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Abstract

This thesis presents a novel integer programming model for the kidney exchange problem

(KEP) called the third-cycle formulation (TCF). In this model, a cycle is represented by

three compatible third-cycles, aiming to enhance the existing half-cycle formulation (HCF).

We provide a clear explanation of reduction procedures applicable to both the HCF and

TCF. Through comparative analysis with current competitive models, the TCF demonstrates

strong computational performance, although not stronger than the HCF and extended edge

formulation (EE), and robustness when the maximum cycle length is increased. Additionally,

we identify the most effective variable reduction techniques for the HCF and EE, address-

ing a gap in the current literature. Lastly, we introduce two new position-indexed chain

edge formulations (PICEF) for the KEP with altruistic donors: the PICEF-Half-Cycle and

PICEF-Third-Cycle. Computational analysis shows that the PICEF-Half-Cycle outperforms

existing models for the KEP with altruistic donors.

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.



1 Introduction

Kidneys play a vital role in the functioning of the human body, filtering waste products and

excess fluids from the blood, while also regulating electrolyte balance, blood pressure, and red

blood cell production. In general, a human is born with two kidneys. However, one could live a

healthy lifestyle only having one functioning kidney. According to most recent estimates, there

are hundreds of millions of people around the world who need a kidney transplant or dialysis

because their kidneys have failed, often due to conditions like chronic kidney disease or acute

kidney injury. Transplantation offers a better quality of life compared to dialysis while also

incurring lower costs (Axelrod, 2018).

The most common source for kidney transplantation has been deceased donors, where organs

are harvested from individuals who have passed away but still possessed functioning, healthy

kidneys. For many years, a living kidney donor had to belong to the close family of the patient,

motivated by ethical reasons to totally remove any financial incentive that could occur for these

living donors (Boulware et al., 2008). Now in many countries, after a series of regulation changes,

a living transplant between two persons who do not know each other has been made possible.

Despite the increase in living donations, the demand for kidney transplants continues to

surpass supply. This supply deficit highlights the need for innovative solutions like paired kidney

exchanges, now made possible by these legislation changes. The idea of such an exchange

programme is relatively simple. A patient-donor pair might be incompatible due to mismatched

blood types or immune system factors, which can cause the recipient’s body to reject the donated

kidney. An exchange programme enables patients with willing but incompatible donors to swap

kidneys with other pairs in similar situations, thereby forming chains or cycles of donations that

increase the overall number of successful transplants. These exchanges optimize the allocation of

available kidneys, and reduce waiting times for patients in need of a transplant. These chains or

cycles are mostly computed by algorithms over a list of patients at predetermined time intervals,

for example every three months in the UK (Johnson, 2008).

Finding these exchange chains or cycles is done by solving a so-called kidney exchange

problem (KEP). This KEP is usually represented by a directed compatibility graph, with each

vertex representing a patient-donor pair and each arc representing compatibility between the

donor and patient of two pairs. Usually, kidney exchange programmes impose a limit on the

number of pairs involved in one chain or cycle. Longer cycles are logistically more complex

and difficult to coordinate, requiring simultaneous surgeries and precise timing among multiple

hospitals. Non-simultaneous transplantation within the same exchange cycle is risky because

if a donor gives a kidney but the patient in their pair does not receive one immediately, there

is a chance that another donor involved in the cycle might back out or pass away, leaving

someone without a needed kidney. This situation could erode trust in the exchange program,

as participants must rely on the commitment of others to ensure that every donor-recipient pair

benefits from the exchange. The general KEP can therefore be seen as the problem of finding

a set of vertex-disjoint 1 cycles that maximizes the number of pairs involved, given a directed

compatibility graph and a limit on the number of pairs in one cycle.

One of the most common extensions to the KEP is the addition of altruistic or non-directed

1Each donor-patient pair can, of course, only be involved in one transplantation cycle.
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donors. These altruistic donors, who are not paired with a patient and donate a kidney without

expecting one in return, significantly enhance the KEP by initiating so-called chains of trans-

plants. These donors can start a sequence of donations that would not be possible otherwise,

allowing more pairs to benefit. Another common extension is to find the most desirable solu-

tion among all optimal ones. For example, a kidney exchange programme may want to pick an

optimal solution that contains the most cycles of length 2. This can be done using hierarchical

optimization using a sequence of hierarchically ranked objective functions.

Along implementation of a spectrum of existing formulations, this thesis proposes and im-

plements a new third-cycle formulation for the KEP. Also new variable reduction techniques

suitable for this formulation are presented. Unfortunately, results suggest that the third-cycle

formulation does not outperform all existing models for any levels of the maximum cycle length

or the number of patient-donor pairs that we test. However, the third-cycle formulation provides

a performance more robust to an increase in the cycle length limit than the cycle formulation and

recently proposed half-cycle formulation. The half-cycle and extended edge formulation show

most dominant performance across the tested instances. Furthermore, we show that the exten-

ded edge formulation displays best performance for a descending vertex ordering, in contrast

to claims made by Delorme, Manlove & Smeets (2023). Additionally, we clearly show which

variable preprocessing techniques for the half-cycle formulation are really worth the decrease

in model size in order to adress a gap in previous literature. Lastly, we introduce two new

variants on the position-indexed edge formulation (PICEF) for the KEP with altruistic donors:

the PICEF-Half-Cycle and PICEF-Third-Cycle. The PICEF-Half-Cycle is shown to outperform

existing models for the KEP including altruistic donors.

The remainder of this thesis is structured as follows. More information on previous works on

the KEP can be found in Section 2. In Section 3, a more detailed description of the problem is

given. Next, the methodology is further explained in Section 4, providing a detailed description

of the novel third-cycle formulation and new variable reduction techniques in Section 4.2 and

Section 4.3, respectively. Furthermore, the numerical results are presented in Section 5 and the

conclusion in Section 6.

2 Literature review

The KEP in itself is not a very hard problem to solve. However, the maximum cycle length

complicates things. When only cycles of length 2 are allowed, an optimal solution to the KEP can

be found in polynomial time, as the problem can be viewed as a maximum-weighted matching

problem (Roth et al., 2005).2 However, when the cycle length limit is greater than or equal to 3,

the KEP becomes NP-hard (Abraham et al., 2007).3 This result motivated researchers to find

suitable techniques to handle the complex KEP.

First, let us discuss the papers that developed new and competitive ways to model the

general KEP. Two of the most intuitive formulations, namely the cycle formulation and the

2The maximum weighted matching problem involves finding a matching between vertices in a weighted graph
where the sum of the weights of the selected edges is maximized.

3NP-hard problems refer to computational problems that are unlikely to be solved to optimality in polynomial
time, most of the time requiring exponential time to find an exact solution.
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edge formulation were first proposed by (Roth et al., 2007). The cycle formulation has its

number of variables growing exponentially with the maximum cycle length, whereas the edge

formulation suffers from this characteristic in its number of constraints. Of course, this is

not ideal, as some kidney exchange programmes concern hundreds of patient-donor pairs and

an increased maximum cycle length could ensure multiple extra successful transplantations.

Constantino et al. (2013) introduces a new extended edge formulation and an edge assignment

formulation along with suitable variable reduction techniques. These formulations are often

called compact as these are designed to be scalable, meaning they can handle larger instances

without a significant increase in computational time. The cycle formulation performs best for

maximum cycle length equal to 3 or 4, while the extended edge formulation is much more robust

to an increase in maximum cycle length and outperforms the other formulations for maximum

cycle length equal to 5 or 6. Dickerson et al. (2016) proposes the, also compact, position-indexed

edge formulation. Next to results suggesting that this formulation can compete with the current

best, this paper also introduces a novel, efficient chain structure in order to model altruistic

donors. Do note that all formulations can handle altruistic donors, in a sense that a chain can

very simply be modeled as a cycle. This can be done by introducing a dummy patient for each

altruistic donor that is compatible with every ordinary donor. However, Dickerson et al. (2016)

show that this is not the most efficient way to model these chains.

Delorme, Manlove & Smeets (2023)’s new half cycle formulation models distinct cycles by

two compatible halves, resulting in a significant reduction in the number of variables compared to

the ordinary cycle formulation. Their half-cycle formulation outperforms existing formulations

when the cycle size limit is set to 4, 5, or 6 for large patient-donor pools, also partly depending

on the density of the compatibility graph. The authors stress that the good performance might

be attributable to the fact that the Linear Programming (LP) relaxation bound is as tight as

that of the cycle formulation, which is the tightest known until now.

Moving on to papers that improved the algorithmic performance of existing formulations,

Lam & Mak-Hau (2020) introduces the first branch-and-cut-and-price model 4 for the cycle

formulation, outperforming the current solving algorithms. Furthermore, Delorme, Garćıa et al.

(2023) applies a new diving algorithm, together with reduced cost variable fixing to the cycle

formulation for KEPs with hierarchical optimisation. The work of Riascos-Álvarez et al. (2024)

proposes a branch-and-price algorithm in which the pricing problems are solved through decision

diagrams. They present a new Lagrangian-based upper bound on the optimal objective value,

obtained through their master problem. Although the aim of this thesis is not to improve the

algorithmic performance of implemented formulations, these or similar methods could be applied

to the models discussed in this thesis.

Finally, there is the extensive literature on the adaptation of current approaches to different

real-world features. This literature is not that relevant for our research, as we merely focus on

the general KEP, with and without altruistic donors.

4A branch-and-cut-and-price model is a method that combines branch-and-bound techniques with cutting
planes and column generation to efficiently solve complex instances of the problem.
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3 Problem description

In the general KEP without altruistic donors, we are given a set of n incompatible patient-donor

pairs, and their compatibilities with all other patient-donor pairs. This compatibility structure

can be represented most easily by means of a directed graph G = (V,A), where vertex set

V = {v1, v2, ..., vn} contains one vertex for each patient-donor pair and where arc set A contains

arc (vi, vj) if and only if the donor of pair i is compatible with the patient of pair j. A weight

wij can be associated to each arc (vi, vj) ∈ A. However, in this thesis, the objective is simply to

maximize the number of transplants, implying that each weight should be equal to one another.

Therefore, it is most convenient to set wij = 1 for all arcs (vi, vj) ∈ A. Furthermore, we are

given a limit k on the number of pairs that can be included in one exchange cycle. A solution

to the KEP, also called an exchange, can be represented by a subset of arcs A′ ⊆ A, that solely

consists of a number of vertex-disjoint cycles with a maximum length of k.

One of the most common extensions of the KEP is to include altruistic donors. Vertex set V
can now be split into a set of patient-donor pairs P and a set of altruistic or non-directed donors

N . For each vi ∈ N and each vj ∈ P, A contains arc (vi, vj) if and only if altruistic donor vi is

compatible with the patient of pair vj . Furthermore, we are given a limit k′ on the number of

pairs that can be involved in one exchange chain initiated by an altruistic donor vi ∈ N .

4 Methodology

This section touches upon the methods used in this thesis. The cycle formulation (CF), edge

formulation (EF), reduced edge-assignment formulation (EA) and reduced extended edge for-

mulation (EE) are all implemented as extensively described in Constantino et al. (2013). Fur-

thermore, the half-cyle formulation (HCF) as firstly proposed by Delorme, Manlove & Smeets

(2023) is briefly described and implemented. Finally, this section proposes a novel third-cycle

formulation (TCF). Even though this thesis almost exactly copies the implementations of ex-

isting formulations, the formulations and possible reduction techniques of CF and HCF are

explained to set a framework for and add intuition on the new TCF. The EF, EA and EE are

only described very briefly.

4.1 Existing formulations

One of the most simple and intuitive models for the KEP, is the cycle formulation as described

in Constantino et al. (2013). This formulation requires a set Ck consisting of all possible cycles of

maximum size k, in order to associate a binary variable zc with every feasible cycle c ∈ Ck. The
decision variable zc takes value 1 if this cycle c is selected in a solution and value 0 otherwise.

Now let us introduce the set V (c) as the set containing all vertices that are present in cycle

c ∈ Ck. The cycle formulation is then as follows:
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max
∑
c∈Ck

|V (c)|zc (1)

s.t.
∑

c∈Ck:v∈V (c)

zc ≤ 1, ∀v ∈ V, (2)

zc ∈ {0, 1}, ∀c ∈ Ck. (3)

Objective function (1) represents the total number of transplants and is maximized. Con-

straints (2) ensure that no patient-donor pair or vertex appears more than once in the selected

cycles together. Constraints (3) make sure that every possible cycle is either selected or not.

Although this cycle formulation is one of the first models proposed to model the KEP, results of

Constantino et al. (2013) suggest that it shows dominant performance for instances with values

of k smaller or equal to 4. This can be mainly explained by the fact that the model contains

O(nk) variables 5 and O(n) constraints, which remains manageable for these low values of k.

Furthermore, the bound of the CF’s LP relaxation turns out to be the best among all relaxations

of existing IP models for the KEP according to Dickerson et al. (2016).

The edge formulation associates a binary variable to every arc in the compatibility graph.

The objective is to maximize the number of selected arcs under the following constraints: flow

conservation at each vertex, at most one selected outgoing edge at each vertex and no path of

length k can be fully covered by the selected arcs.6

The first two proposed compact formulations are the edge assignment and the extended edge

formulation. Within the edge assignment formulation, a binary variable is associated to every

edge, and to every combination of a node and potential cycle. The objective is again to maximize

the number of selected arcs under the following constraints: flow conservation at each vertex, at

most one selected outgoing edge at each vertex, no more than k vertices selected per potential

cycle, assignment of each reached vertex to one potential cycle and assignment of vi and vj to

the same potential cycle, when arc (vi, vj) is selected in the solution.

The extended edge formulation considers a number of copies of the compatibility graph, one

for every potential cycle. A binary variable is associated to every edge in every copy. The

objective is again to maximize the number of selected arcs under the following constraints: flow

conservation at each vertex, at most one selected outgoing edge at each vertex and no more

than k arcs selected per copy. Note that preprocessing techniques remove a lot of variables and

constraints in both the EA and EE.

Recently, Delorme, Manlove & Smeets (2023) proposed a new so-called half-cycle formulation.

The main idea is to exploit the symmetry within the problem to obtain an IP model of reduced

size. The authors present an analogy with a new model for the bin packing problem by Delorme

& Iori (2020) that uses half of the bin capacity to model an instance, resulting in a model of

significantly reduced size. Both the first and second half of the bin would be modelled by the

same structure and results suggest that decrease in terms of the number of variables outweigh by

5The number of actual variables in the model depends heavily on the density and structure of the compatibility
graph.

6A fully covered k-path would imply a cycle of length at least k + 1 in the solution.
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far the disadvantages of the extra constraints that ensure compatibility between the half-bins.

The authors then show how a similar concept can be applied to the KEP.

In their HCF, a cycle is modeled by two matching half-cycles. At first glance it seems like

this model might contain double the number of variables as the CF, but this is definitely not the

case. Especially for large k, there may exist a lot of half-cycles starting or ending in the same

two vertices. These half-cycles can be combined in a lot of ways to obtain different complete

cycles, all complete cycles with an own distinct decision variable in the CF.

Let H be the set of all possible half-cycles up to size ⌈k/2⌉.7 Section 4.3 discusses how this

set H can be obtained most efficiently, assuring its size is small as possible. Then, a decision

variable xh is associated with every possible half-cycle h ∈ H, being 1 if this half-cycle h is

selected in a solution and 0 otherwise. Let V s(h) and V e(h) denote the set containing the

starting vertex and ending vertex respectively, of each half-cycle h. Furthermore, let V m(h) be

the set of all middle vertices of each half-cycle h. The HCF is then defined as follows:

max
∑
h∈H

(|V m(h)|+ 1)xh (4)

s.t. ∑
h∈H:v∈V s(h)∪V e(h)

0.5xh +
∑

h∈H:v∈V m(h)

xh ≤ 1, ∀v ∈ V, (5)

∑
h∈H:v1∈V s(h),v2∈V e(h)

xh =
∑

h∈H:v2∈V s(h),v1∈V e(h)

xh, ∀v1, v2 ∈ V : v2 > v1, (6)

xh ∈ {0, 1}, ∀h ∈ H. (7)

Objective function (4) maximizes the number of transplants, by modelling the size of a half-

cycle by the number of middle nodes plus 1. Constraints (5) make sure that each vertex v

appears a maximum of either once in the middle of a half-cycle or twice at the start or end of

a half-cycle. Constraints (6) ensure that if a half cycle starting in v1, ending in v2 is selected

in a solution, then also a half-cycle starting in v2 and ending in v1 must be selected. Note that

v2 > v1 is imposed on these vertices v1, v2 to avoid double constraints. Finally, constraints (7)

make sure that each half-cycle is either selected or not. This works for even values of k, when

k is odd however, we need to make sure that no two half-cycles of maximum length can be

matched. This can be done by adding the following constraints:

xh = 0 ∀h ∈ H : V e(t) < V s(h) and |V m(h)| = k − 1

2
(8)

These ensure that every half-cycle of maximum length starts with a vertex indexed lower

than the ending vertex. Automatically, this implies that the model will never be able to match

this third-cycle of length ⌈k/2⌉, with another one of this length in a feasible solution. This

ensures the maximum complete cycle length k in case that k is odd.

7In this thesis, the size of a half-cycle or third-cycle is defined as the number of arcs present in this half-cycle
or third-cycle.
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4.2 New third-cycle formulation

This thesis covers a novel TCF, in which a cycle will be constructed by three compatible third-

cycles. Therefore, we need to ensure that, for every donor pair or vertex v, there must be a third-

cycle starting from v if and only if there is also a third-cycle ending in vertex v. Furthermore,

if we select a third-cycle starting in v1, ending in v2, and a third-cycle starting in v2, ending in

v3, a third-cycle starting from v3, ending in v1, must also be selected. In addition, every feasible

cycle of length 2 must also be eligible for selection in the solution, as these obviously can not be

constructed by three third-cycles.

Now notation will be introduced for the TCF that is similar to the notation introduced for the

HCF. All possible third-cycles are all paths in the graph of length up to ⌈k/3⌉. After reducing

this set to a set T only containing actual possible third-cycles, a variable xt is associated to

each third-cycle t ∈ T , being 1 if this third-cycle is selected and 0 otherwise. Again, let V s(t)

and V e(t) denote the set containing the starting vertex and ending vertex respectively of each

third-cycle t. Furthermore, let V m(t) be the set of all middle vertices of each third-cycle t. Now,

as mentioned, we should allow for exchange cycles of length 2. This is done by obtaining the set

of all length-2 cycles C2 and associating a variable yc with every cycle c ∈ C2. Finally, let V (c)

denote the set containing both vertices that are part of cycle c. Then we can define the TCF as

follows:

max
∑
t∈T

(|V m(t)|+ 1)xt + 2
∑
c∈C2

yc (9)

s.t. ∑
t∈T :v∈V s(t)∪V e(t)

0.5xt +
∑

t∈T :v∈V m(t)

xt +
∑

c∈C2:v∈V (c)

yc ≤ 1, ∀v ∈ V, (10)

∑
t∈T :v∈V s(t)

xt =
∑

t∈T :v∈V e(t)

xt, ∀v ∈ V, (11)

∑
t∈T :v1∈V s(t),v2∈V e(t)

xt +
∑

t∈T :v2∈V s(t),v3∈V e(t)

xt ≤ 1 +
∑

t∈T :v3∈V s(t),v1∈V e(t)

xt, (12)

∀v1, v2, v3 ∈ V : v2 > v3, v2 > v1,

xt ∈ {0, 1}, ∀t ∈ T . (13)

Objective function (9) maximizes the number of transplants. Then, constraints (10) make

sure that each vertex v appears a maximum of either once in the middle of a third-cycle, twice

at the start and end of a third-cycle or once in a cycle of length 2. Constraints (11) ensure if

there is a selected third-cycle ending v, there should also be one starting in v. Constraints (12)

make sure that if there is both a third-cycle starting in v1 that ends in v2 and one starting in

v2 that ends in v3, there must be a third-cycle starting in v3 that ends in v1 . Note that each

whole cycle consisting of three third-cycles has v2 > v1 and v2 > v3 for some start/end vertices

v1, v2 and v3, and therefore it is feasible to impose these restrictions on the triplet of vertices

to avoid double constraints. Finally, constraints (13) make sure that each third-cycle is either

selected or not.
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This formulation works perfectly well when k is a multiple of 3. However, let us consider

the case that k = 3n+ 1, for some n ∈ N. Let us introduce B ⊆ T as the set of all third-cycles

exactly of length ⌈k/3⌉. In order to ensure the correct maximum cycle length, every complete

cycle can only contain a maximum of one third-cycle t ∈ B. We model this by adding the

following constraints to the original TCF.

∑
t∈B:v∈V s(t)∪V e(t)

xt ≤ 1 ∀v ∈ V (14)

Constraints (14) ensure that for every vertex v ∈ V there cannot be both a third-cycle t ∈ B
starting and ending in this vertex v. This forces a third-cycle of maximum length to be matched

with ones of strictly smaller length on both ends. Therefore, the length of the complete cycle

can never exceed k.

Finally, we need to consider the case where k = 3n+ 2, for some n ∈ N. In order to ensure

the correct maximum cycle length, every complete cycle can only contain a maximum of two

third-cycles t1, t2 ∈ B. We model this by adjusting constraints (12) of the original TCF.

∑
t∈T :v1∈V s(t),v2∈V e(t)

xt +
∑

t∈T :v2∈V s(t),v3∈V e(t)

xt ≤ 1 +
∑

t∈T \B:v3∈V s(t),v1∈V e(t)

xt (15)

∀v1, v2, v3 ∈ V : v2 > v1, v2 > v3

This adjustment ensures that if there is both a third-cycle starting in v1 that ends in v2

and one starting in v2 that ends in v3, there must be a third-cycle t ∈ T \ B starting in v3

that ends in v1, for all v2 > v1, v3. This forces the length of the third-cycle starting from v3,

out of all start/end vertices within a complete cycle, to be strictly smaller than the maximum

third-cycle length ⌈k/3⌉. Therefore, within a complete cycle there will always be at least one

third-cycle that has length strictly smaller than ⌈k/3⌉. This adjustment of constraints does not

rule out any solutions that should be feasible: the partition of a cycle into thirds can always be

made such that the smaller third-cycle starts at the end vertex of the third-cycle that has the

biggest starting vertex, namely v2. An overview of size and LP-relaxation bound’s quality of

the discussed models is presented in Table 1.

Table 1: Quality of LP-relaxation bound and size of all implemented models.

Model No. var. No. constr. LP-relaxation bound
CF O(nk) O(n) tight
EF O(n2) O(nk) not tight
EA O(n2) O(n3) not tight
EE O(n3) O(n2) not tight
HCF O(n1+⌈k/2⌉) O(n2) tight
TCF O(n1+⌈k/3⌉) O(n3) not tight

By inspection of the table, it does not seem like either the HCF or the TCF have a competitive

advantage over the other formulations for any value of k, regarding the models’ size. Especially

the EA and EE seem to perform best in the worst case scenario. However, in practice, for
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the HCF, especially after reduction techniques, it turns out that the number of constraints and

variables is much more favorable than this table suggests. Of course, we hope that the same

will hold for the TCF. Section 5 provides an overview of number of constraints and variables for

the different models for different values of n and k. Additionally, the fact that the HCF’s LP-

relaxation is as tight 8 as the CF’s one could play a big role in its computational performance.

The tightness of a LP-relaxation is namely often considered an indicator of how effectively an

IP model will perform in practice, because the relaxation significantly influences the efficiency

of modern branch-and-bound tree search algorithms. Delorme, Manlove & Smeets (2023) argue

that the LP-relaxation bound of the HCF is as tight the bound obtained by the CF, because both

models are equivalent. This means that any continuous solution of the HCF can be converted

into a continuous solution to the CF with the same objective value and vice versa.

At first glance it might seem as if the TCF’s LP-relaxation is also equivalent to the one

of the CF. However, a simple counterexample is able to prove us wrong. Consider a case in

which maximum cycle length k is equal to 3. For example, decision variables associated with

third-cycles ⟨A,B⟩, ⟨B,C⟩, ⟨C,D⟩ and ⟨D,A⟩ all being equal to 0.5, forms a feasible solution to

the LP-relaxation of the the TCF, but can not be converted into a feasible solution to the CF’s

LP-relaxation. Constraints (10) are satisfied, as each vertex is selected 0.5 times both at the

start and end of a third-cycle, which does not violate these capacity constraints. Constraints

(11) are satisfied, as each vertex is exactly selected the same number of times at the start of

a third-cycle as at the end of a third-cycle, namely 0.5 times. Finally, constraints (12) are

satisfied as these constraints are passive for a left hand side less or equal to 1, which is the case

when each third-cycle is selected only 0.5 times. However, this continuous solution can not be

converted to a continuous solution to the CF. Namely, conversion to the CF would require a

variable associated to cycle [A,B,C,D], which is not possible in case maximum cycle length k

equals 3.

4.3 Reduction techniques

Both the HCF and TCF display some symmetry, i.e. the presence of equivalent solutions that

can be obtained by rearranging the values of decision variables. Consider for example the

cycle [A,B,C,D]. In the HCF this cycle can be obtained by choosing half-cycles ⟨A,B,C⟩ and
⟨C,D,A⟩ or by choosing half-cycles ⟨B,C,D⟩ and ⟨D,A,B⟩. In the TCF, there even exist 4 equi-

valent solutions that result in this very cycle. Symmetry in an IP problem is undesirable because

it can lead to redundant computations, increasing solution time by causing the solver to explore

these multiple equivalent solutions. For this reason, this section discusses how to minimize this

symmetry, and therefore size of the model, by applying several reduction techniques.

4.3.1 Variable reduction

For the HCF, there are very convenient ways to reduce the number of variables and constraints

in the model. Symmetry can be avoided by not generating any half-cycle where the vertex with

the lowest index is not positioned at either the beginning or the end of the half-cycle. This is

8By tight, we mean the tightest known, not that the optimal objective value of the LP-relaxation is equal to
the optimal objective value with integrality constraints.
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equivalent to adding the following constraints:

xt = 0 ∀t ∈ B : ∃ v ∈ V m(t) s.t. v < vs ∈ V s(t) and v < ve ∈ V e(t) (16)

Note that this does not really add extra constraints to the model, it just removes some

variables that are redundant. This means that the size of the model decreases through the

number of variables. Addition of these constraints does not remove all symmetry. Symmetry

can still occur in complete cycles of odd length 9 or by splitting a complete cycle in different

half-cycle lengths.10 Delorme, Manlove & Smeets (2023) suggest that a simple adjustment

of constraints (6) can handle these problems. The intended adjustment however is described

ambiguously: “This can be avoided in constraints (6) by only allowing a half-cycle ⟨v1, ..., v2⟩
with size l to be matched with another half-cycle ⟨v2, ..., v1⟩ with size l or, in case the index of v1

is smaller than the index of v2, with size l and l−1.” as stated by (Delorme, Manlove & Smeets,

2023). It remains unclear how to achieve this without multiplying the number of constraints.11

Furthermore, (Delorme, Manlove & Smeets, 2023)’s number of variables for the HCF is more

than double the number of variables in the CF for some tested instances. This gives away that

their claims of including only half-cycles in the model that can be completed by another halve,

and removal of all symmetry are simply wrong.

Still, there do exist some unnecessary variables that can be removed by including only half-

cycles that can be completed by another halve. These removals do not necessary remove all

symmetry, but they make sure that a lot of half-cycles that can not be present in a feasible

solution, are not even added to the model in the first place. A half-cycle ⟨v1, ..., v2⟩ of length l

would only have to be considered if it can be completed by another half-cycle of length l or l−1

in case that v1 < v2 or completed by a half-cycle of length l or l+ 1 in case that v1 > v2. From

now on, we will refer to this procedure as the extra preprocessing for the HCF. Note that after

this procedure, it is not possible anymore for HCF to contain more than double the amount of

variables as the CF.12 This shows that this preprocessing was not applied in Delorme, Manlove

& Smeets (2023) and is therefore new to current literature. Section 5 discusses whether the time

that it takes to preprocess these half-cycles is worth the actual reduction of variables that it

achieves.

Unfortunately, variable reduction for the TCF cannot be performed as trivially as for the

HCF. Variable reduction on the TCF can be applied to remove only a bit of symmetry. Fur-

thermore, feasibility of variable reduction depends on the level of k.

Consider k = 3n+ 1, for some n ∈ N. Then, we can add the following constraint:

xt = 0 ∀t ∈ B : ∃ v ∈ V m(t) ∪ V e(t) s.t. v < vs ∈ V s(t) (17)

9[A,B,C,D,E] can be split into ⟨A,B,C,D⟩ and ⟨D,E,A⟩ or ⟨A,B,C⟩ and ⟨C,D,E,A⟩ for k ≥ 6
10[A,B,C,D] can be split into ⟨A,B,C⟩ and ⟨C,D,A⟩ or ⟨A,B,C,D⟩ and ⟨D,A⟩ for k ≥ 5
11The goal can be achieved by splitting H in smaller sets according to half-cycle length and then considering

constraints (6) for each of these sets. However this would almost multiply the total number of constraints by
⌈k/2⌉.

12Symmetry for a complete cycle can only occur when both of the half-cycles can be matched with another half-
cycle, resulting in two half-cycles being present in two possible complete cycles per case of symmetry. Additionally,
half-cycles that can not be completed by another halve are not added to the model.
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Table 2: Variable reduction for different values of k

Value of k TCs of length 1 TCs of length 2 TCs of length 3
3 all present × ×
4 all present starting with lowest index ×
5 all present starting/ending with highest index ×
6 all present all present ×
7 all present all present starting with lowest index
8 all present all present starting/ending with highest index
9 all present all present all present

This simply ensures that we only consider third-cycles of maximum length ⌈k/3⌉ that start with
the lowest indexed vertex present in the third-cycle. In this case for k, these third-cycles are

only necessarily needed for a cycle of the maximum length k. This does not rule out any feasible

solutions as the lowest index of the complete cycle of length k can always be chosen as the

starting point of the longest third-cycle present in the complete cycle of length k.

Consider k = 3n+ 2, for some n ∈ N. Then, we can add the following constraint:

xt = 0 ∀t ∈ B : ∃ v ∈ V m(t) s.t. v > vs ∈ V s(t) and v > ve ∈ V e(t) (18)

These constraints assures that we should only consider third-cycles of length ⌈k/3⌉ that start or
end with their highest index. In this case for k, these third-cycles are only necessarily needed

for a cycle of the maximum length k or length k − 1. All other different lengths of complete

cycles can be composed by exclusively using the other third-cycle lengths. Within complete

cycles of length k or k − 1 we are always able to chose the highest index as the intersection of

the two largest third-cycles. Therefore, imposing the restriction that these third-cycles should

either start or end in their highest indexed vertex, does not rule out any feasible solutions. Do

note that these variable reductions are in line with the adjustment of constraints as described in

Section 4.2, as in a complete cycle of maximum length k, the bigger third-cycles are assumed to

start and end at the biggest indexed v2 out of the triplet v1, v2, v3. This configuration is always

feasible.

Table 2 presents a comprehensive overview of the variable reduction for different values of k.

A ‘×’ indicates that no third-cycles of this length are present in the model because their length

is strictly larger than ⌈k/3⌉.
Lastly, not all constraints need to be added to the model. Within the HCF, one of constraints

(6) only needs to be added when there actually exists a half-cycle starting in v1 and ending in

v2 for v2 > v1. Similarly, in the TCF, one of constraints (12) only needs to added when there

exists both a third-cycle starting in v1 and ending in v2 and one starting in v2 and ending in v3

for v2 > v1, v3.

4.3.2 Vertex ordering

Both the HCF and TCF, but also the EA and EE have an interesting characteristic. Different

ordering of vertices changes the number of variables needed in the model. Put differently, the

indexing of vertices changes the number of possible half-cycles and third-cycles in the graph.

Table 3 illustrates the variable reduction through vertex ordering for a specific compatibility
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graph. This is the same example as presented in Delorme, Manlove & Smeets (2023).

Table 3: Variable reduction through vertex ordering

A

B

C

D
Feasible cycles

Different ways of vertex ordering

B < C < D < A A < B < C < D A < D < B < C

[A,B,D,C] ⟨B,D,C⟩+ ⟨C,A,B⟩ ⟨A,B,D⟩+ ⟨D,C,A⟩ ⟨A,B,D⟩+ ⟨D,C,A⟩

[A,B,C] ⟨B,C,A⟩+ ⟨A,B⟩ ⟨A,B,C⟩+ ⟨C,A⟩ ⟨A,B,C⟩+ ⟨C,A⟩

[B,D,C] ⟨B,D,C⟩+ ⟨C,B⟩ ⟨B,D,C⟩+ ⟨C,B⟩ ⟨D,C,B⟩+ ⟨B,D⟩

[B,C] ⟨B,C⟩+ ⟨C,B⟩ ⟨B,C⟩+ ⟨C,B⟩ ⟨B,C⟩+ ⟨C,B⟩

Total 6 different half-cycles 7 different half-cycles 8 different half-cycles

This table shows how different ordering rules lead to a different number of half-cycles that

would be included in the model. Actually, finding the best vertex ordering, i.e. the one for

which the number of half-cycles needed to represent every cycle is minimized, is an optimization

problem in itself. However, the variable reduction is probably not worth the time such a problem

would take to be solved to optimality. In order to achieve the best vertex ordering without a

significant increase in computational time, Section 5 evaluates what rule of thumb for ordering

achieves the greatest variable reduction.

4.4 Inclusion of altruistic donors

In Delorme, Manlove & Smeets (2023) the HCF, just as the new TCF in this thesis, is introduced

for the KEP without altruistic donors. However, several approaches offer solution when it comes

to incorporating altruistic donors into the model. The most intuitive way is probably to represent

the chains also as cycles, by adding a dummy patient to each altruistic donor that is compatible

with each of the normal, also called directed, donors. This approach however is expected to

significantly increase the number of variables in the CF, HCF and TCF, as there would exist a

lot more possible cycles or cycle segments within the compatibility graph. Furthermore, when

the maximum chain length k′ is set bigger than maximum cycle length k,13 the mentioned

formulations might struggle, as their model sizes grow with the maximum cycle length, which is

related to k′ in case the chains are represented as cycles. Dickerson et al. (2016) proposes a chain

structure which only requires a polynomial number of variables and constraints, O(k′n2) and

O(k′n), respectively. This position-indexed chain-edge formulation (PICEF) models the chains

by means of edges, whereas the cycles are modeled similarly to the CF, by associating a binary

variable to every possible cycle. In this thesis, we introduce the new PICEF-HC and PICEF-TC,

variants on the PICEF where the cycles are modelled according to the earlier discussed HCF

and TCF, respectively.

13The maximum chain length is typically set higher than the maximum cycle length because chains do not
necessarily require simultaneous surgeries, thereby reducing logistical constraints.

12



4.4.1 Position-indexed chain-edge formulation

First, we touch upon the PICEF as introduced by (Dickerson et al., 2016). First of all, in this

section we will represent each vertex by its index, i.e.: vi = i as this benefits the readability of

the different formulations. Let D(i, j) be the set of possible positions at which arc (i, j) may

occur in a chain, i.e.:

D(i, j) =

{1} i ∈ N

{2, ..., k′} i ∈ P

Therefore, any arc leaving an altruistic donor can only be in the first position of a chain,

and any arc leaving a patient donor pair may be in any position up to the chain length limit k′,

except for the first position. For each arc (i, j), we create a variable yijd for each d ∈ D(i, j),

which takes value equal to 1 if and only if arc (i, j) is selected at position d of a chain. We use

the same decision variables and sets as introduced for the CF in Section 4.1. The PICEF is then

defined as follows:

max
∑

(i,j)∈A

∑
d∈D(i,j)

yijd +
∑
c∈Ck

|V (c)|zc, (19)

s.t.
∑

j:(j,i)∈A

∑
d∈D(j,i)

yjid +
∑

c∈Ck:i∈V (c)

zc ≤ 1, ∀i ∈ P, (20)

∑
j:(i,j)∈A

yij1 ≤ 1, ∀i ∈ N , (21)

∑
j:(j,i)∈A and d∈D(j,i)

yjid ≥
∑

j:(i,j)∈A

yij,d+1, ∀i ∈ P, d ∈ {1, .., k′ − 1}, (22)

yijd ∈ {0, 1}, ∀(i, j) ∈ A, d ∈ D(i, j), (23)

zc ∈ {0, 1}, ∀c ∈ Ck. (24)

Objective function (19) represents the total number of transplants, assuming unitary weights,

and is maximized. Constraints (20) make sure that each patient-donor pair is at most part of

one selected cycle or connected to one incoming arc present in a selected chain. Furthermore,

constraints (21) ensure that each altruistic donor is connected to at most one selected outgoing

arc present in a selected chain. The flow inequalities (22) ensure that each patient-donor pair

i has an outgoing arc at position d + 1 of a selected chain only if i has an incoming arc at

position d. Note that we use an inequality since the last patient-donor pair of a chain will have

an incoming arc but no outgoing arc.

4.4.2 Reduced PICEF

As proposed by (Dickerson et al., 2016) we can reduce the number of variables included in the

model. Let r(i) be the shortest distance to any altruistic donor j ∈ N , for all i ∈ P. Now we

know that any outgoing arc from i cannot appear at a position smaller than r(i) + 1 in a chain

and therefore we replace D(i, j) by Dred(i, j) which is defined as follows:
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Dred(i, j) =

{1} i ∈ N

{r(i) + 1, ..., k′} i ∈ P

4.4.3 New PICEF-HC and PICEF-TC

Combining the PICEF as described in Section 4.4.1 with the HCF as described in Section 4.1

and TCF as described in Section 4.2, yields the new PICEF-HC and PICEF-TC, respectively.

The complete formulations and interpretation of constraints and objectives can be found in

Appendix A.

5 Results

This section first addresses the performance on computational experiments of all implemented

methods for the KEP without altruistic donors. We tested performance on a variety of randomly

generated instances with number of vertices n ∈ {50, 70, 100, 200, 400, 600} and maximum cycle

length k ∈ {3, 4, 5, 6, 7, 8, 9} using my supervisor’s instance generator. This generator creates

compatibilities based on bloodtype and cPRA,14 using data of Erasmus School of Economics. For

each value of n, 10 instances were generated, resulting in a total of 60 instances. All experiments

were run on a computer with following specifications: Intel Core i7-1255U processor, 4.7 GHz

and 16GB of RAM. All models were coded in Java and a guide to reproduce all results can be

found in Appendix B. All IP-models were solved with the use of Gurobi 11.0.0.

In Table 4 we report results on a first experiment evaluating impact of two vertex ordering

rules. In the first approach, the vertices are re-indexed in order of descending total degree as

suggested by Dickerson et al. (2016), abbreviated by ‘desc.’. In the second approach, the vertices

are re-indexed in order of ascending total degree , abbreviated by ‘asc.’. The values reported

in the table are the number of variables or constraints included in the model after the vertex

ordering, divided by the number of variables or constraints included in the model after random

vertex ordering. Therefore, a value below 1 means that the node ordering resulted in a decrease

in the number of variables or constraints. The random vertex ordering is carried out 10 times

per instance to create a more accurate comparison.

Table 4: Impact of node ordering in HCF, TCF, EA and EE for two ordering rules for k =
3 and 4.

HCF TCF EA EE

k n desc. asc. desc. asc. desc. asc. desc. asc.

var. con. var. con. var. con. var. con. var. con. var. con. var. con. var. con.

3
50 0.73 0.82 0.90 1.13 1.00 1.04 1.00 1.30 0.96 0.66 1.02 1.42 0.86 0.86 1.08 1.08
100 0.66 0.71 0.95 1.20 1.00 0.99 1.00 1.36 0.93 0.53 1.04 1.54 0.87 0.76 1.08 1.16
200 0.64 0.67 0.91 1.19 1.00 0.98 1.00 1.42 0.91 0.47 1.04 1.64 0.88 0.69 1.06 1.16

4
50 0.86 0.74 0.98 1.09 0.72 0.62 0.88 1.48 0.86 0.50 1.07 1.54 0.60 0.65 1.24 1.21
100 0.82 0.64 1.00 1.10 0.67 0.51 0.95 1.63 0.76 0.40 1.11 1.60 0.62 0.50 1.20 1.26
200 0.80 0.63 1.01 1.10 0.63 0.44 0.91 1.68 0.70 0.37 1.11 1.59 0.58 0.43 1.19 1.22

14cPRA (calculated Panel Reactive Antibody) is a measure used in kidney exchange to estimate the likelihood
that a recipient will react negatively to potential donor organs due to pre-existing antibodies, reflecting the
percentage of the donor pool that would be incompatible with the recipient.
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These results suggest that sorting the vertices in descending order of total degree reduces the

model size for every instance of the HCF, EA and EE. This matches the suggestion of Dickerson

et al. (2016). Very interesting to note is that, for the TCF, it turns out that for k = 3 and

n = 50, this node ordering rule does actually slightly increase the model’s size, while for all

other instances the descending order reduces the size of the model. It does make a lot of sense

that the number of variables in the TCF for k = 3 stays the same after any ordering rule as

the third-cycles just consist of the single edges without any variable reduction being performed.

The descending ordering rule results in a model with significantly smaller size for EE and EA,

however it is not quite clear whether this will reduce computational time. The LP-relaxation

bound would be of poorer quality after the descending vertex ordering, according to Delorme,

Manlove & Smeets (2023). The authors even claim, but do not proof with any results, that the

ascending ordering rule benefits computational times of the EE more. Later on in this section

their claim will be tested, but for now, the ordering rule that results in smallest size will be

used: ordering in descending degree.

Now we will move on to the computational performance of all implemented approaches. For

each combination of n and k, performance is evaluated on the set of 10 instances. In the following

tables, #opt denotes the number of instances within the set that were solved to optimality

within the time limit of 1800 seconds. Between brackets is the number of instances for which

the solving process was terminated early due to an out-of-memory error. T denotes the average

total time needed to reach optimal solutions; this includes finding cycles, cycle-segments and

paths, preprocessing, variable reduction and setting up the model. Note that average solving

time T only includes instances that were actually solved to optimality. Furthermore, #var.

and #cons. denote the average number of variables and constraints after vertex ordering and

reduction techniques for each formulation, respectively.

In Table 5 and Table 6 we present the results obtained on the CF, HCF, TCF, EF, EA and

EE for every n ∈ {50, 70, 100, 200} and k ∈ {3, 4, 5, 6}. For the HCF, TCF, EA and EE, vertices

are ordered using the descending ordering rule. Extra preprocessing is not applied to the HCF.

Table 5: Results of the CF, HCF and TCF for k = 3, 4, 5 and 6.

CF HCF TCF

k n obj # opt T # var. # cons. # opt T # var. # cons. # opt T # var. # cons.

3

50 14.0 10 0 95 50 10 0 1025 562 10 0 505 1105
70 25.2 10 0 268 70 10 0 2425 1042 10 6 936 2775
100 39.8 10 0 810 100 10 0 6433 2199 10 1 1982 8172
200 90.2 10 0 4940 200 10 0 40232 8928 9 53 7584 55513

4

50 15.6 10 0 415 50 10 0 2017 610 10 0 1049 1381
70 27.3 10 0 1884 70 10 0 5032 1168 10 1 2473 3735
100 42.3 10 0 7139 100 10 0 14506 2457 10 2 6532 11781
200 94.1 10 6 86398 200 10 1 95612 10270 8 34 40611 90587

5

50 16.0 10 0 1883 50 10 0 3466 618 10 0 2314 6335
70 27.8 10 1 15064 70 10 0 11616 1192 10 2 5825 20495
100 43.1 10 3 68289 100 10 1 40820 2521 10 16 17711 89239
200 94.7 10 100 1.6 ∗ 106 200 10 14 460740 10820 10 422 120643 959012

6

50 16.2 10 0 9898 50 10 0 6729 622 10 0 3296 6499
70 27.9 10 5 139666 70 10 0 24724 1210 10 4 8412 20789
100 43.1 10 24 709577 100 10 2 101079 2570 10 21 25584 90407
200 95.0 0 (10) - - - 10 68 1.2 ∗ 106 11182 10 307 175377 971287
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Table 6: Results of the EF, EA and EE for k = 3, 4, 5 and 6.

EF EA EE

k n obj # opt T # var. # cons. # opt T # var. # cons. # opt T # var. # cons.

3

50 14.0 10 0 481 16379 10 0 584 1152 10 0 148 305
70 25.2 9 1 888 66018 10 12 1083 2846 10 0 393 530
100 39.8 9 143 1883 297097 10 8 2329 8266 10 0 1157 1092
200 90.2 1 928 7205 4.0 ∗ 106 6 54 8924 57538 10 0 6459 3838

4

50 15.6 10 1 481 91932 10 0 608 1392 10 0 309 353
70 27.3 9 7 888 346644 10 1 1170 4010 10 0 1042 704
100 42.3 9 424 1883 3.6 ∗ 106 10 57 2581 12750 10 0 3655 1595
200 94.1 0(10) - - - 9 239 10452 110069 10 5 27645 6893

5

50 16.0 10 11 481 503235 10 0 622 1511 10 0 447 381
70 27.8 9 125 888 5.8 ∗ 106 10 0 1218 4664 10 0 1686 799
100 43.1 1 (9) 448 1883 8.6 ∗ 106 10 3 2733 15521 10 1 6665 1901
200 94.7 0 (10) - - - 9 160 11565 143657 10 27 57960 9121

6

50 16.2 10 64 481 2.7 ∗ 106 10 0 628 1574 10 0 520 393
70 27.9 8 (2) 188 888 7.1 ∗ 106 10 0 1235 4916 10 0 2130 833
100 43.1 0 (10) - - - 10 1 2798 16717 10 1 8763 2031
200 95.0 0 (10) - - - 10 47 12224 161089 10 39 81558 10437

The CF demonstrates dominant performance for k = 3 or 4. CF achieved optimal solutions

for all instances within minimal computational time, indicating its efficiency in handling smaller

maximum cycle lengths. However, a large n in combination with an increasing k, makes the

computational burden grow, due to sharp increases in the number of variables. An increase in

k exponentially increases the number of possible cycles that need to be considered in the model

after all. Therefore, it cannot solve any of the instances for n = 200 and k = 6. This result

clearly highlights the shortcoming of the CF: its sensitivity to an increase in k for large n.

The HCF shows a much more robust performance over different values of k and n. For

k = 3 or 4, HCF can match the dominant performance of the CF. When k increases, the number

of variables that need to be considered in the HCF grows way less fast than for the CF and

therefore computational times remain tractable. This supports the basic goal of the HCF, which

is to alter the CF in a way such that supplementary constraints dampen the exponential growth

in the number of variables. These results suggest that the benefit of the variable reduction

outweighs, by far, the addition of the supplementary constraints in the HCF as also concluded

by Delorme, Manlove & Smeets (2023). Furthermore, the HCF and EE are the only formulations

that are able to solve all 40 instances for each level of k and their performance seems very similar,

both needing more than half a second for the exact same combinations of k and n. It is interesting

to note that the size of the EE model is significantly smaller than the size of the HCF model

for every combination of k and n, both for the number of variables and constraints. The HCF

contains for k = 6, 10 times as much variables as the EE, while also having more constraints.

The tight LP-relaxation of the HCF in comparison to the worse relaxation of the EE is probably

the reason why the HCF still is able to match the performance of the EE.

The TCF turns out to struggle solving instances of larger size, showing significant increase

in computational time for n = 200. This does not come as a total surprise, as the number of

constraints is O(n3). Furthermore, an increase in k, which increases the number of variables,

turns out to increase the number of constraints that need to be added to the model even more.

The TCF is dominated for every combination of n and k by the HCF and EE. We conclude that
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the new TCF does not outperform existing methods. However, it does show a significantly more

robust performance to increase in k than CF.

The EF performs very poorly, as it manages to solve all instance only for n = 50. This can

be explained by the fact that the number of constraints grows exponentially with k and by the

poor quality of its LP-relaxation bound. For n = 100 or 200 and k = 5 or 6 only one instance

was solved to optimality, out of 40, as for all other instances the solver ran out of memory. This

is not very surprising, as in these cases the number of k-paths probably exceeds 107 which is

simply too much to handle for the computer. Note that only for the EF, the number of variables

is equal over all k, as this simply equals the number of edges in the graph. The # cons. column

represents the average number of constraints over all instances for which the model was actually

set up.15

Moving on to the EA, we see that performance on large instances (n = 200) is very poor,

only solving 6 out of 10 for k = 3. However, when k increases, and therefore the number of

variables, the computational times decrease and more instances are solved to optimality. One

reason could be that the increased variable reduction for small values of k, even amplified by

vertex ordering, deteriorates the LP-relaxation bound, as also pointed out by Delorme, Manlove

& Smeets (2023). In general it holds over all n that performance improves for an increase in

k. Even though the EA’s performance is relatively poor, this compact formulation shows how

a small increase in number of variables with respect to the EF, can result in a huge cut in the

number of constraints. The number of constraints grows polynomially and this results in the

performance not being negatively impacted by an increase in k.

Lastly, the EE shows dominant performance over all levels of n and k just as the HCF. An

increase in k only results in a minor increase in the model’s size, only slightly increasing the

computational times. The EE seems to be a bit more sensitive to an increase in n while the

HCF seems to be more sensitive to an increase in k, which makes sense regarding the theory

behind the models’ sizes.

The TCF is designed to be robust to an increase in k and therefore its performance is

evaluated along the two best performing formulations EE and HCF for n ∈ {50, 70, 100} and

k ∈ {7, 8, 9}. Results are presented in Table 7.

Table 7: Results of the HCF, TCF and EE for k = 7, 8 and 9.

HCF TCF EE

k n obj # opt T # var. # cons. # opt T # var. # cons. # opt T # var. # cons.

7
50 16.2 10 0 11732 624 10 1 4745 6715 10 0 562 396
70 27.9 10 1 64103 1212 10 4 14997 21813 10 0 2349 846
100 43.1 10 8 300991 2589 10 32 51898 95535 10 1 9845 2089

8
50 16.2 10 0 24089 626 10 2 12269 12143 10 0 583 398
70 27.9 10 3 139977 1218 10 24 44814 37778 10 0 2441 851
100 43.1 10 31 808403 2617 10 191 192260 168676 10 1 10281 2118

9
50 16.2 10 1 44190 627 10 3 19574 12740 10 0 594 399
70 27.9 10 9 426961 1220 10 41 74290 38378 10 0 2493 853
100 43.1 6 (4) 42 1.6 ∗ 106 2438 10 301 322480 170356 10 1 10433 2129

The results suggest that for large values of k the EE dominates the HCF and TCF. However,

do note that no objectives, in 30 instances, increase when k is increased from 6 to 9. This makes

15Some instances resulted in an out-of-memory error before the model was set up.
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one wonder if such large values of k would even be useful in practice.

Now, the three best performing models, the CF, HCF and EE are evaluated for larger

instances n ∈ {400, 600} and k ∈ {3, 4, 5}. Results are presented in Table 8.

Table 8: Results of the CF, HCF and EE for k = 3, 4 and 5 evaluated on larger instances.

CF HCF EE

k n obj # opt T # var. # cons. # opt T # var. # cons. # opt T # var. # cons.

3
400 219.0 10 5 40051 400 10 2 239624 38911 10 3 48306 18110
600 362.7 10 29 120905 600 10 6 675321 91546 10 16 142087 44764

4
400 227.0 10 185 1.5 ∗ 106 400 10 27 834709 45127 10 427 297763 36502

600 367.5 7 1113 6.7 ∗ 106 600 10 199 2.7 ∗ 106 106149 0 - - -

5
400 - 0 (10) - - - 1 (9) 460 3.7 ∗ 106 44994 4 988 677844 49120
600 - 0 (10) - - - 0 (10) - - - 0 - - -

The HCF is the only formulation able to solve all instances for k = 3 or 4 and shows dominant

computational times in doing so. This certifies its robustness to an increase in n. However, when

k = 5, the HCF is only able to solve 1 instance to optimality due to the sharp increase in the

number of variables. The number of variables for the EE remains somewhat tractable for k = 5

and the EE is therefore able to still solve 4 instances for n = 400. This can be explained by its

strong robustness to increase in k. The CF is dominated by the HCF for all the tested instances.

Interesting to note is that, for k = 3, the model sizes of the CF are significantly smaller than

the sizes of the HCF. Still, the HCF shows superior computational times.16

Additionally, we evaluate whether an ascending or descending vertex ordering benefits the

EE. In all previous conducted experiments, descending vertex ordering was used. Table 9

presents these results along the computational performance of the EE after ascending vertex

ordering for n ∈ {100, 200, 400, 600} and k ∈ {3, 4, 5}.

Table 9: Ascending and descending vertex ordering for EE.

Ascending Descending

k n obj # opt T # var. # cons. # opt T # var. # cons.

3

100 39.8 10 0 1437 1654 10 0 1157 1092
200 90.2 10 1 7770 6460 10 0 6459 3838
400 219.0 10 6 54472 30442 10 3 48306 18110
600 362.7 10 18 154848 70287 10 16 142087 44764

4

100 42.3 10 1 7047 4010 10 0 3655 1595
200 94.1 10 19 56255 19418 10 5 27645 6893
400 227.0 10 716 525079 93707 10 427 297763 36502
600 367.5 0 - - - 0 - - -

5

100 43.1 10 4 21221 5675 10 1 6665 1901
200 95.0 10 150 206766 26437 10 27 57960 9121
400 - 0 - - - 4 988 677844 49120
600 - 0 - - - 0 - - -

These results refute the claim that the EE would show better computational performance

after ascending vertex ordering, made by (Delorme, Manlove & Smeets, 2023). The descending

vertex ordering shows dominant computational times and is able to solve more instances. This is

probably due to the smaller size of the model after descending ordering, obtaining the maximum

16More constraints can sometimes decompose the problem into smaller, more manageable subproblems that the
solver can handle more efficiently. Furthermore, extra constraints could improve the solver’s ability to prune the
search tree, eliminating infeasible or sub optimal branches earlier in the process. Also, the finding of all cycles
might take more time than finding all half-cycles.
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reduction with respect to ascending ordering for n = 200 and k = 5. In these instances the

descending ordering rule leads to a model containing only 28% of variables and 35% of constraints

of those of the model after the ascending ordering rule: a huge reduction in size that turns out

to have a big impact on computational times.

Moving on, we present results on our extra HCF preprocessing technique as proposed in

Section 4.3.1. This reduction procedure ensures that only half-cycle are included that can be

matched with at least one other half-cycle. Results are presented in Table 10, compared to the

normal procedure, as applied in all previous experiments.

Table 10: Extra preprocessing for HCF in comparison to the normal procedure.

Extra preprocessing Normal procedure

k n obj # opt T # var. # cons. # opt T # var. # cons.

3

100 39.8 10 0 1035 325 10 0 6433 2199
200 90.2 10 0 5840 1100 10 0 40232 8928
400 219.0 10 2 45685 6033 10 2 239624 38911
600 362.7 10 8 135569 15265 10 6 675321 91546

4

100 42.3 10 0 3912 518 10 0 14506 2457
200 94.1 10 1 30106 2282 10 1 95612 10270
400 227.0 10 33 325107 12587 10 27 834709 45127
600 367.5 10 237 1.2 ∗ 106 33794 10 199 2.7 ∗ 106 106149

5

100 43.1 10 1 19292 668 10 1 40820 2521
200 95.0 10 17 247623 3003 10 14 460740 10820
400 - 1 (9) 539 2.6 ∗ 106 14731 1 (9) 460 3.7 ∗ 106 44994
600 - 0 (10) - - - 0 (10) - - -

These results suggest a similar computational performance across both approaches. The

larger solving times for the extra processing are due to the time such extra preprocessing methods

take. Although, especially for low values of n and k, the extra preprocessing results in significant

reduction of model’s size, the actual solving time of the model does not get affected much. A

reason could be that the HCF is able to prune solutions containing redundant variables early on

in the process, not demanding any preprocessing that makes sure these variables are not even

added in the first place.

5.1 Inclusion of altruistic donors

This subsection addresses the performance of all implemented methods for the KEP including

altruistic donors. We tested performance on a variety of randomly generated instances with num-

ber of patient-donor pairs n ∈ {50, 100, 200, 400, 600} and maximum cycle length k ∈ {3, 4, 5}
again using my supervisor’s instance generator. Each instance contains 0.1 ∗n altruistic donors,

i.e. 1 altruistic donor for every 10 patient-donor pairs. Maximum chain length k′ = 10 for all

conducted computational experiments.

Within the National Kidney Registry (NKR) from 2008 through May 2016, 94% of all ini-

tiated kidney exchange chains had length smaller or equal to 10, and all exchange cycles had

length smaller or equal to 5 (Cowan et al., 2017). The longest chain initiated during this period

involved 35 transplants. Due to the risk on a chain interruption, we decide that k′ = 10 is an

appropriate, and in practice applicable, maximum chain length. Although broken chains turn

out to happen infrequent (Cowan et al., 2017), they can have a big impact when they break

chains still involving a lot of patient-donor pairs.

19



First, performance of the PICEF-C, PICEF-HC and PICEF-TC is evaluated for relatively

smaller instances with n ∈ {50, 100, 200} and k ∈ {3, 4, 5}. Vertices are ordered according to

descending degree for all instances. 17 Results are presented in Table 11.

Table 11: Results of the PICEF-C, PICEF-HC and PICEF-TC for k = 3, 4 and 5.

PICEF-C PICEF-HC PICEF-TC

k n obj # opt T # var. # cons. # opt T # var. # cons. # opt T # var. # cons.

3
50 22.0 10 0 2484 505 10 0 3323 1035 10 0 2893 1430
100 50.2 10 0 12382 1010 10 0 17226 3325 10 1 13877 9605
200 123.1 10 2 62663 2020 10 2 91376 12427 10 4 65890 69486

4
50 22.0 10 0 2904 505 10 0 4382 1096 10 0 3346 1802
100 50.2 10 0 17597 1010 10 0 27119 3657 10 2 17322 13522
200 123.1 10 9 176666 2020 10 3 183038 14147 10 21 91798 124783

5
50 22.0 10 0 5336 505 10 0 5719 1104 10 0 4903 6762
100 50.2 10 2 63627 1010 10 1 44331 3739 10 7 29863 85554
200 123.1 10 189 2.5 ∗ 106 2020 10 22 515890 14883 10 361 218904 991998

These results clearly show similarities to the results presented in Table 5. The PICEF-C,

just as the CF shows the best performance for k = 3 or 4, with computational times increasing

sharply for k = 5 in combination with n = 200. The PICEF-HC shows dominance across all

instances, while PICEF-TC struggles when n = 200. However, it is interesting to note that the

PICEF-TC shows improved performance over the TCF on the KEP without altruistic donors, as

the PICEF-TC solves all instances, also within a shorter timeframe. It seems like the problem

structure becomes more favorable to the PICEF-TC when altruistic donors are added to the

problem. Performance of the PICEF-C and PICEF-HC is similar, but a bit worse, compared to

their counterparts CF and HCF. Interestingly enough, optimal objective values do not increase

with k. This could be explained by the fact that the longer paths or cycles in the compatibility

graph can now already be presented in a solution by a chain, initiated by one of the altruistic

donors. It is therefore quite unlikely that an increase in k offers better solutions.

Results on the PICEF-C and PICEF-HC for n ∈ {400, 600} and k ∈ {3, 4, 5} are presented

in Table 12.

Table 12: Results of the PICEF-C and PICEF-HC for k = 3, 4 and 5, evaluated on larger
instances.

PICEF-C PICEF-HC

k n obj # opt T # var. # cons. # opt T # var. # cons.

3
400 257.9 10 15 277696 4040 10 17 456685 46832
600 404.7 10 65 688619 6060 10 62 1.2 ∗ 106 108221

4
400 257.9 10 228 1.7 ∗ 106 4040 10 58 1.2 ∗ 106 55260
600 404.7 2 1425 8.1 ∗ 106 6060 10 239 3.7 ∗ 106 128707

5
400 - 0 (10) - - - 0 (10) - - -
600 - 0 (10) - - - 0 (10) - - -

The PICEF-HC is able to solve all instances for k = 3 or 4, while the PICEF-C fails to

do so. For k = 3, both methods show similar performance, now quite a bit worse than their

counterparts CF and HCF as can be seen in Table 8. Computational times and number of solved

17PICEF-C, just as PICEF-HC and PICEF-TC, also has a different model size for different orderings of vertices.
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instances for k = 4 again show that the half-cycle modelling structure in the PICEF-HC is more

robust to an increase in k than the full cycle structure in PICEF-C.

6 Conclusion

This thesis presents a new IP model for the KEP called the third-cycle formulation (TCF). In this

model, a cycle is represented by three compatible third-cycles, aiming to improve performance

of the existing half-cycle formulation (HCF). We provide a clear explanation of the reduction

procedures, including symmetry reduction and vertex ordering, applicable to both the HCF and

TCF. Performance of the HCF and TCF is evaluated along a spectrum of existing models: the

cycle (CF), edge, edge-assignment (EA) and extended edge formulation (EE). The performance

of EE and EA is improved by using different vertex ordering rules, something that has not been

empirically tested before.

The TCF, despite being designed to improve upon HCF, struggles with larger instance sizes.

TCF’s number of constraints grows cubically with n, and an increase in maximum cycle length

k amplifies this growth. Consequently, TCF shows significant computational times for larger

instances, failing to outperform HCF and EE. Nevertheless, TCF shows much more robustness

to increasing k compared to the CF.

Furthermore, HCF and EE stand out as the most robust and dominant formulations for the

KEP without altruistic donors. HCF’s ability to solve larger instances efficiently emphasizes

its practicality for real-world applications. While TCF shows potential, further improvement is

needed to solve instances of larger size. However, we think that it would be very hard to obtain

an improved TCF. The CF, despite its limitations, remains effective for smaller cycle lengths

and instance sizes. In general, if problem size becomes larger through an increase in n, the HCF

with descending vertex ordering is preferred, and if through k, the EE with descending vertex

ordering is preferred. Results show that this descending vertex ordering rule reduces model’s

sizes for the HCF, TCF, EA, EE drastically. Computational expirements refute the claim made

by Delorme, Manlove & Smeets (2023) that an ascending vertex ordering would benefit the EE.

For the HCF, new preprocessing techniques, i.e. only incorporating each half-cycle that can be

matched with another one, turns out to deteriorate its performance. The reduction in size of

the model does not outweigh the additional preprocessing time needed to set up the model.

We observed that increasing k to a value higher than 6 does not increase the number of

transplants for all instances up to size of 100 patient-donor pairs. This suggests that if such a

large k would be allowed, it could be worth attempting to solve the instance for a smaller value

of k first, and asses afterwards by means of an upper bound whether the possible missed number

of transplants is worth the extra logistic challenges for an increase in k. This upper bound can

be obtained either through dropping the maximum cycle length, for which the problem becomes

solvable in polynomial time, or relaxation of the integrality constraints for this higher value of

k.

Furthermore, we introduced two new position-indexed chain edge formulations (PICEF) for

the KEP to incorporate altruistic donors: the PICEF-Half-Cycle (PICEF-HC) and PICEF-

Third-Cycle (PICEF-TC). The PICEF-Cycle, PICEF-HC and PICEF-TC show similar per-

formance to their counterparts CF, HCF, and TCF for the KEP without altruistic donors. The
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PICEF-HC shows dominance across all instances, being much more robust to an increase in k

than the PICEF-C. Optimal objective values do not increase with k, probably due to the longer

maximum length on a chain, initiated by one of the altruistic donors. This argues for a similar

solving strategy as discussed in the previous paragraph.

A suggestion for further research would be to investigate whether the HCF and TCF are

applicable to the stochastic KEP, which takes possible vertex and arc failures into account, as

modeled by Alvelos et al. (2019) and McElfresh et al. (2019). Also, it would be interesting to

examine their ability to handle hierarchical objectives, as is already efficiently done for the CF

(Delorme, Garćıa et al., 2023). Furthermore, performance of the EE could maybe be improved by

using more sophisticated vertex ordering rules. Lastly, it would be worth investigating whether

there exist ways to remove absolutely all symmetry within the HCF, avoiding multiplication of

the model’s majority of constraints.
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Riascos-Álvarez, L. C., Bodur, M. & Aleman, D. M. (2024). A branch-and-price algorithm

enhanced by decision diagrams for the kidney exchange problem. Manufacturing & Service

Operations Management , 26 (2), 485–499.

23
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A PICEF-HC and PICEF-TC

Combining the PICEF as described in Section 4.4.1 with the HCF as described in Section 4.1

yields the following new PICEF-HC:

max
∑

(i,j)∈A

∑
d∈D(i,j)

yijd +
∑
h∈H

(|V m(h)|+ 1)xh, (25)

s.t.
∑

j:(j,i)∈A

∑
d∈D(j,i)

yjid +
∑

h∈H:i∈V s(h)∪V e(h)

0.5xh

+
∑

h∈H:i∈V m(h)

xh ≤ 1, ∀i ∈ P, (26)

∑
j:(i,j)∈A

yij1 ≤ 1, ∀i ∈ N , (27)

∑
j:(j,i)∈A and d∈D(j,i)

yjid ≥
∑

j:(i,j)∈A

yij,d+1, ∀i ∈ P, d ∈ {1, .., k′ − 1}, (28)

∑
h∈H:i∈V s(h),j∈V e(h)

xh =
∑

h∈H:j∈V s(h),i∈V e(h)

xh, ∀i, j ∈ V : j > i, (29)

yijd,∈ {0, 1} ∀(i, j) ∈ A, d ∈ D(i, j), (30)

xh ∈ {0, 1}, ∀h ∈ H. (31)

Objective function (25) equals objective function (19) of PICEF, with objective function of

the CF (1) replaced by objective function (4) of the HCF. This objective maximizes the number

of transplants. Then, constraints (26) are the adjusted capacity constraints on each directed

donor, combining constraints (5) and (20). All the other constraints are copied exactly from the

PICEF and HCF. Interpretation of these constraints can be easily deducted from the description

in Section 4.4.1 and Section 4.1, respectively. Furthermore, combining the PICEF as described

in Section 4.4.1 with the TCF as described in Section 4.2 results in the following new PICEF-TC:
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max
∑

(i,j)∈A

∑
d∈D(i,j)

yijd +
∑
t∈T

(|V m(t)|+ 1)xt + 2
∑
c∈C2

zc, (32)

s.t.
∑

j:(j,i)∈A

∑
d∈D(j,i)

yjid +
∑

t∈T :i∈V s(t)∪V e(t)

0.5xt

+
∑

t∈T :i∈V m(t)

xt +
∑

c∈C2:i∈V (c)

zc ≤ 1, ∀i ∈ P, (33)

∑
j:(i,j)∈A

yij1 ≤ 1, ∀i ∈ N , (34)

∑
j:(j,i)∈A and d∈D(j,i)

yjid ≥
∑

j:(i,j)∈A

yij,d+1, ∀i ∈ P, d ∈ {1, .., k′ − 1}, (35)

∑
t∈T :i∈V s(t)

xt =
∑

t∈T :i∈V e(t)

xt, ∀i ∈ V, (36)

∑
t∈T :i∈V s(t),j∈V e(t)

xt +
∑

t∈T :j∈V s(t),l∈V e(t)

xt ≤

1 +
∑

t∈T :l∈V s(t),i∈V e(t)

xt, ∀i, j, l ∈ V : j > l, j > i, (37)

xt ∈ {0, 1}, ∀t ∈ T , (38)

yijd ∈ {0, 1}, ∀(i, j) ∈ A, d ∈ D(i, j), (39)

zc ∈ {0, 1}, ∀c ∈ C2. (40)

Now, objective function (32) equals objective function (19) of PICEF, with objective function

of the CF (1) replaced by objective function (9) of the TCF. This objective maximizes the

number of transplants. Furthermore, constraints (33) are the adjusted capacity constraints on

each directed donor, combining constraints (10) and (20). All the other constraints are copied

exactly from the PICEF and TCF. Interpretation of these constraints can be easily deducted

from the description in Section 4.4.1 and Section 4.2, respectively.

B Programming Code

This appendix contains a guide to reproduce all results stated in Section 5. To solve a set of

instances for the KEP without altruistic donors, run the method: produceResults(String size,

int k, String method, double timeLimit, boolean isAscending), in which:

• String size determines the size of the set of instances. String S is associated to n = 50,

String M is associated to n = 70, String L is associated to n = 100 and String XL is

associated to n = 200. Finally, String 400 is associated to n = 400 and String 600 is

associated to n = 600.

• int k sets maximum cycle length k.

• String method sets the solving method. String Cycle is associated to CF, String HalfCycle

is associated to the HCF, String ThirdCycle is associated to the TCF, String Edge is asso-
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ciated to the EF, String EdgeAssignment is associated to the EA and String ExtendedEdge

is associated to the EE.

• double timeLimit sets the time limit on total solving time in seconds.

• boolean isAscending sets the vertex ordering to ascending if true, if false to descending.

This method prints the wanted results: average objective, average solving time, proportion

of unsolved instances, average number of variables and average number of constraints. Average

solving time includes the solving times of models that were terminated due to reaching the time

limit or an out-of-memory error (returned solving time is then set to the time limit). Together

with the proportion of unsolved instances, it is easy to determine the average solving time over

all solved instances. Proportion of unsolved instances is given as a number x.y, where x denotes

the number of instances terminated due to an out-of-memory error and y denotes the number

of instances not solved due to the time limit. Average number of constraints and variables are

calculated over all instances for which the model was set up. If the model was not set up due

to an out-of-memory error, both the number of variables and constraints equal 0.

To obtain results for the KEP with altruistic donors, run the method: produceResult-

sPICEF (String size, int maxCycle, int maxChain, String method, int timeLimit) for which

• String size determines the size of the set of instances. For the different levels of n, the

input String should be n.

• int maxCycle sets maximum cycle length k

• int maxChain sets maximum chain length k′

• String method sets the solving method. String Cycle is associated to PICEF-C, String

HalfCycle is associated to the PICEF-HC, String ThirdCycle is associated to the PICEF-

TC.

• double timeLimit sets the time limit on total solving time in seconds.

For all formulations a descending node ordering is used and results are printed in the same

manner.

To obtain number of variables for random vertex ordering run the following method: produ-

ceResultsRandomVertexOrdering(String size, int k, String method, int numIterations)

• String size, determines the size of the set of instances. String S is associated to n = 50,

String M is associated to n = 70, String L is associated to n = 100 and String XL is

associated to n = 200. Finally, String 400 is associated to n = 400 and String 600 is

associated to n = 600.

• int k sets maximum cycle length k.

• String method sets the solving method. String Cycle is associated to CF, String HalfCycle

is associated to the HCF, String ThirdCycle is associated to the TCF, String Edge is asso-

ciated to the EF, String EdgeAssignment is associated to the EA and String ExtendedEdge

is associated to the EE.
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• int numIterations sets the number of times the random vertex ordering is carried out per

instance.

Average number of variables and constraints over all instances and iterations are clearly

printed by this method. Lastly, to obtain results on the HCF with extra preprocessing, run

the method solveHalfCycle(int[][] compatibility, int maxExchange, double timeLimit, boolean

isAscending, boolean isRandom, boolean extraPreprocessing) where:

• int[][] compatibility is a two-dimensional matrix representing the compatibility graph.

• int maxExchange sets maximum cycle length k.

• double timeLimit sets the time limit in seconds.

• boolean isAscending sets vertex ordering to ascending if true.

• boolean isRandom sets vertex ordering to random if true.

• boolean extraPreprocessing, if true the extra preprocessing is applied.

Results are again printed in the same manner as for previous methods.
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