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Abstract

Previous research has introduced the Driver and Vehicle Routing Problem (DVRP). In

routing problems it is generally assumed that drivers use one vehicle for their entire route.

The DVRP is different in the fact that drivers return to their home depot at the end of the

day, while the vehicles should end at another depot. Solving this problem to optimality can

only be done for small instances and therefore previous research has implemented a multistart

heuristic that is able to find optimal solutions efficiently. This paper aims to find a heuristic

that is not only able to find a quick solution for the Driver and Vehicle Routing Problem

(DVRP), but can also improve the exchange and depot locations. These improved exchange

and depot locations are customer locations that give lower total costs when they are used as

exchange and depot locations compared to the original exchange and depot locations. First,

the multistart heuristic is implemented. Then, an extra step in the heuristic is introduced

that can find better exchange and depot locations. The results show that the objective values

can be significantly decreased while barely adding to the computation times for most of the

instances. Furthermore, two different starting exchange locations were used for the adjusted

heuristic. However, while these starting exchange locations often give different solutions, not

one of them consistently outperforms the other when looking at the computation times or

the objective values.

1 Introduction

The scheduling of drivers and vehicles has been a longstanding issue that has multiple different

applications. First of all, there is the well-known case of packages that need to be delivered to

customers. Then, there are also other applications such as transporting big loads using trucks

or the scheduling of planes and crews for air transport. All these cases have slightly different

characteristics and therefore need different formulations and heuristics. The problem that we

will discuss in this paper is the Driver and Vehicle Routing Problem (DVRP). This problem

differs from the classical Vehicle Routing Problem (VRP). In the VRP, there is only one depot

and it is assumed that the vehicles’ routes start and end at the single depot. Furthermore, each

vehicle is driven by only one driver for the entire route.

The DVRP was introduced by Domı́nguez-Mart́ın, Rodŕıguez-Mart́ın and Salazar-González

(2018a) and is defined as follows. There are two depots and a set of customers. At each of the

depots, a given number of drivers and vehicles is based. The drivers must start and end their

routes at the same depot, while vehicles must start their routes at one depot and end at the

other depot. A vehicle must always be driven by a driver and a driver needs a vehicle to get from

one location to another. This can be as driver or as passenger. When there are multiple drivers

in one vehicle, any one of them can drive the vehicle. The routes of the driver may not exceed a

given time duration. The duration of a drivers’ route is the time between the departure from the

base depot and the arrival at the base depot and this includes both the time as a driver and as a

passengers. Since the drivers have to return to the same depot they left from, but vehicles have

to go to the other depot, there has to be a location where drivers can switch vehicles. This is

the exchange location, and these are the only customer locations that can be visited more than

once. All the other customer locations must be visited exactly once. The objective of the DVRP

is to find a feasible set of drivers’ and vehicles’ routes such that the total cost is minimized.
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The DVRP is based on different problems considered in real life. It takes its main inspiration

from the air transportation in the Canary Islands (Salazar-González, 2014). The Canary Islands

have two main airports, Tenerife North and Las Palmas, and multiple smaller airports. There are

flights in between all airports, but the crews of the aircrafts must return to their base airport in

order to avoid costs of hotels. The aircrafts, however, have to end their route at another airport

than they started from because of maintenance operations. These maintenance operations can

only be performed at Las Palmes and take place every other day.

The DVRP can also be used in long-distance ground transportation. Traditionally, drivers

would transport their cargo from origin to destination. However, because of this, they were

often away from home for quite a long time and this causes a high rate of driver turnover as

mentioned by Üster and Kewcharoenwong (2011) and Vergara and Root (2013). Therefore, they

propose a dispatching method with relay points. These relay points are locations where drivers

can switch vehicles. This allows them to get home sooner, while their cargo still reaches the

destination.

This paper builds upon the paper of Domı́nguez-Mart́ın, Rodŕıguez-Mart́ın and Salazar-

González (2023) who proposed a heuristic for the DVRP. This heuristic considers the case

where there is one exchange location and is able to solve the DVRP for instances with up to

1000 locations (998 customers and 2 depots). In the first phase of the heuristic, the algorithm

tries to find drivers’ routes for a given set of drivers leaving from each depot. The second phase

of the algorithm then creates vehicles’ routes that are compatible with the best found drivers’

routes.

A major drawback of the paper of Domı́nguez-Mart́ın et al. (2023) is that they generate

all locations randomly. This also includes the depots and the exchange location. As a result,

the exchange location and the depots might not be located in the optimal locations. This

can results in costs that are higher than in the optimal situation. Therefore, it would be

interesting to research if another exchange location and depot locations can result in better

objective values. In this paper, an extra step in the heuristic is proposed that is able to find

a better exchange location and depot locations while barely increasing the calculation times.

This can help organizations with locating better locations for the exchange and depot locations

and thus reducing their total costs. The new exchange and depot locations are chosen from

the set of customer locations. Results show that for approximately 93% of the instances, the

solution can be improved and that the total costs can be decreased up to 56.53%. Furthermore,

for instances with up to problem size 400, better solutions can be found in a couple of seconds.

For larger problem sizes, finding better exchange and depot locations can result in significantly

higher computation times.

The remainder of this paper is organized as follows. Section 2 discusses the related literature.

Then, the problem description is given in Section 3, while the methodology is described in Section

4. The numerical results are given in Section 5. Lastly, the conclusion and ideas for further

research are given in Section 6.
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2 Literature Review

The DVRP is a routing problem with more than one depot. It was first introduced by Domı́nguez-

Mart́ın et al. (2018a). In this paper, the authors give a mathematical formulation of the problem.

Furthermore, they introduce a branch-and-cut algorithm that is able to solve the problem to

optimality. However, this is only possible for small instances up to 30 locations (28 passengers

and 2 depots). Domı́nguez-Mart́ın, Rodŕıguez-Mart́ın and Salazar-González (2018b) propose a

heuristic to solve the problem in the case that there is one exchange location. In this particular

case we can assume that drivers and vehicles arrive at the exchange location simultaneously since

drivers and vehicles can leave and enter a depot when it is convenient for them. This heuristic

consists of two phases. In the first phase, the problem of planning the routes of the drivers is

modeled as an Integer Linear Programming problem. This is then solved using a branch-and-cut

algorithm. Afterwards, in phase two the routes for the vehicles are made based on the routes

that were found for the drivers. This heuristic is able to find solutions for instances with a

maximum of 50 locations (48 customers and 2 depots).

Another heuristic for the DVRP is introduced by Domı́nguez-Mart́ın et al. (2023). In this

paper, a heuristic algorithm is proposed that is more efficient than the heuristic of Domı́nguez-

Mart́ın et al. (2018b). Similar to that heuristic, this heuristic algorithm first finds feasible routes

for the drivers in phase one and then finds the routes for the vehicles and considers the case

where there is only one exchange location. However this is no longer done using a Integer Linear

Programming and a branch-and-cut algorithm. Domı́nguez-Mart́ın et al. (2023) find feasible

routes for the drivers by building the routes of the drivers iteratively using a random procedure

in an inner multistart loop. These routes are improved using local search and the best feasible

set of routes is kept. Phase two then finds the vehicle routes based on the best found solution.

This heuristic is able to find solutions for instances with up to 1000 locations (998 customers

and 2 depots).

Because the DVRP considers two depots, it is closely related to the Multi-Depot Vehicle

Routing Problem (MDVRP). Since in the DVRP, the vehicles have to end at another depot,

it is especially similar to the MDVRP with inter-depot routes that was first introduced by

Crevier, Cordeau and Laporte (2007). In this case, vehicles are allowed to start and end at

the same depot, but also to start and end at different depots. The MDVRP is a very complex

problem and therefore there have been multiple heuristics proposed. There have for example

been multiple papers that discuss genetic algorithms to solve the MDVRP. Ho, Ho, Ji and

Lau (2008) introduce two genetic algorithms. The first algorithm generates the initial solutions

randomly, while the second algorithm incorporates the Clarke and Wright saving method and

the nearest neighbour heuristic for the initialization procedure. In their paper, they prove that

the second algorithm is superior to the first one. The paper of Surekha and Sumathi (2011)

also considers a genetic algorithm. In their algorithm, they first group customers based on the

distance to their nearest depot. Then, the customers are routed using the Clarke and Wright

saving method. An elaborate research of genetic algorithms for the MDVRP has been done by

Karakatič and Podgorelec (2015).

Finding the optimal exchange and depot locations in the MDVRP has never been investigated

before. Since it also not a part of other vehicle routing problems, it has a closer resemblance
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with the (uncapacitated) facility location problem. The facility location problem is the problem

of placing a facility in a location such that the total cost is minimized. The total cost consists

of the costs of opening the facilities and serving all the customers from the open facilities. A

hybrid multistart heuristic for this problem is introduced by Resende and Werneck (2006). This

heuristic is able to find solutions that are either optimal or very close to the optimal value.

Avella, Boccia, Sforza and Vasil’ev (2009) also propose a heuristic to solve the facility location

problem. Their heuristic is based on Lagrangean relaxation which is used to find a subset of

variables that form the core problem. Then a branch-and-cut algorithm is used to solve this core

problem. This heuristic is also able to find optimal solutions or solutions that are very close to

the optimal value.

3 Problem Description

The DVRP can be defined on a complete directed graph G = (V,A) where V = {0, ..., n+ 1} is
the set of locations. This set V is defined as D∪C, where D = {0, n+1} is the set of depots and
C = {1, ..., n} is the set of customers. The exchange location is denoted by e and is customer n.

This is the only customer location where vehicles can be exchanged and it must be visited by

all the drivers and vehicles. All the other customer locations must be visited exactly once. The

set A is the set of arcs and is defined as A = {(i, j) : i, j ∈ V, i ̸= j}. For any subset of locations

S ⊆ V , δ+(S) = {(i, j) ∈ A : i ∈ S, j ̸∈ S} and δ−(S) = {(i, j) ∈ A : i ̸∈ S, j ∈ S}. Furthermore,

Kd is the set of available drivers at depot d and Ld is the set of available vehicles at depot d.

The cost of an arc (i, j) ∈ A is denoted by cij and the time needed to traverse this arc is given

by tij . The total time of the route of a driver cannot exceed a given time limit T . There is no

maximum time for the route of a vehicle. All vehicles start at one depot and end at the other

depot, while drivers must start and end at the same depot. Furthermore, all vehicles must be

driven by a driver, and a driver needs a vehicle to get from one place to another. The objective

of the DVRP is to find feasible routes for both the drivers and vehicles such that all customers

are visited and the total cost is minimized. A complete mathematical formulation of the DVRP

can be found in the paper of Domı́nguez-Mart́ın et al. (2018a).

4 Methodology

In this section, the methodology will be discussed. First of all, Section 4.1 will discuss the

Multistart Heuristic Algorithm as proposed by Domı́nguez-Mart́ın et al. (2023). Then, an extra

step in the heuristic is introduced in Section 4.2 that is able to find better exchange and depot

locations.

4.1 Multistart Heuristic Algorithm

The heuristic as introduced by Domı́nguez-Mart́ın et al. (2023) can be found in Algorithm 1. The

DVRP with one exchange location can be solved using this heuristic. The heuristic algorithm

consists of two phases. In the first phase, the drivers’ routes are generated using a multistart

procedure. In each iteration, routes for the drivers are generated using an iterative procedure.
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These routes are then improved using local search. In the second phase, the routes for the

vehicles are generated based on the best found drivers’ routes. The general algorithm works

as follows. The algorithm tries to find a solution within a given time limit. The number of

drivers k leaving from each depot is initialized to 1. The algorithm then tries to find a feasible

solution for the drivers’ routes and tries to improve this using local search. The best solution

that is also feasible is kept. If the algorithm is not able to find a feasible solution, the number

of drivers k at each depot and the number of multistart iterations are increased by 1. Then it

restarts the multistart loop. This continues until a set of feasible drivers’ routes has been found,

until the time limit has been passed or until the number of drivers leaving from each depot

exceeds the maximum number of drivers allowed. When the best feasible drivers’ routes have

been constructed, the routes of the vehicles are created in such a way that they are compatible

with the drivers’ routes. Important to note is that in this heuristic, we assume that the number

of drivers leaving from the depots is the same and that there is a unique exchange location. As a

result the total cost of the problem is equal to the total distance driven by the drivers. Finding

the routes for the vehicles is therefore also straightforward after the best feasible drivers’ routes

have been found.

Algorithm 1 Multistart heuristic for the DVRP

Input: instance data and parameters timeLim and maxIter

Output: drivers’ routes S∗, vehicles’ routes R∗, and solution value f∗

f∗ ←∞, S∗ ← ∅, nDrivers← 1

while time ≤ timeLim & not feasible solution S∗ found & nDrivers ≤ maxDrivers do

nIter ← 1

while time ≤ timeLim & nIter ≤ maxIter do

{multistart loop}
S ← ConstructGreedySol(nDrivers)

S ← LocalSearch(S)

if S is feasible & f(S) < f∗ then

S∗ ← S

f∗ ← f(S)

end if

nIter ← nIter + 1

end while

if not feasible solution S∗ found then

nDrivers← nDrivers+ 1

end if

end while

if S∗ ̸= ∅ then
R∗ ← ConstructVehicleRoutesFromDriverRoutes(S∗)

end if

return S∗, R∗, and f∗
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4.1.1 Construction of the Drivers’ Routes

In this section the algorithm that builds the drivers’ routes is explained. These routes are made

for a fixed number of drivers k from each depot, where k ≤ |Kd| for all d ∈ D. The sequence of

locations (nodes) that define the route of driver l whom departs from depot d is denoted by Sl
d

where l ∈ {1, ..., k} and d ∈ D. S is denoted as the set of all drivers’ routes in a DRVP solution,

thus S = ∪d∈D ∪kl−1 S
l
d. All routes in S are initialized as Sl

d = {d, e, d}, since the routes of a

driver start and end at the same depot and they have to visit the exchange location at some

point in the route so they can switch vehicles. Then the routes are expanded in an iterative way

until all customers are included in S. In each iteration, a random customer i ∈ V that is not yet

included in S is inserted into one of the routes in S. This is done by using a cheapest insertion

strategy. In this strategy, we look for two consecutive locations (nodes) u, v in a driver route in

S. If cui+ civ− cuv is minimal and the duration bound T is not exceeded, customer i is inserted

in between customers u and v. Otherwise, customer i is inserted in the shortest route. This is

again done by using the cheapest insertion criterion.

4.1.2 Improvement of the Drivers’ Routes

After creating the drivers’ routes, the drivers’ routes are improved by first using inter-route

customer relocation local search en then using a 2-opt local search.

The inter-route customer relocation local search works as follows. First, a random customer

in the solution S is chosen and removed from its current driver route. This customer is then

inserted in a different driver route using the cheapest insertion criterion. This means that all

other routes in S are examined. The route where the customer can be inserted while produ-

cing the minimum cost increment is the route where the customer is inserted. This is applied

iteratively as long as the solution S improves. This thus ends in a local minimum.

Then the 2-opt local search method is applied. This method is applied to every driver route

in S and works as follows. In each route, two arcs are deleted and two other arcs are added in

order to reconnect it. This is repeated as long as the total cost decreases.

4.1.3 Stopping Criterion and Checking Feasibility

The most important part of the heuristic is the loop that generates the drivers’ routes. These

routes are created for a given number of drivers that leave from each depot and this number is

initialized to 1. This loop keeps on repeating until a feasible set of routes for the drivers are

found, the time limit is reached, or the maximum number of drivers that is allowed at each

depot is reached. In each iteration of the main loop, an inner multistart loop is executed which

produces the drivers’ routes, improves these drivers’ routes and checks the feasibility of these

drivers’ routes. A set S of drivers’ routes is feasible if the duration of every route in S does not

exceed the duration limit T . The best set S that is also feasible is used to build the routes of the

vehicles and returned. If at the end of the multistart loop, no feasible set S has been found, the

number of drivers leaving from each depot is increased by one and the main loop is performed

again.
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4.1.4 Generating Vehicles’ Routes

After the best set S of feasible drivers’ routes has been found, the routes for the vehicles are

created. This is done in the same was as described in Domı́nguez-Mart́ın et al. (2018b). If a

driver k ∈ Kd traverses arc (d, i) ∈ δ+(d), then a vehicle departs from depot d using that arc.

This vehicle then follows the route of the driver until it reaches the exchange location. From

the exchange location, the vehicle follows the route of a driver k′ ∈ Kd′ to the other depot d′.

When all arcs in δ+(d) have been processed, it needs to be checked if the number of vehicles that

depart from depot d is equal to the number of different arcs that are used by drivers to enter d′.

If this is equal to each other, then this means that no more vehicles need to leave from depot d.

Otherwise, it means that there is a driver k′ ∈ Kd′ going to depot d′ from the exchange location

without a vehicle. In order to correct this, an extra vehicle should be taken to the exchange

location from d following the route of an existing driver that is currently not leading any other

vehicle. From the exchange location on, it follows the route of driver k′ to depot d′. After doing

the same for the arcs δ+(d′), we have a set of feasible vehicles’ routes that is compatible with

the best set of drivers’ routes S.

4.2 Exchange Location and Depot Heuristic

In this section, we will introduce extra steps in the heuristic that are able to find locations

for the exchange location and the depots that result in a better objective value. First, the

algorithm as described in Section 4.1 is used until the point is reached where the vehicles’ routes

are constructed. Before the routes of the vehicles are constructed, we will first try to find a

better exchange location. If a better exchange location is found, the exchange location, the

drivers’ routes and the objective value are changed accordingly. The method that will be used

for improving the exchange location is described in Section 4.2.1. Afterwards, a better location

for d1 and d2 are found using the method described in Section 4.2.2. This is first done for

d1 and then for d2, where d1 is the first depot that was generated (location 0) and d2 is the

second depot that was generated (location n + 1). The exchange location and depot locations

are adjusted in this order for as long as at least one of them is adjusted. When there is no longer

an improvement in the objective value, the loop stops and the vehicles’ routes are constructed

such that they are compatible with the best drivers’ routes found. The adjusted heuristic can

be found in Algorithm 2.
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Algorithm 2 Adjusted Multistart heuristic for the DVRP with exchange location and depots

Input: instance data and parameters timeLim, maxIter and p

Output: exchange location e∗, depot 1 d∗1, depot 2 d∗2, drivers’ routes S
∗, vehicles’ routes R∗,

and solution value f∗

f∗ ←∞, S∗ ← ∅, nDrivers← 1, e∗ ← starting exchange location, d∗1 ← d1, d
∗
2 ← d2

while time ≤ timeLim & not feasible solution S∗ found & nDrivers ≤ maxDrivers do

nIter ← 1

while time ≤ timeLim & nIter ≤ maxIter do

{multistart loop}
S ← ConstructGreedySol(nDrivers)

S ← LocalSearch(S)

if S is feasible & f(S) < f∗ then

S∗ ← S

f∗ ← f(S)

end if

nIter ← nIter + 1

end while

if not feasible solution S∗ found then

nDrivers← nDrivers+ 1

end if

end while

if S∗ ̸= ∅ then
while Solution improves do

f∗, S∗, e∗ ← FindBetterExchangeLocation(S∗)

f∗, S∗, d∗1 ← FindBetterDepotLocation(S∗, d∗1)

f∗, S∗, d∗2 ← FindBetterDepotLocation(S∗, d∗2)

end while

R∗ ← ConstructVehicleRoutesFromDriverRoutes(S∗)

end if

return S∗, R∗, f∗, e∗, d∗1 and d∗2

4.2.1 Improvement of the Exchange Location

In order to improve the exchange location, a random customer location that is at most distance

p from the current exchange location is assigned to be the new exchange location. Then, all

the constructed drivers’ routes are adjusted. The route that already contains the new exchange

location stays the same. In all of the other routes the old exchange location is removed and the

new exchange location is inserted using the cheapest insertion criterion. Afterwards, the local

search method as described in Section 4.1.2 is used again to improve the driver’s routes. If this

results in a better objective value than for the drivers’ routes with the old exchange location and

the new routes are feasible, the new exchange location is assigned to be the current exchange

location. Then we will look again for a new exchange location that is at most distance p from

this newly assigned exchange location and has not been considered before as exchange location.
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Local search will then be used again to improve these routes and the objective value is compared

to the old objective value. If there are no more available customer locations, the loop stops.

4.2.2 Improvement of the Depot Location

Improving the depot locations is done in a similar way as improving the exchange location. First,

a random customer location that is at most distance p from the current depot is assigned to be

the new depot. Then, all the drivers’ routes are adjusted. The new depot location is removed

from its current route and replaces the old depot at the beginning and end of its routes. The

old depot is then inserted in a route using the cheapest insertion criterion. The new routes are

then improved using the local search method.

If this results in a better objective value than for the drivers’ routes with the old depot

location and the new routes are feasible, the new depot location is assigned to be the current

depot location. Then we will look again for a new depot location that is at most distance p from

this newly assigned depot location and has not been considered before as depot location. Local

search will then be used again to improve these routes and the objective value is compared to

the old objective value. The loop stops if there are no more available customer locations.

5 Numerical Results

The algorithms described in Section 4 were programmed in Java and executed on a laptop with

an AMD Ryzen 5 5500U, 2.10 GHz, 16 GB RAM and Windows 11 Home. Three different sets

of instances are used for the computational experiments. These are the same sets that were also

used in the paper of Domı́nguez-Mart́ın et al. (2023). For all of these instances, the costs cij

represent the Euclidean distance between location i and location j. The time needed to travel

from location i to location j is defined as tij =
cij
60 + 0.5.

The first set (Class I ) consists of randomly generated instances with coordinates of the

locations in the square [0, 100]×[0, 100]. The size of these instances are n+2 ∈ {10, 15, 20, 25, 30}.
The first and last generated locations are d1 and d2 respectively. Locations 1 to n are customers

locations and location n is also the exchange location. There are 25 instances in total, 5 for every

problem size. Furthermore, the parameter T takes four different values denoted by TA, TB, TC

and TD, where TA is generally the tightest bound that allows a feasible solution and TD is the

largest bound.

The second set (Class II ) consists of 16 instances with each 50 locations. The exchange

location is randomly generated in the [40, 60]× [0, 100], while d1 and d2 are randomly generated

in [0, 20] × [0, 100] and [80, 100] × [0, 100] respectively. All the other customer locations are

randomly generated in [0, 100]× [0, 100]. The time bound of the drivers’ routes is set to T = 18

for all of these instances.

The last set of instances (Class III ) consists of large instances with

n+ 2 ∈ {100, 200, 300, 400, 500, 600, 800, 1000}. Five instances were generated for each of these

problem sizes. All of the locations are randomly generated in the same way as Class II. Just

like for Class I, the drivers’ time bound takes four different increasing values which are again

denoted by TA, TB, TC and TD.
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The heuristic algorithm was run with a time limit of 600 seconds on every instance (parameter

timeLim in Algorithm 1). This is the same time limit as was used in Domı́nguez-Mart́ın et al.

(2023). However, because the algorithm was not able to find a feasible solution for some of the

Class III instances within this time limit, we have continued running the algorithm for these

instances until a feasible solution was found. Furthermore, we have set the parameter maxIter

equal to 100,000 which is the same as in the paper of Domı́nguez-Mart́ın et al. (2023).

Section 5.1 will give the results for the multistart heuristic as described in Section 4.1. The

results for the adjusted heuristic algorithm that was described in Section 4.2 can be found in

Sections 5.2. The data that are displayed in the columns are:

• Name: Instance name.

• n+ 2: Instance size.

• T : Drivers’ routes time limit.

• Sol: Objective value.

• Drivers: Number of drivers leaving from each depot.

• Time: Computing time in seconds.

5.1 Multistart Heuristic

The results for Class I for the multistart heuristic can be found in Table 1. Bigger instances

generally result in higher objective values and higher computation times. Furthermore, as the

time bound of the drivers’ routes gets bigger, the computation time generally decreases. A

reason for this, is that with larger time bounds for the drivers’ routes, drivers are able to visit

more customer and fewer drivers are needed. As a result, the heuristic algorithm performs less

iterations and this results in a shorter computation time. Moreover, because fewer drivers are

needed, the objective value also decreases when the drivers’ time bound increases. These results

are very similar to the results in Domı́nguez-Mart́ın et al. (2023). However, sometimes the

objective values differ slightly and our computation times are higher.
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Name n+ 2 TA TB TC TD

T Sol Drivers Time T Sol Drivers Time T Sol Drivers Time T Sol Drivers Time

n10-1 10 6 654 2 3.43 7 443 1 1.86 8 411 1 2.72 10 371 1 1.27

n10-2 10 5 486 2 3.45 6 293 1 0.63 7 293 1 0.65 10 293 1 1.01

n10-3 10 5 987 3 4.58 6 646 2 2.07 7 390 1 0.98 10 383 1 0.79

n10-4 10 5 611 2 2.94 6 533 2 2.22 7 384 1 0.70 10 383 1 0.61

n10-5 10 5 594 2 3.04 6 366 1 0.65 7 355 1 1.15 10 351 1 0.71

n15-1 15 6 456 2 5.71 8 349 1 2.64 9 349 1 3.90 12 302 1 2.35

n15-2 15 6 746 2 4.19 8 412 1 1.29 9 405 1 1.64 12 405 1 1.47

n15-3 15 6 660 2 4.69 8 441 1 1.26 9 387 1 1.69 12 387 1 1.59

n15-4 15 6 1093 3 8.94 8 715 2 5.06 9 498 1 1.30 12 460 1 2.47

n15-5 15 6 788 2 3.99 8 749 2 4.11 9 473 1 1.50 12 469 1 1.50

n20-1 20 7 1262 3 13.64 9 844 2 10.06 10 559 1 3.44 14 521 1 5.77

n20-2 20 7 667 2 6.64 9 613 2 8.78 10 441 1 3.28 14 402 1 3.49

n20-3 20 7 846 2 4.87 9 757 2 9.09 10 540 1 2.41 14 508 1 4.18

n20-4 20 7 602 2 8.39 9 582 2 8.31 10 448 1 3.10 14 417 1 2.64

n20-5 20 7 651 2 7.20 9 538 2 8.82 10 434 1 3.09 14 409 1 4.72

n25-1 25 8 719 2 12.90 10 708 2 13.98 11 501 1 4.23 16 483 1 4.18

n25-2 25 8 796 2 7.97 10 699 2 14.27 11 510 1 3.43 16 486 1 6.54

n25-3 25 8 601 2 13.71 10 553 2 12.76 11 436 1 3.47 16 402 1 3.83

n25-4 25 8 686 2 13.19 10 681 2 12.82 11 470 1 3.48 16 456 1 3.54

n25-5 25 8 724 2 11.57 10 692 2 12.70 11 494 1 3.43 16 454 1 3.59

n30-1 30 9 887 2 12.02 12 816 2 21.69 13 628 1 4.78 18 582 1 10.75

n30-2 30 9 852 2 15.61 12 827 2 20.49 13 561 1 4.51 18 553 1 7.05

n30-3 30 9 812 2 18.37 12 797 2 19.40 13 507 1 4.51 18 487 1 3.88

n30-4 30 9 721 2 12.74 12 663 2 21.80 13 536 1 4.40 18 495 1 9.43

n30-5 30 9 750 2 18.12 12 732 2 20.50 13 495 1 4.86 18 492 1 8.73

Table 1: Results for Class I instances

Table 2 shows the results for the instances of Class II. These results show even more clearly

that when the number of drivers increases, so does the computation time. Furthermore, when

the number of drivers leaving from each depot is equal to one, the objective value is either high in

the 500s or low in the 600s. However, when the number of drivers increases to two, the objective

value is either high in the 700 or low in the 800. This clearly shows that an increase in drivers

leads to a higher objective value and thus more costs. Similar to the results of Class I, the

obtained results show a lot of resemblance with the results of Domı́nguez-Mart́ın et al. (2023),

except for the fact that our computation times are longer. Furthermore, while Domı́nguez-

Mart́ın et al. (2023) is able to find solutions with one driver per depot for n50-5 and n50-10, our

heuristic is not able to do this. This results in a higher objective value and longer computation

times. However, this is possible because of the randomness in the heuristic. Running the

heuristic again or increasing the number of iterations could result in similar objective values.
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Name n+ 2 Sol Drivers Time

n50-1 50 608 1 11.26

n50-2 50 591 1 10.59

n50-3 50 593 1 10.62

n50-4 50 597 1 10.76

n50-5 50 757 2 60.42

n50-6 50 585 1 10.86

n50-7 50 551 1 11.05

n50-8 50 591 1 10.89

n50-9 50 607 1 11.00

n50-10 50 788 2 44.46

n50-11 50 603 1 10.82

n50-12 50 628 1 10.75

n50-13 50 786 2 60.94

n50-14 50 618 1 11.41

n50-15 50 813 2 44.66

n50-16 50 615 1 11.38

Table 2: Results for Class II instances with T = 18

The results for Class III can be found in Table 3. Just like for the results for Class I, it is

clear that the computation times decrease when the drivers’ time bound increases. Furthermore,

while the algorithm is able to find optimal solutions within the time limit for instances with

a problem size of 100 and for a few instances with a problem size of 200, it is not able to do

this for larger instances, because the time limit is reached. When the problem sizes are 300 or

larger and the time bound for the drivers’ routes is tight, the heuristic is not able to find feasible

solutions within the time limit. In this case the first feasible solution is returned and therefore

these results can vary quite a bit from the results from Domı́nguez-Mart́ın et al. (2023)
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Name n+ 2 TA TB TC TD

T Sol Drivers Time T Sol Drivers Time T Sol Drivers Time T Sol Drivers Time

n100-1 100 15 1091 3 343.50 20 888 2 239.49 30 884 2 152.41 40 745 1 79.81

n100-2 100 15 1232 3 324.71 20 969 2 221.01 30 960 2 169.48 40 795 1 73.84

n100-3 100 15 1054 3 350.44 20 890 2 248.63 30 848 2 272.18 40 770 1 108.84

n100-4 100 15 1173 3 336.88 20 942 2 232.44 30 934 2 207.09 40 766 1 64.43

n100-5 100 15 1152 3 347.50 20 950 2 240.92 30 915 2 312.35 40 788 1 109.50

n200-1 200 25 1474 3 600.00 35 1251 2 600.00 50 1197 2 600.00 60 1150 1 220.73

n200-2 200 25 1470 3 600.00 35 1299 2 600.00 50 1222 2 600.00 60 1154 1 220.29

n200-3 200 25 1443 3 600.00 35 1248 2 600.00 50 1208 2 600.00 60 1196 2 600

n200-4 200 25 1431 3 600.00 35 1227 2 600.00 50 1223 2 600.00 60 1145 1 213.28

n200-5 200 25 1426 3 600.00 35 1237 2 600.00 50 1213 2 600.00 60 1158 1 218.79

n300-1 300 35 1885 3 1147.94 45 1797 3 1155.03 70 1588 2 600.00 90 1407 1 600.00

n300-2 300 35 2007 3 1163.06 45 1919 3 1154.88 70 1746 2 600.00 90 1359 1 600.00

n300-3 300 35 1819 3 1161.87 45 1937 3 1150.26 70 1517 2 600.00 90 1360 1 600.00

n300-4 300 35 1957 3 1161.85 45 1938 3 1154.73 70 1566 2 600.00 90 1424 1 600.00

n300-5 300 35 1921 3 1162.44 45 1782 3 1154.91 70 1634 2 600.00 90 1355 1 600.00

n400-1 400 45 2168 3 1767.60 55 2127 3 1788.65 90 1804 2 600.00 115 1599 1 600.00

n400-2 400 45 2235 3 1768.21 55 2130 3 1770.01 90 1844 2 600.00 115 1569 1 600.00

n400-3 400 45 2215 3 1765.48 55 2124 3 1762.25 90 1809 2 600.00 115 1603 1 600.00

n400-4 400 45 2277 3 1774.11 55 2282 3 1765.75 90 1962 2 600.00 115 1605 1 600.00

n400-5 400 45 2285 3 1778.92 55 2214 3 1798.10 90 1956 2 600.00 115 1637 1 600.00

n500-1 500 55 2501 3 2924.48 65 2299 3 2923.74 110 1887 2 600.00 140 1917 2 600.00

n500-2 500 55 2580 3 2953.46 65 2386 3 2923.79 110 2219 2 600.00 140 2058 2 600.00

n500-3 500 55 2419 3 2930.89 65 2375 3 2922.18 110 2057 2 600.00 140 2189 2 600.00

n500-4 500 55 2466 3 2953.77 65 2432 3 2925.96 110 2251 2 600.00 140 2108 2 600.00

n500-5 500 55 2312 3 2958.01 65 2357 3 2928.73 110 2217 2 600.00 140 1915 2 600.00

n600-1 600 65 2525 3 5127.86 115 2344 2 600.00 155 2203 2 600.00 205 1982 1 600.00

n600-2 600 65 2608 3 5116.94 115 2186 2 600.00 155 2296 2 600.00 205 1961 1 600.00

n600-3 600 65 2772 3 5163.11 115 2331 2 600.00 155 2075 2 600.00 205 1976 1 600.00

n600-4 600 65 2579 3 5121.32 115 2447 2 600.00 155 2042 2 600.00 205 1922 1 600.00

n600-5 600 65 2358 3 5145.57 115 2263 2 600.00 155 2173 2 600.00 205 2020 1 600.00

n800-1 800 85 2788 3 11868.64 135 2477 2 600.00 175 2478 2 600.00 225 2308 1 600.00

n800-2 800 85 2977 3 12113.01 135 2787 2 600.00 175 2695 2 600.00 225 2303 1 600.00

n800-3 800 85 2817 3 12243.97 135 2495 2 600.00 175 2392 2 600.00 225 2306 1 600.00

n800-4 800 85 2980 3 12078.07 135 2465 2 600.00 175 2412 2 600.00 225 2298 1 600.00

n800-5 800 85 2865 3 12146.54 135 2657 2 600.00 175 2352 2 600.00 225 2258 1 600.00

n1000-1 1000 105 3270 3 22890.15 155 3030 2 600.00 205 2766 2 600.00 275 2580 1 600.00

n1000-2 1000 105 3587 3 23526.60 155 2781 2 600.00 205 2808 2 600.00 275 2606 1 600.00

n1000-3 1000 105 3427 3 22903.68 155 2950 2 600.00 205 2957 2 600.00 275 2537 1 600.00

n1000-4 1000 105 3246 3 22859.86 155 2840 2 600.00 205 2827 2 600.00 275 2533 1 600.00

n1000-5 1000 105 3144 3 25031.49 155 2846 2 600.00 205 3057 2 600.00 275 2547 1 600.00

Table 3: Results for Class III instances

5.2 Exchange Location and Depot Heuristic

In this section the results for the adjusted heuristic that tries to find better exchange and depot

locations are given. First, this was tried for the instances in Class I for three different p values,

two time bounds for the drivers T and the two starting exchange locations which will be denoted

by e. The different p values that will be used are 10, 25 and 50. These were chosen to assess the

difference in the objective values and the difference in the computation times. The time bounds

for the drivers’ routes that will be used are TA and TD that were also used in Table 1.

There are two locations that will be used as starting exchange location. First of all, the

exchange locations as created by Domı́nguez-Mart́ın et al. (2023) will be used as starting ex-

change location and is denoted by original. Secondly, the location that is exactly in between

the two depots is calculated. Then, the customer location that is the closest to this location is

chosen to be the starting exchange location. If multiple customer locations are located at an
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equal distance from this location, one of these customer locations is picked at random as the

starting exchange location. This starting exchange location is denoted by middle.

The tables will now contain some extra information. The extra data that are displayed in

the columns are:

• Gap: Percentage deviation between the adjusted heuristic objective value and the multistart

heuristic objective value. It is calculated as Sol adjusted heuristic−Sol multistart heuristic
Sol multistart heuristic × 100.

• e∗: Best found exchange location.

• d∗1: Best found location for depot d1.

• d∗2: Best found location for depot d2.

A negative value for gap means that the adjusted heuristic is able to find a better exchange

location and/or depot locations that result in a better objective value. When the gap is equal to

zero, the adjusted heuristic is not able to find a better exchange location and depot locations and

this means that we have found a (local) optimum. It is also possible for the gap to be positive.

This can happen when the best solution found after running the multistart heuristic part of

the adjusted heuristic is different from the best solution found when running the multistart

heuristic. A reason for this is that there is randomness in the heuristic and because the heuristic

stops when it reaches the time limit. It can also happen when the starting exchange location is

different from the one used in Domı́nguez-Mart́ın et al. (2023) because the best found drivers’

routes might be less efficient.

The results for T = TA and e = middle can be found in Table 4, for T = TA and e =

original in Table 5, for T = TD and e = middle in Table 6 and the results for T = TD and

e = original can be found in Table 7. These results show that the adjusted heuristic is able to

find a better solution for almost all the instances. The only instances for which no improvement

is possible is for n20-4 and n25-3 when the drivers’ time bound is equal to TD. The column

Gap in the tables show that there is generally more improvement possible when the time bound

is tighter. This is likely because when the time bound for the drivers’ routes is bigger, it is

easier to insert a location into a route at the best place. This causes these objective values to

already be lower than for a tighter bound, even before searching for better exchange and depot

locations. Furthermore, when the instance size increases, there is generally less improvement in

the objective value. This is especially the case for a looser time bound for the drivers’ routes.

It is also possible for the different starting locations to give different locally optimal exchange

and depot locations. For example, when p = 10, having middle as starting exchange location

is more likely to give better results. A reason for this could be that the original exchange and

depot locations are generated completely random in a square of [0, 100]× [0, 100]. It is therefore

possible that the exchange location is close to the border with no other location nearby. It is

therefore stuck in that location and not able to find a better solution. Increasing the distance

p increases the chance of finding a better location and is therefore more likely to improve the

solution. If the starting exchange location is in between the two depots, it is more likely that

it is located in a more efficient location and this can therefore improve the solution more easily.

However, because the starting exchange location differs from the one used in the multistart
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heuristic, it is also possible to get a solution that is worse than the original solution found. This

can for example be seen for n10-2, n20-2, n20-4, n25-1 and n30-4 in Table 4. Nevertheless, when

the distance p increases, the heuristic is able to find a solution that is at least as good as the

solution found by the multistart heuristic. When starting from the original exchange location”

you will always be able to find a solution that is at least as good as the solution found for

the multistart heuristic for the instances in Class I . In general, when the distance p increases

both starting exchange locations have a better chance of finding the optimal locations for the

exchange and depot locations. In 28% of the cases both starting exchange locations give the

same results, middle outperforms original 42% of the time and original performs better than

middle for 30% of the instances. The computation times for both starting exchange locations are

approximately the same as for the multistart heuristic. Therefore none of the starting exchange

locations consistently outperforms the other.

Name n+ 2 T p = 10 p = 25 p = 50

Sol Drivers e∗ d∗1 d∗2 Time Gap Sol Drivers e∗ d∗1 d∗2 Time Gap Sol Drivers e∗ d∗1 d∗2 Time Gap

n10-1 10 6 462 2 5 0 9 1.91 -29.36 449 2 5 0 4 1.92 -31.35 449 2 5 0 4 1.91 -31.35

n10-2 10 5 488 2 3 0 5 1.67 0.41 373 2 8 6 3 1.65 -23.25 373 2 8 6 3 1.67 -23.25

n10-3 10 5 546 2 5 0 9 2.00 -44.68 546 2 5 0 9 1.99 -44.68 429 2 4 6 9 1.99 -56.53

n10-4 10 5 611 2 8 0 9 1.71 0.00 611 2 8 0 9 1.72 0.00 555 2 8 2 1 1.71 -9.17

n10-5 10 5 379 2 6 0 9 2.01 -36.20 379 2 6 0 9 2.01 -36.20 379 2 6 0 9 2.02 -36.20

n15-1 15 6 447 2 10 0 14 5.35 -1.97 440 2 10 0 8 4.18 -3.51 440 2 10 0 8 4.20 -3.51

n15-2 15 6 664 2 3 0 14 2.95 -10.99 652 2 3 0 12 2.95 -12.60 451 2 10 6 1 2.94 -39.54

n15-3 15 6 530 2 3 0 14 4.28 -19.70 491 2 3 0 8 4.23 -25.61 491 2 3 0 8 4.24 -25.61

n15-4 15 6 621 2 10 0 14 3.20 -43.18 604 2 10 3 14 3.20 -44.74 604 2 10 3 14 3.20 -44.74

n15-5 15 6 545 2 4 0 14 4.41 -30.84 540 2 6 0 14 4.43 -31.47 540 2 6 0 14 4.44 -31.47

n20-1 20 7 705 2 15 0 19 7.34 -44.14 705 2 15 0 19 5.95 -44.14 578 2 12 20 2 5.95 -54.20

n20-2 20 7 671 2 16 0 1 6.74 0.60 604 2 1 16 19 6.80 -9.45 570 2 18 19 9 6.86 -14.54

n20-3 20 7 616 2 1 0 19 9.06 -27.19 616 2 1 0 19 9.05 -27.19 616 2 1 0 19 9.09 -27.19

n20-4 20 7 604 2 11 8 1 9.58 0.33 587 2 18 11 19 9.68 -2.49 596 2 12 0 19 9.61 -1.00

n20-5 20 7 530 2 8 0 19 10.09 -18.59 485 2 8 0 12 9.88 -25.50 463 2 8 2 12 9.62 -28.88

n25-1 25 8 720 2 18 0 24 10.99 0.14 643 2 14 17 23 11.11 -10.57 618 2 14 22 5 10.89 -14.05

n25-2 25 8 733 2 2 0 24 11.47 -7.91 606 2 8 2 15 11.36 -23.87 595 2 7 8 9 10.84 -25.25

n25-3 25 8 621 2 4 0 24 15.61 3.33 572 2 23 15 14 14.59 -4.83 591 2 19 4 24 14.76 -1.66

n25-4 25 8 594 2 9 0 24 14.82 -13.41 563 2 15 14 24 14.38 -17.93 529 2 15 9 14 14.21 -22.89

n25-5 25 8 648 2 12 0 19 14.60 -10.50 619 2 12 17 19 14.67 -14.50 564 2 19 24 8 14.16 -22.10

n30-1 30 9 680 2 7 0 29 19.28 -23.34 669 2 18 17 29 18.73 -24.58 665 2 18 9 29 18.72 -25.03

n30-2 30 9 618 2 12 21 5 18.42 -27.46 635 2 21 12 5 17.64 -25.47 629 2 21 12 5 17.78 -26.17

n30-3 30 9 616 2 3 0 18 22.96 -24.14 523 2 11 29 12 22.37 -35.59 549 2 18 16 29 22.40 -32.39

n30-4 30 9 772 2 19 27 29 14.10 7.07 655 2 18 14 29 14.31 -9.15 666 2 14 28 18 14.01 -7.63

n30-5 30 9 569 2 15 1 20 21.01 -24.13 557 2 20 15 29 21.01 -25.73 557 2 20 15 29 21.10 -25.73

Table 4: Results for Class I instances with T = TA and e = middle
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Name n+ 2 T p = 10 p = 25 p = 50

Sol Drivers e∗ d∗1 d∗2 Time Gap Sol Drivers e∗ d∗1 d∗2 Time Gap Sol Drivers e∗ d∗1 d∗2 Time Gap

n10-1 10 6 654 2 8 0 9 2.04 0.00 622 2 8 2 5 2.08 -4.89 449 2 5 0 4 2.06 -31.35

n10-2 10 5 389 2 8 0 6 1.94 -19.96 373 2 8 6 3 1.93 -23.25 380 2 8 6 2 1.95 -21.81

n10-3 10 5 987 3 8 0 9 3.13 0.00 987 3 8 0 9 3.14 0.00 560 3 4 3 6 3.13 -43.26

n10-4 10 5 611 2 8 0 9 1.72 0.00 611 2 8 0 9 1.70 0.00 555 2 8 2 1 1.75 -9.17

n10-5 10 5 594 2 8 0 9 1.88 0.00 594 2 8 0 9 1.91 0.00 380 2 6 5 9 1.86 -36.03

n15-1 15 6 456 2 13 0 14 4.26 0.00 440 2 10 0 8 4.25 -3.51 440 2 10 0 8 4.28 -3.51

n15-2 15 6 746 2 13 0 14 2.80 0.00 642 2 13 5 2 2.79 -13.94 451 2 10 6 1 2.79 -39.54

n15-3 15 6 660 2 13 0 14 3.03 0.00 491 2 3 0 8 3.03 -25.61 491 2 3 0 8 3.03 -25.61

n15-4 15 6 1093 3 13 0 14 6.88 0.00 1071 2 13 3 14 6.86 -2.01 701 3 10 9 11 6.90 -35.86

n15-5 15 6 785 2 13 6 11 2.75 -0.38 785 2 13 6 11 2.77 -0.38 540 2 6 0 14 2.77 -31.47

n20-1 20 7 1039 3 13 0 18 13.17 -17.67 919 3 16 11 15 13.94 -27.18 637 3 10 12 2 13.77 -49.52

n20-2 20 7 667 2 18 0 19 7.63 0.00 619 2 18 9 19 7.68 -7.20 527 2 1 16 19 7.56 -20.99

n20-3 20 7 846 2 18 0 19 5.43 0.00 734 2 5 1 19 5.60 -13.24 585 2 13 8 19 5.59 -30.85

n20-4 20 7 598 2 18 8 1 9.39 -0.66 581 2 18 11 1 9.39 -3.49 596 2 12 0 19 9.29 -1.00

n20-5 20 7 632 2 14 0 19 8.34 -2.92 476 2 8 0 12 8.29 -26.88 449 2 8 2 12 8.23 -31.03

n25-1 25 8 719 2 23 0 24 11.75 0.00 675 2 14 0 18 12.04 -6.12 616 2 14 22 23 12.14 -14.33

n25-2 25 8 796 2 23 0 24 8.87 0.00 647 2 15 8 18 8.68 -18.72 647 2 15 8 18 8.74 -18.72

n25-3 25 8 601 2 23 0 24 15.16 0.00 593 2 23 15 24 14.34 -1.33 566 2 19 14 24 15.13 -5.82

n25-4 25 8 668 2 13 0 2 15.08 -2.62 575 2 17 14 24 14.99 -16.18 528 2 9 14 17 14.89 -23.03

n25-5 25 8 724 2 23 0 24 13.07 0.00 643 2 8 0 24 13.09 -11.19 592 2 24 15 19 12.82 -18.23

n30-1 30 9 879 2 28 0 29 11.25 -0.90 853 2 28 29 11 11.28 -3.83 718 2 7 21 29 11.25 -19.05

n30-2 30 9 778 2 28 5 12 15.87 -8.69 705 2 16 23 18 17.20 -17.52 675 2 5 21 12 16.69 -20.77

n30-3 30 9 812 2 28 0 29 20.28 0.00 549 2 18 12 29 20.48 -32.39 550 2 18 12 29 20.18 -32.27

n30-4 30 9 690 2 28 10 29 13.96 -4.30 691 2 28 10 29 14.17 -4.16 666 2 14 28 18 14.19 -7.63

n30-5 30 9 652 2 28 16 29 19.88 -13.07 652 2 28 16 29 20.49 -13.07 564 2 20 15 29 19.95 -24.80

Table 5: Results for Class I instances with T = TA and e = original

Name n+ 2 T p = 10 p = 25 p = 50

Solution Drivers e∗ d∗1 d∗2 Time Gap Solution Drivers e∗ d∗1 d∗2 Time Gap Solution Drivers e∗ d∗1 d∗2 Time Gap

n10-1 10 10 340 1 5 0 9 1.10 -8.36 329 1 4 0 5 0.68 -11.32 321 1 4 0 6 0.63 -13.48

n10-2 10 10 298 1 3 0 9 0.63 1.71 298 1 3 0 9 0.56 1.71 298 1 3 0 9 0.63 1.71

n10-3 10 10 337 1 5 0 9 0.68 -12.01 337 1 5 0 9 0.63 -12.01 298 1 6 5 8 0.63 -22.19

n10-4 10 10 383 1 8 0 9 0.60 0.00 383 1 8 0 9 0.59 0.00 375 1 3 0 9 0.59 -2.09

n10-5 10 10 270 1 6 0 9 0.62 -23.08 270 1 6 0 9 0.61 -23.08 270 1 6 0 9 0.62 -23.08

n15-1 15 12 305 1 10 0 14 1.37 0.99 302 1 13 0 5 1.34 0.00 302 1 13 0 5 1.34 0.00

n15-2 15 12 318 1 3 0 14 1.26 -21.48 318 1 3 0 14 1.27 -21.48 318 1 3 0 14 1.27 -21.48

n15-3 15 12 339 1 3 0 14 1.28 -12.40 339 1 3 0 14 1.29 -12.40 339 1 3 0 14 1.29 -12.40

n15-4 15 12 451 1 10 0 14 1.18 -1.96 451 1 10 0 14 1.17 -1.96 447 1 9 5 14 1.17 -2.83

n15-5 15 12 402 1 4 0 14 1.50 -14.29 389 1 6 0 14 1.49 -17.06 389 1 6 0 14 1.51 -17.06

n20-1 20 14 466 1 15 0 19 4.65 -10.56 466 1 15 0 19 4.64 -10.56 439 1 10 5 2 4.65 -15.74

n20-2 20 14 414 1 12 0 19 2.81 2.99 414 1 12 0 19 2.80 2.99 414 1 12 0 19 2.81 2.99

n20-3 20 14 462 1 1 0 19 3.80 -9.06 462 1 1 0 19 3.83 -9.06 457 1 13 1 19 3.82 -10.04

n20-4 20 14 435 1 11 0 19 2.14 4.32 417 1 18 0 19 2.14 0.00 417 1 18 8 19 2.14 0.00

n20-5 20 14 373 1 8 0 19 2.41 -8.80 373 1 8 0 19 2.41 -8.80 373 1 8 0 19 2.42 -8.80

n25-1 25 16 482 1 18 0 24 4.60 -0.21 482 1 18 0 24 4.65 -0.21 482 1 18 0 24 4.61 -0.21

n25-2 25 16 463 1 2 0 24 8.61 -4.73 446 1 15 24 18 8.57 -8.23 447 1 7 2 18 8.59 -8.02

n25-3 25 16 416 1 4 0 24 5.37 3.48 402 1 23 0 19 5.32 0.00 402 1 23 10 24 5.31 0.00

n25-4 25 16 437 1 15 0 24 3.77 -4.17 437 1 15 10 24 3.82 -4.17 432 1 16 22 24 3.73 -5.26

n25-5 25 16 435 1 12 3 24 4.95 -4.19 435 1 12 3 24 4.92 -4.19 424 1 0 3 24 4.94 -6.61

n30-1 30 18 539 1 7 0 29 9.08 -7.39 532 1 18 0 13 9.44 -8.59 532 1 18 0 29 9.49 -8.59

n30-2 30 18 535 1 3 0 29 12.72 -3.25 517 1 12 21 3 12.71 -6.51 493 1 28 19 3 12.78 -10.85

n30-3 30 18 436 1 3 0 29 12.06 -10.47 435 1 18 0 29 12.06 -10.68 435 1 18 17 29 12.32 -10.68

n30-4 30 18 495 1 19 0 29 6.56 0.00 495 1 19 0 29 6.61 0.00 486 1 14 0 3 6.63 -1.82

n30-5 30 18 461 1 15 0 29 11.39 -6.30 448 1 14 0 29 11.39 -8.94 442 1 29 0 10 11.32 -10.16

Table 6: Results for Class I instances with T = TD and e = middle
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Name n+ 2 T p = 10 p = 25 p = 50

Solution Drivers e∗ d∗1 d∗2 Time Gap Solution Drivers e∗ d∗1 d∗2 Time Gap Solution Drivers e∗ d∗1 d∗2 Time Gap

n10-1 10 10 371 1 8 0 9 0.69 0.00 353 1 8 2 9 0.65 -4.85 308 1 2 8 4 0.65 -16.98

n10-2 10 10 293 1 8 0 9 0.70 0.00 293 1 8 0 9 0.73 0.00 293 1 8 0 9 0.71 0.00

n10-3 10 10 383 1 8 0 9 0.94 0.00 383 1 8 0 9 0.92 0.00 293 1 3 7 9 0.94 -23.50

n10-4 10 10 383 1 8 0 9 0.73 0.00 383 1 8 0 9 0.71 0.00 359 1 9 2 4 0.72 -6.27

n10-5 10 10 351 1 8 0 9 0.77 0.00 351 1 8 0 9 0.77 0.00 270 1 6 0 9 0.78 -23.08

n15-1 15 12 302 1 13 0 14 1.76 0.00 302 1 13 0 14 1.75 0.00 302 1 13 0 14 1.76 0.00

n15-2 15 12 405 1 13 0 14 1.60 0.00 398 1 5 0 14 1.61 -1.73 337 1 7 8 10 1.62 -16.79

n15-3 15 12 387 1 13 0 14 1.67 0.00 339 1 3 0 14 1.66 -12.40 339 1 3 4 14 1.67 -12.40

n15-4 15 12 460 1 13 0 14 2.69 0.00 460 1 13 0 14 2.77 0.00 441 1 9 5 11 2.71 -4.13

n15-5 15 12 469 1 13 0 14 1.64 0.00 469 1 13 0 14 1.64 0.00 390 1 6 3 14 1.67 -16.84

n20-1 20 14 516 1 13 0 19 5.27 -0.96 461 1 16 0 11 5.27 -11.52 471 1 15 4 19 5.30 -9.60

n20-2 20 14 384 1 9 0 18 3.75 -4.48 384 1 9 0 18 3.82 -4.48 380 1 9 0 15 3.96 -5.47

n20-3 20 14 508 1 18 0 19 4.61 0.00 478 1 7 9 19 4.70 -5.91 471 1 13 0 19 4.80 -7.28

n20-4 20 14 417 1 18 0 19 2.69 0.00 417 1 18 0 19 2.71 0.00 417 1 18 0 19 2.87 0.00

n20-5 20 14 398 1 14 10 19 5.38 -2.69 369 1 16 0 15 5.36 -9.78 369 1 16 7 19 5.49 -9.78

n25-1 25 16 483 1 23 0 24 4.04 0.00 483 1 3 0 16 4.05 0.00 483 1 3 9 24 4.04 0.00

n25-2 25 16 486 1 23 0 24 7.93 0.00 461 1 8 0 24 7.78 -5.14 461 1 8 0 24 7.78 -5.14

n25-3 25 16 402 1 23 0 24 4.46 0.00 402 1 23 0 24 4.53 0.00 402 1 23 0 24 4.48 0.00

n25-4 25 16 448 1 13 0 24 4.30 -1.75 436 1 16 22 24 4.29 -4.39 432 1 16 0 12 4.29 -5.26

n25-5 25 16 454 1 23 0 24 4.17 0.00 452 1 20 0 24 4.26 -0.44 442 1 7 23 24 4.17 -2.64

n30-1 30 18 582 1 28 0 29 11.77 0.00 580 1 28 1 8 11.77 -0.34 527 1 29 1 19 11.83 -9.45

n30-2 30 18 536 1 28 0 5 8.39 -3.07 545 1 16 5 0 8.34 -1.45 534 1 16 3 21 8.37 -3.44

n30-3 30 18 487 1 28 0 29 4.56 0.00 470 1 9 4 18 4.56 -3.49 469 1 9 16 12 4.59 -3.70

n30-4 30 18 492 1 10 0 29 11.32 -0.61 486 1 14 27 3 11.32 -1.82 486 1 14 0 3 11.42 -1.82

n30-5 30 18 492 1 28 0 29 9.95 0.00 492 1 28 0 29 9.96 0.00 459 1 14 1 29 10.01 -6.71

Table 7: Results for Class I instances with T = TD and e = original

Table 8 displays the results for the adjusted heuristic for Class II where T = 18 and e =

middle and Table 9 shows the results for the adjusted heuristic for Class II where T = 18 and

e = original. Because the results for Class I show that p = 10 does not give as good results as

p = 25 and p = 50 and the computation times barely increase when p is increased, the Class II

instances were run for just p = 25 and p = 50.

Just like for the instances for Class I, a higher p gives better results in most cases while

again barely increasing the computation times. While the adjusted heuristic was able to find

improvements for almost all instances of Class I, this is not the case for Class II. The results

show that there are only real improvements for n50-5, n50-10, n50-13 and n50-15. These are the

instances that gave for both the multistart heuristic and the adjusted heuristic solutions with

two drivers. The other instances show at most an improvement of 2.63% or no improvement at

all. This shows again that when the time bound for the drivers’ routes is loose and less drivers

are needed, less improvement is possible when adjusting the exchange and depot locations.

The results for the columnGap show that there are also multiple quite large positive numbers.

This happens when e = middle, since this is accompanied by the fact that 2 drivers are needed

while the original solution using the multistart heuristic needed only 1 driver. When extra

drivers are needed, more costs are made and this therefore results in a higher objective value.

For these instances, starting exchange location original outperforms middle in 75% of the

cases. There are no big differences in computation times and thus starting exchange location

original seems to perform better for these instances.
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Name n+ 2 p = 25 p = 50

Sol Drivers e∗ d∗1 d∗2 Time Gap Sol Drivers e∗ d∗1 d∗2 Time Gap

n50-1 50 678 2 31 37 1 39.00 11.51 678 2 31 37 12 38.67 11.51

n50-2 50 591 1 23 0 49 9.80 0.00 591 1 23 0 22 10.03 0.00

n50-3 50 592 1 14 32 19 10.03 -0.17 589 1 8 0 49 10.24 -0.67

n50-4 50 716 2 16 22 49 45.92 19.93 662 2 38 13 35 46.41 10.89

n50-5 50 684 2 33 9 20 51.55 -9.64 711 2 25 27 31 51.29 -6.08

n50-6 50 592 1 20 0 30 9.83 1.20 592 1 20 0 49 9.89 1.20

n50-7 50 542 1 39 0 49 10.04 -1.63 542 1 39 0 49 10.15 -1.63

n50-8 50 596 1 39 0 49 9.97 0.85 593 1 34 0 49 10.04 0.34

n50-9 50 607 1 48 0 49 10.14 0.00 595 1 23 27 49 10.12 -1.98

n50-10 50 677 2 35 45 29 38.94 -14.09 674 2 1 38 29 39.11 -14.47

n50-11 50 603 1 48 0 49 9.82 0.00 603 1 48 4 49 9.89 0.00

n50-12 50 794 2 24 0 43 43.98 26.43 714 2 12 48 38 44.24 13.69

n50-13 50 725 2 44 9 46 36.57 -7.76 740 2 26 25 42 36.92 -5.85

n50-14 50 616 1 12 0 49 10.00 -0.32 614 1 31 37 4 10.32 -0.65

n50-15 50 671 2 5 0 29 39.30 -17.47 644 2 24 44 29 39.63 -20.79

n50-16 50 617 1 21 0 49 10.08 0.33 617 1 21 0 4 10.20 0.33

Table 8: Results for Class II instances with T = 18 and e = middle

Name n+ 2 p = 25 p = 50

Sol Drivers e∗ d∗1 d∗2 Time Gap Sol Drivers e∗ d∗1 d∗2 Time Gap

n50-1 50 608 1 48 0 49 10.05 0.00 592 1 17 0 49 10.04 -2.63

n50-2 50 591 1 48 0 49 9.93 0.00 591 1 48 0 49 9.95 0.00

n50-3 50 590 1 8 32 49 9.99 -0.51 588 1 8 30 49 10.20 -0.84

n50-4 50 597 1 48 0 49 9.98 0.00 597 1 48 0 49 10.07 0.00

n50-5 50 689 2 27 2 25 53.84 -8.98 676 2 27 26 25 53.98 -10.70

n50-6 50 585 1 48 0 49 9.96 0.00 585 1 48 0 49 10.03 0.00

n50-7 50 542 1 39 0 49 10.08 -1.63 544 1 39 11 49 10.09 -1.27

n50-8 50 585 1 34 43 49 10.10 -1.02 585 1 34 24 49 10.08 -1.02

n50-9 50 607 1 48 0 49 10.23 0.00 595 1 23 13 45 10.18 -1.98

n50-10 50 728 2 26 31 49 40.02 -7.61 668 2 39 42 3 40.10 -15.23

n50-11 50 592 1 2 0 49 10.05 -1.82 603 1 48 4 44 9.93 0.00

n50-12 50 628 1 48 0 49 12.01 0.00 617 1 46 25 49 12.08 -1.75

n50-13 50 734 2 36 0 48 53.23 -6.62 690 2 36 13 48 53.53 -12.21

n50-14 50 605 1 43 0 49 10.24 -2.10 605 1 43 6 49 10.20 -2.10

n50-15 50 737 2 38 6 19 39.54 -9.35 731 2 38 6 19 39.51 -10.09

n50-16 50 615 1 48 29 49 10.04 0.00 615 1 48 29 49 10.28 0.00

Table 9: Results for Class II instances with T = 18 and e = original

The results for Class III can be found in the Appendix in Section A. Table 10 shows the

results for e = middle and Table 11 displays the results for e = original. The drivers’ time bound

T is equal to TC for both tables. The results show that the objective values can be decreased

with up to 20.10%. All originally found solutions can be improved and for 60% of the instances,

e = middle outperforms e = while while for the remaining 40% it is the other way around. The

different values for p barely influence the objective values. However, from n+2 = 200 onwards,

p = 25 is significantly faster than p = 50 for nearly all of the instances. This shows that having

a smaller p is better for larger instances.

6 Conclusion

This paper discusses a heuristic that is able to find locally optimal exchange and depot locations

for the Driver and Vehicle Routing Problem. In this problem, there are a set of customers and
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2 depots. One of the customers is also an exchange location. While drivers have to return to

their home depot at the end of their shift, the vehicles have to end at the other depot. One

of the customer locations is also an exchange location where drivers can switch vehicles. Our

heuristic builds upon the multistart heuristic that was introduced by Domı́nguez-Mart́ın et al.

(2023). The multistart heuristic first tries to find the routes for the drivers for a given set of

drivers leaving from each depot. Then the vehicles’ routes are created in such a way that they

are compatible with the best found driver’s routes.

First, the multistart heuristic was implemented. The results show that our results are very

similar to the results of Domı́nguez-Mart́ın et al. (2023). Secondly, we have implemented an

extra step in the heuristic that is able to find better locations for the exchange and depot

locations for most of the instances. In order to do this, we look for customer locations that

are within distance p from the current best exchange or depot location and try to improve the

solution. If the solution improves, we continue with the new customer location as exchange or

depot location. This continues until no further improvements can be found.

Results show that increasing the distance p does not significantly increase the running time

for instances with up to 100 locations, while it does allow for better solutions. For the instances

with 200 locations or more, increasing p does result in significantly higher computation times

while it does not result in objective values that are significantly better.

Furthermore, two different exchange locations were used to construct the first set of drivers’

routes which are then later on improved by finding other exchange and depot locations. The

first exchange location used is the same location as was used in Domı́nguez-Mart́ın et al. (2023).

The second exchange location is the customer location that is the closest to the point that is

exactly in between the two depots. While both starting exchange locations do sometimes give the

same solution, this is not always the case. However, not one of the starting exchange locations

consistently outperforms the other when looking at the objective values and the computation

times.

Moreover, the results show that if the time bound for the drivers’ routes is tighter, more

drivers are needed and this generally also increases the chance that the solution can be improved

by locating better exchange and depot locations. When the time bound for the drivers’ routes is

loose and only one driver per depot is needed, the adjusted algorithm is not able to find solutions

that are significantly better. This is especially the case for instances with bigger problem sizes.

For further research, it would be interesting to develop a heuristic that is able to find globally

optimal exchange and depot locations while barely increasing computation times. This could

help even further in reducing the total costs. Another interesting direction for further research

would be use multiple exchange locations. It would then be interesting to see what this does to

the optimal exchange and depot locations and to the total costs.
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A Extra Tables

Name n+ 2 p = 25 p = 50

Sol Drivers e∗ d∗1 d∗2 Time Gap Sol Drivers e∗ d∗1 d∗2 Time Gap

n100-1 100 854 2 45 83 5 188.73 -3.39 857 2 45 56 88 151.19 -3.05

n100-2 100 882 2 17 45 72 255.59 -8.13 884 2 17 45 72 199.96 -7.92

n100-3 100 855 2 57 17 1 213.94 0.83 854 2 57 17 1 168.09 0.71

n100-4 100 841 2 94 86 82 243.51 -9.96 844 2 94 86 82 194.39 -9.64

n100-5 100 848 2 41 30 23 318.75 -7.32 846 2 73 81 76 254.70 -7.54

n200-1 200 1181 2 75 160 199 603.23 -1.34 1168 2 148 68 127 609.61 -2.42

n200-2 200 1214 2 144 0 199 602.19 -0.65 1200 2 4 0 199 604.11 -1.80

n200-3 200 1231 2 194 147 91 604.49 1.90 1228 2 194 192 91 612.00 1.66

n200-4 200 1209 2 189 3 86 604.59 -1.14 1211 2 189 62 180 608.14 -0.98

n200-5 200 1183 2 96 97 174 603.15 -2.47 1188 2 96 97 171 605.73 -2.06

n300-1 300 1452 2 88 35 109 618.65 -8.56 1436 2 220 34 150 631.89 -9.57

n300-2 300 1403 2 266 112 47 607.37 -19.64 1395 2 236 39 47 619.26 -20.10

n300-3 300 1513 2 249 154 98 615.85 -0.26 1531 2 121 154 277 614.84 0.92

n300-4 300 1467 2 167 92 272 606.06 -6.32 1466 2 211 159 253 646.92 -6.39

n300-5 300 1379 2 15 172 273 621.61 -15.60 1395 2 139 269 273 622.54 -14.63

n400-1 400 1607 2 259 349 328 684.39 -10.92 1607 2 267 349 328 692.22 -10.92

n400-2 400 1602 2 345 151 367 623.03 -13.12 1618 2 7 364 352 684.39 -12.26

n400-3 400 1651 2 90 0 38 622.90 -8.73 1636 2 135 0 93 665.70 -9.56

n400-4 400 1671 2 223 9 184 639.38 -14.83 1661 2 223 32 276 668.80 -15.34

n400-5 400 1632 2 339 221 399 634.89 -16.56 1636 2 339 169 399 653.05 -16.36

n500-1 500 1959 2 323 213 230 673.16 3.82 1923 2 2 392 114 754.73 1.91

n500-2 500 1874 2 155 0 281 658.74 -15.55 1852 2 449 496 366 857.29 -16.54

n500-3 500 1858 2 469 147 39 662.89 -9.67 1847 2 106 205 133 812.38 -10.21

n500-4 500 1866 2 471 324 475 675.49 -17.10 1841 2 243 386 475 770.58 -18.21

n500-5 500 1829 2 101 115 125 754.84 -17.50 1820 2 101 0 420 735.30 -17.91

n600-1 600 2001 2 412 244 202 849.77 -9.17 2003 2 530 241 202 1209.47 -9.02

n600-2 600 1972 2 293 415 351 884.63 -14.11 1979 2 293 415 118 1075.66 -13.81

n600-3 600 2015 2 463 564 599 906.44 -2.89 2030 2 463 165 599 878.31 -2.17

n600-4 600 1957 2 578 484 356 761.10 -4.16 1936 2 264 75 466 1256.85 -5.19

n600-5 600 2040 2 537 0 316 752.65 -6.12 2035 2 237 218 594 984.15 -6.35

n800-1 800 2397 2 706 0 799 853.14 -3.27 2359 2 511 791 191 2861.38 -4.80

n800-2 800 2332 2 316 720 84 1167.96 -13.47 2333 2 609 656 84 1838.29 -13.43

n800-3 800 2490 2 468 239 672 1575.15 4.10 2430 2 648 689 205 2095.14 1.59

n800-4 800 2299 2 33 155 218 2086.90 -4.68 2347 2 355 570 442 2375.49 -2.69

n800-5 800 2301 2 684 386 513 1789.47 -2.17 2314 2 321 690 37 2477.08 -1.62

n1000-1 1000 2585 2 721 965 815 2423.37 -6.54 2596 2 307 198 510 3567.49 -6.15

n1000-2 1000 2604 2 208 146 229 3106.67 -7.26 2600 2 27 515 229 4144.39 -7.41

n1000-3 1000 2536 2 954 545 777 4378.06 -14.24 2517 2 5 706 901 5967.27 -14.88

n1000-4 1000 2583 2 27 938 414 4140.62 -8.63 2601 2 27 779 999 3836.21 -7.99

n1000-5 1000 2555 2 13 973 450 2870.42 -16.42 2564 2 684 973 82 6041.29 -16.13

Table 10: Results for Class III instances with T = TC and e = middle
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Name n+ 2 p = 25 p = 50

Sol Drivers e∗ d∗1 d∗2 Time Gap Sol Drivers e∗ d∗1 d∗2 Time Gap

n100-1 100 861 2 26 98 86 139.80 -2.60 868 2 26 1 7 133.14 -1.81

n100-2 100 899 2 66 45 30 154.39 -6.35 909 2 37 45 74 147.76 -5.31

n100-3 100 827 2 64 17 99 206.78 -2.48 820 2 20 17 60 196.24 -3.30

n100-4 100 867 2 53 86 90 147.61 -7.17 871 2 53 86 90 139.93 -6.75

n100-5 100 877 2 23 43 80 222.33 -4.15 871 2 23 77 80 211.98 -4.81

n200-1 200 1173 2 68 160 199 602.47 -2.01 1180 2 195 157 199 605.71 -1.42

n200-2 200 1210 2 144 0 18 603.11 -0.98 1192 2 4 168 199 604.30 -2.45

n200-3 200 1199 2 198 147 165 604.77 -0.75 1177 2 81 147 99 612.17 -2.57

n200-4 200 1211 2 156 157 95 603.71 -0.98 1207 2 22 157 95 607.28 -1.31

n200-5 200 1203 2 198 120 174 603.07 -0.82 1212 2 198 97 119 608.43 -0.08

n300-1 300 1416 2 148 253 143 614.12 -10.83 1437 2 143 34 31 624.96 -9.51

n300-2 300 1403 2 156 132 100 609.50 -19.64 1419 2 97 112 47 627.20 -18.73

n300-3 300 1409 2 252 293 23 613.92 -7.12 1405 2 47 102 23 635.81 -7.45

n300-4 300 1447 2 168 92 255 615.79 -7.60 1449 2 168 80 269 626.67 -7.47

n300-5 300 1397 2 35 169 273 610.79 -14.50 1398 2 298 118 194 619.69 -14.44

n400-1 400 1620 2 333 349 208 638.94 -10.20 1616 2 307 349 243 658.77 -10.42

n400-2 400 1614 2 398 155 188 661.88 -12.47 1615 2 381 155 188 737.42 -12.42

n400-3 400 1640 2 52 152 347 625.11 -9.34 1640 2 398 0 347 668.07 -9.34

n400-4 400 1707 2 200 269 273 634.34 -13.00 1712 2 93 10 184 672.69 -12.74

n400-5 400 1676 2 328 273 399 612.52 -14.31 1686 2 59 273 207 663.69 -13.80

n500-1 500 1800 2 498 472 224 669.20 -4.61 1802 2 498 426 114 939.69 -4.50

n500-2 500 1875 2 394 71 39 662.98 -15.50 1856 2 171 190 379 815.14 -16.36

n500-3 500 1879 2 102 0 361 654.55 -8.65 1883 2 469 429 499 742.94 -8.46

n500-4 500 1907 2 92 318 475 703.53 -15.28 1897 2 340 178 475 925.25 -15.73

n500-5 500 1839 2 76 201 132 687.83 -17.05 1831 2 463 0 493 782.72 -17.41

n600-1 600 1990 2 582 518 599 680.99 -9.67 2003 2 204 507 243 914.31 -9.02

n600-2 600 1982 2 410 291 599 688.95 -13.68 1982 2 243 0 599 941.99 -13.68

n600-3 600 2014 2 105 442 599 809.63 -2.94 1994 2 226 541 599 1381.85 -3.90

n600-4 600 1976 2 587 75 599 671.97 -3.23 1971 2 173 379 599 1004.79 -3.48

n600-5 600 2043 2 598 440 284 793.38 -5.98 2020 2 519 285 316 1307.53 -7.04

n800-1 800 2312 2 798 659 526 1609.98 -6.70 2302 2 219 552 712 3006.64 -7.10

n800-2 800 2347 2 431 4 710 1619.75 -12.91 2338 2 497 0 289 2194.37 -13.25

n800-3 800 2292 2 334 46 716 2812.87 -4.18 2293 2 683 46 693 3108.39 -4.14

n800-4 800 2305 2 217 570 382 1774.32 -4.52 2309 2 411 662 393 3069.82 -4.35

n800-5 800 2298 2 798 690 578 1809.93 -2.30 2300 2 305 0 578 2949.09 -2.21

n1000-1 1000 2582 2 998 356 815 2332.80 -6.65 2585 2 126 0 815 5271.27 -6.54

n1000-2 1000 2627 2 650 870 229 1678.22 -6.45 2618 2 650 0 229 4977.84 -6.77

n1000-3 1000 2545 2 572 530 901 1417.22 -13.93 2574 2 685 729 901 5157.18 -12.95

n1000-4 1000 2535 2 899 938 812 1945.80 -10.33 2553 2 386 938 999 5082.05 -9.69

n1000-5 1000 2558 2 101 269 404 2182.77 -16.32 2560 2 419 973 470 10156.44 -16.26

Table 11: Results for Class III instances with T = TC and e = original

B Programming Code

All of the algorithms were programmed in Java. In order to have some overview, ten different

classes were created to perform the heuristic. All of these classes will be briefly discussed in the

sections.

B.1 Main

The first class is the ”Main” class. This is the class that is run and calls all the other classes.

Furthermore, this is the class that prints the results. It contains two methods. The first method

is ”read” and calling this method performs the multistart heuristic and prints the result. The

second method is ”readWithExchangeLocation”. This method performs the adjusted heuristic

and prints those results. When running either of these methods for a specified problem size n,

the algorithm is run for all instances with problem size n.
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B.2 StopWatch

The ”StopWatch” class is the class that keeps track of the computation times.

B.3 Location

The class ”Location” defines a location of a customer or one of the depots.

B.4 Route

The ”Route” class represents a drivers’ route or a vehicles’ route. It is implemented as an

ArrayList of instances of ”Location”.

B.5 ReadFile

The class ”ReadFile” reads the data from the file and creates instances of the ”Location” class.

B.6 DistanceCalculator

The ”DistanceCalculator” class calculates the distances between all the points and puts them

in a matrix.

B.7 TimeCalculator

The ”TimeCalculator” class calculates the distances between all the points and puts them in a

matrix.

B.8 MultistartHeuristic

The class ”MultistartHeuristic” performs the multistart heuristic as is described in Section 4.1

B.9 HeuristicExchangeAndDepot

The class ”HeuristicExchangeAndDepot” performs the adjusted heuristic as is described in Sec-

tion 4.2

B.10 CheapestInsertion

The ”CheapestInsertion” class finds the best location in a route to insert a customer location.
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