
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis Bachelor Econometrie & Operationele Research

Driver and Vehicle Routing Problem with

Multiproduct demand and Perishable goods:

a multistart heuristic approach

Milan van Puffelen (609824)

Supervisor: Zhu, JH

Second assessor: Huisman, D

Date final version: 25th June 2024

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.

Abstract

This paper explores the Driver and Vehicle Routing Problem, a routing problem with two

depots in which vehicles travel from one depot to the other, while drivers return to their

starting depot. To enable this, all drivers and vehicles visit a single exchange location

to switch vehicles and continue the route. Additionally, two extensions of the Driver and

Vehicle Routing Problem are examined in this paper, which involve multiproduct demand

and perishable goods. When goods are perished, there is no guarantee that all products

can still be delivered to the customers as planned. A multistart heuristic, consisting of the

construction of initial solutions and performing local search, is used to solve the original

problem. Subsequently, this heuristic is adjusted in order to align with the framework of

the two extensions. Our computational results on 81 test instances show that the multistart

heuristic finds near-optimal solutions to the Driver and Vehicle Routing Problem for small

data sets and handles larger ones effectively. The costs of solutions to the demand-related

extensions are higher than the costs of solutions to the original Driver and Vehicle Routing

Problem. Nevertheless, the adjusted-multistart heuristic successfully lowers the probability

that a vehicle is not able to deliver everything.

1 Introduction

The Vehicle Routing Problem (VRP) is a fundamental problem in logistics and is extensively

examined due to its significance as a benchmark for addressing real-world problems in logistics.

Given a set of customers and a fleet of vehicles, the VRP aims to find a route for each vehicle

such that all customers are served and a certain objective function is minimised. In this paper,

we consider a version of the VRP that is called the Driver and Vehicle Routing Problem (DVRP)

and is introduced by Domı́nguez-Mart́ın, Rodŕıguez-Mart́ın and Salazar-González (2018a). In-

stead of the benchmark version of the VRP that only has a single depot, we have two depots.

In the classical VRP, it is often assumed that each vehicle is paired with a driver and vice versa,

such that they traverse the same route. However, this paper examines the case where each driver

has to return to the depot of departure and each vehicle travels from one depot to the other.

For this to become feasible, there is a customer location that serves as an exchange location

where drivers can switch vehicles.

This particular variant of the VRP has not received extensive attention in the literature thus

far. Despite this, it has numerous practical applications, distinguishing itself with a unique

relationship between driver and vehicle routes compared to traditional VRP investigations. For

example, the DVRP applies to air transportation in the Canary Islands. In this application,

a set of flights must be served by several pilots. There are two depots (Tenerife North and

Las Palmas) and several other airports, which can be viewed as customers. Pilots return to

the same depot they departed from, whereas the airplanes end at a different depot than the

starting depot. This problem was originally investigated by Salazar-González (2014) and was

the inspiration for the DVRP, introduced by Domı́nguez-Mart́ın et al. (2018a).

An exact method can compute the optimal solution for relatively small instances, as done by

Domı́nguez-Mart́ın et al. (2018a). However, it does not suffice for larger instances due to the

1

running time, which becomes too large. Therefore, this paper uses a multistart heuristic. First,

the method constructs driver routes, whereafter those routes are improved through local search.

These procedures are integrated into a multistart loop.

In this paper, we also introduce two variants of the DVRP that are not covered by the lit-

erature yet. The Driver and Vehicle Routing Problem with Multiproduct demand (DVRPM) is

similar to the Capacitated VRP (CVRP). The CVRP is an extension to the VRP where vehicles

have a capacity for the products that need to be delivered to customers. The DVRPM extends

the DVRP in a similar manner. However, there are two types of products. A customer’s demand

only consists of one type of product. One product type is delivered by vehicles from the first

depot, whereas the other type is delivered by vehicles from the other depot.

The other variant we introduce is the Driver and Vehicle Routing Problem with Multiproduct

demand and Perishable goods (DVRPMP). This extends the DVRPM by assuming the goods

are perishable. Examples of such goods are fruits, flowers and medicines. At some point in time,

the goods perish and cannot be delivered anymore. The goal is to minimise costs while maxim-

ising the demand that is met. For both variants, we use the multistart heuristic as a foundation.

It needs to be adjusted in order to align with the new set-up and improve performance. Besides,

we introduce a matching algorithm that deals with capacity constraints.

Our computational study on 81 instances shows that the multistart heuristic finds near-optimal

solutions to the DVRP for small instances and effectively handles larger ones. The costs of

solutions to the DVRPM are up to 38% higher than the costs of solutions to the DVRP. The

delivery failure probability of the DVRPM functions as a benchmark for that of the DVRPMP.

The DVRPMP-adjusted multistart heuristic generally results in solutions with higher costs and

lower delivery failure probability than the DVRPM approach for small instances. This means

there is a trade-off between lower costs and a lower delivery failure probability.

The remainder of the paper is structured as follows: Section 2 briefly discusses the existing

literature on both the DVRP and its extensions. Hereafter, Section 3 introduces all versions of

the DVRP that are considered in this paper. Section 4 then elaborates on the multistart heur-

istic in Section 4.2 and it introduces new and adjusted methods in Section 4.3 and Section 4.4 for

the extensions to the DVRP. Subsequently, Section 5 examines the results and finally, Section 6

presents the important findings and conclusions.

2 Literature review

The VRP was first introduced by Dantzig and Ramser (1959). A few years later, Clarke and

Wright (1964) proposed a savings heuristic, used to solve the VRP of Dantzig and Ramser

(1959). The idea of that heuristic is to merge routes by connecting the end of a route with

the beginning of another route, if that results in a cost decrease. Nowadays, that heuristic

is widely used in both the literature and in practical situations. Several variants of the VRP

have been considered ever since the introduction of the original VRP. Most of the fundamental

2

variants, such as the Capacitated VRP (CVRP) and VRP with Time Windows (VRPTW), are

discussed by Elatar, Abouelmehdi and Riffi (2023). The CVRP comes with the extension that

vehicles with certain capacities should deliver products to customers with fixed demand. In the

VRPTW, customers can only be visited within prespecified time windows.

Another variant of the VRP is the DVRP that is introduced by Domı́nguez-Mart́ın et al. (2018a).

This paper gives a mathematical formulation for the problem and solves the problem to optim-

ality for small instances (at most 30 locations). In the DVRP, the inclusion of two depots

sets it apart as a subtype of the multi-depot VRP. Vehicle routes connect these depots, while

driver routes originate and terminate at a single depot. This aligns the DVRP with the multi-

depot VRP with inter-depot routes (MDVRPI) framework introduced by Crevier, Cordeau and

Laporte (2007). Due to the complexity of the MDVRPI, much of the research devoted to this

problem uses heuristic approaches, like in Karakatič and Podgorelec (2015). This complexity

also applies to the DVRP. For that reason, Domı́nguez-Mart́ın, Rodŕıguez-Mart́ın and Salazar-

González (2018b) and Domı́nguez-Mart́ın, Rodŕıguez-Mart́ın and Salazar-González (2023) focus

on heuristic methods.

The paper Domı́nguez-Mart́ın et al. (2023) uses a multistart heuristic in order to solve the

DVRP. An iteration of a multistart algorithm consists of two phases, as explained by Mart́ı

(2003). The first phase is to generate an initial solution, after which this solution is improved

in the second phase. The result will be the best solution that is found in all iterations of the

multistart heuristic. In Domı́nguez-Mart́ın et al. (2023), optimal or near-optimal solutions are

found for instances with up to 1000 locations in just a couple of minutes. This indicates that

the multistart heuristic is powerful for the DVRP.

The DVRPM extends the DVRP in a similar way the CVRP extends the VRP. The paper

of Ralphs, Kopman, Pulleyblank and Trotter (2003) elucidates the CVRP and applies heuristics

to solve the problem. In our problem, there are two depots, two types of products and two types

of vehicles. The Inventory Routing Problem (IRP) discussed by Coelho and Laporte (2013)

also contains the latter two characteristics. In general, an IRP can be viewed as a CVRP over

multiple time periods.

The DVRPMP is the version of the DVRPM where the goods are perishable. In this case, the

goal is both to minimise costs and to maximise delivery to customers. The paper by Sahraeian

and Esmaeili (2018) considers a multi-objective for the CVRP with perishable goods. In this

paper, the perishability of the products is captured by a probability density function of the

expiration times. This is done in a similar manner by Ketzenberg, Gaukler and Salin (2018).

3 Problem description

In this section, we introduce the Driver and Vehicle Routing Problem (DVRP) and two ex-

tensions to this problem: Driver and Vehicle Routing Problem with Multiproduct demand

(DVRPM) and Driver and Vehicle Routing Problem with Multiproduct demand and Perish-

3

able goods (DVRPMP).

3.1 Driver and Vehicle Routing Problem

The Driver and Vehicle Routing Problem (DVRP) assumes that there are several locations that

are of a particular type. Two locations function as depots, whereas all other locations are cus-

tomers that need to be visited by a driver and a vehicle. For this purpose, there are drivers

and vehicles available at each depot. While vehicles start their routes at their base depot and

finish at the other depot, drivers must complete their routes by returning to their base depot.

A driver needs a vehicle to travel and a vehicle should always be led by a driver. However, it is

allowed for a driver to travel as a passenger in a vehicle that is led by another driver.

A driver always has a different final destination (his base depot) than the vehicle he departs

with (the other depot). To make this feasible, a designated customer acts as an exchange point

where drivers can swap vehicles. Therefore, the exchange location may and should be visited by

multiple vehicles. The duration of a driver’s route is defined as the total time it takes to arrive

at the base depot again, after departure. The travel time between two locations is fixed and

known in advance. Each driver route is not allowed to exceed a certain duration limit. There

are no time restrictions imposed on the vehicle routes. A vehicle swap is only possible if both

the driver and his new vehicle are at the exchange location at the same time. This is ensured by

adjusting the departure times of all drivers and vehicles accordingly. For one exchange location,

this is always possible.

In addition to the travel time between two locations, a cost is associated with travelling between

two locations. The costs of a route are defined as the accumulated costs of travelling between

all locations of that route. The goal is to find a set of driver routes and vehicle routes that

minimise the objective function, which equals the sum of the costs of all driver routes.

3.2 Driver and Vehicle Routing Problem with Multiproduct demand

The Driver and Vehicle Routing Problem with Multiproduct demand (DVRPM) is an extension

of the DVRP. Both problems have two depots and a number of customers, with one designated

as the exchange location. However, in the DVRPM, all customers have a known demand for

a specific type of product. There are two types of products. One type is delivered by vehicles

starting from the first depot and the other type is delivered by vehicles starting from the other

depot. A customer’s demand solely concerns one type of product. At each depot, there are

equally many vehicles available. All vehicles have a capacity, which is the same for all vehicles.

As in the DVRP, all customers should be visited exactly once, except for the exchange location,

which must be visited by all vehicles. This implies that each customer, excluding the exchange

location, can only be served by exactly one vehicle. The customer at the exchange location may

be served by multiple vehicles. Similar to the DVRP, the goal of the DVRPM is to find the

driver and vehicle routes that minimise the total costs of the driver routes.

4

3.3 Driver and Vehicle Routing Problem with Multiproduct demand and

Perishable goods

The Driver and Vehicle Routing Problem with Multiproduct demand and Perishable goods

(DVRPMP) is an extension to the DVRPM. This problem assumes the goods are perishable,

which means that not all products that were initially in a vehicle can be delivered. We assume

that the fraction of products that are perished follows a known time-dependent distribution. As

in the DVRPM, the goal is to construct driver and vehicle routes that minimise the total costs

of the driver routes. However, the additional objective now is to serve as many customers as

possible. In the case a vehicle does not have enough products left to deliver to a customer, we

assume for simplicity that the vehicle still visits the remaining customers and finishes its route.

4 Methodology

In this section, we introduce some notation, after which we describe a full multistart heuristic

as in Domı́nguez-Mart́ın et al. (2023), to solve the DVRP with a single exchange location.

Furthermore, we adjust the multistart heuristic in order to align with the set-up of both the

DVRPM and the DVRPMP.

4.1 Notation

Given is a set of customers Vc = {1, ..., n} and a set of depots D = {0, n+1}. It follows that the
set of all locations is given by V = {0, ..., n+ 1}. In this paper, we consider only one exchange

location e ∈ Vc. At an exchange location, drivers can switch vehicles in order to return to their

respective depot of departure. The exchange location must be visited by all vehicles, whereas

all other customer locations should be visited by exactly one vehicle. Define the set of arcs as

A = {(i, j) : i, j ∈ V, i ̸= j}. The sets of drivers and vehicles starting at depot d ∈ D are given

by Kd and Ld, respectively. It takes tij time to travel from i to j, ∀(i, j) ∈ A. Each route of a

driver cannot exceed a given time limit T . Each arc has a cost cij .

For each depot d ∈ D and driver k ∈ Kd, the driver route is defined by Sd,k, which is a sequence

of locations. Both the first and last location of this sequence should be the depot d. Moreover,

each customer can be visited at most once, whereas the exchange location should always be

visited. Each driver route can be split into two parts S1
d,k and S2

d,k, such that Sd,k = S1
d,k ∪S2

d,k.

Here, S1
d,k is the subroute from depot d to the exchange location e (inclusive) and S2

d,k is the

subroute from the exchange location e (exclusive) to the depot d.

The vehicle route is given by Rd,l, ∀d ∈ D, l ∈ Ld. The first location is the depot d, whereas

the last location is the other depot d′ ∈ D \ {d}. Again, each other customer can be vis-

ited at most once, whereas the exchange location should always be visited. The vehicle route

is composed of two subroutes of driver routes. In particular, ∃k1 ∈ Kd, k2 ∈ Kd′ , such that

Rd,l = S1
d,k1
∪ S2

d′,k2
, ∀d ∈ D, l ∈ Ld.

The extensions of the DVRP examined in this paper consider customer demand. For every

5

customer i ∈ Vc, this is given by qi. Moreover, let Q denote the capacity of each vehicle. For a

given (sub)route S, the total quantity delivered to customers (excluding the exchange location)

on that route is defined by:

q(S) =
∑

i∈S∩Vc:i ̸=e

qi. (1)

The time of the last delivery is denoted by τ(S) for all routes S. In the DVRPMP, each product

will perish at some point in time. For each vehicle, denote the expiration time of the Q products

by T1, T2, ..., TQ. Product i can only be delivered to a customer at time t if Ti > t.

4.2 Multistart heuristic

The multistart heuristic consists of several parts. Algorithm 1 shows the different steps of this

method. After initialisations of the best objective value, driver routes, vehicle routes and the

number of drivers, the first multistart loop starts. In this loop, a greedy construction algorithm

creates an initial solution that is feasible. Subsequently, this initial solution is improved by local

search. From Domı́nguez-Mart́ın et al. (2023), we know that both inter-route search and 2-opt

search perform quite well for the DVRP. For that reason, the local search in this algorithm first

improves the solution through inter-route search, whereafter 2-opt search is applied. If applic-

able, the best solution is updated to the new solution. This process is repeated until a certain

time limit or maximum number of iterations is reached.

If the multistart loop does not result in a feasible solution, the number of drivers at each depot

is increased by one and a new multistart loop will be executed. This continues until a certain

time limit is reached or when the number of drivers exceeds the maximum number of drivers

fixed at the start. If the preceding steps led to a feasible solution, the corresponding vehicle

routes are constructed using a specific algorithm. The remainder of this section elucidates the

different parts of the multistart heuristic.

4.2.1 Construction initial solution

The first step within the multistart loop is to construct driver routes S that form an initial

solution for a given number of drivers at each depot k. First, the driver routes Sd,k are initialised

for every depot d ∈ D and driver k ∈ Kd, such that the route visits the exchange location e

and starts and ends at d. Hereafter, unvisited customers are inserted into a route using the

cheapest insertion strategy. For every route, this strategy computes the cost increase of each

place (index in the route) customer i ∈ Vc \ {e} can be inserted. This cost increase is defined as

cui + civ − cuv for all consecutive nodes u, v in the current route. The best route and place to

insert a customer are where the cost increase is minimal. If the duration bound T will not be

exceeded after insertion, the customer is inserted. Otherwise, it is inserted using the cheapest

insertion strategy into the route that currently has the minimum duration. When all customers

are included in a route, the set of all driver routes is given by S =
⋃

d∈D

|Kd|⋃
k=1

Sd,k. The pseudocode

for this procedure can be found in Appendix A.

6

Algorithm 1: Multistart heuristic for the DVRP

Input : Instance data and parameters timeLim, maxDrivers and maxIter

Output: Driver routes S∗, vehicle routes R∗ and solution value f∗

1 f∗ ←∞, S∗ ← ∅, R∗ ← ∅, k ← 1
2 while time ≤ timeLim, k ≤ maxDrivers and S∗ not feasible do
3 nIter← 1
4 while time ≤ timeLim and nIter ≤ maxIter do
5 // Multistart loop

6 S ← constructGreedySol (k)
7 S ← localSearch (S)
8 if S is feasible and f(S) < f∗ then
9 S∗ ← S

10 f∗ ← f(S)

11 end
12 nIter← nIter+ 1

13 end
14 if S∗ is not feasible then
15 k ← k + 1
16 end

17 end
18 if S∗ ̸= ∅ then
19 R∗ ← constructVehicleRoutes (S∗)
20 end

4.2.2 Local search

The local search that is applied to the initial solution consists of inter-route search, followed by

2-opt search. In each iteration of inter-route search, the algorithm evaluates all driver routes.

For every customer in a driver’s route, it attempts to enhance the solution by removing the

customer from its current route and examining all possible insertions into other routes. This

means the cheapest insertion strategy is used over all other routes. If the relocation is feasible

and improves the solution, it is executed. While improvements are found, the method continues.

The pseudocode for the inter-route search can be found in Appendix A.

After termination of the inter-route search, 2-opt search is used to look for further improve-

ments to the solution. In 2-opt search, changes can only be made within driver routes. These

changes, known as 2-opt swaps, involve selecting two locations in the route, removing one arc

connected to each location, and then reconnecting the route by adding two new arcs. For every

pair of locations in a given route, we check whether a 2-opt swap leads to a cost decrease. If

so, we change the route accordingly. We proceed with 2-opt search for each route until no im-

provements are found for all location pairs. Ultimately, this results in the final solution for the

driver routes. As for inter-route search, the pseudocode for the 2-opt search can be found in

Appendix A.

7

4.2.3 Construction vehicle routes

First, consider the vehicles that depart from depot 0. Choose drivers k1 ∈ K0 and k2 ∈ Kn+1

and construct the first vehicle route R0,1 = S1
0,k1
∪S2

n+1,k2
. Subsequently, choose drivers k′1 ∈ K0

and k′2 ∈ Kn+1 that have not been chosen before and construct the next vehicle route R0,2 =

S1
0,k′1
∪ S2

n+1,k′2
. Repeat this process until all drivers in K0 have been chosen. Note that if

|K0| > |Kn+1|, it is allowed to choose drivers from Kn+1 multiple times and vice versa. In this

case, a driver travels as a passenger in a vehicle. The same procedure can be applied to find

the vehicle routes that depart from depot (n + 1). The vehicle routes are now constructed as

follows: Rn+1,l = S1
n+1,k1

∪ S2
0,k2

with k1 ∈ Kn+1, k2 ∈ K0 and l ∈ Ln+1.

4.3 DVRPM-adjusted multistart heuristic

Now, we consider the DVRPM framework. Before we discuss the adjustments to the multistart

heuristic, we first show a visualisation of the situation in Figure 1. D1 and D2 are the depots

from where the vehicles depart that deliver the type 1 and type 2 products, respectively. The

exchange location is represented by E 1. Note that driver routes are circular, whereas vehicle

routes start at one depot and end at the other depot. The blue and black products are the type

1 and type 2 products, respectively. Observe that from a depot to E, the driver delivers products

of its starting depot. From E to a depot, the opposite holds. From Figure 1, it becomes clear

that customers on subroutes from D1 to E and from E to D2 are of type 1, whereas customers

on subroutes from D2 to E and E to D1 are of type 2.

Figure 1: Visualisation of driver routes and product delivery in the DVRPM.

Now, we discuss the multistart heuristic to align with the DVRPM framework. For the ini-

tial construction of driver routes, the insertion strategy will change. The cheapest insertion

strategy is still used to find the best insertion place. Nonetheless, customers with type 1 de-

mand can only be inserted at places (spots in the route) where type 1 products are delivered.

Specifically, insertion can take place between depot 0 and the exchange location e for driver

routes starting from depot 0 and between e and depot (n + 1) for driver routes from depot

(n + 1). Customers with type 2 demand can only be inserted at places between depot (n + 1)

and e for driver routes starting from depot (n+ 1) and between e and depot 0 for driver routes

1D1 can be viewed as depot 0, D2 as depot (n+ 1) and E as the exchange location e.

8

from depot 0. Furthermore, the duration bound T cannot be exceeded after insertion, as in the

original algorithm. However, now it also has to be checked whether this insertion is possible,

considering capacity constraints. For the reason that the vehicle routes are not yet constructed,

it cannot be directly assessed whether the capacity constraints are met after insertion. To over-

come this problem, observe that vehicle routes are nothing else than a matching between two

driver subroutes. Therefore, it suffices to ensure the existence of feasible matchings, rather than

constructing vehicle routes in advance.

Algorithm 2 returns whether the existence of feasible matchings is guaranteed. It considers

two subroute sets G1 and G2 that are compatible. This means that either G1 consists of sub-

routes from depot 0 to the exchange location e and G2 consists of subroutes from e to the depot

(n+1), or G1 consists of subroutes from depot (n+1) to the exchange location e and G2 consists

of subroutes from e to the depot 0. While there are unmatched subroutes left, the unmatched

subroute in G1 with the highest total delivery is matched to the unmatched subroute in G2 with

the highest total delivery, such that the capacity constraint of the vehicle route (the union of

the subroutes) is satisfied. We call this the ‘highest-delivery strategy’ for finding a matching.

The following theorem implies the correctness of Algorithm 2:

Theorem. There exists a feasible matching if and only if the highest-delivery strategy finds a

feasible matching.

Proof.

‘⇐’: This is trivial, as there exists a feasible matching if the highest-delivery strategy finds a

feasible matching.

‘⇒’: Given is that there exists a feasible matching. Let M be one such matching. We will

modify M by rematching the subroutes using the highest-delivery strategy and show it remains

feasible. Suppose that the unmatched subroute with the highest total delivery is g1 ∈ G1. The

unmatched subroute with the highest delivery to which g1 can be matched is denoted by g2 ∈ G2.
Let g′1 ∈ G1 be the subroute matched to g2 in M and g′2 ∈ G2 be the subroute matched to g1 in

M . Suppose that g′1 = g1 and g′2 = g2. This means that g1 is matched to g2 in M . Therefore,

there still exists a feasible matching if g1 is matched to g2, namely M , so match g1 to g2. Suppose

now that g′1 ̸= g1 and g′2 ̸= g2. By construction, it is possible to match g1 to g2. Moreover,

q(g′1) + q(g′2) ≤ q(g1) + q(g′2) ≤ q(g1) + q(g2) ≤ Q. (2)

It follows that it is also possible to match g′1 to g′2. Now, change M by replacing the matchings

g1-g
′
2 and g′1-g2 by g1-g2 and g′1-g

′
2. By construction, M remains a feasible matching. Repeat

the process until there are no unmatched subroutes left. The final matching M is the result of

the highest-delivery strategy and is feasible because each iteration did not change its feasibility.

This concludes the proof. ■

If the highest-delivery strategy does not result in a feasible matching, it follows by the the-

orem, using the law of contraposition, that there does not exist a feasible matching.

Returning to the adjustment of the insertion strategy in the construction of driver routes, if the

9

Algorithm 2: Matching of driver subroutes

Input : Instance data, subroute sets G1,G2
Output: Whether a feasible matching exists

1 while G1 ̸= ∅ do
2 Determine the subroute g1 = argmax

g∈G1

q(g)

3 if {g ∈ G2 : q(g1 ∪ g) ≤ Q} = ∅ then
4 return false
5 end
6 Match g1 to the subroute g2 = argmax

g∈G2:q(g1∪g)≤Q
q(g)

7 G1 ← G1 \ {g1}
8 G2 ← G2 \ {g2}
9 end

10 return true

insertion place is between the starting depot d ∈ D and the exchange location e, G1 consists of

subroutes from d to e and G2 consists of subroutes from e to d′ ∈ D \ {d}. If the insertion place

is after e, G1 consists of subroutes from d′ ∈ D \ {d} to e and G2 consists of subroutes from e to

d. The existence of a feasible matching, indicated by the output of Algorithm 2, is a necessary

condition for the feasibility of a solution of driver routes. This requirement is incorporated into

the feasibility check within the multistart loop of Algorithm 1.

Besides the initial solution algorithm, the local search algorithms also need to be changed com-

pared to the original version of the DVRP without customer demand. We first consider the

inter-route search algorithm. An inter-route move consists of the removal of a customer from

its current route and the insertion of that same customer into another route. Again, customers

can only be inserted at places where their product type is being delivered. As opposed to the

original version of this insertion, the capacity constraints should hold now as well. To check this

feasibility, we utilise Algorithm 2.

Now, we look at the 2-opt search algorithm. It is not possible to connect two customers from

different subroutes, as the customers have different types of demand and would be served by the

same vehicle. Because the change in the route only affects one subroute of the route, feasibility

is still ensured when the previous solution is feasible. This is because the total delivery does not

change for each subroute.

As for the construction of the vehicle routes, we use Algorithm 2. However, instead of checking

if a feasible matching exists, we obtain vehicle routes that are a result of the matchings in the

algorithm. This way, it is guaranteed that the capacity constraints are satisfied.

Note that the DVRPM-adjusted multistart heuristic has not taken the deliveries to the ex-

change location into account yet. That is because we make the assumption that the sum of

capacities of all vehicles that deliver type 2 products (which is the type of the exchange loca-

10

tion) is at least equal to the sum of all demand of type 2. This ensures that any vehicle with

remaining products can deliver them to the exchange location, as all vehicles are scheduled to

visit this location.

4.4 DVRPMP-adjusted heuristic

4.4.1 Integer linear program model for matchings

We model the expiration times T1, T2, ..., TQ of the Q products in a vehicle as random variables

that are independently and identically distributed. In this paper, Ti ∼ Exp(µ), ∀i ∈ {1, ..., Q},
where µ is the mean. Assume that µ is the same for the expiration time of both type 1 and

type 2 products. The order statistics are denoted by T(1) ≤ T(2) ≤ ... ≤ T(Q). Let S be a vehicle

route. If Q − q(S) + 1 products expire before the time of the last delivery τ(S), then not all

products could be delivered. The probability that this happens is:

P
(
T(Q−q(S)+1) ≤ τ(S)

)
=

Q∑
j=Q−q(S)+1

(
Q

j

)(
1− e

− τ(S)
µ

)j(
e
− τ(S)

µ

)Q−j
. (3)

This probability follows from the cumulative distribution function of the order statistics. From

Equation (3), we observe that both the total delivery and the time of the last delivery have a

positive influence on the probability of not being able to deliver everything, which we refer to

as ‘failure probability’. This makes sense because fewer spare products are available in case of

high total delivery. Moreover, the later the last delivery time, the larger the probability that a

product expires. Preferably, this failure probability should be as low as possible. Therefore, the

construction of vehicle routes needs to minimise the average failure probability of the routes.

Instead of using Algorithm 2, we use an integer linear programming model.

Given a solution of driver routes, let Gl1 be the set of all subroutes from the depot to the

exchange location for type l ∈ {1, 2}. Similarly, let Gl2 be the set of all subroutes from the

exchange location to the depot for type l ∈ {1, 2}. For every i ∈ Gl1, j ∈ Gl2, the decision variable

xij equals 1 if subroutes i and j are matched and 0 otherwise. Parameters qij and pij are the

total delivery and the failure probability of the vehicle route composed by subroutes i ∈ Gl1 and

j ∈ Gl2, respectively. The model for type l ∈ {1, 2} is as follows:

min
∑

i∈Gl
1,j∈Gl

2

pijxij , s.t. (4)

∑
i∈Gl

1

xij = 1 ∀j ∈ Gl2, (5)

∑
j∈Gl

2

xij = 1 ∀i ∈ Gl1, (6)

qijxij ≤ Q ∀i ∈ Gl1, j ∈ Gl2, (7)

xij ∈ {0, 1} ∀i ∈ Gl1, j ∈ Gl2. (8)

11

Equation (4) minimises the sum of failure probabilities, which is equivalent to minimising the

average failure probability, as the number of vehicle routes is fixed. To ensure that every

subroute from the depot to the exchange location is matched to a subroute from the exchange

location to the depot and vice versa, Equation (5) and Equation (6) are included. Furthermore,

Equation (7) ensures that the total delivery of every vehicle route does not exceed the capacity

Q. Finally, Equation (8) gives the bounds of the binary decision variables.

4.4.2 DVRPMP-adjusted multistart heuristic

It is possible to adjust the multistart heuristic in order to decrease the average failure probabilit-

ies. For this, the key observation is that routes with the highest delivery are most likely to have

high probabilities of not being able to deliver every product. The integer linear programming

problem is more likely to find better solutions if the parameters pij and qij are more balanced,

leading to more matching possibilities. To establish this, we adjust the multistart heuristic. In

the initial solution algorithm, instead of going through all the routes to insert a certain customer,

we only consider the α · 100% of the routes with the lowest delivery with 0 ≤ α ≤ 1. Note that

when α = 0 or close to 0, there would be no routes to choose from. For this reason, the minimal

number of routes to choose from is set to 1. This way, the distribution of the delivery will be

more balanced among the routes. Because of the positive influence of the delivery volume on the

failure probability, this probability will also be more balanced. As for the inter-route search, the

same method is applied, such that customers are only inserted into the lowest delivery routes.

The 2-opt search algorithm does not need to change because changing the visiting order does

not change the total delivery.

We apply the DVRPMP-adjusted multistart heuristic to find the driver routes. To check for

feasibility in this heuristic, we utilise Algorithm 2 as in the DVRPM-adjusted multistart heur-

istic. However, we solve the integer linear problem to find the vehicle routes from the final

solution of driver routes.

5 Results

In this section, the data we use for our computational analysis is specified first. Subsequently,

the results of the DVRP are examined, after which the results of both the DVRPM and the

DVRPMP are presented. All methods and algorithms are run on a Windows computer that has

16GB RAM with 4 cores at 2.9 GHz. We use the programming language Java for coding. In

addition, we use Gurobi to solve the ILP, described in Section 4.4.1.

5.1 Data

The data sets that are used to test the methods are from Domı́nguez-Mart́ın et al. (2023). There

are 81 instances in total, divided into class 1, class 2 and class 3 instances. Class 1 instances are

introduced by Domı́nguez-Mart́ın et al. (2018a) and have n + 2 ∈ {10, 15, 20, 25, 30} locations,
where n is the number of customers. The coordinates of the locations are randomly chosen on

the Cartesian plane in the square [0, 100]× [0, 100]. Locations 0 and n+1 function as the depots,

12

whereas location n is chosen to be the exchange location. There are three vehicles and three

drivers available at each depot, such that maxDrivers = 3 in Algorithm 1. The costs cij for

travelling between locations i and j are defined to be the Euclidean distance of those locations.

The travel time between locations i and j is then defined by tij =
cij
60 + 0.5. For each data

set, there are four parameter values for the time limit T , namely TA, TB, TC and TD. These

values are in increasing order, where TA generally is the tightest parameter value that leads to

a feasible solution. There are five instances for each number of locations, resulting in 25 class 1

instances.

The class 2 instances are still randomly generated, but these data sets follow a certain structure.

There are 16 instances with 50 locations, first introduced by Domı́nguez-Mart́ın et al. (2018b).

One depot is located somewhere in the rectangle [0, 20]× [0, 100], whereas the other depot is loc-

ated in [80, 100]× [0, 100]. The coordinates of the exchange location are inside [40, 60]× [0, 100]

and the remaining customers are inside the [0, 100]×[0, 100] square. This setup aims to represent

a common scenario in transportation, where depots are located far apart, and an exchange point

is centrally situated between them. The parameter value of the time limit is set to T = 18 for

all instances. The other parameters are the same as before.

The class 3 instances have n + 2 ∈ {100, 200, 300, 400, 500, 600, 800, 1000} locations and are

introduced by Domı́nguez-Mart́ın et al. (2023). These data sets are generated in the same way

as the class 2 instances. For each instance, the time limit T has four different increasing values:

TA, TB, TC and TD. The other parameters are the same, except for the number of drivers and

vehicles available at each depot, which is maxDrivers = 3 now. There are again five data sets

for each problem size, resulting in 81 instances in total for the three classes. The access link to

the 81 instances is stated in Domı́nguez-Mart́ın et al. (2023).

The time limit in Algorithm 1 is timeLim = 600s, as in Domı́nguez-Mart́ın et al. (2018b)

and Domı́nguez-Mart́ın et al. (2023). Furthermore, Domı́nguez-Mart́ın et al. (2023) performed

preliminary tests on the instances that contain 100 locations. It followed that using 100,000

iterations led to a decent balance between solution quality and computation time, so we use

maxIter = 100, 000.

Both the DVRPM and the DVRPMP deal with demand. However, the data sets, as described

above, do not contain information about demand. Therefore, we generated the data ourselves.

For each problem size of the three classes, we only consider the first instance, resulting in 14

data sets in total. The demand of each customer is randomly chosen from a uniform distribu-

tion ranging between 1 and 100. Customers 1, ..., ⌊n2 ⌋ have a demand for type 1 products and

customers ⌊n2 ⌋+1, ..., n have a demand for type 2 products. The capacity of all vehicles is given

by Q = max
{
100, 1.5 ·

∑n
i=1 qi

|K0|+|Kn+1|
}
. If Q > 100, then the sum of all capacities is 50% more than

the sum of all demand. We enforce Q to be at least 100, as customers’ demand can be 100. This

way, it is guaranteed that each customer can be served by a vehicle.

13

5.2 Results DVRP

First, we run Algorithm 1 for all class 1 instances. We compare the results with the solutions

found by an exact method in Domı́nguez-Mart́ın et al. (2018a). Table 1 shows the results for

the parameter values TA and TC . The instances have the following format: nx-y, where x is the

number of locations and y is the number of the instance. The objective values found using an

exact method by Domı́nguez-Mart́ın et al. (2018a) are in the column Sol. E. Our results after

applying the multistart heuristic are shown in the column Sol. H. The number of drivers in our

heuristic solution is given by k. Finally, the Time (s) column gives the running time in seconds

for each instance. The results for the parameter values TB and TD can be found in Appendix B.

Table 1: Results of exact method and multistart heuristic for class 1 instances for TA and TC .
Instance TA Sol. E Sol. H k Time (s) TC Sol. E Sol. H k Time (s)

n10-1 6 652 654 2 1 8 410 411 1 1
n10-2 5 486 486 2 1 7 292 293 1 1
n10-3 5 987 987 3 2 7 390 390 1 1
n10-4 5 610 611 2 1 7 384 384 1 1
n10-5 5 595 594 2 1 7 356 355 1 1
n15-1 6 454 456 2 1 9 349 349 1 1
n15-2 6 746 746 2 1 9 406 405 1 1
n15-3 6 660 660 2 1 9 388 387 1 1
n15-4 6 1094 1093 3 3 9 497 498 1 1
n15-5 6 787 788 2 1 9 471 472 1 1
n20-1 7 1285 1263 3 5 10 557 559 1 1
n20-2 7 666 667 2 2 10 438 441 1 1
n20-3 7 845 846 2 2 10 540 540 1 1
n20-4 7 600 602 2 3 10 447 448 1 1
n20-5 7 647 650 2 3 10 432 434 1 1
n25-1 8 718 719 2 4 11 499 501 1 1
n25-2 8 825 796 2 3 11 501 510 1 1
n25-3 8 603 601 2 5 11 439 436 1 1
n25-4 8 683 686 2 5 11 469 470 1 1
n25-5 8 721 724 2 5 11 491 494 1 1
n30-1 9 877 879 2 8 13 615 628 1 2
n30-2 9 927 851 2 10 13 560 561 1 2
n30-3 9 812 812 2 11 13 506 507 1 3
n30-4 9 756 721 2 11 13 536 536 1 2
n30-5 9 756 750 2 7 13 493 495 1 2

It appears that most of the times, the heuristic solution is approximately the same as the exact

solution. For 4 of the 25 instances (with TA), the multistart heuristic substantially outperforms

the exact approach, resulting in solutions with costs reduced by 20 or more. Frequently, two

drivers are used for instances with time limit TA, whereas only one driver is used for instances

with TC . The running time seems to be increasing in the problem size. Moreover, the tighter

the maximum duration of a route, the longer the algorithm runs. This is presumably because

there are no feasible solutions with 1 driver, such that the algorithm is searching for multiple

values of k. In less than 15 seconds, heuristic solutions that are comparable to or even better

than the exact solutions are found.

14

There are a few outliers, which are n10-3, n15-4 and n20-1 (TA). For these instances, all of

the objective value, the number of drivers and the running time are larger than for other com-

parable data sets. The number of drivers positively influences the objective value, as there are

more driver routes that come with costs. In all cases, the solution becomes better when the

duration bound is loosened. This is reasonable, as a larger time limit allows for more routes,

thereby increasing the feasible region.

Table 2 presents the results for the 16 class 2 data sets. This time, there is only one value

of T . Besides, we make a distinction between the number of drivers used in the exact solution

(k E) and in the heuristic solution (k H), as this often differs. Other than that, the columns

are the same.

Table 2: Results of exact method and multistart heuristic for class 2 instances for T = 18.
Instance T Sol. E k E Sol. H k H Time (s)

n50-1 18 606 1 608 1 8
n50-2 18 - - 591 1 8
n50-3 18 581 1 588 1 9
n50-4 18 593 1 597 1 10
n50-5 18 933 2 757 2 26
n50-6 18 584 1 585 1 8
n50-7 18 548 1 550 1 8
n50-8 18 588 1 591 1 9
n50-9 18 603 1 607 1 8
n50-10 18 597 1 788 2 20
n50-11 18 607 1 603 1 8
n50-12 18 1269 2 628 1 9
n50-13 18 - - 786 2 28
n50-14 18 - - 618 1 9
n50-15 18 867 2 813 2 21
n50-16 18 613 1 615 1 9

Observe that the exact model failed to find a feasible solution for the instances n50-2, n50-13

and n50-14, whereas the heuristic solution does find solutions for these instances. Furthermore,

the heuristic solution outperforms the exact solution for the data sets n50-5, n50-11, n50-12 and

n50-15. Nonetheless, the exact solution is better in all other cases. An interesting observation

is that the heuristic approach for n50-10 fails to find a solution where only one driver is used,

although such a solution exists. For n50-12, it is the other way around. Moreover, the multistart

heuristic always yields better results when the exact solution contains two drivers. A possible

explanation for this could be that an increment in the number of drivers adds a layer of com-

plexity, which the heuristic can manage more effectively than the exact method. The running

times vary, but are generally larger than the running times in Table 1.

Class 3 instances consist of a lot more locations, which makes it burdensome to find an ex-

act solution in a reasonable amount of time. Therefore, Table 3 only shows the results of the

multistart heuristic. The instances in Table 3 have up to 500 locations. These results are for

15

the parameter values TA and TC . The outcomes of the heuristic for the parameter values TB

and TD can be found in Appendix B.

Table 3: Results of multistart heuristic for class 3 instances for TA and TC .
Instance TA Sol. H k Time (s) TC Sol. H k Time (s)

n100-1 15 1096 3 83 30 885 2 51
n100-2 15 1233 3 82 30 960 2 59
n100-3 15 1057 3 82 30 848 2 63
n100-4 15 1177 3 68 30 933 2 53
n100-5 15 1163 3 83 30 915 2 74
n200-1 25 1466 3 507 50 1191 2 401
n200-2 25 1523 3 514 50 1213 2 401
n200-3 25 1418 3 506 50 1186 2 386
n200-4 25 1421 3 449 50 1211 2 286
n200-5 25 1393 3 504 50 1195 2 353
n300-1 35 1657 3 600 70 1441 2 600
n300-2 35 1800 3 600 70 1422 2 600
n300-3 35 1727 3 600 70 1425 2 600
n300-4 35 1723 3 600 70 1459 2 600
n300-5 35 1647 3 600 70 1370 2 600
n400-1 45 1902 3 600 90 1607 2 600
n400-2 45 1874 3 600 90 1594 2 600
n400-3 45 1882 3 600 90 1633 2 600
n400-4 45 2078 3 600 90 1687 2 600
n400-5 45 2007 3 600 90 1686 2 600
n500-1 55 2073 3 600 110 1807 2 600
n500-2 55 2148 3 600 110 1816 2 600
n500-3 55 2223 3 600 110 1837 2 600
n500-4 55 2302 3 600 110 1935 2 600
n500-5 55 2040 3 600 110 1817 2 600
n600-1 65 2301 3 600 155 1992 2 600
n600-2 65 2393 3 600 155 1987 2 600
n600-3 65 2330 3 600 155 1991 2 600
n600-4 65 2232 3 600 155 1942 2 600
n600-5 65 2349 3 600 155 2018 2 600
n800-1 85 2483 3 600 175 2274 2 600
n800-2 85 2762 3 600 175 2316 2 600
n800-3 85 2460 3 600 175 2288 2 600
n800-4 85 2456 3 600 175 2282 2 600
n800-5 85 2646 3 600 175 2265 2 600
n1000-1 105 2854 3 600 205 2536 2 600
n1000-2 105 2974 3 600 205 2588 2 600
n1000-3 105 2902 3 600 205 2518 2 600
n1000-4 105 2800 3 600 205 2504 2 600
n1000-5 105 2805 3 600 205 2526 2 600

The total costs tend to increase as the size of the instances increases. Remarkable is that the

number of drivers does not increment as the number of locations grows for both TA- and TC-

values. For all instances, the objective value is lower for the value TC of the maximum duration

than for the stricter value TA. This is logical because the feasibility region expands as the driver

16

route duration constraint is less restrictive. Furthermore, it can be seen that the objective values

of data sets of the same size for the same duration parameter value are fairly comparable. The

only exception to this seems to be for data sets with 800 locations (TA), as n800-2 and n800-5

have solution costs of two to three hundred more than those of the other instances. The running

time is between 1 and 7 minutes for instances with 100 or 200 locations. Nevertheless, the

running time for all other instances is the maximum of 10 minutes (600 seconds).

5.3 Results DVRPM

Now, we present the results of the DVRPM-adjusted multistart heuristic that is discussed in

Section 4.3. For each number of locations, the first instance is used to test the methodology.

Information about customer demand is now also included in these data sets, as explained in

Section 5.1. Denote the original multistart heuristic to the DVRP in Algorithm 1 by H1. The

DVRPM-adjusted multistart heuristic is referred to as H2. Table 4 shows the results for H2.

The results of H1 are discussed in Section 5.2. The maximum duration TA is used for each run

and is given in column T. The objective values of H2 are in the column Sol. H2. Similarly, the

number of drivers used in the final solution of H2 can be found in the column k H2. Lastly, the

running times of H2 are stated in column Time (s).

Table 4: Results of H2 for instances of multiple sizes.
Instance T Sol. H2 k H2 Time (s)

n10-1 6 654 2 1
n15-1 6 456 2 1
n20-1 7 1276 3 3
n25-1 8 719 2 3
n30-1 9 912 2 5
n50-1 18 778 2 7
n100-1 15 1219 3 78
n200-1 25 1784 3 600
n300-1 35 2029 3 600
n400-1 45 2327 3 600
n500-1 55 2602 3 600
n600-1 65 3168 3 600
n800-1 85 3273 3 600
n1000-1 105 3786 3 600

It appears that H2 is able to find feasible solutions to the DVRPM using 2 or 3 drivers at each

depot within 10 minutes of running time for all instances. In general, the costs increase as the

number of locations of the data sets grows. For all runs, the costs of the H2 solution are equal

to or higher than the costs of the H1 solution to the DVRP. This is expected, as H2 also takes

into account the capacity and delivery constraints. The maximum increase is about 38% of the

initial solution, occurring in the case of n600-1. Furthermore, for n50-1, the number of drivers

used in the H2 solution is one more than the number of drivers used in the solution found by

H1. For all other instances, the number of drivers is the same. The running time is relatively

low for instances n10-1 up until n100-1. However, it is equal to the maximum running time of

600 seconds for all other instances.

17

5.4 Results DVRPMP

Finally, we consider the case where the goods are perishable. First of all, we run the DVRPMP-

adjusted multistart heuristic, explained in Section 4.4, for different values of α. Subsequently,

we simulate the expiration times of all products 10,000 times for both the solution found by

H2 and the solution found by H3 (which denotes the heuristic from Section 4.4). From these

simulations, the average failure probability is computed for both solutions. Recall that the failure

probability is the probability that a vehicle is not able to deliver everything it is scheduled to.

Table 5 presents the results for instances with up to 200 locations and Table 6 shows the results

for instances with 300 locations or more. Again, the maximum duration TA is used for each

run and is given in column T. The values of parameter µ of the exponential distribution the

expiration times follow are given in column µ. For each instance, the value of µ is chosen such

that the methodology can be tested. Too low values lead to failure probabilities of 1, whereas

too high values lead to failure probabilities of 0. Hence, the value is chosen in between. We run

the algorithm for α ∈ {0.5, 0.25, 0}. The objective values of H2 and H3 are in the columns Sol.

H2 and Sol. H3, respectively. Similarly, the average failure probabilities of the final solution

of H2 and H3 are stated in the columns Fail % H2 and Fail % H3.

Table 5: Results of H2 and H3 with average fail percentages for instances of multiple sizes.
Instance T µ α Sol. H2 Fail % H2 Sol. H3 Fail % H3

n10-1 6 16 0.5 654 43.455 660 25.000
n10-1 6 16 0.25 654 43.455 724 5.333
n10-1 6 16 0 654 43.455 724 5.295
n15-1 6 20 0.5 456 49.235 456 24.275
n15-1 6 20 0.25 456 49.235 526 0.213
n15-1 6 20 0 456 49.235 526 0.185
n20-1 7 27 0.5 1276 49.915 1287 43.573
n20-1 7 27 0.25 1276 49.915 1360 0.238
n20-1 7 27 0 1276 49.915 1390 2.407
n25-1 8 30 0.5 719 25.050 754 25.000
n25-1 8 30 0.25 719 25.050 911 17.068
n25-1 8 30 0 719 25.050 942 11.275
n30-1 9 30 0.5 912 50.000 1044 43.093
n30-1 9 30 0.25 912 50.000 1226 0.000
n30-1 9 30 0 912 50.000 1238 0.000
n50-1 18 22 0.5 778 49.988 893 0.000
n50-1 18 22 0.25 778 49.988 994 0.000
n50-1 18 22 0 778 49.988 986 0.000
n100-1 15 30 0.5 1219 50.000 1346 33.333
n100-1 15 30 0.25 1219 50.000 1574 0.814
n100-1 15 30 0 1219 50.000 1686 0.000
n200-1 25 35 0.5 1784 50.000 2075 33.069
n200-1 25 35 0.25 1784 50.000 2168 25.000
n200-1 25 35 0 1784 50.000 2364 12.533

18

Table 6: Results of H2 and H3 with average fail percentages for instances of multiple sizes.
Instance T µ α Sol. H2 Fail % H2 Sol. H3 Fail % H3

n300-1 35 65 0.5 2029 50.000 2413 12.500
n300-1 35 65 0.25 2029 50.000 2534 0.000
n300-1 35 65 0 2029 50.000 2708 0.000
n400-1 45 65 0.5 2327 63.730 2795 13.108
n400-1 45 65 0.25 2327 63.730 3068 11.189
n400-1 45 65 0 2327 63.730 3258 3.801
n500-1 55 75 0.5 2602 83.333 3106 4.584
n500-1 55 75 0.25 2602 83.333 3438 1.863
n500-1 55 75 0 2602 83.333 3605 0.000
n600-1 65 95 0.5 3168 66.667 3454 25.000
n600-1 65 95 0.25 3168 66.667 3733 12.500
n600-1 65 95 0 3168 66.667 3987 0.000
n800-1 85 135 0.5 3273 66.667 3881 0.000
n800-1 85 135 0.25 3273 66.667 4189 0.000
n800-1 85 135 0 3273 66.667 4510 0.000
n1000-1 105 135 0.5 3786 66.667 4408 12.500
n1000-1 105 135 0.25 3786 66.667 4858 0.018
n1000-1 105 135 0 3786 66.667 5138 0.000

H2 focuses on the minimisation of costs only, whereas H3 simultaneously tries to decrease the

failure probability by constructing balanced routes, as explained in Section 4.4. Observe that

H3 often leads to higher costs than those of H2. The growth becomes larger as the number of

locations increases. In all cases, a smaller value of α results in solutions with higher costs. This

can be explained by the fact that during the insertion phase of the algorithm, a smaller value

of α results in fewer routes to choose from. This potentially reduces cheaper insertion options,

inducing a final solution with higher costs.

In general, H3 successfully lowers the failure probability of the solutions compared to that

of H2 solutions. For n25-1, α = 0.5 does not suffice in order to lower the failure probability from

the H2 solution. To a lesser extent, this is also the case for n10-1, n15-1, n20-1, n30-1, n100-1

and n200-1. Nevertheless, α = 0.25 and α = 0 often force this probability close to 0. Only

for n25-1, the failure probability for α = 0 is higher than 10%. The failure probability of the

solution for instance n20-1 and α = 0 is not lower than for α = 0.25, but this can be caused by

the randomness in the model. In all other cases, there is a positive relation between the value

of α and the failure probability of the established solution.

In brief, there is a trade-off between lower costs with a higher failure probability and higher

costs with a lower failure probability for all instances. Nonetheless, this trade-off is not per-

fectly linear, as the increase in costs required to achieve a 1% decrease in the failure probability

varies among the different instances and different values of α. Hence, the choice of solution

depends on one’s willingness to incur additional costs to decrease the failure probability.

19

6 Conclusion

In this paper, we employ a multistart heuristic to solve the Driver and Vehicle Routing Problem

(DVRP) with a single exchange location. This problem is devoted to matching vehicles and

drivers that traverse different types of routes while minimising costs. Furthermore, we adapt

this method to solve two extensions of this problem: Driver and Vehicle Routing Problem with

Multiproduct demand (DVRPM) and Driver and Vehicle Routing Problem with Multiproduct

demand and Perishable goods (DVRPMP). The multistart heuristic first constructs driver routes

and then improves those routes using local search. These steps are incorporated into a multistart

loop. Hereafter, we adjust both the driver routes construction algorithm and the local search

algorithms to align with the frameworks of the DVRPM and DVRPMP, which include deliveries

to customers. Finally, we modify the heuristic once more to additionally lower the probability

that a vehicle cannot deliver to every customer, next to minimising the costs.

The model for the DVRP is tested on 81 instances with a number of locations ranging from

10 to 1000. For smaller instances, exact solutions are readily accessible in existing literature.

The multistart heuristic finds solutions with approximately the same objective values as those

found by the exact method in less than 15 seconds. Furthermore, the algorithm successfully

handles instances containing up to 1000 locations within 10 minutes.

The performance of the adjusted versions of the multistart heuristic is evaluated using 14 in-

stances, one of each size. The costs of solutions to the DVRPM are up to 38% higher than

the costs of solutions to the DVRP. The additional constraints concerning capacity and delivery

possibilities explain this increase. The heuristic for the DVRPMP leads to an increase in costs

compared to the solution to the DVRPM for all instances. Moreover, the DVRPMP approach

finds on average lower probabilities that a vehicle is not able to deliver to every customer than

the heuristic for the DVRPM. Most often, these probabilities can become close to 0. However,

this will come with an increase in costs, resulting in a trade-off between lower costs and lower

delivery failure probabilities.

Suggestions for future research include considering multiple exchange locations. This com-

plicates the problem because the arrival and departure times of different drivers and vehicles

have to align. Moreover, a time constraint can be imposed on the duration of vehicle routes to

simulate real-world scenarios with limited battery or fuel capacity. A recommendation for future

research on the DVRPM and DVRPMP is to examine the case where there are more than two

types of products. Besides, it could be interesting to explore the situation where vehicles have

heterogeneous capacities. Lastly, it may be possible that modifying the routes of a solution to

the DVRPMP during the time horizon improves the solution, as more information about the

expiration times of the products becomes available. This provides an intriguing opportunity for

analysis.

20

References

Clarke, G. & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of

delivery points. Operations research, 12 (4), 568–581.

Coelho, L. C. & Laporte, G. (2013). A branch-and-cut algorithm for the multi-product multi-

vehicle inventory-routing problem. International Journal of Production Research, 51 (23-

24), 7156–7169.

Crevier, B., Cordeau, J.-F. & Laporte, G. (2007). The multi-depot vehicle routing problem with

inter-depot routes. European journal of operational research, 176 (2), 756–773.

Dantzig, G. B. & Ramser, J. H. (1959). The truck dispatching problem. Management science,

6 (1), 80–91.

Domı́nguez-Mart́ın, B., Rodŕıguez-Mart́ın, I. & Salazar-González, J.-J. (2018a). The driver and

vehicle routing problem. Computers & Operations Research, 92 , 56–64.

Domı́nguez-Mart́ın, B., Rodŕıguez-Mart́ın, I. & Salazar-González, J.-J. (2018b). A heuristic

approach to the driver and vehicle routing problem. In International conference on com-

putational logistics (pp. 295–305).

Domı́nguez-Mart́ın, B., Rodŕıguez-Mart́ın, I. & Salazar-González, J.-J. (2023). An efficient

multistart heuristic for the driver and vehicle routing problem. Computers & Operations

Research, 150 , 106076.

Elatar, S., Abouelmehdi, K. & Riffi, M. E. (2023). The vehicle routing problem in the last

decade: variants, taxonomy and metaheuristics. Procedia Computer Science, 220 , 398–

404.

Karakatič, S. & Podgorelec, V. (2015). A survey of genetic algorithms for solving multi depot

vehicle routing problem. Applied Soft Computing , 27 , 519–532.

Ketzenberg, M., Gaukler, G. & Salin, V. (2018). Expiration dates and order quantities for

perishables. European Journal of Operational Research, 266 (2), 569–584.

Mart́ı, R. (2003). Multi-start methods. Handbook of metaheuristics, 355–368.

Ralphs, T. K., Kopman, L., Pulleyblank, W. R. & Trotter, L. E. (2003). On the capacitated

vehicle routing problem. Mathematical programming , 94 , 343–359.

Sahraeian, R. & Esmaeili, M. (2018). A multi-objective two-echelon capacitated vehicle routing

problem for perishable products. Journal of Industrial and Systems Engineering , 11 (2),

62–84.

Salazar-González, J.-J. (2014). Approaches to solve the fleet-assignment, aircraft-routing, crew-

pairing and crew-rostering problems of a regional carrier. Omega, 43 , 71–82.

21

A Pseudocodes multistart heuristic

In Section 4.2.1, we illustrate the method to construct the driver routes of the initial solution.

Algorithm 3 demonstrates the pseudocode for this construction.

Algorithm 3: Construction of driver routes

Input : Instance data and parameter k
Output: Driver routes S

1 Sd,k ← {d, e, d},∀d ∈ D, k ∈ {1, ..., |Kd|}
2 while there are unvisited customers do
3 Randomly choose unvisited customer i ∈ Vc \ {e}
4 Use cheapest insertion strategy to find best insertion route Sd,k ∈ S and place
5 if duration bound T is not exceeded by inserting i into Sd,k then
6 Insert i into Sd,k

7 end
8 else
9 Determine d∗ and k∗ s.t. Sd∗,k∗ has minimum duration

10 Insert i into Sd∗,k∗ using cheapest insertion strategy

11 end

12 end

13 S ←
⋃

d∈D

|Kd|⋃
k=1

Sd,k

14 return S

The pseudocode of the inter-route search that we describe in Section 4.2.2 is given by Al-

gorithm 4.

Algorithm 4: Inter-route search

Input : Instance data and current driver routes S
Output: Driver routes S

1 improvementFound← true // inter-route search needs to be initiated

2 while improvementFound do
3 improvementFound← false
4 for all driver routes Sd,k ∈ S do
5 for all customers i ∈ Sd,k do
6 Use cheapest insertion strategy over all other routes to find best insertion

place
7 if duration bound T is not exceeded by inserting i then
8 if relocation decreases total costs then
9 Remove i from its current route

10 Insert i into best insertion place
11 improvementFound← true

12 end

13 end

14 end

15 end

16 end

22

In Section 4.2.2, we explained the approach of 2-opt search. Algorithm 5 demonstrates the

pseudocode for this local search method.

Algorithm 5: 2-opt search

Input : Instance data and current driver routes S
Output: Driver routes S

1 for all driver routes Sd,k ∈ S do
2 improvementFound← true // 2-opt search needs to be initiated

3 if |Sd,k| ≥ 4 // 2-opt swaps should be possible

4 then
5 while improvementFound do
6 improvementFound← false
7 for all location pairs (i, j) ∈ Sd,k × Sd,k do
8 if duration bound T is not exceeded by 2-opt swap then
9 if 2-opt swap decreases total costs then

10 Perform 2-opt swap for location pair (i, j)
11 improvementFound← true

12 end

13 end

14 end

15 end

16 end

17 end

23

B Results DVRP

Table 7 shows the results of the multistart heuristic for class 1 instances for the parameter values

TB and TD. Likewise, Table 8 shows the results of the multistart heuristic for class 3 instances

for the parameter values TB and TD. Section 5.2 explains the structure of the tables and the

interpretation of the values.

Table 7: Results of exact method and multistart heuristic for class 1 instances for TB and TD.
Instance TB Sol. E Sol. H k Time (s) TD Sol.E Sol. H k Time (s)

n10-1 7 442 443 1 1 10 369 371 1 1
n10-2 6 292 293 1 1 10 292 293 1 1
n10-3 6 646 646 2 1 10 383 383 1 1
n10-4 6 534 533 2 1 10 383 383 1 1
n10-5 6 365 366 1 1 10 350 351 1 1
n15-1 8 349 349 1 1 12 302 302 1 1
n15-2 8 414 412 1 1 12 406 405 1 1
n15-3 8 442 441 1 1 12 388 387 1 1
n15-4 8 715 715 2 2 12 460 460 1 1
n15-5 8 751 749 2 1 12 469 469 1 1
n20-1 9 846 844 2 5 14 520 521 1 2
n20-2 9 450 613 2 4 14 399 402 1 1
n20-3 9 757 757 2 5 14 507 508 1 1
n20-4 9 580 582 2 4 14 415 417 1 1
n20-5 9 538 538 2 3 14 409 409 1 2
n25-1 10 711 708 2 5 16 482 483 1 2
n25-2 10 716 699 2 6 16 483 486 1 3
n25-3 10 555 553 2 4 16 405 402 1 2
n25-4 10 680 681 2 4 16 454 456 1 2
n25-5 10 703 692 2 5 16 451 454 1 2
n30-1 12 864 816 2 8 18 581 582 1 5
n30-2 12 863 827 2 7 18 552 553 1 4
n30-3 12 818 797 2 7 18 485 487 1 4
n30-4 12 676 663 2 10 18 495 495 1 7
n30-5 12 739 732 2 8 18 490 492 1 4

24

Table 8: Results of multistart heuristic for class 3 instances for TB and TD.
Instance TB Sol. H k Time (s) TD Sol. H k Time (s)

n100-1 20 886 2 62 40 741 1 92
n100-2 20 968 2 112 40 784 1 97
n100-3 20 886 2 225 40 767 1 97
n100-4 20 939 2 200 40 763 1 94
n100-5 20 956 2 109 40 786 1 106
n200-1 35 1250 2 427 60 1144 1 316
n200-2 35 1308 2 600 60 1142 1 318
n200-3 35 1250 2 600 60 1186 1 600
n200-4 35 1222 2 600 60 1127 1 318
n200-5 35 1258 2 600 60 1145 1 317
n300-1 45 1600 3 600 90 1377 1 600
n300-2 45 1781 3 600 90 1335 1 600
n300-3 45 1502 2 360 90 1334 1 600
n300-4 45 1624 3 600 90 1411 1 600
n300-5 45 1527 3 600 90 1344 1 600
n400-1 55 1817 3 600 115 1561 1 600
n400-2 55 1789 3 600 115 1555 1 600
n400-3 55 1782 3 600 115 1581 1 600
n400-4 55 2090 3 600 115 1580 1 600
n400-5 55 1963 3 600 115 1609 1 600
n500-1 65 2031 3 600 140 1806 2 600
n500-2 65 2065 3 600 140 1821 2 600
n500-3 65 2200 3 600 140 1815 2 600
n500-4 65 2246 3 600 140 1831 2 600
n500-5 65 1971 3 600 140 1814 2 600
n600-1 115 1998 2 600 205 1952 1 600
n600-2 115 2026 2 600 205 1928 1 600
n600-3 115 1995 2 600 205 1948 1 600
n600-4 115 1943 2 600 205 1902 1 600
n600-5 115 2050 2 600 205 1978 1 600
n800-1 135 2299 2 600 225 2265 1 600
n800-2 135 2480 2 600 225 2267 1 600
n800-3 135 2283 2 600 225 2259 1 600
n800-4 135 2288 2 600 225 2271 1 600
n800-5 135 2359 2 600 225 2235 1 600
n1000-1 155 2646 2 600 275 2547 1 600
n1000-2 155 2744 2 600 275 2516 1 600
n1000-3 155 2661 2 600 275 2481 1 600
n1000-4 155 2527 2 600 275 2487 1 600
n1000-5 155 2532 2 600 275 2486 1 600

25

C Programming code

We program the multistart heuristic and its adjustments in Java. Our Java project includes the

following classes:

Parameters: this class is used to store the parameters. A Parameters object for the DVRP

contains the number of customers, a two-dimensional array for the costs of each arc, a two-

dimensional array for the travel time of each arc, the exchange location (integer) and the max-

imum duration of a driver route (double). A Parameters object for the DVRPM and DVRPMP

additionally contains the value of the capacity and an array for the demand of each customer.

These instance variables are made public in order to allow for easy access.

ParameterReader: this class is used to read the parameters from a particular data file. An

object of this class stores a Parameters object. The class contains methods to read the para-

meters for both the DVRP and its versions, DVRPM and DVRPMP. It also has a method to

write the data files for the demand variants of the DVRP. It copies the data files without demand

and adds customer demand and vehicle capacity to the file.

Solution: this class is used to store all the defining characteristics of a solution. An object of

this class stores a Parameters object, a list of driver routes and a list of vehicle routes. The

Route class is an inner class of the Solution class. An object of this class contains a list of

locations (integers) that form the route and a number of the driver and/or vehicle. It is possible

to change the values of the instance variables of both Solution and Route objects. Furthermore,

methods are included to check the feasibility of the solution.

Solver: this class is used to run the multistart heuristic for the DVRP, DVRPM and DVRPMP

and retrieve the results. It is a utility class, in the sense that it does not have instance variables

and all methods it includes are static. The Solver has methods for the general multistart heur-

istic, the driver routes construction for the initial solution, inter-route search and 2-opt search.

These methods are specifically adapted for the different versions of the problem: DVRP (part 1),

DVRPM (part 2) and DVRPMP (part 3). The class also contains methods to make matchings

of subroutes both by using a heuristic and by solving an ILP. Gurobi is used to solve the ILP

that is used to construct matchings of subroutes in the DVRPMP framework. In addition to the

aforementioned fundamental methods, several helper methods are included in the Solver class.

These methods are used to obtain the necessary input required by the main methods, such as

total delivery or a list of subroutes.

26

