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Abstract

This research examines the quality of the Generalized Pareto Distribution (GPD) com-

pared to traditional extreme-value models in predicting mean billionaire wealth. We use

data from the Forbes List of Billionaires from 2000 to 2021. A previous work from Teul-

ings and Toussaint (2023) implements the Pareto distribution and shows that the Weibull

distribution is a better model. In our research, we additionally explore the GPD. Utilising

maximum likelihood estimation to estimate parameters, and the Kolmogorov-Smirnov test

to assess the goodness-of-fit of the three models. We find the Weibull distribution to give the

best predictions, with the GPD giving a comparably strong predictive accuracy, but the fit

of the GPD to be better than that of the other two models. The results strongly support the

adoption of the GPD for analyzing extreme wealth. This analysis shows that by integrating

the GPD, we can enhance the accuracy of mean wealth predictions in economic studies.

Further research could explore the integration of economic factors within these distributions

to understand their impact on wealth prediction accuracy.
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1 Introduction

Heavy-tailed distributions are of great interest in many economic aspects, such as CEO salaries

(Gabaix and Landier, 2008), income and wealth (Atkinson et al., 2011; Vermeulen, 2018). For

years, the typical instrument to analyze these right-skewed distributions has been the Pareto

distribution. Blanchet et al. (2022) shows us that predictions made under the Pareto assumption

for for example mean wealth and income in the upper tail are not accurate.

Under the null hypothesis of a Pareto distribution, the maximum likelihood estimator of the

Pareto coefficient is the most efficient. Furthermore, it is easily calculated, by simply setting

it equal to the mean of log wealth (Hill, 1975). For this reason, in this paper, we opt for the

maximum likelihood estimator as opposed to applying the log-rank regression, of which Rosen

and Resnick (1980) shows an application in the distribution of city sizes.

We apply tests similar to those of the work of Teulings and Toussaint (2023), on the second

and third moments of our dataset, which we divide into 18 subregions for each year from 2001 up

until 2021. For each of these observations, the null of a Pareto distribution is rejected, which is

in line with the aforementioned paper. The test statistics are consistently statistically different

from unity, which is what one would expect for the second and third moments under a Pareto

distribution. The data seem to be less skewed to the right, which suggests that there might be

a better alternative to the Pareto distribution.

The first alternative distribution that we investigate, is the Left Truncated-Weibull model.

The log of a Weibull distribution is the Gompertz distribution. We make use of the Truncated

Gompertz model, of which from now on the word ”Truncated” is left out. The crucial difference

between the log of the Pareto variable and the log of a Weibull variable lies in their hazard rates

(Chandraa and Abdullaha, 2022). Where the log of a Pareto distributed variable is Exponentially

distributed, and hence has a constant hazard rate, the Gompertz distribution, which is the log

of the Weibull distribution, has an increasing hazard rate above some lower bound. This fact

allows for a potential better fit to the data.

The parameters of the Weibull distribution are calculated by making use of maximum likeli-

hood estimation, and we find the estimate of the parameter γ, the increasing hazard above the

lower bound, to be roughly 0.282 Mean wealth is then predicted using this estimate of γ as com-

mon for each sub-region. We observe that the Weibull model provides much better predictions,

thus proving to be a better fit on the dataset than the Pareto model.

This research is furthermore extended by the addition of the Generalized Pareto Distribution

(GPD), as well as testing by making use of the Kolmogorov-Smirnov test. Hanafy et al. (2020)

have found the GPD model to perform better in tail modelling, which can also be backed by

the Pickands-Balkema-De Haan Theorem (Balkema and De Haan, 1974; Pickands III, 1975). In

this research, we find the GPD model to have results similar to those of the Weibull model with

minor differences in some instances, thus outperforming the standard Pareto model.

The Kolmogorov-Smirnov test is implemented, to give a more formal comparison between

the models, as opposed to the methods of testing used in Teulings and Toussaint (2023), which

rely more heavily on intuition instead of sound statistics. The GPD is the model with the best

fit of the three having a p-value of 0.345, thus beating the Pareto and Weibull distribution in

terms of goodness-of-fit on the dataset.
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The contributions of this paper are twofold. First, we compare the models from the original

research to an additional distribution, the GPD. Second, we assess the performance of these

models in a more formal manner than that of the original work by Teulings and Toussaint

(2023), through the Kolmogorov-Smirnov test.

The remainder of this paper is structured as follows. Section 2 covers literature on extreme

value distributions, especially focused on the GPD, as well as literature on the Kolmogorov-

Smirnov test. Subsequently, Section 3 describes the statistical models used as well as the tech-

niques used to estimate parameters and test these models. This is followed by Section 4, which

describes the dataset that is used in this paper. Thereafter, Section 5 presents the results of

the replication of Teulings and Toussaint (2023), combined with the results of our contributions.

Finally, Section 6 provides a summary of this paper.

2 Literature Review

Extreme Value Theory (EVT) has been a cornerstone in the statistical analysis of rare events and

tail risks for quite a while. EVT plays a big role in risk management, especially in the financial

industry (Embrechts et al., 1999; McNeil, 1999; Diebold et al., 2000). Studies by Balkema and

De Haan (1974), Gumbel (1958), and Pickands III (1975) are foundational in this field. There

are numerous methods of estimating the tail index, many of which are explained in Fedotenkov

(2020). In our research, we focus on log-likelihood estimation in particular, as also discussed in

the works of Hill (1975) and Dekkers et al. (1989).

We relate these heavy-tailed distributions to the real world, by investigating their applica-

tions in billionaire wealth. Various studies, including those of Atkinson et al. (2011), Vermeulen

(2016), and Vermeulen (2018) have implemented the Pareto distribution in the field of income

and wealth. Additionally, studies like that of Huisman et al. (2001) apply tail-distributions in

the cross-section of stock returns, providing insight into the tail behaviour of financial assets,

while studies like those of Autor et al. (2020) and Luttmer (2011) utilise these distributions to

examine the size of firms, linking economic theory with empirical data effectively.

Works like the one of Kopczuk (2015) discuss how billionaire wealth has evolved over the

years, and Bagchi and Svejnar (2013) discusses the impact of income inequality on economic

growth, with a particular focus on billionaire wealth. In the past two decades, we have seen

a major increase in the number of billionaires all around the world. This can be explained by

technological advancements as well as new emerging markets, especially in regions like Asia.

Works of Capehart (2014), Blanchet et al. (2022) and Teulings and Toussaint (2023) question

the Pareto assumption in income and wealth analysis, proposing alternative methods like the

Weibull distribution. This underscores a broader scepticism within the field regarding traditional

assumptions and encourages the exploration of other distributions. Teulings and Toussaint

(2023) implements an approach similar to that of Capehart (2014), in estimating measurement

error of top wealth.

The Weibull distribution is utilised in various applications, such as in wind energy (Aljeddani

and Mohammed, 2023) and in the modelling of failure data (Zhang and Xie, 2007). Teulings

and Toussaint (2023) proposes the Weibull distribution as an excellent alternative to the Pareto
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distribution in modelling top wealth, whereas Campolieti (2018) challenges the statement that

top wealth would be distributed Weibull, arguing that the power law distribution provides a

better fit. We make use of Maximum Likelihood Estimation in estimating the parameters of the

Weibull distribution, following Wingo (1989).

Gomez (2023) and Blanchet (2022) both focus on billionaire wealth, coming close to the

research of Teulings and Toussaint (2023). Although the findings of the latter are interesting,

we could argue that the research is mainly based on intuitive tests and standard distributions.

The works of Balkema and De Haan (1974) and Pickands III (1975) motivate us to explore the

Generalized Pareto Distribution (GPD) as an alternative. The GPD, particularly effective in

modelling exceedances over a threshold (Giles et al., 2016; Chu et al., 2019), offers a robust tool

for analyzing extremes in economic data, which is of great interest in our research.

Applications of the GPD can be found in modelling extreme rainfall (Iyamuremye et al.,

2019), extreme wind speeds (Holmes and Moriarty, 1999) and extreme temperatures (Alonso

et al., 2014). These applications demonstrate the GPD’s robustness in capturing the tail be-

haviour of extreme weather events. Furthermore, the GPD is used in the modelling of non-life

insurance claims (Dzidzornu and Minkah, 2021) and in applications in insurances and finance

(Villa, 2017). In these applications, the usage of a GPD model increases precision and reliabil-

ity. Lastly, the GPD can also be found used in actuarial sciences, as shown in (Brazauskas and

Kleefeld, 2009).

Parameters of the GPD are estimated using maximum likelihood estimation. However, this

could raise some issues with this method, since there is no closed-form solution for the first deriv-

ative of the GPD log-likelihood function (Purwani and Ibrahim, 2024). Other papers therefore

propose different methods of estimation, including simple fixed-point iterations (Purwani and

Ibrahim, 2024) or shrinkage methods (Pels et al., 2023). These methods make for direct and

efficient estimates of the parameters of the GPD model.

Čabla and Habarta (2019) is similar to our paper, because, in their research, the GPD

framework is also applied to the wealth of the richest people in the world according to estimates

from the CEOWORLD magazine. The finding that the wealth distribution of the world’s richest

is heavy-tailed and that it closely follows a GPD, confirms its applicability in modeling extreme

wealth.

Works such as (Massey Jr, 1951) and (Berger and Zhou, 2014) discuss the Kolmogorov-

Smirnov (KS) test, and why it is so powerful in assessing the goodness-of-fit of distributions.

Massey Jr (1951) highlights the robustness of the KS-test in measuring goodness-of-fit, emphas-

izing the non-parametric nature of the test. Berger and Zhou (2014) discusses the asymptotic

properties of the KS test, demonstrating its effectiveness in large samples. These discussions

underline the critical role of the KS test in validating the fit of statistical models.

3 Methodology

This section presents the theory behind the right-skewed distributions used in this research, as

well as descriptions of the methods used to obtain parameter estimates and how to compare the

different models. All programming is done in R (2023.03.1+446), on a 2020 MacBook Air with

a M1 chip.
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Since part of this research involves the replication of Teulings and Toussaint (2023), the

structure of this section is similar to that of the original research when it comes to the description

of the models used and how the testing is conducted. Of course, there are still differences, in the

addition of the Generalized Pareto Distribution (GPD) and the usage of a Kolmogorov-Smirnov

test to assess the quality of the models used.

3.1 The Pareto Framework

Consider X ≥ Ω a random variable, with Ω > 0 a known parameter. In this research, we take X

to be an individual’s net worth (in billions) and Ω as a billion USD. If X is Pareto distributed,

we obtain the following complementary distribution function and moments:

P[X ≥ X|X ≥ Ω] = (X/Ω)−1/α, (1)

E[Xk|X ≥ Ω] =
1

1− αk
Ωk, 0 < k < α−1, (2)

with α−1 the Pareto coefficient, which indicates the heaviness of the tail. In this paper, we work

with α since its maximum likelihood estimator is unbiased whereas that of α−1 is not.

When we look at Equation (2), we see that the moments of a Pareto distribution E[Xk] do

not exist for k ≥ α−1. For this reason, we choose to continue working with the log transformation

of X. Define W := X/Ω, and w := lnW = x− ω, where x := lnX and ω := lnΩ.

The log-transformation of a Pareto-distributed random variable is exponentially distributed.

This gives us the following complementary distribution functions and moments:

P[w ≥ w] = e−w/α, (3)

E[wk] = αkΓ(k + 1) = αkk!, k > 0, (4)

where Γ(.) is the Gamma function, and where we assume k to be integer. This distribution is

suitable for testing since now a moment exists for all k.

Pareto predictions of mean wealth are calculated by using Equation (2), setting k equal to

1. This prediction of actual mean wealth is then compared to those of the other distributions,

which are explained in the upcoming Sections. For the Pareto distribution, it is assumed that

observations are independent and identically distributed, which might be a wrong assumption

considering consequent years often contain the same billionaires.

3.2 The Truncated Weibull Framework

An alternative to the Pareto distribution is the (Truncated) Weibull distribution. Where the

log distribution of a Pareto-distributed variable is exponentially distributed, the log distribution

of a Weibull-distributed variable is Gompertz distributed. For convenience, we choose to work

with the Gompertz distribution for w rather than the Truncated Weibull distribution for W .

The complementary distribution function of the Gompertz distribution is:
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P[w ≥ w] = exp

(
−eγw − 1

αγ

)
, (5)

with γ a parameter, and moments:

E[wk] = γ−kh(αγ, k), (6)

where

h(αγ, k) := ke(αγ)
−1

∫ inf

0
qk−1exp(−(αγ)−1e−q)dq,

and where q := γw.

The main difference between the exponential and Gompertz distribution is that the hazard

function of an exponential distribution remains constant whereas that of a Gompertz distribution

is increasing (Chandraa and Abdullaha, 2022). Therefore, the Gompertz distribution has a

thinner tail than the exponential distribution.

To compare the Truncated Weibull model against the other models used, we again calculate

the expected mean wealth. We do this in the following manner:

E[W ] = (αγ)1/γe(αγ)
−1
Γ(1 + 1/γ, (αγ)−1), (7)

where Γ(·, ·) is the upper incomplete Gamma function.

When we compare this to the calculation of the mean of the Pareto distribution in Equation

(2), we observe a crucial difference. Where the expected value of the Pareto distribution is only

finite for certain parameter estimates (α < 1), the expected value of the Truncated Weibull

moment can be calculated for all parameter estimates. Once again, data are assumed to be

independent of this distribution, which might be a wrong assumption.

3.3 The GPD Framework

A problem with the aforementioned models is that they often lack flexibility and fit, especially in

the upper tail of distributions. Therefore, we propose the Generalized Pareto Distribution (GPD)

as a suitable alternative. The usage of this distribution is motivated by the Pickands-Balkema-

De Haan Theorem, which states that the distribution of exceedances above a certain threshold

can be approximated by the usage of a GPD (Balkema and De Haan, 1974; Pickands III, 1975).

Unlike the standard Pareto distribution, which is restricted by its shape and scale parameter,

the GPD introduces an additional location parameter, making for a better fit for a broader range

of datasets. The GPD is used for modelling excesses over a certain threshold. Furthermore, the

GPD can model a variety of tail behaviours because of its shape parameter, making it superior

to the Weibull model.

The complementary distribution function of the GPD is as follows:

P[W ≥ W ] = (1 + α
W − µ

σ
)−1/α. (8)

In this function, α is the shape parameter which influences the tail behaviour, σ is the scale
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parameter, controlling the spread of the data, and µ is the location parameter. To calculate the

expected value of mean wealth, we use the following formula:

E[W ] = µ+
σ

1− α
, α < 1. (9)

A problem arises when we want to calculate higher moments of the GPD function since

it does not exist for all integer values of k. For this reason, combined with the fact that the

log of the GPD is not another well-known distribution unlike in the case of the Pareto and

Weibull model, we furthermore implement an additional method of testing than in the original

paper of Teulings and Toussaint (2023), which is explained in the subsequent. Finally, for this

distribution, we once more assume independence of the observations.

3.4 Estimation and Testing

After all models are constructed, the parameters of these models are estimated.

We start by estimating the parameters of the Pareto distribution. Hill (1975) shows us that

the maximum likelihood estimator of α is simply the mean log wealth, w. This estimator is also

efficient and unbiased if the model is correct. However, it performs poorly if the data are not

Pareto-distributed, especially when α is close to unity.

We use Equation (4) to derive the following simple test statistic:

Rk :=
E[wk]

k!E[w]k
, R̂k :=

wk

k!wk
. (10)

Under the null of a Pareto distribution for W , we expect w to be distributed exponentially. In

that case, it should hold for all integer k ≥ 1 that:

Rk = 1.

For this reason, to test for Paretianity, we investigate if the theoretical quantities are significantly

different from one by regressing them on a constant.

The second model for which we estimate its parameters is the Weibull model. When wealth

W is distributed Weibull, its log w is Gompertz distributed. We know that the hazard rate

of this function increases with γ for every unit increase in α, as aforementioned in Section 3.2.

However, the value of the parameter α does not depend on this γ, but rather only on the lower

bound of our dataset, which is in our case equal to one billion USD. For this reason, we opt for

a common γ parameter, but with α differing depending on the sub-region/time observation.

We again make use of maximum likelihood estimation in estimating the parameters α and

γ by using the density function of w. We then obtain the following expressions:

α̂ = γ−1(eγw − 1), (11)

γ̂ =
eγ̂w − 1

eγ̂w
(γ̂−1 + w). (12)

The derivation of these expressions can be found in Appendix B. We start by estimating a
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common γ̂ for all sub-region/year observations, and then we use this common γ̂ to determine

the maximum likelihood estimates of α in each sub-region/year observation.

We test if our data are Weibull-distributed by regressing the same test statistic from Equation

(10). The expected asymptotic value for the Weibull distribution is:

Rk(αγ) =

∫∞
0 qk−1exp

(
−(αγ)−1e−q

)
dq

(k − 1)!e(αγ)k−1Ei ((αγ)−1)k
, (13)

with Ei the exponential integral. From this equation, we see that Rk(αγ) is a declining function

of αγ, or of lnα+ln γ. For this reason, we regress the theoretical quantities from Equation (10)

on a constant, lnα and ln γ. Under the null of a Weibull distribution, we would expect the sign

of these to both be negative and also roughly equal.

The third model for which we estimate its parameters is the GPD. As we see in Section 3.3,

this distribution contains three parameters: shape α, location µ and scale σ. We set the location

parameter µ equal to one billion USD since that is the lower bound of our research. We then

obtain parameter estimates for α and σ by using maximum likelihood estimation.

Additionally, we apply the Kolmogorov-Smirnov (KS) test to the different models to make for

a more statistically sound test for goodness-of-fit. The KS is a non-parametric test to determine

if a sample comes from a population with a specific distribution. This can in our case either be

from the Pareto, Weibull or GPD model.

We calculate the empirical CDFs for each of the three distributions based on the dataset

and then perform the KS test by computing the maximum distance between the empirical CDF

and the theoretical CDF. The test statistic is thus calculated as follows:

D = sup|Fn(W )− F (W )|, (14)

in which Fn(W ) is the empirical distribution function and F (W ) is the theoretical CDF. Under

the null hypothesis that the sample is drawn from the theoretical distribution, the KS test

statistic follows the Kolmogorov distribution, of which the CDF is given by:

P[D ≤ d] = 1− 2

∞∑
k=1

(−1)k−1e−2k2d2 . (15)

In finite samples, this is only an approximation of the distribution of D. In larger samples,√
ND converges to the Kolmogorov distribution in the limit. We make use of Equation (15) to

calculate our p-values.

4 Data

This analysis is conducted on the Forbes List of Billionaires1 dataset from 2001 until 2021.

This dataset contains variables like the names of the billionaires, their wealth (net worth), age,

country of citizenship and country of origin. In this paper, we are interested in the country of

citizenship of these billionaires.

1The exact dataset used in this report can be downloaded from Kaggle through https://www.kaggle.com/

datasets/guillemservera/forbes-billionaires-1997-2023
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The countries of citizenship are firstly aggregated in regions and then separated into different

sub-regions. These sub-regions are constructed if the regions can be divided into coherent

geographical units, containing few countries, having at least 40 billionaires in the year 2019.

Table 1 on the next page presents some summary statistics for these regions and sub-regions.

These summary statistics are the average numbers of R̂2 and R̂3, as well as the average log wealth

w and the average number of billionaires N .

Table 1: Region Classification & Descriptive Statistics

Region Classification Statistics (Average 2001–2021)

(Sub-)Region Area R̂2 R̂3 w N

North America U.S. and Canada 0.826 0.614 0.988 440.5
- U.S. 0.827 0.616 0.995 413.0
- Canada 0.788 0.541 0.891 27.5
Europe excl. former USSR but incl. Baltics 0.775 0.510 1.042 247.7
- Germany 0.723 0.430 1.125 67.9
- British Islands U.K. and Ireland 0.761 0.475 0.922 38.1
- Scandinavia Sweden, Denmark, Norway and Finland 0.771 0.481 1.087 30.0
- France France and Monaco 0.797 0.530 1.286 25.1
- Alps Switzerland, Austria and Liechtenstein 0.663 0.347 1.064 23.2
- Italy 0.791 0.532 1.022 22.9
China incl. Hong Kong, but excl. Taiwan 0.933 0.792 0.793 185.9
East Asia Asia East of India and South-East of China; incl. Australia 0.841 0.606 0.816 129.9
- Southeast Asia Thailand, Malaysia and Singapore 0.790 0.515 0.938 29.6
- Asian Islands Taiwan, Philippines and Indonesia 0.806 0.560 0.761 37.8
- South Korea 0.952 0.810 0.662 18.2
- Japan 0.847 0.618 0.881 22.7
- Australia 0.868 0.649 0.793 18.2
India 0.852 0.636 0.941 54.7
Central Eurasia former USSR exc. Baltics 0.868 0.621 0.980 75.6
- Russia 0.867 0.614 1.009 66.8
South America incl. middle America and Mexico 0.832 0.618 1.002 56.8
- Brazil 0.817 0.594 0.903 29.2
Middle East Middle East incl. Turkey and Egypt excl. Iran 0.868 0.659 0.740 56.1
- Israel and Turkey 0.882 0.644 0.599 34.7
Rest of World mainly Africa excl. Egypt, incl. Iran, Afghanistan, Pakistan, Bangladesh 0.829 0.583 0.920 5.7

World 0.840 0.622 0.939 1257.0

Notes: This Table presents summary statistics for different regions as well as for sub-regions
belonging to these regions. Some billionaires do not fall into a certain sub-region, while they do
fall into a region, therefore the sum of N , the average count of billionaires per year, of particular
sub-regions do not need to sum up to the N of their respective region. The regions China and
India are also considered to be sub-regions. Furthermore, w is the average mean log wealth per
year, with R̂2 its normalized variance, and R̂3 its normalized skewness, which are calculated
using Equation (10).

5 Results

In this section, we discuss the empirical findings of the models. We mainly follow Teulings

and Toussaint (2023) in the order and presentation of our empirical results, together with some

additional findings. The different distributions are discussed in the same order as they are

presented in Section 3. That is, the first model to be discussed is the Pareto distribution,

followed by the Weibull model and the General Pareto Distribution (GPD) respectively. In

between each model, their accuracy is assessed on the data set.
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5.1 Testing the Pareto Assumption

We start by investigating the standard Pareto model. There are a total of 18 subregions over a

timespan of 21 years, providing us with a total of 18x21 = 378 observations. We construct density

plots of R̂2 and R̂3, which are depicted in Figure 1. The plots of the full sample are presented

in Figures 1a and 1b. In addition to the full sample, we also investigate the observations that

only contain at least 64 billionaires, to reduce the small sample bias. The density plots of these

observations are depicted in Figures 1c and 1d. Lastly, the top and bottom 5% of the theoretical

quantities of these observations are dropped to ensure a robust regression. These plots can be

found in Figures 1e and 1f. As a final remark, all counts have been weighted with the number

of billionaires in each observation.

When investigating the plots, one can observe that most observations are below unity, which

is the value expected under the null of a Pareto distribution. This observation continues to hold

when we drop all counts that contain less than 64 billionaires, and also when we drop the top

and bottom 5% of these observations. This finding already raises our suspicion of no Paretianity.

To confirm our suspicion, we test more formally. The theoretical quantities R̂2 and R̂3 are

regressed on a constant in a total of six regressions, three for each test statistic. Results of

which can be found in Table 2. Regressions (1) and (4) are based on the full sample, (2) and

(5) only consider observations with at least 64 billionaires, and lastly (3) and (6) drop the top

and bottom 5%.

Table 2: WLS Regressions, Pareto Test

R̂2 R̂3

Model: (1) (2) (3) (4) (5) (6)

Variables
Constant 0.82*** 0.85*** 0.85*** 0.58*** 0.65*** 0.64***

(0.01) (0.01) (0.01) (0.01) (0.02) (0.01)

Weights
√
N

√
N

√
N

√
N

√
N

√
N

Fit statistics
Observations 378 75 67 378 75 67
RMSE 0.128 0.079 0.068 0.199 0.135 0.115

Theoretical RMSE 1 1 1
√
10

√
10

√
10

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Notes: This Table shows the results of the Weighted Least Squares (WLS) regression of the
theoretical quantities in Equation (10) on a constant, using the square root of N , the number
of billionaires in a sub-region-year observation, as weights. The numbers in parentheses denote
standard errors. Specifications (1) and (4) contain the whole sample, whereas (2) and (5) drop
observations with fewer than 64 billionaires. Lastly, specifications (3) and (6) drop the top
and bottom 5% of observations of the dependent variable in the samples of (2) and (4). The
Theoretical Root Mean Squared Errors (RMSEs) of each dependent variable are calculated using
Equations (18), and (19) from Appendix A.
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Figure 1: Distribution of Test Statistic R̂2 and R̂3
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(a) R̂2, Full Sample
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(b) R̂3, Full Sample
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(c) R̂2, N ≥ 64
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(d) R̂3, N ≥ 64
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(e) R̂2, N ≥ 64, trimmed
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(f) R̂3, N ≥ 64, trimmed

Notes: The Figures above depict the distribution of R̂2 and R̂3, for each sub-region-year. The
red line in each figure is the value that one would expect of these quantities under the null of a
Pareto distribution. We weigh each count with the number of billionaires. Panels (a) and (b)
contain the full sample, whereas panels (c) and (d) only contain those observations that contain
at least 64 billionaires. Lastly, panels (e) and (f) drop the top and bottom 5% of observations
from (c) and (d) respectively.
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Regression is done through Weighted Least Squares (WLS), where the weights are
√
N . The

reason for the usage of WLS instead of Ordinary Least Squares (OLS), is that the model is

heteroskedastic because the variance of the test statistics is proportional to N−1. Proof of this

can be found in Appendix A.

Following from the regression results in Table 2, we reject the null of a Pareto distribution.

This is because the coefficients are always statistically significantly different from 1. This is

backed up by the Root Mean Squared Errors (RMSEs) that are also provided in the Table.

These are way lower than what they should be theoretically, being at the lowest only 6.8% of

the theoretical RMSE for R̂2, and 3.6% for R̂3. All these facts confirm our suspicion that the

data are likely not Pareto distributed.

5.2 Investigating the Alternative: Weibull

In Section 5.1, we observed that our data is extremely likely not Pareto distributed. Therefore,

we now shift our focus to an alternative distribution: we investigate if wealth follows the Weibull

distribution. We estimate the parameters α and γ of this distribution by applying maximum

likelihood estimation on the density function of log wealth, the Gompertz distribution. We use

equations 11 and 12 to obtain these parameter estimates. First, we lay our focus on observations

with at least 64 billionaires. We plot the distribution of γ̂ in Figure 2.

From this Figure, we observe the median value of γ to be roughly 0.282, which is depicted

with the blue line in the plot.

Figure 2: Distribution of γ Across Sub-Region-Years
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Notes: This figure depicts the distribution of γ across all sub-region-years observations of the
Forbes List of Billionaires from 2001, 2021, focusing only on those observations with at least 64
billionaires included. The blue line represents the median value of γ, which is 0.282.
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Next, we again regress the test statistics R̂2 and R̂3 using WLS. Since the theoretical Rk

values are declining in the product (αγ), and thus its log to be declining in ln(α) + ln(γ), we

expect to see a negative sign for these parameters. Therefore, we choose to regress on a constant,

ln(α) and ln(γ). We focus on those observations that contain at least 64 billionaires, and where

the top and bottom 5% are dropped. These are the observations that correspond to panels 1e

and 1f of Figure 1.

The results of these regressions can be found in Table 3 below:

Table 3: Weibull Predictions

Dependent Variables: R̂2 R̂3

Model: (1) (2)

Variables
Constant 0.778*** 0.521***

(0.011) (0.010)
ln α̂ -0.119** -0.211***

(0.016) (0.014)
ln γ̂ -0.061*** -0.104***

(0.006) (0.005)

R̂2

Weights
√
N

√
N

Fit statistics
Observations 67 67
R2 0.947 0.986
Adjusted R2 0.945 0.986
RMSE 0.018 0.015

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Notes: This Table shows the results of the Weighted Least Squares (WLS) regression of the
theoretical quantities in Equation (10) on a constant, and the natural logarithm of the para-
meters of the Weibull distribution, using the square root of N , the number of billionaires in a
sub-region-year observation, as weights. The numbers in parentheses denote standard errors.
The regressions are based on observations with at least 64 billionaires, and in which the top and
bottom 5% of observations are dropped.

From this regression, we observe the coefficients of the parameters have a negative sign and

are statistically significantly different from zero. This test gives us a rough, intuitive idea that

the Weibull distribution provides a better fit on the data than the Pareto distribution.

Furthermore, we investigate if the signs are equal using an F-test since that is what one

would expect in the case of a Weibull distribution following from Equation (13). We obtain

F-statistics of 6.80 (0.011) and32.00 (4.939e-07) for regressions (1) and (2) respectively, with

p-values in parentheses. From the p-values, we reject our null hypothesis of equal signs, which

is in contradiction with the original work of Teulings and Toussaint (2023). We conclude that

the Weibull distribution is a better fit to the dataset than the Pareto distribution, but that it

still has its flaws, such that a potential better alternative exists.
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5.3 Does the Generalized Pareto Distribution provide better predictions?

We extend the paper of Teulings and Toussaint (2023) by applying a Generalized Pareto Dis-

tribution (GPD). This distribution contains three parameters: shape α, location µ and scale σ.

We set µ to one billion USD, which is the lower bound of the wealth we focus on. Next, we

simultaneously estimate α and γ by maximum likelihood estimation.

We then predict wealth in 2018 for each subregion, with each of the three models. In the

case of the Weibull distribution, we apply a common γ, which we set equal to the median value

found in Subsection 5.2, 0.282. We then calculate the α for each subregion using Equation (11)

with this common γ. For the estimate of the shape parameter α of the Pareto distribution, we

make use of the Hill estimator, which is in this case simply equal to the mean log wealth, w, as

derived from Equation 4.

We then calculate the expected wealth for each subregion with the Pareto, Weibull and GPD

models, using Equations 2, 7 and 9 respectively. The results of these calculations can be found

in Table 4 below, together with the estimates of the α parameters for the different models:

We can immediately observe that Pareto performs poorly in predicting mean wealth for each

sub-region. Out of the 18 sub-regions, the Pareto estimate is ∞ for 7 sub-regions, due to the

estimate α̂ being greater than 1. Furthermore, there are another 4 observations, which are

Scandinavia, Japan, India and Russia, for which the estimate α̂ lies close to 1 (within 0.1), caus-

ing these estimates to be way too high. This leaves us with only 7 reasonable Pareto predictions

of mean wealth. However, these estimates are also too high to be considered adequate.

When we look at the estimates of the Weibull model, however, we can see that our estimates

are much better. They are quite similar to the actual mean wealth values of the data set. The

least accurate prediction is that of Germany, in which we have a difference of 0.87. From this,

we would thus conclude that the Weibull model is quite adequate for predicting mean wealth.

Lastly, we take a look at the GPD model. We observe that GPD often makes quite promising

predictions, sometimes even better than those of the Weibull model. Take for instance the Alps,

where the GPD model is only off by 0.01, whereas the Weibull model is off by 0.86. However,

there are also instances where the Weibull model outperforms the GPD model, sometimes even

by a large margin. The GPD model performs quite poorly in certain sub-regions. For example,

GPD overshoots Russia’s mean wealth quite a lot (3.02) whereas the Weibull model is only off

by 0.01. In most cases, it is an adequate distribution for predicting mean wealth, but in some

cases, it lacks consistency. This could be explained by the fact that countries in which the GPD

is not the most accurate at predicting mean billionaire wealth have few observations. We know

from the Pickands-Balkema-De Haan Theorem (Balkema and De Haan, 1974; Pickands III, 1975)

that data is distributed following the GPD only asymptotically, so it makes sense that in smaller

samples this model might be off a bit more.

We therefore observe the Weibull distribution to give the most consistent mean wealth predic-

tions followed by the GPD model, which lacks consistency in certain, smaller, sub-regions. The

worst extreme-value distribution in terms of predicting mean wealth is the Pareto distribution,

by quite a margin.
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Table 4: Predicted vs. Realised Values of Mean Billionaire Wealth, 2018

Mean Wealth α̂

Sub-Region Data Weibull Pareto GPD Weibull Pareto GPD

United States 5.29 5.48 ∞ 5.12 1.516 1.156 0.456
Canada 3.23 3.22 5.96 3.51 1.039 0.832 0.484
Germany 4.70 5.57 ∞ 4.85 1.533 1.182 0.334
British Isles 3.83 4.26 ∞ 4.02 1.287 1.015 0.319
Scandinavia 3.51 4.06 226.69 3.56 1.244 0.996 0.154
France 7.44 8.11 ∞ 8.67 1.894 1.367 0.644
Alpine Countries 3.80 4.66 ∞ 3.79 1.367 1.098 0.151
Italy 3.96 4.29 ∞ 4.08 1.294 1.017 0.452
China 3.31 3.09 4.98 3.71 1.006 0.799 0.615
South-East Asia 3.33 3.51 9.43 3.54 1.117 0.894 0.400
Asian Islands 3.17 3.22 6.18 3.33 1.039 0.838 0.436
South Korea 2.88 2.78 3.80 3.28 0.912 0.737 0.541
Japan 3.95 3.82 12.42 5.17 1.191 0.919 0.694
Australia 2.74 2.75 3.86 2.92 0.903 0.741 0.408
India 3.70 3.90 24.11 2.82 1.209 0.959 0.408
Russia 4.05 4.06 21.35 7.07 1.245 0.953 0.794
Brazil 4.20 4.41 ∞ 4.39 1.319 1.030 0.451
Israel+Turkey 2.17 2.24 2.64 2.27 0.727 0.622 0.180

Notes: In this Table, we make use of the same sub-regions as in Table 1. We make predictions of
mean wealth for each sub-region in the year 2018. For the Pareto distribution, these predictions
are made using Equation (2), in which we set Ω equal to 1 (Billion USD) and set the expected
value equal to ∞ when α ≥ 1, where α̂ = w, the maximum likelihood estimator of α. For the
Weibull distribution, we use Equation (7) to make mean wealth predictions for each sub-region,
setting γ equal to its median value (0.282), and then compute the shape parameter α for each
observation individually using MLE. Lastly, we make use of Equation (9) to compute mean
wealth predictions under the GPD model, where we set the location parameter µ equal to 1
(Billion USD), and then calculate estimates of the shape parameter α and the scale parameter
σ simultaneously for each observation using MLE.
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Finally, we assess the model fit of each of the three models. We do so using a Kolmogorov-

Smirnov (KS) test, which we apply to the full sample. We use the formulas from Equation (14)

and (15). We determine the maximum absolute deviation between the Empirical CDF and the

theoretical CDF for each model. For the Pareto distribution, we get a test statistic D = 0.896

(<2.2e-16) where the number in parentheses is the p-value. From this result it becomes evident

that the dataset is not Pareto distributed, confirming our previous suspicions. For the Weibull

distribution, we get more promising results. The test statistic and p-value are D = 0.093 (0.003),

which is a significant improvement from the Pareto distribution. However, we still reject the null

of the dataset following a Weibull distribution at a 5% significance level, but the fit is way better

than that of the Pareto distribution. Lastly, we determine the goodness-of-fit of our extension

model, the GPD. For the GPD, we obtain a test statistic of 0.828 (0.345), and thus we now do

not reject the null of equal distributions.

We find that the GPD has the best fit on the data, proving to be better than the Pareto and

Weibull distributions in goodness-of-fit. However, the Weibull distribution gives more accurate

mean wealth predictions on average. Overall, the GPD is a strong competitor of the Weibull

distribution in the world of mean billionaire wealth, with their predictions coming extremely

close to each other, and the fit of the GPD to the dataset being better than the fit of the Weibull

distribution.

6 Conclusion

In this paper, we used three different extreme value distributions in predicting mean billionaire

wealth, based on data from the Forbes List of Billionaires. These distributions are the Pareto

Distribution, the Weibull Distribution and the Generalized Pareto Distribution. In particular,

we calculate the expected mean wealth of billionaires in different sub-regions in different years

by constructing splits based on the geographical location of the countries of citizenship and the

number of billionaires in the year 2019.

We then continued by testing the different distributions of the data. We have found the

Pareto distribution to perform extremely poorly in predicting mean wealth, as well as having

a poor fit to the data. The Weibull distribution performs way better than the Pareto model,

showing better mean wealth predictions as well as having a better fit for the data. These findings

resonate with the paper of Teulings and Toussaint (2023), who conclude that mean wealth is

distributed Weibull rather than Pareto. Weibull predictions of mean wealth were extremely

close to actual mean wealth numbers, whereas the Pareto predictions were off extremely, more

often than not.

This could be explained due to the difference in hazard rates of both distributions. Where

the Pareto distribution has a constant hazard rate, the Weibull distribution has an exponentially

increasing hazard rate. Additionally, the Weibull distribution can make predictions for all values

of the shape parameter α, whereas the Pareto distribution can only make these predictions

for α < 1. These two facts explain as to why the Weibull distribution shows to be a better

distribution for modelling mean billionaire wealth.

We extend the work of Teulings and Toussaint (2023) by exploring an additional extreme

value distribution, the Generalized Pareto Distribution (GPD). Our choice for this distribution
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as an alternative is motivated by the papers of Balkema and De Haan (1974) and Pickands III

(1975), which state that for a large class of underlying distributions, the distribution of ex-

ceedances above a certain threshold, which in our case is one billion USD, can be approximated

by a GPD.

We fit the GPD to the dataset and observe that its predictions are better than those of

the Pareto distribution but somewhat similar to those of the Weibull distribution. Sometimes

the GPD gives better predictions, but there are also cases in which the GPD performs worse

than the Weibull distribution. This is likely because the observations for which this is the case

do not contain a lot of billionaires. In bigger samples, we observe the GPD to perform better

at predicting mean wealth. In contrast, in smaller samples it performs slightly worse than the

Weibull distribution, resonating with the Pickands-Balkema-De Haan (Balkema and De Haan,

1974; Pickands III, 1975) Theorem.

We also assess the goodness-of-fit of the three models through a Kolmogorov-Smirnov (KS)

test. We find the Pareto distribution to have the worst fit on the data, with an extremely

small p-value. This is likely because our mean wealth predictions reach ∞ for certain parameter

estimates. The Weibull distribution shows to have an improved fit over the Pareto distribution,

but still with a poor p-value. Lastly, we find the GDP model to have the most promising

results, with a p-value causing us not to reject our null hypothesis, indicating that the data

are GP-distributed. Therefore, we conclude that the GPD can certainly outperform traditional

extreme-value models in billionaire wealth applications.

Directions for future research

Future research could explore the integration of economic factors, applying regression-based

extreme value theory. We could incorporate these economic factors directly into the parameters

of the distributions to investigate how shifts in the economy might affect the distribution of

billionaire wealth. More specifically, we could model the scale parameter of the distributions

using covariates. Potentially relevant economic factors could be the growth rate of the Gross

Domestic Product (GDP), interest rates or indices from the stock market.

Furthermore, one could investigate the assumption of independent observations, by simulat-

ing values of the theoretical quantities R̂2 and R̂3. Then, by inspection of the distribution of

p-values, it can be determined whether or not this assumption is correct. If these p-values are

distributed roughly uniformly, then the observations are indeed independent of each other, and

otherwise, they are likely not.

Finally, exploring Bayesian Time Series methods could offer valuable insights, particularly in

capturing the temporal dynamics and uncertainties that are present in economic data influencing

billionaire wealth. Bayesian approaches provide a robust framework for incorporating prior

knowledge and updating beliefs as new data becomes available. This can be of particular interest

when there is not a lot of data or when it is highly variable, allowing for a more statistically sound

prediction. By applying Bayesian Time Series analysis, one could enhance their understanding

of how economic trends and cycles impact mean billionaire wealth over time.
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Appendix

A Mean and variance of R̂2 and R̂3

In this section of the Appendix, we derive the mean and variance of our test statistics, R̂k. We

start with the expected value, which is equal to:

E
[
R̂k

]
= 1 +N−1

(
(2k)!

k!2
− 3k2 − k + 2

2

)
+O(N−2), (16)

where N is the sample size. The variance of R̂k is equal to:

Var
[
R̂k

]
= N−1

(
(2k)!

k!2
− k2 − 1

)
+O(N−2). (17)

For R̂2 and R̂3, we thus get the following:

E
[
R̂2

]
= 1 +O(N−2) Var

[
R̂2

]
= N−1 +O(N−2), (18)

and:

E
[
R̂3

]
= 1 + 7N−1O(N−2) Var

[
R̂3

]
= 10N−1 +O(N−2). (19)

R̂2 is a more powerful test statistic than R̂3, because it is both unbiased up to terms of

order N−2 and because it has a smaller variance. We will test for Paretianity by regressing the

theoretical quantities on a constant, applying a two-sided test in which we investigate if its value

differs significantly from unity.

B Derivation of the Likelihood function of the Gompertz Dis-

tribution

In this section of the Appendix, we derive the likelihood function of the Gompertz distribution.

We start with the density function, which is as follows:

f(w) = α−1exp

(
γw − eγw − 1

αγ
.

)
. (20)

From this density function, we obtain the following log likelihood:

N−1log L(α, γ) = −ln α+ γw − (αγ)−1 (eγw − 1) , (21)

giving us the following first order condition for α̂:

N−1∂log L(α, γ)
∂α

=
[
−1 + (α̂γ)−1 (eγw − 1)

]
α̂−1 = 0 ⇒

α̂ = γ−1(eγw − 1). (22)

If we substitute Equation 22 into Equation 21, the log likelihood becomes:
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N−1 logL(γ) = lnγ − ln (eγw − 1) + γw.

Then, the first order condition for γ̂ becomes:

N−1 d logL(γ)
dγ

∣∣∣∣
γ=γ̂

= γ̂−1 − γ̂
eγ̂w

eγ̂w − 1
+ w = 0.
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