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Abstract

This paper addresses latent heterogeneity in panel data models, crucial for accurate em-

pirical economic analysis. Building on Bonhomme and Manresa’s (2015) Group-Fixed Effect

(GFE) model, it introduces a Three-Step Iterative GFE Algorithm to enhance computational

efficiency and accuracy. Additionally, a novel Group Interactive Fixed Effects (GIFE) model

integrates group-specific factor loadings into interactive fixed effects, allowing nuanced ana-

lysis of heterogeneous responses to common shocks (in cases where grouping structures are

hypothesised). Monte Carlo simulations validate the robustness of the proposed algorithms

in handling the different models, contributing to advanced methodologies in this research.

Empirical applications include investigating the relationship between cumulative income and

democracy. Multinomial logistic regressions are also used to explain the group memberships

of the GFE and GIFE frameworks.

1 Introduction

Extensive evidence indicates the importance of considering unobservable heterogeneity while

using panel data models in empirical economic studies. This heterogeneity can be found in

either dimension of the panel data, across periods or individuals. As discussed by Hsiao (2003),

disregarding latent heterogeneity in panel data studies can lead to incorrect inference and biased

parameter estimation. Models that consider underlying heterogeneity have been demonstrably

valuable in many settings. For example, Hsiao and Tahmiscioglu (1997) shows that heterogen-

eous slope coefficients may exist in US manufacturing firms’ production functions. Conventional

methods in econometrics account for heterogeneity by applying unit-specific, time-invariant ef-

fects. Furthermore, Hahn and Moon (2010) also claims that group structures are important

in game theoretic models. Their research shows that group structures can be especially useful

in games where many Nash equilibria are expected. However, such applications tend to model

heterogeneity at the cost of model parsimony due to the so-called incidental parameter bias.

Furthermore, they are unable to take other kinds of heterogeneity into account. This has led to

a vast increase in research in this area over the last decade in this developing field. Therefore,

this paper will specifically focus on replicating some parts of Bonhomme and Manresa (2015)

and extending their model to a more general setting.

Bonhomme and Manresa (2015) proposes the Group-Fixed Effect (GFE) model framework.

Their main model attempts to find latent grouping structures of individuals in a panel and allows

for group-specific time-varying fixed effects (Equation 1). They further extend their model by

allowing for unit-specific heterogeneity (equation 6) and group-specific coefficients (equation 7).

Finally, they extend their model by accounting for both effects simultaneously (equation 8). This

paper aims to replicate their empirical application using the simplest specification (equation 1)

and the case with heterogeneous coefficients (equation 7).

As a first extension, this paper will propose an additional algorithm for the GFE model pro-

posed by Bonhomme and Manresa (2015), named the Three-Step Iterative GFE Algorithm. This

paper develops this algorithm for both the homogeneous (Section 3.1.2) and the heterogeneous

cases (Section A.2) coefficients. The motivation for this procedure is to propose a more accurate

algorithm than the basic one while being quicker and equally precise as the variable neighbour-

hood (VNS) search algorithm. Furthermore, this method combines the estimation methodologies
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of Bonhomme and Manresa (2015) and Bonhomme, Lamadon and Manresa (2022). It utilises

algorithm 1 of Bonhomme and Manresa (2015) to find local minima. Then it uses those estim-

ates to inform the algorithm of Bonhomme et al. (2022) to conduct a neighbourhood search.

The algorithm continues iteratively until no further improvements are found. Finally, a Monte

Carlo simulation is used to test the relative performance of the different algorithms in terms of

the misclassification rates (the rate at which countries are classified into the wrong groups) and

parameter estimates.

The second contribution of this paper is to propose a novel model and estimation process

accounting for a type of interactive fixed effects model having group-dependent factor loadings,

referred to as the Group Interactive Fixed Effects (GIFE) model. As discussed, the Group Fixed

Effects model attempts to find time-varying fixed effects of latent groups in the data. However,

another kind of heterogeneity in the data may be modelled using Interactive Fixed Effects models

(Bai, 2009). Interactive fixed effects models assume that there are latent shocks during different

periods. Subsequently, individuals in the data react to these shocks heterogeneously. Su and

Ju (2018) have explored combining group-based coefficient heterogeneity and interactive fixed

effects which allows for both these effects to be taken into account simultaneously. Furthermore,

a Ando and Bai (2016) also proposes a model similar to the one considered in Section 3.2.2.

Their model enforces group structures in the common shocks and also the factor loadings.

To this end, this paper proposes the Group Interactive Fixed Effects (GIFE) model. This

model assumes that all individuals in the panel experience the same homogeneous common

shocks. Within groups, individuals respond homogeneously, while responses differ across groups.

There are many applications where using the GIFE can be useful. One such area of application

is in environmental economics studies, where there are many common global climate initiatives

(common shocks) but varied responses (factor loadings) by blocks of countries (Xu, Gao, Oka &

Whang, 2022). Asset Pricing (and Financial economics) is another area where the GIFE can be

applied. Financial systems are significantly affected by many latent and observable global effects,

namely monetary policy changes, geopolitical events, or economic crises. Extensive evidence also

shows that different asset classes/groups react heterogeneously to underlying shocks (Cieslak &

Pang, 2021). This has led to the development of many types of asset pricing factor models like

the Statistical Factor Model (Lai & Xing, 2008) (accounting for underlying factors) and the

Fama French Models (Fama & French, 1993) (accounting for observable factors). Therefore,

the GIFE model can be used in Asset Pricing to consider both observable and unobservable

covariates, while accounting for group-based heterogeneous responses.

An important point to note is that the GIFE model is a nested model of the IFE model. This

implies that both should be equally valid when the underlying data-generating process (DGP)

follows the GIFE model. However, as noted in the Monte Carlo experiments in Bonhomme

and Manresa (2015), even though the GFE model is a nested model of the IFE, the IFE tends

to perform worse since it overfits noise. A similar case also holds for the relationship between

the IFE and GIFE estimates. This is illustrated by the Monte Carlo simulation in this paper

(Section 3.2.4), where the GIFE outperforms the IFE when the underlying DGP follows the

GIFE model. One should also note that the IFE itself does not identify or estimate groups

which may be important in empirical applications. To this end, this paper first details the

2



regular IFE model and its estimation algorithm to provide a brief background on the method

(Bai, 2009). Afterwards, the paper proposes an algorithm to estimate the GIFE model, by

integrating the group fixed effects (GFE) estimation process with the interactive fixed effects

methodology. To this end, the interactive fixed effects methodology has also been modified to

enforce group structures in the factor loadings.

As a final step, this paper will consider an empirical study using the models considered in this

paper. To this end, this paper applies the IFE, GFE, and GIFE models to accurately estimate

the effect of cumulative income on democracy. The different models are used here to consider

the possibility of various kinds of heterogeneity in this application. To gain further insight into

the underlying drivers of group membership in the GFE and GIFE models, the effect of external

covariates on group membership is also studied through multinomial logistic regressions. The

detailed literature review in Section 4 will further explain the appropriateness of these models

for this study.

The rest of the paper will be structured as follows. In Section 2, a literature review is

performed, looking at past research in the area of Group-based Panel Data Models. In Section

3, the methodology is specified. This section consists of models this paper considers (GFE,

IFE and the GIFE) and various algorithms to estimate them. The novel GIFE is proposed

as well. Furthermore, Monte Carlo Simulations are also conducted to observe the finite sample

performance of the different algorithms for the different specifications. In Section 4 the empirical

application is discussed. Here, this paper also considers the main drivers of the underlying groups

using covariates in a multinomial logistic regression. Overall, this paper replicates the results of

Bonhomme and Manresa (2015) only in the empirical study in the GFE cases. All other results,

including the Monte Carlo simulations are considered as extensions in this bachelor thesis.

2 Literature Review

A plethora of literature exists, detailing the estimation and existence of underlying grouping

structures in panel data structures. The main complexity in such models lies in identifying the

unknown underlying groupings in the data. As discussed by Shen and Huang (2010), the number

of combinations in data partitioning is a Bell number and therefore extremely large. As detailed

by W. Wang, Phillips and Su (2018), previous literature attempts to apply various methods to

find these underlying grouping structures. The first approach uses prior data or knowledge to

inform the grouping structures, as discussed in Bester and Hansen (2016). Such information can

include the geographic locations of countries or firm industries. These estimation procedures

are however prohibitive. Many panel data models may not have external variables that can be

used to inform the grouping structures. Estimation also becomes unreliable when the number

of groups is incorrectly specified or individuals in the panel are classified into the incorrect

groups. To this end, better approaches have been devised to integrate group identification into

the estimation process. The main approaches include K-means type algorithms, finite mixture

models and machine learning methods. Finite mixture model literature can be traced back to

papers like Kasahara and Shimotsu (2009) and Browning and Carro (2014). Both aimed to

research statistical inference in discrete choice models, where the number of groups is known.

Machine learning techniques have also been used to make estimations in this area. Particularly,
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Su, Shi and Phillips (2016) proposed a classifier-Lasso (C-Lasso) which uses a penalty term

to enforce grouping structures in the parameter estimates. Subsequently, Lu and Su (2017)

introduced a method to find the number of groups and Su, Wang and Jin (2018) expanded

on this research by further developing estimation procedures for nonparametric and interactive

fixed effects panels. To enhance the machine learning literature in this area, W. Wang et al.

(2018) suggests the panel-Cards model. This algorithm is shown to asymptotically identify the

true group structure and consistently estimate model parameters. Furthermore, Huang, Jin

and Su (2020) apply and develop the C-Lasso method of Su et al. (2016)in cointegrated panels,

allowing for endogeneity and non-stationarity.

The main studies, that apply the k-means type algorithm for group-based panel models,

include Lin and Ng (2012), Sarafidis and Weber (2015), Bonhomme and Manresa (2015), Ando

and Bai (2016) and Bonhomme et al. (2022). Of these papers, Lin and Ng (2012) and Sarafidis

and Weber (2015) consider cases where the panel data models include group-based heterogen-

eous coefficients. Lin and Ng (2012) performs conditional clustering by applying an augmented

k-means algorithm. The main idea of their algorithms is to minimize the sum of squared de-

viations within clusters. To this end, groups with individuals having similar coefficient (para-

meter) values are created. To further the research in the area of the K-means type algorithms,

Bonhomme and Manresa (2015) proposes the Group Fixed Effects estimator. Their estimator

and estimation procedure attempts to use a k-means type algorithm to simultaneously estimate

the grouping structure in the panel while performing parameter inference. This method has

strong asymptotic consistency properties for coefficient estimates in panels with a fixed number

of individuals and infinite periods. The same holds when N (number of individuals) and T (time

dimension) grow together. They apply a few different extensions to their models that take fur-

ther nuances of panel models/data into account (further discussed in Section 3.1). Bonhomme

et al. (2022) also proposes a Two Step Group fixed effects estimator. Their algorithm first

groups individuals together and then applies a regression model (based on the estimated group

structure) to make its estimates. Their procedure differs from other papers since it does not

integrate the parameter and group estimation processes. Ando and Bai (2016) adds to this

literature by considering, a factor component along with underlying grouping structures. This

allows for complex relationships in the data to be captured.

Recent advancements in group-based panel models have led to significant developments and

applications across various contexts. A notable extension involves addressing structural breaks

within these models. Okui and Wang (2018) introduced a new model and estimation method

specified to identify heterogeneous structural breaks in panel data. This method takes differ-

ences in the timing and magnitude of breaks into account across individual units, by utilizing a

hybrid approach that combines grouped fixed effects with adaptive group fused Lasso. The ap-

proach has proven effective in detecting latent group structures and structural breaks, showing

strong performance in both simulations and empirical applications. Building on this founda-

tion, Lumsdaine, Okui and Wang (2023) Lumsdaine (2023) proposed models that accommodate

changes in group membership or slope coefficients following structural breaks, offering a com-

prehensive framework for analyzing the dynamics of such changes in panel data. More recently,

Y. Wang, Phillips and Su (2023) incorporated structural breaks into panel models, allowing for
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variations in group sizes and memberships before and after the breakpoint.

3 Methodology

This section outlines the methodology used throughout the remainder of the paper. First, the

Group Fixed Effects Model and its variants (Section 3.1) are discussed (Bonhomme & Manresa,

2015). Here, a new algorithm for the model estimation is also proposed. It combines Algorithm 1

of Bonhomme and Manresa (2015) and applies an iterative form of the two-step GFE estimation

procedure of Bonhomme et al. (2022). A comparison is also made to the preexisting algorithms

of Bonhomme and Manresa (2015) by applying Monte Carlo simulations.

In the subsequent section, a brief introduction of the IFE model is detailed to provide a

foundation (Section 3.2.1). Finally, the Grouped Interactive Fixed Effects Model, its adjoining

estimations process and GIFE model extensions are discussed (Section 3.2.2 and 3.2.3). Monte

Carlo simulations are also considered here to test the accuracy of the estimation process and

misclassification rates (Section 3.2.4).

3.1 Group-Fixed Effects with Extensions: Model Specifications and Estima-

tion Processes

The group-based panel models have been extensively studied in literature as discussed in Section

2. In this section, firstly, specific attention is given to the basic model of heterogeneity discussed

by Bonhomme and Manresa (2015) as shown in equation 1.

yit = x′itθ + αgit + ϵit, i = 1, . . . , N and t = 1, . . . , T (1)

In this model specification, it is assumed that xit is uncorrelated with ϵit but may have some

correlation structure with the αgit term. Furthermore, the groupings g ∈ 1, ..., G and αgit∀i, t are
left unrestricted to be estimated through statistical inference-based methods. Making parameter

estimates implies solving the following optimisation problem in equation 2. Therefore, given

values of θ and α, the group assignment of each individual takes on the optimisations in equation

3. Furthermore, with known groupings, (θ, α) can be estimated as a regular regression problem

by solving the problem in equation 4.

(θ̂, α̂, γ̂) = argmin(θ,α,γ)∈Θ×AGT×ΓG
{

N∑
i=1

T∑
t=1

(yit − x′itθ − αgi,t)
2} (2)

ĝi(θ, α) = argming∈{1,...,G}{
T∑
t=1

(yit − x′itθ − αgt)
2} (3)

(θ̂, α̂) = argmin(θ,α,γ)∈Θ×AGT

T∑
t=1

(yit − x′itθ − αĝi(θ,α)t)
2 (4)

Considering no simple solution to solve the optimisation in equation 2 exists, Bonhomme

and Manresa (2015) propose an iterative k-means-like algorithm to reach a solution. To this

end, Bonhomme and Manresa (2015) propose Algorithm 1. As one may notice, this algorithm

uses an iterative process which alternates between equation 3 and 4 til numerical convergence.
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One of the main issues in such algorithms is the dependence of the final estimation on the initial

conditions. Therefore, it is usually necessary to attempt different initial conditions to find the

starting point that yields the lowest sum squared residuals (SSR). By applying this algorithm

with many different starting points, the solution is the iteration that obtains the lowest possible

sum squared residuals value.

Algorithm 1 Iterative Estimation Algorithm

1: Initialization:

• Let (θ(0), α(0)) ∈ Θ×AGT be some starting value.

• Set s = 0.

2: while not converged do
3: for all i ∈ {1, . . . , N} do
4: Compute:

g
(s+1)
i = arg min

g∈{1,...,G}

T∑
t=1

(yit − x′itθ
(s) − α

(s)
gt )

2

5: end for
6: Update parameters:

(θ(s+1), α(s+1)) = arg min
(θ,α)∈Θ×AGT

N∑
i=1

T∑
t=1

(yit − x′itθ − α
g
(s+1)
i t

)2

7: Increment s:
s = s+ 1

8: end while

The main issue in algorithm 1 is that it may necessitate a prohibitive number of starting

points to reach the lowest optimum, especially in cases where many latent groups may exist. To

this end, Bonhomme and Manresa (2015) also proposes a Variable Neighborhood Search Based

Algorithm (see Algorithm 6 in Appendix A.1). The first main addition of this algorithm is a local

search that ensures a local optimum is found. It is important to note that the local optimum

found here is not necessarily a local minimum found in Algorithm 1. The other addition is the

neighbourhood search which explores the optimised function more rigorously.

After using an algorithm of choice for different group sizes, the optimal number of groups is

chosen by minimising the information criterion in equation 5 (Bonhomme and Manresa (2015)).

BIC(G) = log

(
1

NT

N∑
i=1

T∑
t=1

(yit − x′itθ̂
(G) − α̂

(G)
git

)2

)
+ σ̂2GT +N +K

NT
log(NT ) (5)

3.1.1 Model Extensions

To extend this model, Bonhomme and Manresa (2015) discuss allowing for unit-specific hetero-

geneity as shown in equation 6. Applying a simple with-in transformation to equation 6 yields

a similar specification to the basic GFE model, allowing for an identical estimation process to

the basic GFE model. The second model extension proposed by the authors allows for hetero-

geneous coefficients as seen in equation 7. To perform statistical inference on equation 7, an
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augmented version of Algorithm 1 must be used. The final model of interest would be to apply

both extensions of unit-specific heterogeneity and heterogeneous coefficients (equation 8). Once

again, using a simple transformation, equation 8 can be rewritten in a similar form to equation

7.

yit = x′itθ + αgit + ηi + ϵit (6)

yit = x′itθgi + αgit + ϵit (7)

yit = x′itθgi + αgit + ηi + ϵit (8)

One important note for the interested researcher is that estimation of model specifications

7 and 8 require Algorithm 1 or Algorithm 6 to be repurposed. However, the general procedure

remains unchanged. One final point is that the sandwich estimator is used to calculate the

standard errors of this method (as discussed in Bonhomme and Manresa (2015)).

3.1.2 Three-step Iterative GFE Algorithm: Algorithm Proposed in this Paper

In this section, an original algorithm, the Three Stage Iterative GFE estimator, is developed to

estimate the GFE-type models. This algorithm fuses the methodologies of Algorithm 1 as dis-

cussed by Bonhomme and Manresa (2015) and the Two-Step GFE as discussed by Bonhomme et

al. (2022). An interesting point to note is that both methods individually have strong asymptotic

consistency properties.

The core innovation here is the use of coefficient estimates of Algorithm 1 from Bonhomme

and Manresa (2015) to define the hi(yi, x
′
i) function of the Two-Step GFE of Bonhomme et al.

(2022). Then, the Two-Step GFE is used to conduct a neighbourhood search. Whenever there is

an improvement in the objective value, the algorithm reverts to the first step which applies the

regular GFE model to find a ”local solution”. Then the updated coefficient estimates reinform

the hi(yi, x
′
i) function to augment the ”revealed” information regarding the grouping structure of

the individuals. One hyperparameter to specify here is the neigh max value. This value specifies

how many times the k-means algorithm is applied (steps 2 through 4) for a single neighbourhood

search. If no better group structure is found within the specified neigh max number of iterations

the algorithm stops. The researcher should note that the Three-Step Iterative GFE Algorithm

is used to augment and improve the estimates of the basic GFE algorithm.

The Three-Step Iterative GFE algorithm can also be adapted for the specification with

heterogeneous coefficients (equation 7). Please check the appendix for this algorithm (Appendix

A.2). Note that this algorithm consistently enhances the estimates of the regular GFE algorithm.

3.1.3 Monte Carlo Simulation to test the relative performance of the Algorithms

A set of Monte Carlo simulations is performed to evaluate the relative performance of the 3-

step GFE against Algorithms 1 and 2 of Bonhomme and Manresa (2015) (only simplest case

considered). The main points to consider are the time to convergence per iteration, the bias

of the coefficients of interest, and the misclassification rate. Please look at Appendix 3.1.3 for

further details on the specific settings of each algorithm in this Monte Carlo Simulation. To this

end, this paper generates data from DGP in equation 9.
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Algorithm 2 Three-Step Iterative GFE Algorithm, Heterogeneous case

1. Apply Algorithm 1 of Bonhomme and Manresa (2015):

(a) Initialize based on random or specific starting points and estimate:

yit = x′itθ + αgit + ϵit

(b) After numerical convergence, store the sum of squared errors (SSE), parameters (θ, α),
and group memberships gi for all i = 1, . . . , N .

2. Iterative Two-Step GFE (Bonhomme and Manresa, 2021):

(a) Define function hi for mapping underlying groupings:

hi(yi, x
′
i) = yi − x′iθ

Where:

yi =

yi1...
yiT

 , x′i =

x
′
i1
...

x′iT


(b) Set iteration counter iter = 0 and neigh max to set the number of iterations.

3. Classification and Estimation Steps:

(a) Perform the classification step as per equation 4 from Bonhomme and Manresa (2021)
to update groupings gi for all i (this is Lloyd’s/K-means algorithm).

(b) Minimize SSE in the estimation step analogous to their equation 5:

(θ, α) = arg min
θ,α∈Θ×AGT

N∑
i=1

T∑
t=1

(yit − x′itθ − αgit)
2

4. Check for Improved SSE:

(a) If SSE is lower than the previous best, update stored (θ, α) and gi for all i, and go
back to step 1 with these new values as initialization.

(b) Otherwise, if iter ≥ neigh max, end the search; else increment iter by 1, retain the
previous best (θ, α), and return to step 3.
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yit = x′itθ
0 + α0

git + ϵit, i = 1, . . . , N and t = 1, . . . , T (9)

The specifications detailed in the following paragraph apply to all permutations of G = 3,

N = 50, 100, and T = 10, 20. Additionally, the values of σit are specified using the formulas

(0.4 + 0.1xit · xit)
1/2 and (1 + 0.1xit · xit)

1/2:

This paper allows for two regressors, each being sampled from an independent and identically

distributed normal distribution N(0, 1). The slope coefficients θ0 are specified to be (1.5, 2). Due

to the high dimensionality of the α parameters, they are also sampled from an independent and

identically distributed normal distribution N(0, 10) for all g and t. ϵit is distributed according

to N(0, σ2
it). The proportion of data distribution to each group is [0.5, 0.3, 0.2] when G = 3. The

proportions here are chosen such that no group has only a single element (which would lead to

issues with rank conditions in OLS). Please note that this paper does not report extra tables for

the 2 different σit specifications. Alternatively, this paper averages over the σit specifications for

all combinations of (G,N, T ). The hyperparameters chosen for the VNS algorithm are 10 and 10

for the maximum iterations and neighbourhood search parameters respectively. The maximum

number of iterations set for the Three Step Iterative GFE is 30. Please note that this paper

does not report separate tables for the 2 different σit specifications. Alternatively, this paper

averages over the σit specifications for all combinations of (G,N, T ).

Basic VNS Three Step

N = 50, T = 10 0.0503 0.0459 0.0454

N = 50, T = 20 0.0144 0.0049 0.0054

N = 100, T = 10 0.0447 0.0342 0.0306

N = 100, T = 20 0.0044 0.0044 0.0035

Table 1: Average Misclassification rates over iterations when G = 3 (averaged over both cases
of σit)

From table 1 it is clear that the Three-step Iterative GFE performs equally well (or better)

than the other algorithms in classifying the individuals into the correct groups. Particularly,

the Three Step iterative Algorithm performs best when N and T are larger. Furthermore, it

is important to note that the Three-step Iterative GFE algorithm significantly outperforms

the VNS algorithm by having significantly lower run times. However, the Basic GFE model,

although more inaccurate in its group estimation, has much faster run times due to the lack of

neighbourhood search elements. Therefore, from the standpoint of runtimes and the ability to

correctly classify elements into their respective underlying groups, it would make sense to use

either the Basic GFE algorithm (for greater speed) or the Three-step Iterative GFE Algorithm

(both faster and better in classifying than the VNS).

Looking more closely at the statistics for the parameter estimate of the different algorithms,

it is clear that the algorithms perform either faster or make superior parameter and group

membership estimates. VNS and Three Step GFE marginally outperform the Basic GFE, but

are much more computationally intensive. An important point to note here is that the Three-
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Algorithm N/T Combination
Theta 1 Theta 2

Bias RMSE CP Bias RMSE CP

Basic GFE

N = 50, T = 10 0.0026 0.0237 0.9550 -0.0044 0.0452 0.9450

N = 50, T = 20 0.0044 0.0471 0.9400 0.0014 0.0438 0.9350

N = 100, T = 10 -0.0010 0.0296 0.9550 0.0015 0.0285 0.9500

N = 100, T = 20 0.0010 0.0194 0.9500 -0.0010 0.0219 0.9450

VNS

N = 50, T = 10 0.0023 0.0398 0.9400 0.0015 0.0389 0.9500

N = 50, T = 20 0.0021 0.0261 0.9450 0.0013 0.0274 0.9300

N = 100, T = 10 0.0021 0.0290 0.9550 -0.0030 0.0280 0.9550

N = 100, T = 20 0.0001 0.0188 0.9450 0.0023 0.0192 0.9400

Three Step GFE

N = 50, T = 10 0.0015 0.0421 0.9500 0.0001 0.0396 0.9350

N = 50, T = 20 0.0005 0.0269 0.9500 -0.0034 0.0282 0.9400

N = 100, T = 10 -0.0008 0.0261 0.9500 -0.0003 0.0255 0.9550

N = 100, T = 20 -0.0017 0.0190 0.9500 0.0013 0.0199 0.9300

Table 2: Table showing averaged Bias, RMSE, and CP for Theta 1 and Theta 2 across different
N/T combinations and algorithms (average over both specifications of σit)

step GFE tends to obtain lower sum square residual values than the other two algorithms. For

example, when N, T = 100, 20, the Basic GFE and the VNS achieve average SSR values of

1939 and 1931. On the other hand, the Three Step Algorithm achieves a lower average SSR

of 1925. Therefore, in some cases, the main reason for its relatively high bias (of the Three

Step GFE) is due to noise in the data rather than its ability to reach the lowest Sum Squared

Residual Value. With this extra information, the three-step GFE makes better estimates than

the basic algorithm and equally good estimates as the VNS. Do note that the runtimes of the

Three-Step GFE are significantly better than those of the VNS. To this end, when estimating

the GFE model of equation 1, this paper suggests either using the Basic GFE estimator as in

Algorithm 1 if quicker runtime is the priority or Algorithm 2 if accurate parameter and group

membership estimates are the priority. One final note is that increasing N and T leads to lower

misclassification rates and biases. This reaffirms the asymptotic theory discussed by Bonhomme

and Manresa (2015).

3.2 (Group) Interactive Fixed Effects Models

This section of the paper develops a hybrid of the Interactive Fixed Effects and Grouped Fixed

Effects models. Although variations of this idea have been explored in previous literature, for

example by Ando and Bai (2016) and Su and Ju (2018), no literature has studied a model which

considers group-specific factor loadings and universal time-specific common shocks. Ando and

Bai (2016) comes the closest but considers both group-specific heterogeneous common shocks

and group-specific factor loadings rather than common shocks which remain homogeneous across
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groups.

The rest of this section will be structured as follows. First, the simple Interactive Fixed

effects model will be discussed in 3.2.1 to provide a basis for the model structure, necessary

restrictions and estimation process. Then in Section 3.2.2, the specifics of the Group Interactive

Fixed Effects model will be discussed. Finally, a Monte Carlo Simulation will be applied to test

the finite sample properties of the different estimators.

3.2.1 Interactive Fixed Effects

Before moving to the more difficult group-based setting, first, it is pertinent to consider the

regular interactive fixed effects model as discussed by Bai (2009). The model specification

(equation 10) and restrictions are detailed as follows in the rest of this subsection.

yit = x′
itθ + λ′

iFt + ϵit,

ϵit ∼ N(0, σ2
it),

(10)

Where yit is the dependent variable for individual i at time t, xit is a vector of regressors, θ is

a vector of slope coefficients, λi is an individual-specific factor loading vector, ft is a time-specific

factor vector, and ϵit is the error term, assumed to be normally distributed with mean zero and

variance σit.

To estimate the IFE as in equation 10, it is helpful to consider the matrix notation of the

model. Subsequently, the above is rewritten as:

Y = Xθ + FΛ′ + ϵ (11)

where Y = [Y1, . . . ,YN ], Λ′ = [λ1, . . . ,λN ], and

Yi =


Yi1
...

YiT

 , Xi =


x′
i1
...

x′
iT

 , F =


f1
...

fT


⊤

, ϵi =


ϵi1
...

ϵiT

 .

The model above follows a factor structure. This implies that certain identification restric-

tions must be applied to attain parameter estimates. This is due to the lack of unique solutions

for F and Λ′. Without restrictions, the following holds: FΛ′ = FAA−1Λ′ = F∗Λ∗′ , where A

is any r × r invertible matrix. Such invertible matrices have r2 free elements, implying that r2

restrictions are needed to identify F and Λ′. To this end, two different identification restrictions

are placed: 1
T F

′F = I and Λ′Λ is diagonal. The first restriction leads to r(r+1)
2 restrictions

while the latter leads to r(r−1)
2 restrictions. The two sets of restrictions jointly lead to sufficient

restrictions to identify Λ′ and F.

The overarching least squares optimisation which must be solved is detailed in equation 12.

(θ̂, F̂ , Λ̂) = argminθ,F,Λ{
N∑
i=1

(Yi −Xiθ − Fλi)
′(Yi −Xiθ − Fλi)} (12)

Due to the complicated nature of the problem, Bai (2009) suggests an iterative procedure to
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solve this least squares problem. Do note, that the optimisation in equation 12 is not universally

convex. This implies that there is no guarantee that a global optimum will be found from any

arbitrary initial β. To this end, Bai (2009) suggest using the within-group parameter estimate

as a reasonable initialisation for the β estimation. Please refer to Appendix A.3 for the specific

steps of the algorithm. It is also interesting to note that the GFE is a specific case of the IFE.

As a final point, Bai (2009) propose the information criterion in equation 13 to choose the

number of factors the IFE model should use.

IC(p) = log

(
1

NT

N∑
i=1

T∑
t=1

(yit − x′
itθ̂ − λ̂′

iF̂t)
2

)
+ p

N + T

NT
log(NT ) (13)

3.2.2 Group Interactive Fixed Effects

Having discussed the simpler Interactive Fixed Effects model, now this paper details the Grouped

Interactive Fixed Effects Model. As discussed at the start of this section, this model is suitable for

a situation where latent common shocks affect the whole sample space and all individuals in the

population are affected based on their group status. Such a model would have the specification

of equation 14. Notice that this model resembles the simple GFE model in equation 1. The only

difference lies in the fact that αgit has been replaced by λ′
gift. Another intricacy to note here is

that the GIFE model as in equation 14 is equivalent to the IFE model discussed in 3.2.1 where

λi = λj if Gi = Gj ∀i, j = 1, ..., N .

yit = x′
itθ + λ′

giFt + ϵit,

ϵit ∼ N(0, σit),
(14)

Here, yit is the dependent variable for individual i at time t, xit is a vector of regressors, θ

is a vector of slope coefficients, λgi is a group-specific factor loading vector, Ft is a time-specific

factor vector, and ϵit is the error term, assumed to be normally distributed with mean zero and

variance σit.

To estimate the model above, the same identification restrictions are required as in Section

3.2.1. However, one must notice the increased difficulty in the estimation of this process due to

the grouping structure of the factor loadings. Keeping the previous identification restrictions,

this paper proposes an augmented version of Algorithm 8 (for IFE model estimation) to ac-

count for the grouped structure of the factor loadings. This leads to Algorithm 3 where Group

Membership is assumed to be known. The significant difference applied in Algorithm 3 (for

the GIFE model with known group membership) in comparison to Algorithm 8 (for the regular

IFE model) is in step 2. To enforce the grouping structure in the factor loadings, instead of

applying PCA in equation 21, Wit is replaced with a new term, Wgit (equation 15). Since Wgit

is aggregated over all individuals within a group, individuals in the same group have the same

Wgit value and are therefore forced to have the same factor loadings.

The estimation process of this method requires the simple GFE estimation (algorithm 1),

the VNS algorithm (algorithm 6) or the Three-step Iterative GFE Algorithm (algorithm 2) to

be augmented. One can incorporate both the parameter and group membership estimation pro-

cedure of equation 14 into the estimation process. The adaption of the simplest GFE algorithm

12



Algorithm 3 Infeasible Grouped Interactive Fixed Effects Estimation Algorithm with known
Group Membership

1. Initialization:

• Set s = 0.

• Initialize β(0) using the within-group estimator.

2. Compute Residuals:

• Set Wit = yit − x′itβ
(s).

• Now define:

Wgit =
∑
j∈gi

Wjt (15)

Estimation of the following yields a pure factor model:

Wgit = λ′
giFt + ϵit (16)

3. Principal Component Analysis:

• Apply Principal Component Analysis (PCA) on the factor structure to find the factor

loadings λ̂
(s)
gi and common shocks F̂

(s)
t .

4. Update β:

• Considering λ̂
(s)
gi and F̂

(s)
t as ”observable” at this stage, update β by applying Ordin-

ary Least Squares (OLS):

β(s+1) =

(
N∑
i=1

T∑
t=1

XitX
′
it

)−1( N∑
i=1

T∑
t=1

Xit

(
Yit − λ̂(s)

gi F̂
(s)′

t

))

5. Check Convergence:

• Stop if numerical convergence is achieved. Otherwise, set s = s + 1 and go back to
step 2.
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for the GIFE estimation can be found in Algorithm 4. An augmented version of the 3-step GFE

algorithm is used to conduct the Monte Carlo of the GIFE model in Section 3.2.4.

The main way Algorithm 4 (GIFE estimation) differs from its counterpart for the GFE

algorithm is in step 6. The main difference here lies in the estimation of the parameters. Here,

the iterative process of Algorithm 3 (algorithm for GIFE with known group membership) is used

to make parameter estimates rather than the analytical solution for the known group membership

as in the regular GFE algorithm. This also causes the estimation process to become much more

computationally intensive than the regular simple GFE algorithm (an iterative process within

an iterative process). Also, one should note that parameter estimates change marginally for the

same group membership in algorithm 3 (algorithm stops with numerical convergence). To this

end, algorithm 4 stops when group membership experiences no change and coefficient values

either remain the same or change insignificantly across iterations. Similar changes can be made

to the other algorithms (VNS and 3-Step Iterative GFE) to find parameter estimates.

Algorithm 4 Basic Estimation Process Repurposed for GIFE

1: Initialization:

• Let (θ(0), α(0)) ∈ Θ×AGT be some starting value.

• Set s = 0.

2: while not converged do
3: for all i ∈ {1, . . . , N} do
4: Compute:

g
(s+1)
i = arg min

g∈{1,...,G}

T∑
t=1

(yit − x′itθ
(s) − α

(s)
gt )

2

5: end for
6: Update parameters using Algorithm 3 to estimate the GIFE model with known group

structure:

(θ(s+1),Λ(s+1), F (s+1)) = argmin(θ,Λ,F )∈Θ×ΛG×FT

N∑
i=1

T∑
t=1

(yit − x′itθ − λ′
g
(s+1)
i

ft)
2

7: Let α
(s+1)
git

= λ′
g
(s+1)
i

ft and increment s:

s = s+ 1

8: end while

One final note is that no information criterion has been developed for the GIFE. For the

sake of simplicity, this paper suggests using a simple elbow plot to decide the number of groups

and the number of factors. Finding a proper information criterion is left for future research.

3.2.3 Extensions to the Group Interactive Fixed Effects

Analogously to the regular GFE model, the GIFE model can also be generalised to consider

individual-specific intercepts and heterogeneous coefficients. The process followed to generalise

the regular GIFE model to the more complicated cases is very similar to the same generalisations

in the GFE Model.
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The first extension to consider is the GIFE with unit-specific heterogeneity (equation 17).

Similar to the GFE case, this model can be rewritten as a simple GIFE using a with-in trans-

formation. The second model extension is in equation 18 where heterogeneous coefficients are

accounted for.

yit = x′itθ + λ′
giFt + ηi + ϵit (17)

yit = x′itθgi + λ′
giFt + ϵit (18)

A model with both heterogeneous coefficients and unit-specific heterogeneity can also be

considered. Using a with-in transformation, such a model can be estimated similarly to equation

18.

3.2.4 Monte Carlo Simulation to test properties of the regular GIFE estimator

In this subsection, this paper aims to test the finite sample properties of the parameter estimates

in equation 14 using the estimation process as in Algorithm 4 in a Monte Carlo Simulation.

Firstly, this paper tests the coefficient estimates of the infeasible estimator where group

membership is known beforehand and compares these to the ones made by the regular algorithm.

This will allow for a proper evaluation of algorithm 3 by itself in making parameter estimates.

Furthermore, the infeasible estimation process with unknown group membership is also tested

to check the validity of the overall algorithm (algorithm 6).

yit = x′
itθ

0 + λ0
gi
′F0

t + ϵit,

ϵit ∼ N(0, σ2
it),

(19)

The experimental setup is designed with several key specifications. There are three groups

(G = 3) and the sample sizes are set at N = 50 and 100, across periods T = 10 and 50,

with each setup involving three parameters (p = 3). The model incorporates two regressors,

each following an independent and identically distributed normal distribution N(0, 1). The

slope coefficients, θ0, are specified as (1.5, 2). Given the high dimensionality of the Ft and λgi

parameters, their elements are sampled from a normal distribution N(0, 10) for all g and t. The

error terms, ϵit, are distributed according to a normal distribution N(0, σ2
it), where σit is defined

as (0.4 + 0.1xit · xit)
1/2 and (1 + 0.1xit · xit)

1/2. Lastly, the proportion of data allocated to each

group is set at [0.5, 0.3, 0.2]. Please note that this paper does not report separate tables for the

2 different σit specifications. Alternatively, this paper averages over the σit specifications for all

combinations of (G,N, T ). Note that here only the basic GFE and GIFE algorithms are used

rather than the VNS or three-step counterparts.

From table 3 it is clear that the infeasible GIFE (known group membership) itself makes

proper estimates of the actual coefficients implying that algorithm 3 works as intended. Further-

more, algorithm 4 also performs very well in the test cases considered, classifying individuals

into the correct groups in almost all cases. Therefore, it performs equivalently well to the infeas-

ible GIFE in making its parameter estimates. Given this information, the estimation process

discussed throughout 3.2.2 is appropriate for making proper coefficient estimates and finding

correct grouping structures. Also notice that with a larger T (when N = 50), the misclassi-

fication rate reduces. Furthermore, the parameter becomes more accurate and the confidence
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Algorithm N/T Combination
Theta 1 Theta 2

MR

Bias RMSE CP Bias RMSE CP

Inf. GIFE

N = 50, T = 10 0.0045 0.0381 0.935 0.0045 0.0381 0.955 N/A

N = 50, T = 50 0.0027 0.0211 0.950 0.0027 0.0211 0.945 N/A

N = 100, T = 10 0.0021 0.0262 0.935 0.0021 0.0262 0.935 N/A

N = 100, T = 50 0.0001 0.0115 0.970 0.0001 0.0115 0.950 N/A

Reg. GIFE

N = 50, T = 10 0.0088 0.0384 0.935 0.0088 0.0384 0.950 0.0042

N = 50, T = 50 0.0059 0.0212 0.950 0.0059 0.0212 0.945 0.0011

N = 100, T = 10 0.0042 0.0262 0.935 0.0042 0.0262 0.935 0.0000

N = 100, T = 50 0.0003 0.0116 0.975 0.0003 0.0116 0.965 0.0049

Table 3: Aggregated Table showing Bias, RMSE, CP, and Misclassification Rate for Theta 1
and Theta 2 across different N/T combinations in the Infeasible Estimation Case and the Real
Estimation Based Case when G = 3 and p = 3

intervals also have a higher probability of containing the actual parameter values at the 5%

significance level.

Subsequently, this paper evaluates the effect of choosing other model specifications in making

parameter estimates when DGP in equation 19 is the correct specification. A few different

(in)correct model specifications are considered. Firstly, the model is estimated using the simple

IFE model as discussed in Section 3.2.1. Note that this is not a misspecification considering

the GIFE is a nested model (specific case) of the IFE. However, the IFE is expected to make

worse estimates due to its general form in comparison to the GIFE. Furthermore, no group

estimates are made by the IFE. Afterwards, this paper also attempts the incorrect specification

of the regular GFE. The GIFE model is a baseline model to evaluate the estimates of the other

specifications. In this experiment, the number of loadings (p) and number of groups (G) are

assumed to be known.

In this Monte Carlo experiment, this paper utilizes a setup comprising three groups (G = 3),

with sample sizes N = 100, and periods T = 10 and 50. Each setup involves three factors

(p = 3). The model includes two regressors, each sampled from an independent and identically

distributed normal distribution N(0, 1). The slope coefficients, θ0, are established at (1.5, 2).

Given the high dimensionality, the elements of Ft and λgi are also drawn from an independent

and identically distributed normal distribution N(0, 10) for all groups g and periods t. The error

terms, ϵit, follow a normal distributionN(0, σ2
it), where σit is calculated as (0.4+0.1xit·xit)

1/2 and

adjusted to (1+0.1xit ·xit)
1/2. The distribution of data across the groups is set at [0.5, 0.3, 0.2].

Please note that this paper does not report extra tables for the 2 different σit specifications.

Alternatively, this paper averages over the σit specifications for all combinations of (G,N, T ).

Note that here only the basic GFE and GIFE algorithms are used rather than the VNS or

three-step counterparts.

From table 4, it is first important to note that IFE does not make any group membership

estimates and therefore is not informative about the underlying group structure of the data.
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Specification N/T Combination Theta 1 Theta 2 MR

Bias RMSE CP Bias RMSE CP

GFE
N = 100, T = 10 -0.0001 0.0271 0.965 0.0017 0.0271 0.965 0.0194

N = 100, T = 50 -0.0010 0.0117 0.955 -0.0002 0.0120 0.950 0.0823

IFE
N = 100, T = 10 0.0006 0.0340 0.945 0.0012 0.0334 0.960 N/A

N = 100, T = 50 -0.0011 0.0112 0.945 -0.0010 0.0131 0.945 N/A

GIFE
N = 100, T = 10 0.0021 0.0262 0.935 -0.0001 0.0262 0.935 0.0000

N = 100, T = 50 0.0001 0.0116 0.975 0.0012 0.0123 0.965 0.0049

Table 4: Averaged results for Bias, RMSE, and Confidence Probability (CP) for Theta 1 and
Theta 2, along with Misclassification Rate (MR) for each specification and N/T combination.
All numerical values, including confidence probabilities, are formatted to four decimal places.

First, it is pertinent to discuss the T = 10 case. Here, it seems that the GIFE, IFE and GFE

make similarly (un)biased estimates. However, GIFE makes much better group membership

estimates. The GIFE’s confidence intervals on average contain less of the actual parameter

values (5% level). However, considering the GIFE is a nested model of the IFE and the GFE is

a nested model of the IFE and GIFE (Section 3.4), it is quite surprising that the GFE makes

better estimates than the IFE. The main reason for the IFE’s relatively biased estimates is

probably due to the model overfitting noise.

When comparing the case of T = 10 to T = 50, it can be observed that the parameter estim-

ates become more accurate due to the longer time dimension (RMSEs reduce) for all specific-

ations, correct or incorrect. One interesting note is that the misclassification rate significantly

increases in the GFE algorithm. This would imply that with greater T, the factor structure of

the model becomes more prevalent. However, the bias seems to remain relatively unchanged

for the GFE. On the other hand, the estimates from IFE and GIFE become more accurate

and unbiased, exhibiting statistical consistency properties. GIFE continues making good use of

this extra information, keeping its misclassification rate relatively low. This makes its estimates

nearly equivalent to the infeasible estimator with known group membership. Furthermore, the

GIFE’s prediction intervals also outperform the prediction intervals of the other two methods.

3.3 Bootstrapped Standard Errors

Here, this paper details the method used to calculate the standard errors in all the model

specifications discussed in the methodology. In the empirical study conducted in this paper,

bootstrapping is used to calculate the Standard Errors of the coefficients (Efron & Tibshirani,

1986). Both papers by Bai (2009) and Bonhomme and Manresa (2015) detail analytical formulae

for the standard errors of their coefficient estimates. In this paper, the analytical standard error

formula is considered only for the GFE. Bootstrapped standard errors are applied in all cases

to maintain consistency. The general steps necessary are as follows:
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Algorithm 5 Steps for Bootstrapped Standard Errors

1: Create Bootstrap Sample: For each iteration, draw a sample of individuals from the

original dataset with replacement. This simulates drawing from the population multiple

times and helps in approximating the sampling distribution. Make the bootstrapped sample

as large as the actual dataset.

2: Run Full Estimation Process: For each bootstrapped sample, run the full estimation

algorithm. This includes any initialisation and iterative steps required by the specific al-

gorithm being used.

3: Store Estimates: Collect the estimated parameters from each bootstrapped sample. These

estimates will be used to calculate the variability of the estimator.

4: Calculate Standard Errors: Compute the standard errors as the standard deviation of

the collected bootstrap estimates.

3.4 Relationship between GFE and GIFE

As a final step in the methodology, it is pertinent to address the relationship between the

GFE and GIFE. Specifically in the empirical application considered in Section 4, it is found

that the GFE and GIFE, where p is set to high values, p = 4,...,7, yield identical estimates,

group memberships and SSR. This is quite interesting because it also implies that when p → T ,

this may result in αgit,GFE ≈ λgit,GIFEFt,GIFE . The rationale behind this can be explained

intuitively.

When the θ estimate converges to the same value in the iterative IFE-like Algorithm (Al-

gorithm 3 for known group membership in GIFE) to the coefficient estimate found by the regular

GFE (and the factor model is applied in equation 16) the process becomes equivalent to apply-

ing a factor structure to αgit in equation 1. This is because with the same theta θ and p → T ,

Wgi,t ≈ αgit. However, the reader should note that setting p << T (e,g: p = 1, 2, 3) leads

to different group membership and parameter estimates between the GFE and the GIFE. This

also has some important implications for researchers looking to apply these models. The final

important point to take into account is that it cannot be guaranteed that setting p → T leads

to the same estimates.

4 Empirical Application

Having analyzed the finite sample statistical properties of the estimators and algorithms, I now

consider an empirical application regarding underlying heterogeneity in the study of the effect

of income on democracy. The effect of income on democracy has received extensive attention

in the literature. Two overarching schools of thought exist in this domain; some believe that

democratization is determined by income while others believe that historical events completely

determine the same. To provide some background information, I first conduct a literature review.

Subsequently, an empirical study is considered where estimates are made with the main models

with homogeneous coefficients being considered. An important note is that all results of the

GFE model (homogeneous or heterogeneous case) in Section 4.2 are a replication of Bonhomme

and Manresa (2015).
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4.1 Literature Review for Empirical Application

The application of the effect of income on democracy received widespread exposure in Acemoglu,

Johnson, Robinson and Yared (2008). Their main hypothesis was that the strong relationship

between income and democracy, found by previous studies, reflected a case of high correlation

rather than any causality. By including country-specific fixed effects, this relationship became

statistically insignificant. This led them to the conclusion that the observed correlation between

income and democracy did not imply any causation. Their paper also accounts for other estim-

ation processes and effects, reinforcing their analysis.

Treisman (2011) and Heid, Langer and Larch (2012) take different approaches to examine

this problem using more sophisticated econometric models. Heid et al. (2012) uses a GMM

estimation process, finding a significant positive relationship between income and democracy.

Their findings are robust across various model specifications and instrument sets. To solidify this

result, Treisman (2011) finds that higher income leads to greater democracy in the medium term

(10-20 years). However, they find that in the short term, greater income leads to reinforcement

of the current political regime. Acemoglu, Naidu, Restrepo and Robinson (2019) also looks at

the reverse effect, the effect of democracy on income. After controlling for country-fixed effects

and various dynamics of GDP, they find a positive effect of democracy on GDP per capita.

To further the research in this empirical application, Bonhomme and Manresa (2015) propose

and utilise the GFE model and its variants to study the effect of income on democracy (models

discussed in Section 3.1). Their model specifications allow for a nuanced analysis by applying

the GFE estimation process. Their main contribution is modelling heterogeneity in the panel

by finding the underlying groups of countries while making consistent parameter estimates.

Ultimately, they provide an economic interpretation for the case with G = 4 groups. The first of

the 4 regimes is the high democracy group, including countries like the US, Western Europe and

Japan. The second group is the low democracy group including many parts of Africa and Asia.

The last two groups are the early and late transition groups who transitioned to democracy early

or late in the panel. This case of the GFE with 4 groups is considered further in the next section.

Therefore, their research played an important role in informing policy as well. It is insufficient

to only promote income growth to increase democracy levels. Rather, policymakers must also

consider many contextual factors like geography, politics and social factors when promoting

democracy. Lu and Su (2017) also look for latent group structures in this empirical application.

They identified significant heterogeneity in slope coefficients when accounting for three distinct

latent groups.

To conduct the study in the following section, this research utilises the data available on

Bonhomme’s website (Bonhomme, n.d.), which is the same data used by Acemoglu et al. (2008).

This includes data used to perform the GFE, IFE and GIFE estimation process and also data

on covariates used to explain the group memberships of the GFE and GIFE (both homogeneous

and heterogeneous cases).

4.2 Empirical Analysis

Having discussed a short literature review regarding the empirical application at hand, now this

paper introduces the different model specifications which will be studied and compared in this
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section. The first model specification considered is:

demoi,t = θ1demoi,t−1 + θ2inci,t−1 + f(it) + νit (20)

Depending on which model specification is being used, f(i, t) is defined accordingly:

fIFE(i, t) : λ
′
iFt (I)

fGFE(i, t) : αgit (II)

fGIFE(i, t) : λ
′
giFt (III)

Components Objective IC Lag. Dem. Lag Income Cumulative
Income

1 19.8873 -2.4734 0.7970
(0.0319)

0.0164
(0.0028)

0.0807
(0.0046)

2 13.8623 -1.8726 0.8674
(0.0213)

0.0112
(0.0019)

0.0841
(0.0053)

3 8.8134 -1.3842 0.9188
(0.0199)

0.0074
(0.0018)

0.0869
(0.0076)

4 5.3391 -0.9646 0.9545
(0.0189)

0.0049
(0.0019)

0.0140
(0.0843)

5 2.8183 -0.7032 0.9850
(0.0156)

0.0025
(0.0015)

0.0232
(1.8322)

6 1.1226 -0.7438 1.0040
(0.0139)

0.0010
(0.0014)

-0.0136
(1.3196)

7 0.0000 -63.7750 1.3684
(0.1667)

-0.2435
(0.0251)

-0.0187
(5.4132)

Table 5: Summary stats for Interactive Fixed Effects. Also, note that all standard errors are
bootstrapped.

First, let’s discuss the results of the IFE specification. As seen in table 5, parameter estim-

ates change significantly based on the number of factors. Depending on this choice, the effect

of income on democracy changes significantly. Firstly, it should be noted that allowing as many

factors as there are periods leads to an overfitted model with 0 objective value (p = 7). There-

fore, its well-performing Information Criterion (IC) value should be disregarded. Among the

specifications with 1 to 6 factors, the specification with only 1 factor performs the best according

to the IC. Here, the effect of cumulative income on democracy is highly significant at a 5% level.

Therefore, the cumulative income coefficient value implies that an increase of one unit in income

leads to a 0.0807 increase in the democracy index. However, the IFE model may not perform

well in shorter panels (as discussed in Bonhomme and Manresa (2015)). Also, there is strong

evidence of group structures in this empirical application (in the literature). Thus, this paper

applies the group-based models (GFE and GIFE) to perform a more nuanced analysis.

Having discussed the results of the IFE model and the shortcomings of its estimates, now it

is pertinent to consider the GFE model. From table 6, it is clear that different group sizes lead

to varying coefficient estimates. Here, an information criterion can again be applied to decide

the optimal number of groups. Considering the BIC plateaus to a relatively stable level between
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Groups Objective BIC Lag. Dem. Lag Income Cumulative
Income

1 24.3012 0.056 0.6654
(0.049)

0.0831
(0.014)

0.247
(0.018)

2 19.8469 0.0432 0.6006
(0.0406, 0.0656)

0.0607
(0.0111, 0.0193)

0.1529
(0.0210, 0.0563)

3 16.5987 0.039 0.4064
(0.0508, 0.1069)

0.0894
(0.0111, 0.0167)

0.1506
(0.0128, 0.0323)

4 14.3187 0.0364 0.3016
(0.0530, 0.1008)

0.0823
(0.0092, 0.0150)

0.1178
(0.0110, 0.0268)

5 12.5933 0.0346 0.2546
(0.0489, 0.0972)

0.0793
(0.0093, 0.0132)

0.1064
(0.0091, 0.0264)

6 11.1317 0.03333 0.4652
(0.0416, 0.1071)

0.0638
(0.0070, 0.0120)

0.1193
(0.0109, 0.0328)

7 10.0589 0.0327 0.4030
(0.0416, 0.1097)

0.0647
(0.0081, 0.0110)

0.1084
(0.0105, 0.0266)

8 9.2514 0.0325 0.3334
(0.0420, 0.1075)

0.0696
(0.0080, 0.0135)

0.1044
(0.0099, 0.0294)

9 8.4260 0.0323 0.3122
(0.0429, 0.1170)

0.0694
(0.0076, 0.0153)

0.1009
(0.0090, 0.0362)

10 7.7491 0.0323 0.2772
(0.0456, 0.1087)

0.0753
(0.0075, 0.0160)

0.1042
(0.0082, 0.0355)

Table 6: Summary stats for Group Fixed Effects. The Group Fixed Effects is applied for
Group sizes between 1 to 10. For the estimation of the BIC, this paper applies Gmax = 15.
The estimation process uses the 3-Step Iterative GFE Algorithm with a neighbourhood search
parameter set at 30. Also note, that the standard errors (in brackets) first use a large T normal
approximation using the sandwich estimator and then a bootstrapping method of Section 3.3.
Analytical standard errors for cumulative income were found using the delta method. The G =
1 uses only the simple OLS Standard error. To make estimates, 10000 iterations of the 3-step
iterative algorithm are used to reach the optimal estimates. The hyperparameter, the number
of neighbourhood searches, is set to 10.

G = 4 and 10, G = 4 is chosen as the correct specification (similar to Bonhomme and Manresa

(2015)). The G = 4 case is also interesting because the groups formed by this specification can

be easily interpreted (discussed later). Furthermore, the estimate here differs significantly from

the IFE(p=1) estimate. Even though the GFE is a nested model of the IFE, the GFE model

captures a different underlying heterogeneity relative to the IFE model. A final interesting point

to make note of is the higher bootstrapped standard error (SE) values relative to the large-T

normal approximation SEs (in all cases). When bootstrapped SEs are significantly larger than

the analytical SEs, it can indicate the possibility of many issues in the estimation process. The

two main reasons for this occurrence in this empirical application may be the following. Firstly,

the sample may be too short to assume a large T approximation while calculating the analytical

SEs. The other reason may be the dependence of the estimated group structures on specific

individual countries. Finally, the reader should notice that when G = 4, the cumulative income

estimate is highly significant at the 5% level. An increase of 1 in cumulative income leads to an

increase of 0.1178 in democracy.

Considering the extra parameters of the IFE model may cause incidental parameter bias and

previous literature details the existence of regimes in democracy development, it seems likely

that the IFE model is insufficient in its analysis of the problem. Equally, many time-based
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worldwide shocks occurred between 1960 and 2000 (data collection period). These underlying

shocks should be taken into account as well (Fayad, Bates & Hoeffler, 2012). To this end, even

the GFE model may be insufficient in its model specifications. Therefore, to further investigate

this empirical application, I consider the GIFE model which simultaneously considers the effects

of common shocks and underlying groupings on parameter estimates. For this study, this paper

only considers the case with 4 groups.

Components Objective Lag. Dem. Lag Income Cumulative
Income

1 18.6536 0.4351
(0.0557)

0.0552
(0.0048)

0.0977
(0.0037)

2 15.7153 0.3884
(0.0570)

0.0686
(0.0041)

0.1122
(0.0071)

3 14.4129 0.3656
(0.0543)

0.0923
(0.0041)

0.1455
(0.0074)

4 14.3187 0.3017
(0.0554)

0.0822
(0.0042)

0.1178
(0.0065)

5 14.3187 0.3017
(0.0594)

0.0822
(0.0049)

0.1178
(0.0066)

6 14.3187 0.3017
(0.0556)

0.0822
(0.0045)

0.1178
(0.0065)

7 14.3187 0.3017
(0.0567)

0.0822
(0.0046)

0.1178
(0.0069)

Table 7: Regression Stats for Group Interactive Fixed Effects. A repurposed version of the
3-Step iterative GFE is used to make estimates here. To make estimates, 10000 iterations of the
3-step iterative algorithm are used to reach the optimal estimates. The hyper-parameter, the
number of neighborhood searches is set to 50.

In table 7, the first notable point is that for the GIFE specifications with 4 or more factors

(section 3.4), the objective value (SSR) and the parameter estimates do not change, achieving the

same value as the regular GFE. Therefore, the GIFE with fewer components may be considered

more parsimonious than the GFE, as it fits less to noise. Do note that the computational

intensity increases monotonically with more and more factors. Considering the GIFE with

p >= 4 is equivalent to the GFE in this empirical case, it implies that the GIFE is preferred

to the GFE model. To decide on the number of factors, this paper uses an elbow plot (of the

objective values). To this end, this paper suggests using p = 3 as the correct specification.

For this specific case, it is clear that the cumulative income coefficient is highly significant; one

increase in cumulative income leads to a 0.1455 increase in democracy.

To better understand the nuances between the GFE (G = 3) and GIFE (G = 3, p = 3),

this paper presents the αgits from the GFE and the λ′
giFts (which can be considered as the αgits

from the GIFE) in Figure 1. It is evident that reducing the number of factors equally affects

the coefficients of the independent variables and the intercept terms. However, it is important

to note that the alphas of both methods seem to follow similar patterns.
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(a) GFE for Homogeneous Coefficients (b) GIFE for Homogeneous Coefficients

Figure 1: Comparison of GFE and GIFE for Non-Heterogeneous Data

(a) Average Democracy and Income GFE Ho-
mogeneous Coefficients

(b) Average Democracy and Income GIFE Ho-
mogeneous Coefficients

Figure 2: Comparison of Average Democracy (upper panel) and Income (lower panels) for GFE
and GIFE Homogeneous Models

From figure 2, it can be observed that the GFE groups exhibit clear regime structures. Group

1 shows a low democratic regime and Group 2 reflects a highly democratic regime. Groups 3 and

4 consist of countries that are early transition countries or late transition countries respectively.

In the GIFE, groups 1 and 2 exhibit the same patterns as in the GFE. Furthermore, groups

3 and 4 follow similar patterns as in the GFE with some nuanced differences. Firstly, Group

3 doesn’t seem to reach the same high levels of democracy as in the GFE. Additionally, the

late transition group (Group 4) has a more concave structure in its democratic patterns. It

also overtakes the early transition group at the end of the panel in terms of democracy. To

summarise, Groups 1 and 2 do not change much in their composition while Groups 3 and 4

exchange some members (Figure 3), predominantly in South America.

4.2.1 Heterogeneous Coefficients (GFE and GIFE)

In this section, cases with heterogeneous coefficients are considered for the GFE and GIFE.

Please note, only analytical standard errors are considered for the GFE and no standard errors

are considered for the GIFE. Calculating bootstrapped standard errors is more complicated
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(a) Group Membership GFE (b) Group Membership GIFE

Figure 3: Group Memberships of GFE and GIFE. Dark blue identifies low democracy. Red iden-
tifies high democracy. Pink Identifies early transition and Light Blue Identifies Late Transition

with heterogeneous coefficients because matching groups across bootstrapped samples is also

necessary here (this is left for further research). Furthermore, only the case with G = 4 is

considered for both the GFE and GIFE. Firstly, this paper considers the GFE (heterogeneous)

parameter estimates in table 8. The reader should notice that all coefficients are significant at

the 5% significance level (for all groups). Do note, that cumulative income increases democracy

levels the most in high democracy countries, followed by transition countries and the least in

low democracy countries.

Group lag dem lag income cum income

1 (Low Democracy) 0.3192 0.0414 0.0608
(0.0994) (0.0153) (0.0242)

2 (High Democracy) 0.6436 0.0695 0.1950
(0.0691) (0.0144) (0.0553)

3 (Early Transition) 0.0155 0.1216 0.1235
(0.1109) (0.0236) (0.0277)

4 (Late Transition) 0.2479 0.0903 0.1201
(0.0933) (0.0185) (0.0288)

Table 8: Parameter Estimates and Sandwich Estimator Standard Errors for the GFE with
Heterogeneous Coefficients. To make estimates, 10000 iterations of the 3-step iterative algorithm
are used to reach the optimal estimates. The hyperparameter, the number of neighborhood
searches is set to 10.

Next, this paper presents the SSEs for the GIFE (p = 1,..., 7). in table 9. Using the elbow

plot (of the objective values), this paper chooses p = 3 as the correct specification. Another

point to note is that the SSR value for the GIFE with p ≥ 4 is the same as the regular GFE, as

are the estimates. Also, for p ≥ 3, the GIFE and the GFE produce the same group membership

estimates.

Components 1 2 3 4 5 6 7

Best SSR 15.3925 14.0243 13.7383 13.5395 13.5395 13.5395 13.5395

Table 9: Sum of Squared Residuals (SSR) for Different Number of Components
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In table 10, this paper presents the coefficient estimates of the GIFE(p = 3). First, it is

important to mention that the group membership estimate remains the same in GIFE(p = 3)

and the GFE. Notice that no standard errors are included. The reasoning for this is given in

earlier in this section. Another important point is that for high democracy and late transition

groups, the coefficient estimates of lagged democracy and lagged income remain quite similar

between the GFE and GIFE. Furthermore, all but group 1 experience similar coefficient estimates

for cumulative income as well. Finally, the groups also seem well separated when considering

the different coefficient estimates. Once again, cumulative income increases democracy levels

the most in high democracy countries, followed by transition countries and the least in low

democracy countries.

Group lag dem lag income cum income

1 (Low Democracy) 0.2470 0.0334 0.0444
2 (High Democracy) 0.6453 0.0685 0.1931
3 (Early Transition) 0.0387 0.1240 0.1289
4 (Late Transition) 0.2463 0.0898 0.1192

Table 10: Parameter Estimates for the GIFE with Heterogeneous Coefficients. Note that no
standard errors have been considered. Analytical standard errors have not been derived in
this paper and bootstrapped standard errors necessitate matching groups over iterations which
can be quite difficult and is considered out of the scope of this paper. To make estimates,
10000 iterations of the 3-step iterative algorithm are used to reach the optimal estimates. The
hyperparameter, the number of neighbourhood searches is set to 10.

As a final note, in figure 4, it is observed that the group memberships change marginally

in the heterogeneous case relative to the homogeneous cases (refer to figure 3). This is reflec-

ted by comparing the average income and average democracy time series plots and the group

membership maps in tables 3 and 4.

(a) Average democracy (upper panel) and in-
come (lower panel) in

(b) GFE and GIFE Group 4 Heterogeneous
Countries

Figure 4: Group membership in the heterogeneous case
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4.2.2 Explaining Group Memberships (Using Multinomial Logit Models)

A final point of exploration in the empirical application is to explain the underlying drivers of

group membership in the different models. As discussed in Bonhomme and Manresa (2015),

applying probability models (multinomial logit or ordered probit) to the groups found in the

GFE is asymptotically equivalent to estimating the same probability models with the actual

underlying groups. Although a similar proof has not been derived for the GIFE, this paper

still applies the multinomial logit models to the groups estimated (in the GIFE). Once again,

data from Bonhomme’s (Bonhomme, n.d.) personal website is used. The covariates used are

detailed in table 11. This reflects the third model specification in the logistic regressions applied

in Bonhomme and Manresa (2015). Most of the covariates used have self-explanatory names.

The variable ”Constraints” denotes the constraints placed on the executive at independence.

Regressor GFE Homogeneous GIFE Homogeneous GFE/GIFE Heterogeneous

Group 2 (High Democracy)
log GDP (1500) 0.6979 −0.8000 1.2715

(1.757) (1.782) (1.409)
Independence Year −0.0444 −0.0496 −0.0311

(0.013) (0.013) (0.009)
Constraints 7.1244 8.1204 5.0699

(2.058) (2.222) (1.520)
Catholic Share (1980) 0.6114 0.6034 0.5401

(1.202) (1.193) (1.224)
Protestant Share (1980) 6.8106 7.2699 4.1903

(4.375) (4.590) (3.693)

Group 3 (Early Transition)
log GDP (1500) −0.5038 −3.5386 −0.3917

(1.872) (1.765) (2.138)
Independence Year −0.0332 −0.0297 −0.0429

(0.012) (0.011) (0.020)
Constraints 2.2263 3.7385 2.3871

(2.335) (2.013) (2.914)
Catholic Share (1980) 1.0034 1.8197 1.7326

(1.218) (1.299) (1.559)
Protestant Share (1980) −0.5518 3.1657 −23.2209

(7.875) (5.715) (27.725)

Group 4 (Late Transition)
log GDP (1500) −0.7508 −1.2711 −0.6130

(1.138) (1.268) (1.127)
Independence Year −0.0078 −0.0119 −0.0077

(0.008) (0.007) (0.008)
Constraints 0.8476 1.4156 0.7985

(1.389) (1.529) (1.406)
Catholic Share (1980) 0.8877 1.0345 1.0565

(1.188) (1.151) (1.258)
Protestant Share (1980) 5.3988 5.1700 3.6080

(3.874) (4.105) (3.489)

Table 11: Parameter Estimates and Standard Errors for Different Models. In all cases, coef-
ficients are relative to Group 1, the Low-Democracy groups produced by each of the models.
Please note that intercepts were also included in all cases, but estimates are not included in the
results
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The main point to observe in table 11 is that coefficient signs stay consistent across all

models. This implies that all (comparable) regimes in all models show similar relative patterns

and reactions to the underlying determinants of their estimated groups. Another important

point that should be noted is that religion seems to play a negligible role in explaining the

estimated groups in all cases (not statistically significant estimates). This is also the case for log

GDP. Furthermore, constraints on the executive at independence only seem to play a relatively

important role in explaining the group membership in the high democracy groups (relative to

the corresponding low democracy groups). Therefore, earlier independence years lead to a higher

chance of being in the high democracy group relative to the low democracy group. Independence

Year also has a considerable (relative) effect on the high democracy and early transition groups.

However, this result may be somewhat surprising since earlier independence seems to lead to

a lower chance of being in the higher democracy or early transition groups (relative to being a

part of the low democracy group). A final interesting point to take note of is that the groups

created by the heterogeneous model and the heterogeneous GIFE have more extreme coefficients

in their regression. This implies that the covariates used in the regression can better explain the

underlying grouping structures in those models. This may imply that these models are better

able to take underlying signals into account in comparison to the regular GFE.

4.3 Conclusion and Discussion of the Empirical Study

To conclude this empirical study, this paper finds that greater cumulative income has a significant

effect on democracy in all specifications studied. By considering group-based models, meaningful

underlying regimes have been found in this paper. In the cases where 4 groups are considered,

the regimes found are (1) low democracy, (2) high democracy, (3) early transition and (4) late

transition.

As found in the previous sections, the GFE is a special case of the GIFE. However, by setting

p << T number of factors, the GIFE fits less to the noise, allowing for more parsimonious model

estimations. Future research should attempt to find covariates which explain the common shocks

and the heterogeneous factor loadings found by the GIFE variants. It is also important to note

that considering heterogeneous coefficients allows a more specific analysis of how cumulative

income affects democracy in each group. It is also notable that group membership changes

significantly in the transition groups when considering the GFE and GIFE in the homogeneous

case. On the other hand, group membership stays the same when considering the GFE and the

GIFE heterogeneous case. By considering the GIFE and GFE, small nuances change.

Furthermore, by considering external covariates, underlying drivers of group membership

are also found. In all cases, income and religion are found to be statically insignificant. On

the other hand, independence year and constraints placed on the executive at independence

seem to explain the underlying grouping structures quite well. Considering the significant coef-

ficients of cumulative income and the underlying determinants of the groups, both are important

determinants of democracy.
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5 Conclusion and Discussion

To conclude, this paper has studied the theory and algorithms of various models, discussed

their various uses and applied the methods to an empirical application. It considered the least

squares estimation of the GFE, IFE and the novel GIFE. The models all aim to model underlying

heterogeneity in panel data using unconventional methods to make better coefficient estimates.

The GFE considers underlying groups and the IFE considers common shocks and heterogeneous

reactions. The GIFE considers both types of effects in its estimations. The GIFE model aims

to add to the literature by considering both underlying groups and common shocks which affect

the whole sample space (with heterogeneous group-based reactions).

In Section 3, the methodology is discussed. First, the Group Fixed Effects model is detailed

in Section 3.1. Here, the formulae and model specifications are detailed. Then, the iterative

algorithms used to estimate this model are also specified. Here the Three-Step iterative GFE is

proposed as an algorithmic extension. A Monte Carlo simulation is also considered to test the

statistical properties of all the estimation models. Here, it is found that if speed is desired (in

cases where G, the number of groups is small), the GFE should be used. In the case where a large

G (number of groups) is postulated, the Three-step GFE is both quicker and makes equally good

(if not better) group membership estimates. In the following part of the methodology (Section

3.2), the Interactive Fixed Effects model and the Grouped Interactive Fixed Effects models

are considered. Once again, the model specifications, restrictions and estimation processes are

considered. To this end, this paper modifies the IFE estimation process to make estimates for the

GIFE (with known group membership). Integrating this process into a modified GFE algorithm

(this can be any one of the basic GFE, VNS or Three-Step Algorithms) leads to a complete GIFE

estimation process. Finally, a Monte Carlo simulation is considered to test the estimates of the

infeasible estimator (when group membership is known beforehand), where the method is shown

to be valid. These estimates are compared to the estimates of the complete GIFE estimation

algorithm (iterative process) to consider the accuracy of the complete estimation process. This

paper also studies the effect of model misspecification when making parameter estimates when

the underlying DGP follows the GIFE.

Finally, an empirical study is considered to apply the different methods considered in this

paper (Section 4). The main finding is that cumulative income does affect democracy hetero-

geneously in different groups (significant coefficients found in all cases). Furthermore, it is also

found that historical events (independence year and constraints at independence) can explain the

underlying groups which are found. Therefore, historical events indirectly also affect democracy.

The final point of discussion in this paper is the areas for further research. First of all, an

information criterion (to specify the number of groups and factors) and an analytical standard

error formula should be developed for the GIFE. An information criterion like Ando and Bai

(2016) should be considered for this use. Furthermore, covariates should be considered to explain

the common shocks and factor loadings of the GIFE (specifically in empirical studies like the

one considered in this paper). Further research should also develop more efficient algorithms to

estimate the GIFE.
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A Algorithms

A.1 Variable Neighborhood Search Algorithm

Algorithm 6 Variable Neighborhood Search

1: Initialization:

• Let (θ, α) ∈ Θ×AGT be some starting value.

• Perform one assignment step of Algorithm 1 and obtain an initial grouping γinit.

• Set itermax and neighmax to some desired values.

• Set j = 0.

• Set γ∗ = γinit.

• Set n = 1.

2: while n ≤ neighmax do
3: (Neighborhood jump) Relocate n randomly selected units to n randomly selected groups,

and obtain a new grouping γ′.
4: Perform one update step of Algorithm 1 and obtain new parameter values (θ′, α′).
5: Set (θ(0), α(0)) = (θ′, α′), and apply Algorithm 1.
6: (Local search) Starting from the grouping γ = {g1, . . . , gN} obtained in Step 4, system-

atically check all reassignments of units i ∈ {1, . . . , N} to groups g ∈ {1, . . . , G} (for g ̸= gi),
updating gi when the objective function decreases; stop when no further reassignment im-
proves the objective function.

7: Let the resulting grouping be γ′′.
8: if the objective function using γ′′ improves relative to the one using γ∗ then
9: Set γ∗ = γ′′ and go to Step 2.

10: else
11: Set n = n+ 1 and go to Step 7.
12: end if
13: end while
14: Set j = j + 1. If j > itermax, then Stop; otherwise go to Step 2.
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A.2 Three-Step GFE Heterogeneous Case

Algorithm 7 Three-Step Iterative GFE Algorithm, Heterogeneous coefficients case

1. Apply Algorithm 1 of Bonhomme and Manresa (2015):

(a) Initialize based on random or specific starting points and estimate:

yit = x′itθgi + αgit + ϵit

(b) After numerical convergence, store the sum of squared errors (SSE), parameters
(θ1, ..., θG, α), and group memberships gi for all i = 1, . . . , N .

2. Iterative Two-Step GFE (Bonhomme and Manresa, 2021):

(a) Define function hi for mapping underlying groupings:

hi(yi, x
′
i) = yi − x′iθ

Where:

yi =

yi1...
yiT

 , x′i =

x
′
i1
...

x′iT

 , θ =
G∑
i=1

number in gi
N

θgi

(b) Set iteration counter iter = 0 and neigh max to set the number of iterations.

3. Classification and Estimation Steps:

(a) Perform the classification step as per equation 4 from Bonhomme and Manresa (2021)
to update groupings gi for all i (this is Lloyd’s/K-means algorithm).

(b) Minimize SSE in the estimation step analogous to their equation 5:

(θ1, ..., θG, α) = arg min
θ,α∈Θ×AGT

N∑
i=1

T∑
t=1

(yit − x′itθgi − αgit)
2

4. Check for Improved SSE:

(a) If SSE is lower than the previous best, update stored (θ1, ..., θG, α) and gi for all i,
and go back to step 1 with these new values as initialization.

(b) Otherwise, if iter ≥ neigh max, end the search; else increment iter by 1, retain the
previous best (θ1, ..., θG, α), and return to step 3.

32



A.3 Interactive Fixed Effects Algorithm

Algorithm 8 Interactive Fixed Effects Estimation Algorithm

1. Initialization:

• Set s = 0.

• Initialize β(0) using the within-group estimator.

2. Compute Residuals:

• Set Wit = yit − x′itβ
(s).

This yields a pure factor model:
Wit = λ′

iFt + ϵit (21)

3. Principal Component Analysis:

• Apply Principal Component Analysis (PCA) on the factor structure to find the factor

loadings λ̂
(s)
i and common shocks F̂

(s)
t .

4. Update β:

• Considering λ̂
(s)
i and F̂

(s)
t as ”observable” at this stage, update β by applying Ordin-

ary Least Squares (OLS):

β(s+1) =

(
N∑
i=1

T∑
t=1

XitX
′
it

)−1( N∑
i=1

T∑
t=1

Xit

(
Yit − λ̂

(s)
i F̂

(s)′

t

))

5. Check Convergence:

• Stop if numerical convergence is achieved. Otherwise, set s = s + 1 and go back to
step 2.
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B Simulation Settings

B.1 Simulation Specifics For Algorithm Monte Carlo Simulation in Section

3.1.3

• for each Monte Carlo simulation of the 8 different experimental settings and each algorithm,

100 new datasets are generated.

• for each of the Monte Carlo iterations (new data set), the simple algorithm applies only

10 iterations of each algorithm. The best estimate of these 10 iterations (lowest SSR) is

used to collect all the necessary data.

– Ideally, at least 100 iterations would be performed per newly generated dataset for

each algorithm such that each algorithm is given a better chance to achieve its po-

tential. However, due to limitations in computational resources, these specifications

were used.

• For the pre-specified parameters of the algorithms, the VNS algorithm uses a constant

value of neighborhood search = 10 and a maximum of 10 iterations per neighbourhood

search. For the 3-step Iterative GFE, I allow for the neighborhood search parameter to

equal 30.
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C Programming code

C.1 GroupedInteractiveFixedEffects.ipynb

This file first downloads the data and preprocesses it (certain dictionaries and lists which are in-

puts to following methods). The main methods defined here are the IFE (which is retrieved from

a package) and a bootstrap for it. Then a intialisation process is programmed for the GIFE.

Afterwards, the GIFE for known group membership is coded using the GroupedInteractive-

FixedEffects class. This class contains an important fit method which repurposes the IFE code

from the package to make its estimations. Afterwards, I also have methods to run a repurposed

version of Basic GFE algorithm and the Three Step Iterative algorithm (called iterative part()

method) for the GIFE estimation. Finally some plots are made for the GIFE method in the

in the empirical application and a bootstrapping is used for standard errors. Finally, a Monte

Carlo Simulation is also considered.

C.2 GIFEHeterogeneous.ipynb

This does the same thing as the regular grouped interactive fixed effects method, but with

heterogeneous coefficients.

C.3 MyAlgoWithImprovementsHeterogeneous.ipynb

Estimates the heterogeneous counterpart to the GIFE (similar code).

Also includes the Monte Carlo Simulation of the GIFE when GIFE is the right DGP.

C.4 MyAlgoWithImprovements.ipynb

Estimates the homogeneous counterpart of the GFE to the GIFE (similar code).

Also includes the Monte Carlo Simulation of the GFE when GIFE is the right DGP.

C.5 IncorrectIFE.ipynb

Monte Carlo simulation of the IFE model when the GIFE is the correctly specified underlying

DGP.

C.6 Algorithm2ImprovedEfficiency.ipynb

Variable neighborhood search algorithm for the homogeneous GFE case.

C.7 Logit.ipynb

In this program, I estimate the multinomial logit regressions of the empirical application. I have

hard-coded the group memberships after estimating these from their respective files. The data

used here are the covariates collected from Bonhomme’s website.
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