they are used in this paper.

C.1 Pareto distribution

The cumulative distribution function (CDF) of the Pareto distribution is defined as:

F (x;xm, α) = 1−
(

x

xm

)− 1
α

where xm is the scale parameter and α is the shape parameter.

The probability density function (PDF) of the Pareto distribution is defined as:

f(x;xm, α) =
1

α

x
1
α
m

x
1
α
+1

for x ≥ xm.

C.2 Exponential distribution

The cumulative distribution function (CDF) of the Exponential distribution is defined as:

F (x;α) = 1− e−
x
α

where α is the scale parameter.

The probability density function (PDF) of the Exponential distribution is defined as:

f(x;α) =
1

α
e−

x
α

for x ≥ 0.
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The hazard function, or hazard rate, of the Exponential distribution is given by:

h(x;α) =
1

α

The cumulative hazard function of the Exponential distribution is given by:

H(x;α) = − log(1− F (x;α)) =
x

α

C.3 Weibull distribution

The cumulative distribution function (CDF) of the Weibull distribution is defined as:

F (x; γ, α) = 1− exp

(
1− xγ

αγ

)
The probability density function (PDF) of the Weibull distribution is defined as:

f(x; γ, α) =
1

α
xγ−1 exp

(
1− xγ

αγ

)
for x ≥ 1.

C.4 Gompertz distribution

The cumulative distribution function (CDF) of the Gompertz distribution is defined as:

F (x; γ, α) = 1− exp

(
1− exp(γx)

αγ

)
The probability density function (PDF) of the Gompertz distribution is defined as:

f(x; γ, α) =
1

α
exp

(
γx− exp(γx)− 1

αγ

)
The hazard function, or hazard rate, of the Gompertz distribution is given by:

h(x; γ, α) =
1

α
exp (γx)

The cumulative hazard function of the Gompertz distribution is given by:

H(x; γ, α) = − log(1− F (x; γ, α)) =
exp(γx)− 1

αγ

C.5 Generalised Pareto distribution

The cumulative distribution function (CDF) of the Generalised Pareto distribution is defined as:

F (x; γ, σ, µ) = 1−
(
1 +

γ(x− µ)

σ

)− 1
γ
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for γ ̸= 0. When γ = 0, it simplifies to:

F (x;σ, µ) = 1− exp

(
−x− µ

σ

)
The probability density function (PDF) of the Generalised Pareto distribution is defined as:

f(x; γ, σ, µ) =
1

σ

(
1 +

γ(x− µ)

σ

)− 1
γ
−1

for γ ̸= 0. When γ = 0, it simplifies to:

f(x;σ, µ) =
1

σ
exp

(
−x− µ

σ

)
C.6 Exponentiated generalised Pareto distribution

The cumulative distribution function (CDF) of the Exponentiated Generalised Pareto distribu-

tion is defined as:

F (x; γ, σ, µ) = 1−
(
1 +

γ(exp(x)− µ)

σ

)− 1
γ

for γ ̸= 0. When γ = 0, it simplifies to:

F (x;σ, µ) = 1− exp

(
−exp(x)− µ

σ

)
The probability density function (PDF) of the Exponentiated Generalised Pareto distribution

is defined as:

f(x; γ, σ, µ) =
exp(x)

σ

(
1 +

γ(exp(x)− µ)

σ

)− 1
γ
−1

for γ ̸= 0. When γ = 0, it simplifies to:

f(x;σ, µ) =
exp(x)

σ
exp

(
−exp(x)− µ

σ

)
The hazard function, or hazard rate, of the Exponentiated Generalised Pareto distribution is

given by:

h(x; γ, σ, µ) =
f(x; γ, σ, µ)

1− F (x; γ, σ, µ)

The cumulative hazard function of the Exponentiated Generalised Pareto distribution is given

by:

H(x; γ, σ, µ) = − log(1− F (x; γ, σ, µ)) =


1
γ log

(
1 + γ(exp(x)−µ)

σ

)
, γ ̸= 0

exp(x)−µ
σ , γ = 0

C.7 Gamma distribution

The gamma distribution can be parameterised in terms of a shape parameter α and an inverse

scale parameter β. A random variable X that is gamma-distributed with shape α and rate β is

denoted
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X ∼ Γ(α, β) ≡ Gamma(α, β)

The corresponding probability density function in the shape-rate parameterisation is

f(x;α, β) =
xα−1e−βxβα

Γ(α)
for x > 0, α, β > 0,

where Γ(α) is the Gamma function. For all positive integers, Γ(α) = (α− 1)!.

C.8 Inverse Gamma distribution

The inverse gamma distribution’s probability density function is defined over the support x > 0

f(x;α, β) =
βα

Γ(α)

(
1

x

)α+1

exp

(
−β

x

)
with shape parameter α and scale parameter β. Here Γ(·) denotes the gamma function.

D Derivation of the posterior distribution - Pareto

For this derivation only, we parameterise the Pareto distribution with θ= 1
α to prevent confusion

with the α parameter of the Gamma prior, and to simplify derivations. We prove that a Gamma

distribution is a conjugate prior for θ, which implies that the Inverse Gamma distribution is a

conjugate prior for γ. Let yi
iid∼ Pareto(θ, xm), with the probability density function

f(yi | θ, xm) =
θxθm
yθ+1
i

So the joint likelihood function for y = (y1, y2, . . . , yn) is

f(y | θ, xm) =

n∏
i=1

f(yi | θ, xm)

=

n∏
i=1

(
θxθm
yθ+1
i

)

= θnxnθm

n∏
i=1

y
−(θ+1)
i

= θnxnθm

(
n∏

i=1

yi

)−(θ+1)

Assume θ ∼ Gamma(α, β), with the probability density function

f(θ) =
βα

Γ(α)
θα−1e−βθ

The posterior distribution f(θ | y) is proportional to the product of the likelihood function
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and the prior distribution:

f(θ | y) ∝ f(y | θ, xm)f(θ)

= θnxnθm

(
n∏

i=1

yi

)−(θ+1)

· βα

Γ(α)
θα−1e−βθ

∝ θn+α−1xnθm e−βθ

(
n∏

i=1

yi

)−θ−1

= θn+α−1xnθm e−βθ

(
n∏

i=1

yi

)−θ−1

= θn+α−1xnθm e−βθe−θ
∑n

i=1 log yi−
∑n

i=1 log yi

= θn+α−1e−θ(β+
∑n

i=1 log(yi/xm))xnθm e−
∑n

i=1 log yi

Thus, the posterior distribution is also a Gamma distribution:

θ | y ∼ Gamma

(
α+ n, β +

n∑
i=1

log

(
yi
xm

))
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E Run configurations

Table 8: Covariates included in each group by start year and end years

Group Start Year End Years Constant GDP MSCI World FTSE100 SSE CAC40 DAX NIFTY MOEX OMX40 SPX

Alps 2013 2021 X X X

Asian Islands 2010 2019, 2020, 2021 X X X

Australia 2013 2021 X X X

Brazil 2011 2020, 2021 X X X

British Islands 2007 2019, 2020, 2021 X X X

Canada 2010 2019, 2020, 2021 X X X

China 2007 2019, 2020, 2021 X X X

France 2013 2021 X X X

Germany 2005 2019, 2020, 2021 X X X

India 2009 2019, 2020, 2021 X X X

Israel + Turkey 2010 2019, 2020, 2021 X X X

Italy 2014 2021 X X X

Japan 2014 2021 X X X

Russia 2015 2021 X X X

Scandinavia 2016 2021 X X X

South Korea 2015 2021 X X X

Southeast Asia 2013 2021 X X X

U.S. 2005 2019, 2020, 2021 X X X
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Note: ‘GDP’ refers to the log growth in GDP per capita. All indices refer to the log return in

the respective index. Each model is estimated once with all three covariates, and once without

the stock index return for mean wealth forecasting purposes. The start year indicates the first

training year for a model, and the end year the last training year. When multiple end years

are indicated, the model is estimated multiple times with different estimation windows, once for

each end year. This is such that there is at least one one-step-ahead forecast available for each

year. The year 2023 is never forecasted for, as GDP growth data for it is not yet available across

the board.

43



F Frequentist estimation summary statistics

Table 9: Summary statistics of the frequentist scale parameter

n years mean αpareto min αpareto max αpareto mean αWeibull min αWeibull max αWeibull mean σGPD min σGPD max σGPD

Southeast Asia 11.00 0.93 0.86 1.08 1.19 1.06 1.42 1.34 1.17 1.75

India 17.00 0.97 0.78 1.37 1.27 0.97 1.98 1.43 0.96 2.72

Germany 21.00 1.12 0.86 1.31 1.44 1.03 1.73 1.95 1.26 2.66

Alps 11.00 1.07 0.89 1.26 1.35 1.10 1.67 1.82 1.27 2.40

Brazil 13.00 0.92 0.74 1.12 1.17 0.93 1.45 1.32 0.85 1.92

China 18.00 0.77 0.59 0.97 0.98 0.73 1.28 0.92 0.57 1.38

France 11.00 1.31 1.02 1.64 1.85 1.40 2.46 2.52 1.40 4.03

Scandinavia 11.00 1.02 0.90 1.23 1.31 1.13 1.60 1.63 1.24 2.34

Japan 14.00 0.88 0.77 1.01 1.13 1.01 1.33 1.14 0.80 1.51

U.S. 23.00 0.97 0.75 1.22 1.27 0.95 1.65 1.44 0.87 2.19

British Islands 18.00 0.94 0.69 1.17 1.17 0.82 1.51 1.43 0.81 2.13

Italy 11.00 0.97 0.11 0.86 1.20 1.10 1.60 1.44 1.07 2.18

Canada 15.00 0.92 0.83 1.09 1.15 1.05 1.38 1.32 1.06 1.87

Israel + Turkey 18.00 0.61 0.41 0.84 0.73 0.47 1.04 0.68 0.31 1.13

Asian Islands 14.00 0.78 0.67 0.87 0.95 0.79 1.09 1.01 0.79 1.20

Australia 11.00 0.84 0.69 1.07 1.06 0.84 1.41 1.10 0.75 1.69

Russia 19.00 1.04 0.90 1.45 1.37 1.18 1.90 1.65 1.13 3.28

South Korea 11.00 0.67 0.57 0.77 0.82 0.69 0.93 0.73 0.56 0.97
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G Replication

As this researched was produced in the context of a Bachelor’s thesis, it contains a mandatory

replication of parts of the results of the assigned paper from Teulings and Toussaint (2023).

These are presented in this section. The sub-section headings refer to the numbering of figures

and tables in the original paper. The methodology is the same as in the original paper.

G.1 Figure 2 - R̂2 and R̂3 histograms

Figure 17: Distribution of test statistics for R̂2 and R̂3
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G.2 Table 5 - Mean wealth predictions

Table 10: Pareto and Weibull Estimates of Billionaire Wealth in 2018

Mean Data Mean Weibull Mean Pareto Alpha Weibull Alpha Pareto

U.S. 5.29 5.48 ∞ 1.52 1.16

Canada 3.23 3.22 5.96 1.04 0.83

Germany 4.70 5.58 ∞ 1.53 1.18

British Islands 3.83 4.26 ∞ 1.29 1.01

Scandinavia 3.51 4.06 226.69 1.24 1.00

France 7.44 8.12 ∞ 1.89 1.37

Alps 3.80 4.66 ∞ 1.37 1.10

Italy 3.96 4.29 ∞ 1.29 1.02

China 3.31 3.10 5.00 1.01 0.80

Southeast Asia 3.33 3.51 9.43 1.12 0.89

Japan 3.95 3.82 12.42 1.19 0.92

Asian Islands 3.17 3.22 6.18 1.04 0.84

South Korea 2.88 2.78 3.80 0.91 0.74

Japan 3.95 3.82 12.42 1.19 0.92

Australia 2.74 2.75 3.86 0.90 0.74

India 3.70 3.90 24.11 1.21 0.96

Russia 4.05 4.07 21.35 1.25 0.95

Brazil 4.20 4.42 ∞ 1.32 1.03

Israel + Turkey 2.17 2.24 2.64 0.73 0.62

46



G.3 Table 1 - Summary statistics

Table 11: Summary Statistics of Billionaire Wealth by Region and Sub-Region

R2 R3 Log wealth mean Billionaires per capita Billionaire count

North America 0.85 0.65 0.94 1.25 440.81

Europe 0.77 0.49 1.05 0.48 247.71

China 0.93 0.76 0.82 0.13 185.86

East Asia 0.80 0.53 0.78 0.16 129.48

India 0.82 0.57 0.99 0.04 54.71

Central Eurasia 0.82 0.56 0.93 0.35 75.62

South America 0.82 0.59 0.99 0.11 56.81

Middle East 0.86 0.65 0.78 0.24 56.14

U.S. 0.85 0.66 0.95 1.30 413.29

Canada 0.76 0.49 0.89 0.78 27.52

Germany 0.71 0.41 1.13 0.83 67.90

British Islands 0.76 0.48 0.87 0.55 38.14

Scandinavia 0.76 0.46 1.20 1.15 30.00

France 0.77 0.49 1.33 0.40 25.14

Alps 0.64 0.32 1.10 1.37 23.24

Italy 0.76 0.49 1.08 0.38 22.90

China 0.93 0.76 0.82 0.13 185.52

Southeast Asia 0.79 0.55 0.88 0.28 29.62

Asian Islands 0.76 0.48 0.69 0.10 37.76

South Korea 0.83 0.62 0.71 0.36 18.24

Japan 0.80 0.54 0.87 0.18 22.67

Australia 0.83 0.58 0.71 0.76 18.19

India 0.82 0.57 0.99 0.04 54.71

Russia 0.81 0.55 0.97 0.46 66.76

Brazil 0.81 0.56 0.84 0.14 29.24

Israel + Turkey 0.88 0.63 0.60 0.41 34.71

Rest of World 0.74 0.44 1.01 0.00 10.19

Note: Billionaires per capita are denoted in the number of billionaires per a million people.

Values are averaged across time.
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G.4 Table 2 - WLS regressions, Pareto test

Table 12: WLS Regressions, Pareto Test

R̂2 R̂3

Model: R2 full R2 n64 R2 trimmed R3 full R3 n64 R3 trimmed

Variables

Constant 0.82*** 0.85*** 0.85*** 0.58*** 0.65*** 0.64***

(0.02) (0.02) (0.02) (0.03) (0.04) (0.03)

Weights
√
N

√
N

√
N

√
N

√
N

√
N

Fit statistics

Observations 378 75 67 378 75 67

RMSE 0.13 0.08 0.07 0.20 0.13 0.12

Theoretical RMSE 1 1 1
√
10

√
10

√
10

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

G.5 Table 4 - Weibull predictions

Table 13: Regression Results of R̂2 and R̂3 on Gompertz Parameters

R̂2 R̂3

Model: (1) (2) (3)

Variables

Constant 0.76*** 0.50*** -0.74***

(0.02) (0.02) (0.08)

log α̂ -0.10** -0.19***

(0.03) (0.02)

log γ̂ -0.07*** -0.12***

(0.01) (0.01)

R̂2 1.63***

(0.10)

Weights
√
N

√
N

√
N

Fit statistics

Observations 67 67 67

R2 0.95 0.99 0.95

Adjusted R2 0.95 0.99 0.95

RMSE 0.06 0.05 0.10

F-Stat 0.32 5.38

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

48



H Weibull γ estimates

Figure 18: Weibull γ posterior distributions across sub-regions, regularised models
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I Posterior distribution plots

I.1 Pareto posteriors

Figure 19: Posterior parameter estimates for the Pareto time series model (1/4)
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Figure 20: Posterior parameter estimates for the Pareto time series model (2/4)
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Figure 21: Posterior parameter estimates for the Pareto time series model (3/4)
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Figure 22: Posterior parameter estimates for the Pareto time series model (4/4)
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I.2 Weibull posteriors

Figure 23: Posterior parameter estimates for the Weibull time series model (1/4)
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Figure 24: Posterior parameter estimates for the Weibull time series model (2/4)
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Figure 25: Posterior parameter estimates for the Weibull time series model (3/4)
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Figure 26: Posterior parameter estimates for the Weibull time series model (4/4)
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I.3 Generalised Pareto posteriors

Figure 27: Posterior parameter estimates for the Generalised Pareto time series model (1/4)
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Figure 28: Posterior parameter estimates for the Generalised Pareto time series model (2/4)
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Figure 29: Posterior parameter estimates for the Generalised Pareto time series model (3/4)
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Figure 30: Posterior parameter estimates for the Generalised Pareto time series model (4/4)
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J Summary statistics - alternative R2

Table 14: Summary statistics of the R2 values of the Generalised Pareto time series model with
two covariates

count mean std min 25% median 75% max

Alps 8000 0.62 0.17 0.10 0.50 0.53 0.71 1.00

Asian Islands 8000 0.59 0.15 0.26 0.50 0.52 0.63 1.00

Australia 8000 0.62 0.17 0.08 0.50 0.53 0.72 1.00

Brazil 8000 0.54 0.11 0.23 0.50 0.50 0.53 1.00

British Islands 8000 0.72 0.18 0.32 0.54 0.71 0.90 1.00

Canada 8000 0.63 0.18 0.25 0.50 0.55 0.75 1.00

China 8000 0.50 0.02 0.25 0.50 0.50 0.51 0.80

France 8000 0.61 0.17 0.14 0.50 0.54 0.70 1.00

Germany 8000 0.81 0.17 0.36 0.67 0.87 0.96 1.00

India 8000 0.58 0.14 0.22 0.50 0.52 0.62 1.00

Israel + Turkey 8000 0.60 0.16 0.18 0.50 0.52 0.67 1.00

Italy 8000 0.62 0.17 0.09 0.50 0.54 0.73 1.00

Japan 8000 0.57 0.14 0.12 0.50 0.51 0.60 1.00

Russia 8000 0.61 0.18 0.09 0.50 0.54 0.72 1.00

Scandinavia 8000 0.62 0.19 0.04 0.50 0.54 0.75 1.00

South Korea 8000 0.56 0.13 0.09 0.49 0.51 0.58 1.00

Southeast Asia 8000 0.58 0.15 0.13 0.50 0.52 0.62 1.00

U.S. 8000 0.67 0.11 0.34 0.59 0.67 0.75 0.97

Average 8000 0.61 0.15 0.18 0.51 0.56 0.69 0.99

62



Table 15: Summary statistics of the R2 values of the Generalised Pareto time series model with
three covariates

count mean std min 25% median 75% max

Alps 8000 0.68 0.18 0.15 0.52 0.64 0.84 1.00

Asian Islands 8000 0.66 0.17 0.29 0.51 0.61 0.81 1.00

Australia 8000 0.64 0.18 0.15 0.50 0.58 0.77 1.00

Brazil 8000 0.53 0.10 0.24 0.49 0.51 0.54 1.00

British Islands 8000 0.78 0.18 0.30 0.62 0.81 0.95 1.00

Canada 8000 0.65 0.17 0.23 0.51 0.59 0.77 1.00

China 8000 0.61 0.11 0.26 0.51 0.59 0.69 0.98

France 8000 0.65 0.18 0.17 0.51 0.59 0.80 1.00

Germany 8000 0.85 0.15 0.33 0.75 0.90 0.98 1.00

India 8000 0.64 0.17 0.24 0.51 0.58 0.75 1.00

Israel + Turkey 8000 0.68 0.18 0.24 0.52 0.64 0.84 1.00

Italy 8000 0.66 0.19 0.03 0.51 0.60 0.83 1.00

Japan 8000 0.62 0.17 0.10 0.50 0.55 0.72 1.00

Russia 8000 0.65 0.20 0.06 0.50 0.60 0.82 1.00

Scandinavia 8000 0.67 0.20 0.02 0.51 0.64 0.86 1.00

South Korea 8000 0.64 0.20 0.03 0.50 0.58 0.81 1.00

Southeast Asia 8000 0.63 0.18 0.13 0.50 0.57 0.76 1.00

U.S. 8000 0.78 0.08 0.42 0.73 0.79 0.84 0.97

Average 8000 0.67 0.17 0.19 0.54 0.63 0.80 1.00
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