
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis Econometrie en Operationele Research

Efficient Multi-start Heuristic for a Driver and Vehicle

Routing Problem Including Capacity and Time

Window Constraints

Floor Schooten (530188)

Supervisor: J.H. Zhu

Second assessor: dr D. Huisman

Date final version: 1 July 2024

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.

Abstract

This paper explores the Driver and Vehicle Routing Problem with two depots and one

exchange location where drivers switch vehicles so that both can reach their respective des-

tination. The driver needs to finish at the same depot they started without exceeding the

duration constraint, while the vehicle needs to be transported from one depot to the other.

This is done while the cost is minimized. The robustness of the efficiency of the multistart

heuristic is tested to the addition of a capacity constraint and the addition of time window

constraints. The multistart heuristic is robust to the addition of a capacity constraint but

is not robust to the addition of time window constraints. This is because the time window

constraints cannot be randomly organized or easily switched around in routes, which are

both important components that make the multistart heuristic efficient.

1 Introduction

Efficient supply chain management is predominantly made possible due to the classical Vehicle

Routing Problem (VRP), which is in turn inspired by the Traveling Salesman Problem. The VRP

is a NP-hard problem, which means the running time exponentially increases with the instance

size. Due to this increase in running time, solving heuristics rather than exact problems becomes

more appealing. The optimization of a VRP provides a lot of value for companies, but often

drivers and vehicles are seen as a single unit, as they often cannot travel independently of one

another. However, seeing vehicles and drivers as separate units gives light to new applications

of the VRP.

One of these applications is the Driver and Vehicle Routing Problem (DVRP), devised by

Domı́nguez-Mart́ın, Rodŕıguez-Mart́ın and Salazar-González (2018a). This encapsulates a prob-

lem with two depots between which the trucks are to be moved, a predetermined number of

points that require service by a vehicle and a driver, an exchange location that allows drivers

to switch vehicles, and lastly, a time limit within which the drivers must return to their start

depot. Here, the driver and vehicle destination are divergent. Multiple drivers can travel in

a single vehicle for a part of the journey, if this dismisses the necessity of employing another

vehicle. The exchange location is the only customer location that can be visited multiple times

by multiple vehicles.

The DVRP has a multitude of applications, ranging from supplying a crew to flights with

a stopover before the final destination to long-distance truck transportation. This problem was

also inspired by the airports in the Canary Islands (Salazar-González, 2014), where there are 2

main airports and several smaller ones, where the crew must end at the same airport they started

to reduce layovers, but airplanes had to end at different locations for maintenance purposes. In

the case of long-distance truck transportation, the DVRP can be applied to substitute a single

driver for the whole route with multiple drivers who can all return home at the end of the day.

However, to translate a simple long-distance truck transportation to the form of a DVRP would

require a long string of depots and exchange locations in between and lacks complexity. The

complexity of the DVRP mainly comes from the number of customers requiring delivery of goods

and services. Domı́nguez-Mart́ın, Rodŕıguez-Mart́ın and Salazar-González (2023) has especially

highlighted the strength of the heuristic for problems containing a large number of customers.

Therefore, instead of focusing on the real-life application on situations like the Canary Island

1

airports or long-haul transportation, it is more interesting to focus on the robustness of the

heuristic to larger instance sizes.

To test the robustness of the heuristic in the face of a more realistic situation, 2 additional

constraints are added to the problem, a vehicle capacity constraint and time window constraints.

Furthermore, to enhance the efficiency of the multi-start loop, the least possible number of

drivers that might result in a feasible solution is determined, eliminating a substantial number

of iteration and enhancing the efficiency of the heuristic. The research question is presented

as follows: How robust is the optimal solution and efficiency of the multi-start heuristic to

the DVRP to vehicle capacity and time window constraints? Robustness is tested against the

benchmark results in Domı́nguez-Mart́ın et al. (2023) and will be considered efficient if the

heuristic presents good optimal solution with a maximum time increase of 50%. This paper

finds that the heuristic is robust to capacity constraint Q, but not robust to time window

constraints, even when every time window spans 40% of the time limit.

The remainder of this paper is structured as follows. In Section 2, a literature review is

presented. Section 3 describes the DVRP and the notation is introduced. In Section 4 a detailed

explanation of all the methods is described. The numerical results are presented in Section 5.

Finally, the conclusion is presented in Section 6, along with suggestions for further research.

2 Literature Review

Although many variations of the VRP have been studied to no end, this is mainly limited to

theoretical problems and has not often been widely studied academically. A paper by Žunić,

Donko, Šupić and Delalić (2020) looks at this problem from a realistic angle. Especially inter-

esting is their take on the importance of the clustering of data, even going as far as to use it as

an important factor in their heuristic. They also include time windows and capacity constraint.

2.1 Capacity Constraint

Capacity constraints are widely explored in the optimization literature. Pino et al. (2011)

mentions several methods and concludes that two stage local search algorithms are among the

most effective. Domı́nguez-Mart́ın et al. (2023) uses a similar heuristic to approach the driver

time limit for the DVRP. Pino et al. (2011) also mentions a branch-and-cut heuristic to be

effective, which was also previously used for the DVRP in Domı́nguez-Mart́ın, Rodŕıguez-Mart́ın

and Salazar-González (2018b). However, Domı́nguez-Mart́ın et al. (2023) concluded that the

branch-and-cut heuristic was less effective than a combination of two step local search algorithms.

2.2 Time Windows

Time windows are also a commonly researched problem in past literature, both in combination

with capacitated vehicles (Lau, Sim & Teo, 2003) and on its own (Bräysy & Gendreau, 2005), and

even combined with both capacity restrictions and clustering analysis (Vidal, 2015). However,

the heuristics often used include machine learning techniques like k-means clustering or penalty

systems when the time window is exceeded, like in Balakrishnan (1993). There is a lot of

2

literature on the use of clustering as a heuristic in the study of VRP, like for example Barreto,

Ferreira, Paixao and Santos (2007); Gocken and Yaktubay (2019) and Vidal (2015).

However, when looking at simple heuristics for VRP’s with time window constraints, El-

Sherbeny (2010) presents multiple exact methods, meta-heuristics and heuristics. The heuristics

are divided into route-building heuristics and route-improving heuristics. A variation of the

savings heuristic by Lysgaard (1997) is presented as a good route building heuristic. However,

for the DVRP the savings heuristic is likely quite ineffective, due to the necessity to visit the

exchange location. El-Sherbeny (2010) also presents neighborhood clustering heuristics as a

good building heuristic and dismisses a 2-opt local search as the most efficient option.

3 Problem description

The DVRP can be described as a graph G = (V,A), where the vertex set V consists of depots

D = {0, n+ 1} and customers Vc = {0, ..., n}. Among the customers, who all need to be visited

by a vehicle, there is a unique exchange location e ∈ Vc that has be visited by all drivers and

vehicles, and is the only customer that can be visited by multiple. The arcs connecting vertices

are denoted as the set A = {(i, j) : i, j ∈ V, i ̸= j}. Each depot d ∈ D has a set of drivers Kd

and a set of vehicles Ld. For any subset S ⊂ V , the arcs in and out of this subset are denoted

by δ+(S) = {(i, j) ∈ A : i ∈ S, j /∈ S} and δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S} respectively. The

time necessary for a driver to traverse arc (i, j) ∈ A is denoted by tij , and the cost by cij . The

drivers must return to depot of origin within the time limit T , while the vehicles have no time

restriction to arrive at the other depot from which they started. The objective is to find feasible

routes for both drivers and vehicles with the smallest cost and can be formulated as

min
∑
k∈K

∑
(i,j)∈A

cijx
k
ij (1)

where xkij is a binary decision variable that takes value 1 if arc (i, j) ∈ A is traversed by driver

k ∈ K and 0 otherwise. Since driver and vehicle routes are closely related, it will suffice to only

include the driver costs into the calculation of the objective function.

To expand the model we introduce additional notation. The maximum vehicle capacity is

denoted by Q, and the demand of each customer is denoted by qi. The depots do not have

any demand. To incorporate time windows constraints, ai will be defined as the earliest time a

driver and vehicle can arrive and start service, while bi will be the latest time of arrival. In this

context, the service time is not considered as a separate variable.

The mathematical MIP formulation of the DVRP can be found in Domı́nguez-Mart́ın et al.

(2018a)

To illustrate the problem, consider the example presented in Figure 1 with 7 customers, 2

depots and an exchange location. Here drivers (dotted lines) arrive at the same depot they

started from while the vehicles (solid lines) arrive at a different depot. Drivers switch vehicles

at the exchange location to ensure this. The drivers and vehicles leaving from the first depot

are pink, while those departing from the other depot are purple. In this situation there is one

driver leaving from each depot. If the time necessary to traverse each arc is assumed to be one,

3

this solution would hold for T = 7, with the resulting driver routes being 0-1-7-6-8-2-4-0 and

9-5-3-8-9, while the vehicle routes are 0-1-7-6-8-9 and 9-5-3-8-2-4-0.

Figure 1: Example of a possible solution to the DVRP

4 Methodology

The original DVRP from Domı́nguez-Mart́ın et al. (2018a) makes use of 2 heuristics to solve

the MIP problem, one branch-and-cut algorithm (Domı́nguez-Mart́ın et al., 2018b) and one

multi-start heuristic(Domı́nguez-Mart́ın et al., 2023). They found the multi-start heuristic to

be the most efficient. This is the algorithm that will serve as the foundation of this paper.

The DVRP is NP-complete and has polynomial time complexity, so it will get computationally

more expensive when n increases. The algorithm consists of two parts, a multistart loop that

contains a driver routes construction method and a local search improvement operator, and a

main loop which assesses the number of drivers when a feasible solution has not been found and

the generation of vehicle routes from the best feasible set of driver routes. In this section we

will outline the original multistart heuristic to solve the DVRP and outline any changes and

additions applied in this research.

To enhance the applicability of the research done by Domı́nguez-Mart́ın et al. (2023), this

research introduces more factors that can be present in real-life scenario’s. The robustness of

the model is tested by considering vehicle capacity constraints and time windows for customers.

To investigate the applicability on real-life scenario’s, the algorithm’s efficacy is tested with a

larger number of customer locations.

Furthermore, because we aim to test the robustness of the heuristic to certain real-life factors,

the benchmark for this will be the results considered in Domı́nguez-Mart́ın et al. (2023) and an

extension of the multi-start heuristic will be considered efficient if the heuristic presents good

4

optimal solution with a gap of under 5% with a maximum time increase of 50%.

4.1 Multi-start Heuristic

The multistart heuristic algorithm to solve the DVRP is described in Algorithm1: Where the

input consists of a dataset, the timeLim and the maxIter and the output consists of S∗, the

driver routes, R∗, the vehicle routes and f∗, the the solution value.

The original algorithm can be found in Domı́nguez-Mart́ın et al. (2023), and the variation

we will test is shown in algorithm 1.

Algorithm 1 2 step multistart heuristic for the DVRP

f∗ ←∞, S∗ ← ∅, nDrivers← 1
while time ≤ timeLim & nDrivers ≤ maxDrivers & no feasible solution for S∗ do

nIter ← 1
while time ≤ timeLim & nIter ≤ maxIter do

nDrivers← calculateStartDrivers(n, T)
S ← ConstructDriverSol(nDrivers)
S ← LocalSearch(S)
if S is feasible & f(S) < f∗ then

S∗ ← S
f∗ ← f(S)

end if
nIter ← nIter + 1

end while
if no feasible solution for S∗ then

nDrivers← nDrivers+ 1
end if

end while
if S∗ ̸= ∅ then

R∗ ← ConstructV ehicleRoutes(S∗)
end if
return S∗, R∗ and f∗

The algorithm consists of a multi-start loop generating driver routes and is generally repeated

maxIter times. Of these maxIter times, the best feasible solution f(S∗) and the corresponding

set of driver routes S∗ are stored. The solution is evaluated for feasibility after the local search

does not provide any further improvement, and a solution is considered feasible when none of

the driver routes in S exceed the duration constraint T . If after maxIter multistart loops no

feasible solution has been found, nDrivers is increased by 1. Here, nDrivers is defined as the

number of drivers that leave a single depot. For each driver that leaves one depot, another

driver has to leave from the other depot to ensure both the vehicle and the drivers arrive at

their destination. If after maxIter iterations a feasible set of driver routes S∗ has been found,

the stopping criterion has been reached and the vehicle routes (R∗) are constructed from the

optimal driver routes (S∗) once. If one of the other stopping criteria (the computing time limit

or the driver maximum) have been reached without a feasible solution found, the driver routes

cannot be constructed and there will be no solution found by this heuristic.

5

4.1.1 Start Drivers

One addition to this heuristic that was not in the original heuristic is the calculateStartDrivers

method, which ensures the multi-start loop does not attempt to find a feasible solution when

there are none. This can be determined because each arc has a minimum length. If the number

of drivers cannot service all customers within T when each arc is assumed to be the minimum

length, there is no feasible solution to be found. Starting with the least number of drivers

necessary for a feasible solution can greatly aid the efficiency of the heuristic.

For example, if we assume each arc costs the minimum to traverse, which in this case is

0.5, and we want to service n = 500 customers and a driver route can take up to T = 55, each

driver would be able to service 107 customers. If only one driver leaves from each depot, the

total number of customers that can be served by those two drivers amounts to 214, which is

significantly less than the 500 customers that need to be serviced. If two drivers leave from each

depot, the maximum number of customers that can be serviced by the total of four vehicles

amounts to 428, which is still less than 500 and a feasible solution can never be found, even

when disregarding the euclidean distance that needs to be traveled.

The methods for constructing driver solutions, a local search algorithm and the driver con-

struction methods that were present in the original heuristic are presented below.

4.1.2 Construct Driver Solutions

Similarly to Domı́nguez-Mart́ın et al. (2023), the drivers routes are determined by an iterative

cheapest insertion strategy for a predetermined number of drivers k that depart from a depot

(k ≤ |Kd|, ∀ d ∈ D). The sequence of nodes that define the route for driver l ∈ {1, ...k} from

depot d ∈ D is denoted by Sl
d. The set of routes for all drivers in the solution for the DVRP is

denoted by S = ∪d∈D ∪kl=1 S
l
d. The driver routes in S are initialized as Sl

d = {d, e, d}, as each

driver must visit the exchange location and start and return from the same depot. From that

point, the iterative cheapest insertion strategy is applied to add customers into the cheapest

driver route, where a randomly chosen customer i ∈ Vc, i /∈ S is inserted in the cheapest route

for i in S. The cheapest route for i in S is determined by minimizing cui + civ − cuv, where

u, v are two consecutive nodes in a drivers route. Customer i is inserted in the best route in

S according to the cheapest insertion criteria if it does not exceed the duration constraint T ,

otherwise it will be inserted in the shortest route in S at the best position. The advantage of this

algorithm is that it allows for simple and fast implementation, however it does not guarantee

high quality results and easily get stuck in local minima. If a customer i cannot be included in

any route without exceeding the duration constraint, it can possibly made feasible later using

local search algorithms. This strategy is repeated until all i ∈ Vc are inserted in a route in S.

The cheapest insertion criteria is elected as opposed to other classical methods that share

many advantages and disadvantages because it allows for insertion into an already exiting route,

which allows the exchange point and the start and return from a depot to be initialized, elim-

inating the nearest neighbor heuristic as the best selection criteria. Furthermore, the savings

heuristic proposed by Lysgaard (1997) is less efficient in this case, as it starts with a route for

each separate customer and combines them. Domı́nguez-Mart́ın et al. (2023) wants to use the

least number of drivers possible, and using the savings heuristic may result in more solutions

6

using more drivers than necessary.

We are looking at traditional methods because the strength of this algorithm is using these

easy methods a lot of times to take away their disadvantages.

4.1.3 Local Search

After constructing feasible driver routes, the routes in S are improved upon using multiple local

search algorithms to find a local minimum. After the evaluation of intra- and inter-customer

relocation and 2-opt and 3-opt arc-exchanges, Domı́nguez-Mart́ın et al. (2023) concluded that a

simple strategy was best, consisting of an inter-route customer relocation local search followed by

a 2-opt local search within a route. The difference between the inter- and intra-route customer

relocation is that a customer is inserted in the same route it was removed from in the intra-

route method, while for the inter-route method the customer is moved to a different route. The

inter-route local search randomly selects a customer i from a route in solution S and transfers it

from its current driver route to a different driver route in S according to the cheapest insertion

criterion mentioned in section 4.1.2. The cheapest insertion criterion is applied to all routes

in S until the cheapest insertion for i with the minimum cost increase is found, and while the

solution S improves the method is applied iteratively until a local minimum is reached. The

2-opt local search is applied within each route and is applied by deleting two arcs, (i, i + 1)

and (j, j + 1) and reconnecting them (i, j + 1) and (j, i + 1). After the inter-route customer

relocation the 2-opt local search is applied, which deletes two arcs within a route and adds two

different arcs to reconnect the route if the solution improves. This is repeated as long as the

solution S decreases. Again, the advantages of these algorithms are that they are simple and

fast to implement, but they do not offer high quality results and are also prone to getting stuck

in local minima. This is countered by the design of the multistart loop, especially the number

of iterations and the randomness in the construct driver routes method and the inter-route local

search.

These methods can be key to reaching a feasible solution, construct driver routes method

does not reach a feasible solution. One of the disadvantages of a local search algorithm is that

the local minimum it will reach is very dependent on the starting location. This drawback is

countered in this algorithm by using a number of iterations that have a randomly generated

starting point, and keeping track of the best local minimum that has been found. However,

when T is rather tight, there is not a lot of space to add nodes to a driver route, although it

might be beneficial to do so. In this case, if after 80% of the iterations a feasible solution has

not been reached, T is loosened only for the sake of the local search, in the hopes of finding a

feasible solution. Not taking T into account during the local search will result in a large number

of infeasible solutions and a lower chance of the optimal solution being found.

4.1.4 Construct Vehicle Routes

Vehicle routes can be generated according to the description given by Domı́nguez-Mart́ın et al.

(2018b). For each arc (d, i) ∈ δ+(d) from depot d is traversed by a driver k ∈ Kd, a vehicle also

needs to leave depot d using that arc. Because drivers are only allowed to switch at the exchange

location e, the vehicle follows the drivers route until the exchange location, after which it follows

7

the route of another driver k′ ∈ Kd′ to depot d′. To make sure that each driver and vehicle

reaches a proper destination, the number of arcs entering the other depot d′ need to be equal

to the number of vehicles departing from depot d. If they are not equal, a driver is traversing

an arc entering d′ without a vehicle and an extra vehicle needs to depart from depot d driven

by a driver that is not currently driving another vehicle (but is a passenger). Also doing this

analysis for the other depot d′ results in a feasible solution R compatible with S. However, it

is not necessary follow this algorithm to construct the vehicle routes, as the only costs that are

accounted for in the optimal solution are those of a driver traversing an arc. Because of this, it

is equally efficient to give each driver its own vehicle, so there are definitely an equal number of

vehicles leaving and entering each depot. In Domı́nguez-Mart́ın et al. (2023), it is proposed that

drivers can also ride as a passenger, although this does not impact the optimal solution. With

the capacity constraint that will be introduced later in mind, we have chosen to implement the

latter strategy, where each driver is given a vehicle, and a vehicle route is composed of a driver

route from depot d to e, and another driver route that goes from e to d′. This process is only

repeated once, as the vehicle routes R are only constructed once an optimal solution S∗ is found.

4.2 Capacity Constraint

The original DVRP introduces only a driver time constraint T , allowing the problem to be

mostly one-dimensional. This causes swapping vehicles at the exchange point to be easy as few

factors need to be taken into account. Driver routes can be generated with no regard to the

number of customers visited before and after the exchange location. Adding a vehicle capacity

constraint could make the number of customers visited by a single vehicle more realistic. The

DVRP will only include single commodity delivery, as per the original problem. We assume any

vehicle and any driver combination can service any customer. This vehicle capacity qli will be

tested for a single value that is homogeneous over all customers i. For this, qli will denote the

capacity of vehicle l ∈ L before visiting customer i ∈ V , with Q the max capacity. This results

in the following restriction: ∑
i∈V

qliv
d
i ≤ Q, ∀l ∈ L (2)

Whereas in Domı́nguez-Mart́ın et al. (2018a) vdi is defined as the number of vehicles from de-

pot d ∈ D. However, in the heuristic, this capacity constraint will not used exactly in this

mathematical form.

To add this to the heuristic, it is necessary to check during the multistart loop whether a

driver route can also produce feasible vehicle routes to prevent having to return to the inner

multistart loop after driver routes have been generated as the multistart loop is computationally

expensive.Furthermore, there is no guarantee the original heuristic will result in a local minimum

that is also feasible for vehicles, even if the multi-start loop is repeated a multitude of times.

The capacity constraint will be taken into consideration during the method constructing driver

routes, during the local search and when checking feasibility. Vehicle routes are matched with

pre- and post-exchange location driver routes during the construction of the driver routes to

guarantee a feasible vehicle route solution. There might be some optimal solutions that are not

as easily explored but it is much more efficient than having to restart the multistart heuristic

8

when a set of driver routes produces an infeasible set of vehicle routes, or constructing vehicle

routes every time a node is inserted or swapped.

The 2-opt local search that was previously elected due to its simplicity now becomes a lot

more computationally expensive, as swaps between arcs before and after the exchange location

will also need to comply with the capacity constraint. However, only applying the 2-opt local

search to a route between a depot and the exchange location will keep the algorithm simplistic

and will not require a lot of additional computational power to ensure feasible vehicle routes.

To also account for switching customers between the pre- and post-exchange location route,

switching between them will be done as part of the inter-route local search. 3 combinations of

T and Q will be evaluated to ensure feasibility; a tight T and a loose Q, a loose Q and a tight

T and loose values for both T and Q.

4.3 Time Windows

The time window for each customer i ∈ V is defined as [ai, bi], where ai is the earliest time

service can start and bi is the latest time the service can start. The time it takes to travel from

customer i to customer j is described in section 3 as tij and tki is the time when driver k starts

serving customer i. The service time is included in tij The following constraints are added:

ai ≤ tki ≤ bi ∀k ∈ K,∀i ∈ V (3)

tkj ≥ tki + tij , ∀k ∈ K,∀i, j ∈ V (4)

tkd = 0, ∀i ∈ V (5)

For the time window allocation, a starting time will be randomly decided and the duration is

constant, so the end time is determined according to this. To keep this consistent and not add an

additional random component, the start and end time windows are the same for each numbered

node. Since the generation of the nodes themselves are random, this allocation is therefore also

random. This is applied by taking the constant duration as a percentage of T , which also ensures

time windows expand when dealing with a larger problem. To ensure feasibility, maxDrivers

will need to be increased, although it is important to not choose the time window constraint too

tight. A route is considered infeasible when a driver arrives at a customer after the end time.

A driver is allowed to wait at a customer until the start time arrives, however this is costly and

will need to be within the time limit T . We still use the cheapest insertion criterion instead of a

time based criterion, but modify it to take into account starting times. The cheapest insertion

criterion becomes min(cui + civ − cuv + tku, t
k
i). If a customer does not fit in any route that will

make it feasible, a driver needs to be added, as there is no solution where the local search and

two opt method will make it feasible. Therefore, the algorithm is slightly changed as drivers are

added within the multi-start loop.

5 Results

There are 3 classes of data used to evaluate the heuristic, each with a different number of

customers and evaluated for different T values. The number of customers in an instance is

9

denoted by n. Including the depots this becomes n + 2. Class I contains 5 instances for

each value of n where n + 2 ∈ {10, 15, 20, 25, 30} and will be evaluated for TA, TB, TC and

TD, with TA being the tightest value and TD the loosest. For Class II, with n + 2 = 50,

there will be 16 instances for T = 18, and for Class III, 5 instances each will be evaluated

for n + 2 ∈ {100, 200, 300, 400, 500, 600, 800, 1000}, for different values of TA, TB, TC and TD.

The first and last node of each set of customers are the depots, (0, n + 1), and the exchange

location is always the last generated customer (n). The node coordinates are generated in

a [0, 100] × [0, 100] square. In Class I the depots are also generated in this square, while in

Class II and Class III, one depot is generated in [0, 20] × [0, 100], the exchange location in

[40, 60]× [0, 100] and the other depot in [80, 100]× [0, 100]. The instances of the data is available

at: https://data.mendeley.com/datasets/w5sbtwy8y9/4. Here the first and last

location represent the two depots and the last customer will be the exchange location.

To compute the optimal solution, the Euclidean distances between customer i and j will

be used as the costs cij to traverse the arc. The time needed to traverse this arc is defined as

tij = cij/60 + 0.5. Although it is not specified why 0.5 is added to each arc, it does ensure

that customers further from the depots and exchange points will not cause the time necessary

for a driver route to skyrocket in comparison to customers that are located more conveniently.

One could argue that 0.5 accounts for the service time, while 60 represents the average speed

when traveling along the arc. For the initial problem, the maxDrivers is initially set to 3

drivers to leave from each depot, resulting in a total of 6 drivers on the road This is increased

when investigating time window constraints. The number of drivers will be denoted as the total

number of drivers leaving both depots. maxIter is set to 100,000, which provides a good balance

between the computing time and the value of the optimal solution, according to Domı́nguez-

Mart́ın et al. (2023).

In all tables below, the column labeled name corresponds to the set of data run, where the

instance size is the number preceded by n, while the instance number is preceded by a dash.

The columns TA, TB, TC and TD are the driver routes duration limits and Sol represents the

optimal solution value. D corresponds to the number of drivers leaving a single depot in the

optimal solution found. The percentage gap between this optimal solution and the optimal

solution in Domı́nguez-Mart́ın et al. (2023) and is defined as ((current solution value - previous

solution value)/previous value)*100. When a time gap is calculated, this is according to the

same formula, using the times instead of the solution values. This means that negative gap

values mean the current solution or time value is higher than the original value. The t column

represents the running time in seconds.

Although not clearly specified in Domı́nguez-Mart́ın et al. (2023), it is possible that the

authors could have used multiple threads, as each iteration can be seen as independent of

one another when each thread saves their own best solution, to be compared at the end of

the multistart loop. As this is the only segment that unites all iterations because each iteration

generates driver routes according to a random element, so it is possible that multiple independent

threads can be used, as the randomness would not change this. Multi-threading allows multiple

cores to be used. Our heuristic was programmed in a single thread Accounting for the fact that

six cores could be used in the original results instead of one, the running times presented here

10

have the same order of magnitude to the results in Domı́nguez-Mart́ın et al. (2023). Although

the speed increase of using multi-threading and multiple cores cannot exactly be translated into

a factor because not each extra thread has the same effect, it does allow for a better comparison

of the values in Class III where this makes the largest difference.

In Class I and II, there is little difference between the running times without the correction

factor and the original results, although Class II is about 70% slower. This can be explained by

the fact that the heuristic itself runs extremely fast, but each instance needs to be initialized.

This cannot be done in multiple threads and therefore using additional threads does not influence

the running speed as significantly. As the instance size is scaled up however, the initialization

takes up proportionally less and less time, resulting in the use of multiple threads being more time

effective. This reasoning could explain both why for Class I the running times are approximately

equal to the running times in Domı́nguez-Mart́ın et al. (2023), for Class II the running times

becoming about 70% larger and for Class III the results becoming up to 600% as large for

the largest values. To make for a fair comparison in Class III, a correction factor of six is

taken into account, as initialization takes up an relatively small amount of time. Class I&II are

presented without this correction factor. Of course, just including a factor of six is not exactly

representative, however the authors of Domı́nguez-Mart́ın et al. (2023) were unclear about the

number of threads used and this is one of most plausible explanations for why the running times

for large instances are about six times as large, when the order of the heuristics used is the same.

Small differences can be be explained by inefficient code, but a factor of six, which coincides

with the number of cores available.

5.1 Replication Results

Table 5.1 show the results for Class I. The number of drivers used in TC and TD is always equal

to one, which is why they are not included as a column in the table. An interesting observation

is that in table 5.1, any gaps in [-0.3, 0.3] usually present an optimal solution that differs just one

from the results in Domı́nguez-Mart́ın et al. (2023). Although it cannot be said with certainty,

this difference can very well stem from rounding errors. The results in Domı́nguez-Mart́ın et al.

(2023) are presented as integers and it is unclear when they are rounded. Another possibility

is that some local minima are not consistently reached within 100,000 iterations. In general,

the solution values of Domı́nguez-Mart́ın et al. (2023) outperform the solution values of this

algorithm, with the exceptions of n25-2 and n30-1 for TB. For n25-3, this heuristic consistently

finds better solution values for all T . For n20-2 for TB, this heuristic fails to find a good optimal

solution.

Some interesting results in terms of running time are the instances for TA, for which this

heuristic performs better than the benchmark. This is due to the start driver calculation and

makes the results up to twice as fast. Table 5.1 shows the results for Class II. Notable here is

that the heuristic needed an additional driver for n50-5 as opposed to the results in Domı́nguez-

Mart́ın et al. (2023). However, the exact formulation did need this number of drivers. but found

an optimal solution much higher than the optimal solution found here. The running times are

somewhat slower than those of the benchmark. In Table 3, the results for Class III are shown.

The number of drivers for TA is always 3 for TC always 2, which is why they are not included

11

name TA D Sol g t TB D Sol g t TC Sol g t TD Sol g t

n10-1 6 2 654 0.31 1.03 7 1 443 0.23 0.45 8 411 0.18 0.55 10 371 0.51 0.43
n10-2 5 2 486 0.00 1.20 6 1 293 0.34 0.39 7 293 0.44 0.39 10 293 0.44 0.44
n10-3 5 3 987 0.00 1.69 6 2 646 0.00 0.96 7 390 0.05 0.47 10 383 -0.08 0.43
n10-4 5 2 611 0.16 0.89 6 2 533 -0.19 0.95 7 384 -0.13 0.40 10 383 -0.07 0.39
n10-5 5 2 594 -0.17 1.00 6 1 366 0.27 0.49 7 355 -0.16 0.50 10 351 0.26 0.42

n15-1 6 2 456 0.44 1.87 8 1 349 0.00 0.64 9 349 -0.05 0.93 12 302 -0.04 0.73
n15-2 6 2 746 0.00 1.40 8 1 412 -0.48 0.59 9 405 -0.25 0.61 12 405 -0.25 0.63
n15-3 6 2 660 0.00 1.36 8 1 441 -0.23 0.60 9 387 -0.28 0.63 12 387 -0.28 0.62
n15-4 6 3 1093 -0.09 2.71 8 2 715 0.00 1.81 9 498 0.24 0.63 12 460 0.05 0.78
n15-5 6 2 788 0.13 1.43 8 2 749 -0.27 1.48 9 473 0.37 0.67 12 469 -0.01 0.66

n20-1 7 3 1263 2.68 3.81 9 2 844 0.12 2.49 10 559 0.42 0.96 14 521 0.22 1.26
n20-2 7 2 667 0.15 2.18 9 2 613 36.22 2.46 10 441 0.64 0.95 14 402 0.70 1.02
n20-3 7 2 846 0.12 1.93 9 2 757 0.00 2.63 10 540 0.02 0.90 14 508 0.17 1.26
n20-4 7 2 602 0.33 2.43 9 2 582 0.34 2.27 10 448 0.32 0.94 14 417 0.42 0.88
n20-5 7 2 651 0.62 2.20 9 2 538 0.00 2.65 10 434 0.38 1.05 14 409 -0.07 1.35

n25-1 8 2 719 0.14 3.10 10 2 708 0.14 3.05 11 501 0.48 1.25 16 483 0.01 1.28
n25-2 8 2 796 -0.13 2.47 10 2 699 -2.37 3.67 11 510 1.84 1.21 16 486 0.68 1.70
n25-3 8 2 601 -0.33 3.36 10 2 553 -0.36 3.02 11 436 -0.73 1.25 16 402 -0.62 1.35
n25-4 8 2 686 0.44 3.20 10 2 681 0.15 3.18 11 470 0.23 1.20 16 456 0.45 1.27
n25-5 8 2 724 0.42 3.17 10 2 692 0.44 3.31 11 494 0.55 1.26 16 454 0.66 1.33

n30-1 9 2 887 1.14 1.70 12 2 816 -0.97 4.64 13 616 0.11 1.65 18 582 0.25 2.56
n30-2 9 2 853 -0.12 2.32 12 2 827 0.12 4.42 13 561 0.17 1.58 18 553 0.26 1.83
n30-3 9 2 812 0.00 2.86 12 2 797 0.25 4.34 13 507 0.22 1.90 18 487 0.34 1.86
n30-4 9 2 721 0.28 1.81 12 2 663 0.15 4.31 13 536 -0.07 1.55 18 495 0.06 2.27
n30-5 9 2 750 0.13 2.81 12 2 732 0.41 4.38 13 495 0.40 1.69 18 492 0.34 1.97

Table 1: Results for Class I instances with n+ 2 ∈ {10, 15, 20, 25, 30} with different T values

name D Sol g t name D Sol g t

n50-1 1 608 0.33 3.71 n50-9 1 607 0.66 3.60
n50-2 1 591 -0.17 3.48 n50-10 1 627 5.03 3.84
n50-3 1 586 0.86 3.98 n50-11 1 601 1.52 3.667
n50-4 1 597 0.67 3.60 n50-12 1 628 0.32 3.69
n50-5 2 757 23.49 10.21 n50-13 2 786 1.03 10.29
n50-6 1 585 0.17 3.60 n50-14 1 618 0.82 3.88
n50-7 1 550 0.36 3.53 n50-15 2 813 0.49 9.28
n50-8 1 591 0.51 3.62 n50-16 1 615 0.33 3.68

Table 2: Results for Class II instances with n+ 2 = 50 with T = 18

as columns. Here, the calculate start driver method is almost always able to find the optimal

number of drivers, reducing the running time significantly. However, the running times for TD

for which there is a single driver necessary. This becomes even more clear in Table 5.1, where

even with the elimination multiple numbers of drivers, the running time clearly exceeds the

amount listed in Domı́nguez-Mart́ın et al. (2023), by an approximate factor of six. With these

instance sizes, small inefficiencies are also highlighted, but as explained before this usually does

not result in a difference this large. However, this heuristic often finds better optimal solutions

than Domı́nguez-Mart́ın et al. (2023), especially for tight values of T .

It is difficult to explain why the optimal solutions are so much better than those in Domı́nguez-

Mart́ın et al. (2023), but after verification of our solution to n800-2 with a T of 85 in Microsoft

Excel, all driver routes were feasible and the cost function was also calculated correctly. There is

no knowing exactly why these solution differ so much, as it is very unlikely that an improvement

of 20% is due to rounding errors. Since there were no optimal routes presented in Domı́nguez-

Mart́ın et al. (2023), there is also no way to verify any small details that might impact the

solution. Furthermore, there are some parts of the methodology left up to interpretation by the

12

authors, possibly causing these differences.

A peculiar finding is that in n800-2, there are 33 pairs of customers that are located at exactly

the same location as another customer, having the same x and y coordinates. Although this is

possible when randomly generating 800 points on a [100x100] grid. In our solution, these points

always follow each other in an optimal route, and although nothing is said in Domı́nguez-Mart́ın

et al. (2023) about this occurrence, there is a possibility that a slight difference in handling of

these points causes there to be a such a large gap in solution values. In Table 5.1, the number of

name TA sol g t TB D sol g t TC sol g t TD D sol g t

n100-1 15 1087 -3.81 4.11 20 2 886 0.45 3.49 30 883 0.46 2.38 40 1 741 0.41 2.53
n100-2 15 1230 -1.28 3.66 20 2 969 1.04 3.27 30 960 0.52 2.62 40 1 788 0.13 2.51
n100-3 15 1046 -16.12 4.58 20 2 889 0.23 3.74 30 848 0.71 2.97 40 1 767 0.26 2.81
n100-4 15 1168 -7.59 3.82 20 2 938 0.21 3.28 30 931 0.76 2.56 40 1 764 0.79 2.34
n100-5 15 1139 -16.00 4.42 20 2 945 -10.34 3.49 30 915 0.55 3.15 40 1 786 0.51 2.93
n200-1 25 1425 -17.20 17.25 35 2 1255 -6.97 13.95 50 1192 0.76 12.75 60 1 1143 2.05 8.72
n200-2 25 1457 -21.88 17.22 35 2 1280 -10.11 14.48 50 1203 -0.74 13.26 60 1 1134 -0.44 8.75
n200-3 25 1391 -10.83 18.58 35 2 1231 -1.52 14.88 50 1185 -0.67 11.72 60 1 1163 0.61 8.60
n200-4 25 1414 -5.92 15.26 35 2 1216 -0.25 13.02 50 1211 -0.33 9.57 60 1 1138 -0.61 8.62
n200-5 25 1375 -11.52 16.99 35 2 1222 -0.16 14.89 50 1200 -0.41 11.39 60 1 1142 -0.95 8.74
n300-1 35 1622 -10.68 42.96 45 6 1587 -2.52 35.42 70 1441 0.35 29.20 90 1 1376 0.07 22.85
n300-2 35 1732 -20.88 42.70 45 6 1658 -15.41 39.34 70 1417 0.28 31.89 90 1 1336 -0.30 21.88
n300-3 35 1674 -8.07 36.33 45 2 1598 1.27 14.81 70 1430 0.99 22.43 90 1 1336 0.15 28.08
n300-4 35 1663 -11.64 43.57 45 3 1616 -9.06 38.48 70 1452 -0.48 32.99 90 1 1406 -0.50 25.48
n300-5 35 1567 -16.20 51.29 45 3 1513 -2.13 40.33 70 1377 0.15 33.86 90 1 1339 -0.37 26.84
n400-1 45 1815 -18.57 88.11 55 3 1782 -8.99 76.65 90 1602 0.69 62.13 115 1 1555 -1.14 38.48
n400-2 45 1785 -11.06 82.85 55 3 1740 -9.42 73.16 90 1590 0.19 58.98 115 1 1547 0.72 40.98
n400-3 45 1823 -10.90 89.47 55 3 1759 -1.95 73.93 90 1616 -0.62 58.56 115 1 1579 -0.32 40.93
n400-4 45 2000 -25.48 83.00 55 3 1894 -21.51 84.39 90 1690 -9.33 70.94 115 1 1564 -1.39 43.11
n400-5 45 1942 -19.45 87.97 55 3 1883 -12.66 82.09 90 1671 0.00 63.12 115 1 1596 0.38 41.70
n500-1 55 2016 -4.36 120.92 65 3 1990 -0.60 98.95 110 1795 0.45 73.57 140 1 1755 0.98 65.98
n500-2 55 1999 -19.10 143.12 65 3 1996 -12.84 127.47 110 1819 0.06 101.85 140 2 1814 0.44 88.51
n500-3 55 2126 -22.27 160.00 65 3 2016 -22.07 140.75 110 1827 -0.05 110.50 140 2 1799 0.06 97.07
n500-4 55 2198 -21.47 167.89 65 3 2084 -20.03 152.51 110 1847 -2.17 117.02 140 2 1820 0.33 103.51
n500-5 55 1993 -12.97 144.52 65 3 1942 0.21 125.62 110 1805 0.11 99.48 140 2 1804 0.28 86.40

Table 3: Results for Class III instances with n + 2 ∈ {100, 200, 300, 400, 500} with different T
values

drivers is not included in the table, as all instances have 3 drivers for TA, 2 drivers for TB & TC

and 1 driver for TD. Here, once again, running times are slightly slower than in the benchmark,

sometimes even exceeding the set time limit, but they do result in significantly better solution

values.

name TA Sol g t TB Sol g t TC Sol g t TD Sol g t

n600-1 65 2305 -13.51 218 115 1989 0.00 177 155 1975 0.56 153 205 1921 0.05 151
n600-2 65 2232 -20.40 189 115 1993 -0.50 138 155 1977 0.15 114 205 1910 0.10 116
n600-3 65 2227 -12.08 183 115 1994 0.91 133 155 1982 0.71 106 205 1926 0.36 117
n600-4 65 2128 -17.93 201 115 1942 1.04 144 155 1931 0.42 113 205 1881 0.59 132
n600-5 65 2206 -22.19 217 115 2010 -1.03 181 155 1997 0.05 152 205 1959 -0.15 135

n800-1 85 2415 -7.96 508 135 2271 0.80 420 175 2258 0.94 339 225 2234 0.59 372
n800-2 85 2644 -20.29 607 135 2398 -7.09 496 175 2283 -0.22 434 225 2245 1.22 295
n800-3 85 2411 -1.07 436 135 2267 0.35 349 175 2268 0.84 280 225 2232 1.55 379
n800-4 85 2439 -9.06 454 135 2283 0.88 389 175 2266 0.94 327 225 2229 0.32 354
n800-5 85 2507 -18.87 594 135 2305 -0.60 497 175 2245 0.54 416 225 2202 0.59 326

n1000-1 105 2755 -15.26 968 155 2579 0.98 904 205 2514 0.36 702 275 2495 1.46 497
n1000-2 105 2859 -13.39 1081 155 2666 -8.23 986 205 2554 2.20 803 275 2523 1.00 488
n1000-3 105 2781 -15.98 1088 155 2594 -6.29 964 205 2490 1.80 827 275 2447 1.03 490
n1000-4 105 2644 -10.98 961 155 2499 1.59 869 205 2496 2.51 728 275 2466 2.79 536
n1000-5 105 2694 -10.41 1007 155 2513 2.40 872 205 2495 1.63 737 275 2460 1.44 537

Table 4: Results for Class III instances with n+ 2 ∈ {600, 800, 1000} with different T values

13

5.1.1 Randomness

One of the biggest strengths of this heuristic is a Monte-Carlo-like approach, where each iteration

is a random sample which is repeated until numerical results are found. In this method, only

the optimal result from the samples is retained, focusing on finding the best solution rather

than analyzing the entire distribution. This kind of stochastic optimisation counters one of

the biggest downsides to the heuristics the algorithm employs, which is that the local search

often ends in local minima instead of global minima, and the local minimum it ends up in is

highly dependent on the starting point. By randomly sampling over many starting points, this

downside is countered, but it is also the driving factor behind this heuristic.

To illustrate the effect this randomness can have, we have run the algorithm 2000 times on

two separate sets of customers, namely n15-5 with a T of 7, and n25-2 with a T of 11. When

running the same file multiple times, it is clear what effect the randomness has on the outcome

of the optimal solution. The optimal solution found in both cases differed only slightly between

runs, although the iteration in which the optimal solution was found did. For a set of customers

with a clear local minimum that was easily found, the average number of iterations before the

optimal solution was found was 402, while for a set of customers with loads of local minima,

the iteration in which the optimal solution was found looks nearly uniformly distributed with a

mean of 43166, ranging from iteration 20 to 99956. This shows that several sets of customers

are greatly dependent on the randomness and the number of iterations to counter the downside

of a local search ending in a local minimum. Figure 2 shows the iteration in which the optimal

solution was found. It is important to note the scale on the y-axis do not match, as when n15-5

is scaled to the same scale as n25-2, there is hardly any variation visible. For n15-5, the optimal

solution is always found in the first 3500 iterations, and in 75% of the runs, the optimal solution

is found before the 600th iteration.

In comparison, the iteration in which the optimal solution for n25-2 is found looks uniformly

distributed. Here, the optimal solution being found is highly dependent on the starting point.

Furthermore, in one of the runs the optimal solution was found in the 99,956th iteration. So

there is a likelihood the optimal solution is never found in the 100,000 iterations. However, in

this case there are likely optimal solutions found that are only slightly worse, often resulting in

the same value when rounded to an integer. This can also be the result of the tightness of T .

Domı́nguez-Mart́ın et al. (2023) also noted this when determining the ideal number of iterations,

stating that the additional improvement in solution value is not compensated by the increase in

running time.

5.2 Capacity Constraint

T Q nDr Sol T Q nDr Sol T Q nDr Sol T Q nDr Sol

10 5 1 383 6 4 1 533 10 4 4 533 5 3 1 611
10 6 1 383 6 5 1 533 6 3 4 578 5 4 1 611
7 6 1 384 6 6 1 533 7 3 8 578 5 5 1 611
7 5 1 384 7 4 1 533 10 3 8 578 5 6 1 611

Table 5: n10-4 tested for different values of T and Q with the restricting value in bold

In Table 5.1 it is clear that the feasible region for certain values of T is rather small. It

14

Figure 2: Sorted distribution of the iteration in which the optimal solution was found for n15-5
and n20-2

is therefore important to explore what values of T and Q are interesting to explore. In Table

5.2 n10-4 is tested for good values for T = {5, 6, 7, 10} and Q = {3, 4, 5, 6} with the restricting

value in bold. qli is assumed to be one for each customer, so from on a single customers demand

will be denoted by q. Q = 2 was excluded, as that would ensure each vehicle could only serve

a single customer besides the exchange location. Q is here defined as the number of customers

visited, including the exchange location but excluding the depots. It is notable that Q = {5, 6}
is never the restricting factor for n10-4. Also, for T = 5, the duration constraint is so tight that

Q also never becomes the restricting factor. Q = {3, 4} can become the constraining factor when

there is no value of T more constraining. In this particular set, it is also clear that the optimum

reached when T = 6 and Q = 4 are the restraining factors are equal. This mainly holds for

small instances, where there is a limited number of possible routes. For larger instances it is

uncommon for both T and Q to be the constraining factor.

Nonetheless, Table 5.2 shows that there are two values of interest for T and three for Q.

However, the effect for the three values of Q is similar for each T . For T = 7 the values

Q = {3, 4, 6} are of interest, while for T = 6 the values Q = {3, 4, 5}. The effect Q = 5 has on

the optimal solution is similar to the effect of Q = 4. This implies that for each T there are

three values of interest, one where T is the constraining factor and Q is loose and two where Q

is the constraining factor, one tighter and one looser constraining factor. When T is too tight

it is the only constraining factor, while if T is very loose, there is a large difference between

different values in Q. To strike a balance, the value of T is either TB or TC . Several instances

are tested for one value of T for the values QA, QB and QC , with QA being the tightest and QC

the loosest value. For the smaller instances of Class I, TB is tested, while for several instances

of Class II&III are tested for TC . This is also partly due to the values for parameters chosen.

q and ti,j often have similar values. Adding heterogeneity in the customer demands might shift

this, as well as defining ti,j differently. However, ti,j is defined in such a way that customers

who are farther away are not considered extreme outliers, which is especially important when a

lot of the customers are clustered together.

In Table 6 several values of Q were tested with the same value for T , one loose value which

results in the same optimal solution value as the heuristic without Q, one somewhat tight

value, restricting the optimal solution, and one very tight value for Q. The tightest value of Q

15

name T Sol D QA D Sol t g QB D Sol t g QC D Sol t g

n10-1 6 654 2 3 3 844 0.15 -13.65 4 2 654 0.11 -38.43 7 2 654 0.20 16.46
n10-2 6 293 1 3 3 685 0.12 84.95 4 2 486 0.10 46.43 7 1 293 0.07 3.57
n10-3 6 646 2 3 3 910 0.11 -31.35 4 2 646 0.11 -34.17 7 2 646 0.19 16.82
n10-4 6 533 2 3 3 728 0.10 -36.46 4 2 533 0.10 -39.09 7 2 533 0.17 4.53
n10-5 6 366 1 3 3 806 0.10 22.86 4 2 565 0.10 22.24 7 1 366 0.07 -14.49

n15-1 8 349 1 6 3 619 0.14 27.41 10 2 417 0.16 49.72 12 1 349 0.15 35.98
n15-2 8 412 1 6 3 1095 0.13 36.78 10 2 736 0.14 44.75 12 1 412 0.11 7.80
n15-3 8 441 1 6 3 940 0.14 34.55 10 2 636 0.15 44.68 12 1 441 0.10 3.49
n15-4 8 715 2 6 3 972 0.15 -50.30 10 2 715 0.17 -42.33 12 2 715 0.33 8.25
n15-5 8 749 2 6 3 1065 0.14 -43.35 10 2 749 0.17 -30.18 12 2 749 0.29 16.07

n20-1 9 844 2 7 3 1222 0.29 -30.03 11 2 844 0.33 -21.45 13 2 844 0.27 -34.48
n20-2 9 613 2 7 3 878 0.30 -25.98 11 2 613 0.26 -35.77 13 2 613 0.29 -29.96
n20-3 9 757 2 7 3 1015 0.30 -30.36 11 2 757 0.30 -31.01 13 2 757 0.31 -29.79
n20-4 9 582 2 7 3 774 0.32 -14.65 11 2 587 0.25 -33.22 13 2 582 0.26 -30.84
n20-5 9 538 2 7 3 741 0.29 -35.22 11 2 538 0.31 -29.14 13 2 538 0.31 -30.31

n25-1 10 708 2 8 3 963 0.44 -13.43 13 2 708 0.36 -29.29 15 2 708 0.32 -37.22
n25-2 10 699 2 8 3 1086 0.43 -29.38 13 2 699 0.44 -27.88 15 2 699 0.43 -29.38
n25-3 10 553 2 8 3 767 0.43 -14.17 13 2 553 0.34 -33.27 15 2 553 0.34 -32.17
n25-4 10 681 2 8 3 931 0.43 -18.61 13 2 681 0.35 -33.61 15 2 681 0.36 -31.59
n25-5 10 692 2 8 3 977 0.49 -10.73 13 2 692 0.37 -33.23 15 2 692 0.35 -35.74

n30-1 12 816 2 10 3 1082 0.59 -23.51 13 2 816 0.56 -27.97 13 2 816 0.56 -27.97
n30-2 12 827 2 10 3 1152 0.58 -21.73 13 2 837 0.52 -28.84 13 2 837 0.52 -28.84
n30-3 12 797 2 10 3 1127 0.59 -19.08 13 2 802 0.49 -31.77 13 2 802 0.49 -31.77
n30-4 12 663 2 10 3 888 0.56 -22.38 13 2 663 0.47 -35.21 13 2 663 0.47 -35.21
n30-5 12 732 2 10 3 1011 0.60 -18.12 13 2 735 0.50 -31.26 13 2 735 0.50 -31.26

Table 6: Different values of QA, QB and QC tested for TB for Class I

results in the maximum number of drivers being necessary to find an optimal solution. However,

one interesting result is including Q is that the algorithm can become faster when Q is tight,

becoming up to 50% as fast (for Q = 6 in n15-4). This is likely due to the calculate start driver

method, which can exclude more number of drivers when Q is tight. In Table 6 it is also clear

that when there are more drivers necessary for a feasible solution due to Q, the time necessary

increases.

Another observation is how well the algorithm performs both in terms of the optimal solution

and the running time is very dependent on not only the parameters chosen, but also on the

location of the randomly generated nodes. The values for T and Q for which a stable local

minimum is found differs greatly, even within sample sizes.

In Table 7, the number of drivers for QC is always 2, and not all instances of Class II&III are

tested. Furthermore, the algorithm does not necessarily become faster for larger size instances

because the algorithm becoming slightly more complex as additional constraints are added, since

more options need to be searched. It is notable that a factor of high importance is the number of

drivers necessary to reach a feasible solution. As shown in Domı́nguez-Mart́ın et al. (2023) has

a nearly linear relation to the amount of time the algorithm has to run. This can be seen clearly

for n+ 2 = 50, where the original number of drivers ranges from 1 to 2. For the tightest value

of Q, the time gap ranges from 14% faster to nearly 200% slower. This is due to two things,

first the minimal number of drivers necessary here is 3, which eliminates having to search for

a feasible solution with 1 or 2 drivers, which makes the heuristic faster. However, running the

multistart loop is a lot less efficient for 3 drivers than when there are fewer, as the local search

methods need to search more positions. For the two small gaps of less than 20%, the number

of drivers necessary without Q is two, which means the original algorithm was slower to find an

16

Name T Sol D QA D Sol t g QB D Sol t g QC Sol t g

n50-12 18 628 1 12 3 1078 1.75 184.67 16 3 1053 1.36 121.00 20 799 1.17 90.33
n50-13 18 786 2 12 3 1086 1.56 -14.18 16 3 1054 1.28 -29.49 20 786 1.34 -26.57
n50-14 18 618 1 12 3 1030 1.62 151.07 16 3 965 1.42 120.16 20 756 1.21 87.60
n50-15 18 813 2 12 3 1050 1.82 17.54 16 3 1026 1.40 -9.64 20 813 1.17 -24.60
n50-16 18 615 1 12 3 1086 1.75 185.01 16 3 1070 1.30 112.03 20 815 1.02 66.58

n100-1 30 883 2 28 3 1079 4.12 -9.41 40 2 883 3.00 -33.95 55 883 4.48 -1.33
n100-2 30 960 2 28 3 1218 3.94 -18.33 40 2 960 3.12 -35.20 55 960 4.80 -0.31
n100-3 30 848 2 28 3 1016 4.45 -11.84 40 2 848 3.74 -25.94 55 848 5.28 4.58
n100-4 30 931 2 28 3 1155 4.14 -10.34 40 2 936 3.40 -26.37 55 931 4.79 3.62
n100-5 30 915 2 28 3 1100 4.93 -7.67 40 2 918 4.11 -23.15 55 915 5.73 7.28

n300-1 70 1431 2 78 3 1577 40.66 37.44 110 2 1442 36.03 21.82 155 1444 33.66 13.79
n300-2 70 1410 2 78 3 1665 47.87 48.44 110 2 1425 40.05 24.17 155 1420 37.71 16.93
n300-3 70 1428 2 78 3 1636 40.71 78.70 110 2 1426 29.36 28.89 155 1430 25.28 10.97
n300-4 70 1461 2 78 3 1599 42.90 47.51 110 2 1455 35.40 21.71 155 1455 33.11 13.84
n300-5 70 1378 2 78 3 1503 40.90 31.11 110 2 1387 36.90 18.30 155 1381 35.71 14.49

n500-1 110 1795 2 130 2 1828 120.79 68.90 170 2 1800 93.07 30.15 250 1792 79.14 10.66
n500-2 110 1825 2 130 2 1919 136.08 38.12 170 2 1820 120.50 22.30 250 1822 112.24 13.92
n500-3 110 1825 2 130 2 1951 148.70 40.25 170 2 1888 132.80 25.25 250 1825 123.26 16.25
n500-4 110 1852 2 130 2 1980 156.34 41.68 170 2 1918 136.38 23.60 250 1870 132.22 19.83
n500-5 110 1800 2 130 2 1879 134.70 40.54 170 2 1811 119.34 24.51 250 1807 107.80 12.47

Table 7: Different values for QA, QB and QC for TC of Class II & III

optimal solution, as can be seen in table 5.1, where especially n50-13 was quite slow. Adding

the complexity of Q but eliminating several numbers of drivers. The largest gaps can also be

seen with a size of 50, which is mainly due to the original heuristic being fast if there is only a

single driver, rather than the algorithm including Q being slow.

It is also clear that as Q loosens, the algorithm becomes considerably quicker. This implies

that the algorithm is robust in the amount of time adding Q takes, but choosing a tight Q

results in not only higher optimal solutions and more drivers to be utilized, which leads to a

higher running time, but also potentially saving up to 200,000 iterations when a certain number

of drivers do not need to be searched for an optimal solution by the algorithm. This same

phenomenon can be seen for n10-2, where it is much more that the algorithm without Q was

exceptionally fast, than that the algorithm with Q is slow when compared to other times of

the same size. Overall, the algorithm is only 50% slower than the original when the original

algorithm was considerably faster than the rest of its size, or when the Q is really tight, so the

algorithm is quite robust to the addition of capacity constraints.

5.3 Time windows

The time window constraints are defined to be 40% of T , and are consistent over all instances, as

they are read from a file with a random starting time. The time window constraints are tested

for several values of T , not including TA as it is already a rather tight constraint. Furthermore,

the maxDrivers is increased to 5 to ensure feasibility.

Including time windows highlights a weakness of this algorithm, as predetermined time

windows do not translate well to random allocation. Here, the calculate start drivers method is

also not as easily effective. This causes the algorithm to search many more options before even

potentially finding an optimal solution. Furthermore, searching for the best insertion position

and route is a lot more computationally expensive. Not only does the feasibility of the insertion

location need to be evaluated, so does the feasibility of each node after the insertion position.

17

name TB D Sol t g TC D Sol t g TD D Sol t g

n10-1 7 2 602 0.7 56.79 8 2 602 0.74 33.75 10 2 411 0.67 57.75
n10-2 6 2 486 0.91 131.38 7 2 486 0.76 95.13 10 1 293 0.57 30.82
n10-3 6 3 646 1.05 9.61 7 2 617 0.85 80.94 10 1 385 0.59 35.02
n10-4 6 2 534 0.65 -31.82 7 2 533 0.7 74.44 10 2 383 0.62 59.23
n10-5 6 2 594 0.7 41.84 7 2 565 0.72 43.65 10 1 355 0.63 50.6
n15-1 8 2 441 1.4 117.91 9 2 415 1.29 38.43 12 2 407 1.58 117.03
n15-2 8 3 744 1.56 164.41 9 2 736 1.37 123.45 12 2 413 1.49 137.36
n15-3 8 3 636 1.84 205.81 9 2 480 1.63 156.31 12 2 387 1.56 152.67
n15-4 8 3 791 1.41 -22.16 9 3 710 1.3 107.15 12 2 568 1.25 59.46
n15-5 8 3 774 1.63 9.93 9 3 753 1.67 150.83 12 2 749 1.56 135.7
n20-1 9 3 1075 3.11 24.86 10 3 943 3.07 221.57 14 2 788 2.95 134.07
n20-2 9 3 691 2.96 20.49 10 3 613 2.97 212.74 14 2 593 2.83 178.35
n20-3 9 3 823 2.73 4.08 10 3 750 2.84 217.19 14 2 708 2.95 135.38
n20-4 9 3 646 2.7 18.61 10 3 582 2.58 175.75 14 2 565 2.5 184.85
n20-5 9 3 637 3.01 13.44 10 2 573 2.86 172.38 14 2 499 2.88 113.79
n25-1 10 3 806 4.76 55.87 11 3 750 4.74 278.31 16 2 646 4.47 249.77
n25-2 10 3 907 4.8 30.8 11 3 808 4.78 296.76 16 2 614 4.74 179.82
n25-3 10 3 689 4.04 33.57 11 3 631 3.81 205.62 16 2 575 3.4 151.33
n25-4 10 3 729 4.47 40.82 11 3 701 4.55 279.25 16 2 571 3.93 209.37
n25-5 10 3 872 4.69 41.69 11 3 753 4.73 274.82 16 2 610 4.51 240
n30-1 12 3 1087 7.08 52.54 13 3 960 7.21 338.42 18 2 803 7.17 180.25
n30-2 12 3 1147 7.59 71.82 13 3 985 7.5 375.33 18 2 849 7.36 301.64
n30-3 12 3 946 6.5 49.72 13 3 847 6.54 244.13 18 2 600 5.85 214.81
n30-4 12 3 877 6.06 40.59 13 3 806 5.8 274.37 18 2 692 5.3 133.6
n30-5 12 3 873 7.48 71.02 13 3 766 7.54 345.71 18 2 736 7.57 285

Table 8: Different values of T tested with time window constraints of 40% tested for Class I

Name T D Sol t g Name T D Sol t g

n50-1 30 2 857 430.33 2088 n50-9 30 2 835 512.5 2224
n50-2 30 2 839 554.64 2333 n50-10 30 2 887 511.29 2076
n50-3 30 2 869 438.94 1946 n50-11 30 2 856 436.06 2119
n50-4 30 2 881 413.19 2137 n50-12 30 2 945 496.83 2155
n50-5 30 2 888 113.35 420 n50-13 30 2 849 122.04 403
n50-6 30 2 926 489.44 2207 n50-14 30 2 848 500.36 2049
n50-7 30 2 838 438.79 2208 n50-15 30 2 907 103.07 447
n50-8 30 2 892 533.51 2228 n50-16 30 2 844 479.23 2146

Table 9: Different values for T including time window constraints of 40% tested for Class II

This is the case in both the construct drivers routes method as the local search method. The

strength of the simple 2 opt method is also decreased, as now also within routes several criteria

need to be checked. Furthermore, the 2 opt method swaps the direction of all arcs between the

two swapped arc, likely rendering the solution infeasible. There are also few other heuristics

that are both as simple as the 2opt local search and serve the same purpose. In Table 8, the gap

calculated over the time often exceeds 20%, and even for small size instances and loose values

of T , this results in a significantly increased running time.

In Table 9, the same phenomenon is encountered, but the time gap now runs to up to 200%.

Because of this large time increase, Class III was only tested for sizes n+ 2 ∈ {100, 200, 300}
In Table 10, the original correction for possible multi-threads has been applied, as for Class

II the time limit of 600 seconds from the benchmark has nearly been surpassed. Still, the

gaps reach up to 2000% for the sample size of 300. These results show that employing random

sampling over a simple heuristic is not efficient, and that the heuristic is not robust to the

addition of time windows. Even when the time windows are quite large and are scaled up as T

increases, the running time increases exponentially.

18

Name T D Sol t g D Sol t g T D Sol t g

n100-1 20 4 1874 15.15 342 3 1666 17.23 279 40 2 1250 19.28 656
n100-2 20 4 2002 15.03 355 3 1651 17.59 265 40 2 1387 19.58 670
n100-3 20 4 1861 15.71 328 3 1571 16.04 218 40 2 1311 17.51 513
n100-4 20 4 1997 15.22 368 3 1732 17.61 281 40 2 1385 19.78 747
n100-5 20 4 1966 15.48 340 3 1665 17.79 233 40 2 1333 20.36 587
n200-1 35 4 2973 99.46 599 3 2510 131.08 905 60 3 2351 111.08 1161
n200-2 35 4 2982 99.57 575 3 2471 134.46 893 60 3 2343 147.18 1588
n200-3 35 5 3023 95.98 535 3 2465 128.78 975 60 3 2355 113.38 1206
n200-4 35 4 3070 98.47 637 3 2580 133.65 1277 60 3 2462 142.3 1559
n200-5 35 4 2947 104.27 590 3 2531 139.26 1099 60 3 2236 159.41 1726
n300-1 45 5 3836 323.96 1863 3 3073 482.56 1531 90 3 2767 602.89 2532
n300-2 45 5 4054 315.9 1987 3 3057 458.03 1320 90 3 2855 575.95 2532
n300-3 45 5 4147 316.05 2039 3 3197 448.71 1870 90 3 2933 540.24 1892
n300-4 45 5 4104 324.55 528 3 3201 487.1 1575 90 3 2927 658 2854
n300-5 45 5 3853 327.28 2085 3 3055 504.88 1519 90 3 2771 734.36 3256

Table 10: Different values of T including time window constraints of 40% for n + 2 ∈
{100, 200, 300}

6 Conclusion

In this paper, the robustness of a multi-start heuristic to a capacity and time window constraint

has been researched on the Driver and Vehicle Routing Problem. Testing this gives insight in

how efficient applying this heuristic in real-life might be. The heuristic is efficient at tackling the

DVRP, and is also robust to a capacity constraint, as simple heuristics give good results and there

is not too much added complexity. Time windows render a lot of simple heuristic ineffective,

diminishing the strength of this algorithm. The running time of the algorithm increases up to

2000% for the largest two classes of instance sizes. Other algorithms might tackle it better for

the DVRP, but the approach of using low time complexity heuristics a multitude of times is

not effective when incorporating time windows. The strength of the multistart heuristic really

lies in repeating a random sampling of simple heuristics, but therein also lies its weakness. An

optimal solution is found after a certain number of tries, and often times running the algorithm

results in a different outcome.

6.1 Discussion

Both the DVRP as well as the multi-start heuristic have not been studied widely in literature

and there are a lot of interesting factors to explore even further, also in the name of realism.

Some of these things are introducing heterogeneity to both the customer demand and the length

of the time windows. Each of these scenario’s could have very useful applications, especially for

the DVRP.

The multi-start heuristic is slightly different. The strength of this algorithm is repeating

a random sampling of simple heuristics that can be performed fast, which cannot be applied

as well to certain additional constraints. Introducing time windows could be more efficient if

a more complex algorithm is adapted, as the addition of time window constraints reduces the

effectiveness of most simple heuristics like the cheapest insertion strategy or several variants of a

local search method. It is not strange that the original heuristic employed some of the simplest

heuristics, as being slightly faster is more useful when each heuristic is applied at least 100,000

times.

19

One of the other downsides of this algorithm is that when a constraint is tight, there is

limited room for the heuristics to perform well. This was addressed in our local search method,

but this makes the random sampling even more important to the algorithm. When the heuristics

within the multi-start loop cannot attest to a large improvement, the starting position becomes

all the more significant. The fact that the tightness of the constraints can limit the algorithm

quite severely also implies that the entire problem is also very dependent on the values of the

parameters. In the results it can be seen there are some instances with the same size that have

a wide range of optimal solutions found. For each instance, the parameter that impacts the

solution most differs, while they are all compared by the same standard. Especially with small

instances, it occurred that no feasible solution could be found for the tightest time limit, so the

time limit was increased.

Of course many problems are dependent on the value of parameters, but the large differences

within an instance size makes the instances hard to compare to each other in terms of solution

value, which also makes them more difficult to compare in terms of running time.

However, nowadays computers are fast and will only become faster, so including a simulation

like element to a heuristic can be greatly beneficial, but it is important to still think about

efficiency when using a lot of computing power, because running redundant iterations is not an

efficient use of computing power, and also does not translate well into even larger problems.

References

Balakrishnan, N. (1993). Simple heuristics for the vehicle routeing problem with soft time

windows. Journal of the Operational Research Society , 44 (3), 279–287.

Barreto, S., Ferreira, C., Paixao, J. & Santos, B. S. (2007). Using clustering analysis in a

capacitated location-routing problem. European journal of operational research, 179 (3),

968–977.

Bräysy, O. & Gendreau, M. (2005). Vehicle routing problem with time windows, part ii:

Metaheuristics. Transportation science, 39 (1), 119–139.

Domı́nguez-Mart́ın, B., Rodŕıguez-Mart́ın, I. & Salazar-González, J.-J. (2018a). The driver and

vehicle routing problem. Computers & Operations Research, 92 , 56–64.

Domı́nguez-Mart́ın, B., Rodŕıguez-Mart́ın, I. & Salazar-González, J.-J. (2018b). A heuristic

approach to the driver and vehicle routing problem. In International conference on com-

putational logistics (pp. 295–305).

Domı́nguez-Mart́ın, B., Rodŕıguez-Mart́ın, I. & Salazar-González, J.-J. (2023). An efficient

multistart heuristic for the driver and vehicle routing problem. Computers & Operations

Research, 150 , 106076.

El-Sherbeny, N. A. (2010). Vehicle routing with time windows: An overview of exact, heuristic

and metaheuristic methods. Journal of King Saud University-Science, 22 (3), 123–131.

Gocken, T. & Yaktubay, M. (2019). Comparison of different clustering algorithms via genetic

algorithm for vrptw.

Lau, H. C., Sim, M. & Teo, K. M. (2003). Vehicle routing problem with time windows and a

limited number of vehicles. European journal of operational research, 148 (3), 559–569.

20

Lysgaard, J. (1997). Clarke & wright’s savings algorithm. Department of Management Science

and Logistics, The Aarhus School of Business, 44 , 1–7.

Pino, R., Villanueva, V., Martinez, C., Lozano, J., Del Pino, B. & Andrés, C. (2011). Heuristic

solutions to the vehicle routing problem with capacity constraints. Proceedings of ICAI-

Worldcomp, 11 , 634–640.

Salazar-González, J.-J. (2014). Approaches to solve the fleet-assignment, aircraft-routing, crew-

pairing and crew-rostering problems of a regional carrier. Omega, 43 , 71–82.

Vidal, e. a. (2015). Hybrid metaheuristics for the clustered vehicle routing problem. Computers

& Operations Research, 58 , 87–99.

Žunić, E., Donko, D., Šupić, H. & Delalić, S. (2020). Cluster-based approach for successful

solving real-world vehicle routing problems. In 2020 15th conference on computer science

and information systems (fedcsis) (pp. 619–626).

A Programming code

The constructor MainDVRP7R initializes an instance by reading the file containing the nodes

and calculating parameters that do not change during a run and initializing all variables. The

constructDrivers() method initializes each route and randomly adds a node according to the

cheapest insertion criterion until all nodes are added to a different route. The localSearch()

method randomly selects a node which is placed in a different route according to the cheapest

insertion criteria. This is repeated until all nodes have been placed in a different route. The

twoOpt() method deletes two arcs and replaces them with two different arcs within a node if

it improves the solution. This is repeated for all combinations of two arcs. The checkFeasib-

ility() method checks whether there is a driver route which exceeds the constraint. The con-

structVehicleRoutes() method constructs vehicle routes from the best found driver routes The

calculateStartDrivers() method calculates a good starting value for the parameter nDrivers The

runFile() method runs the algorithm for a single instance with fixed values for all parameters.

These methods are slightly altered for the addition of time windows and capacity constraints

and can be found in the accompanying zip file.

1 import java.io.BufferedReader;

2 import java.io.BufferedWriter;

3 public MainDVRP7R(String filename, int Toverwrite, int startDrivers) throws

IOException {

4 // Read file

5 nDrivers = startDrivers;

6 T = Toverwrite;

7 FileInputStream fstream = new FileInputStream(filename);

8 BufferedReader br = new BufferedReader(new InputStreamReader(

fstream));

9 this.name = br.readLine(); // NAME :

10 String line = br.readLine(); // TYPE : CVRP

11 line = br.readLine(); // EDGE_WEIGHT_TYPE : EUC_2D

12 line = br.readLine(); // DIMENSION :

13 String dimension = line.substring(11);

21

14 dimension = dimension.replaceAll("\\s+", "");

15 this.dim = Integer.parseInt(dimension);

16 line = br.readLine(); // NODE_COORD_SECTION

17 int[][] nodes = new int[dim][2];

18 for (int i = 0; i < dim; i++) {

19 line = br.readLine();

20 String[] temp = line.split(" ");

21 temp[2] = temp[2].replaceAll("\\s+", "");

22 nodes[i][0] = Integer.parseInt(temp[1]);

23 nodes[i][1] = Integer.parseInt(temp[2]);

24 }

25 br.close();

26 // define distance

27 this.exchangeLocation = dim - 2;

28 this.depot1 = 0;

29 this.depot2 = dim - 1;

30 this.distance = new double[dim][dim];

31 this.costs = new double[dim][dim];

32 this.totalCost = 0;

33 for (int i = 0; i < dim; i++) {

34 for (int j = i; j < dim; j++) {

35 if (i == j) {

36 distance[i][j] = Double.POSITIVE_INFINITY;

37 costs[i][j] = 0;

38

39 } else {

40 costs[i][j] = Math

41 .sqrt(Math.pow(nodes[i][0] - nodes[j][0], 2) +

Math.pow(nodes[i][1] - nodes[j][1], 2));

42 costs[j][i] = costs[i][j];

43 distance[i][j] = (costs[i][j] / 60) + 0.5;

44 distance[j][i] = distance[i][j];

45 }

46 }

47 }

48 this.driverNodes = new ArrayList[maxDrivers];

49 this.driverLength = new double[maxDrivers];

50 }

51 private void constructDrivers() {

52 for (int i = 0; i < maxDrivers - 4; i = i + 2) {

53

54 driverNodes[i] = new ArrayList<Integer>();

55 driverNodes[i].add(0);

56 driverNodes[i].add(dim - 2);

57 driverNodes[i].add(0);

58 driverLength[i] = distance[0][dim - 2] * 2;

59

60 driverNodes[i + 1] = new ArrayList<Integer>();

22

61 driverNodes[i + 1].add(dim - 1);

62 driverNodes[i + 1].add(dim - 2);

63 driverNodes[i + 1].add(dim - 1);

64 driverLength[i + 1] = distance[dim - 1][dim - 2] * 2;

65 }

66 //randomly order the nodes

67 random = new int[dim - 3];

68 for (int i = 1; i < dim - 2; i++) {

69 random[i - 1] = i;

70 }

71

72 Random rand = new Random();

73 for (int i = random.length - 1; i > 0; i--) {

74 int j = rand.nextInt(i + 1);

75 int temp = random[i];

76 random[i] = random[j];

77 random[j] = temp;

78 }

79

80 for (int i : random) {

81 int Route = -1;

82 int Position = 1;

83 double currentBestDistance = Double.POSITIVE_INFINITY;

84 int shortestDriverRoute = 0;

85 int shortestPosition = 0;

86 double shortestBestDistance = Double.POSITIVE_INFINITY;

87

88 while (Route < 0) {

89 for (int r = 0; r < nDrivers; r++) {

90 for (int p = 1; p < driverNodes[r].size(); p++) {

91 int Vorige = driverNodes[r].get(p - 1);

92 int Volgende = driverNodes[r].get(p);

93 double currentDistance = distance[i][Vorige] +

distance[i][Volgende] - distance[Volgende][

Vorige];

94 if (currentDistance < currentBestDistance) {

95 if (driverLength[r] + currentDistance < T) {

96 Route = r;

97 Position = p;

98 currentBestDistance = currentDistance;

99 } else if (driverLength[r] <= driverLength[

shortestDriverRoute] && currentDistance <

shortestBestDistance) {

100 shortestDriverRoute = r;

101 shortestPosition = p;

102 shortestBestDistance = currentDistance;

103 }

104 }

23

105 }

106

107 }

108 if (Route < 0) {

109 Route = shortestDriverRoute;

110 Position = shortestPosition;

111 currentBestDistance = shortestBestDistance;

112 }

113

114 if (nDrivers > maxDrivers) {

115 System.exit(0);

116 }

117 }

118 driverNodes[Route].add(Position, i);

119

120 int Vorige = driverNodes[Route].get(Position - 1);

121 int Volgende = driverNodes[Route].get(Position + 1);

122

123 driverLength[Route] += (distance[i][Vorige] + distance[i][

Volgende] - distance[Volgende][Vorige]); // currentBestRoute

??

124 }

125 }

126 private void localSearch(double increasedT) {

127 //randomly select order of nodes

128 int[] random = new int[dim - 3];

129 for (int i = 0, k=0; i < nDrivers; i++) {

130 for (int j = 1; j < driverNodes[i].size() - 1; j++) {

131 int b = driverNodes[i].get(j);

132 if (b != exchangeLocation) {

133 random[k] = 10000 * i + b;

134 k++;

135 }

136 }

137 }

138

139 Random rand = new Random();

140 for (int i = random.length - 1; i > 0; i--) {

141 int j = rand.nextInt(i + 1);

142 int temp = random[i];

143 random[i] = random[j];

144 random[j] = temp;

145 }

146

147 for (int k : random) {

148 int i = (int) k / 10000; //Route

149 int j = driverNodes[i].indexOf((int) k % 10000); //Customer

position

24

150

151 int a = driverNodes[i].get(j - 1);

152 int b = driverNodes[i].get(j);

153 int c = driverNodes[i].get(j + 1);

154

155 if (b == exchangeLocation) {

156 continue;

157 }

158

159 double lengthRemovej = distance[a][b] + distance[b][c] -

distance[a][c];

160 //find best place

161 int Route = -1;

162 int Position = -1;

163 double currentBestDistance = Double.POSITIVE_INFINITY;

164 for (int r = 0; r < nDrivers; r++) {

165 if (r == i) {

166 continue;

167 }

168 for (int p = 1; p < driverNodes[r].size(); p++) {

169 int Vorige = driverNodes[r].get(p - 1);

170 int Volgende = driverNodes[r].get(p);

171 double currentDistance = distance[b][Vorige] + distance

[b][Volgende] - distance[Volgende][Vorige];

172 if (currentDistance < lengthRemovej) {

173 if (currentDistance < currentBestDistance && (

driverLength[r] + currentDistance < T +

increasedT)) {

174 Route = r;

175 Position = p;

176 currentBestDistance = currentDistance;

177 increasedT = increasedT * 0.9 ;

178 }

179 }

180 }

181 }

182 // if a better place is found, relocate

183 if (Route >= 0) {

184 driverNodes[Route].add(Position, driverNodes[i].get(j));

185 driverNodes[i].remove(j);

186

187 int Vorige = driverNodes[Route].get(Position - 1);

188 int Volgende = driverNodes[Route].get(Position + 1);

189

190 driverLength[Route] += (distance[b][Vorige] + distance[b][

Volgende] - distance[Volgende][Vorige]);

191 driverLength[i] -= lengthRemovej;

192 }

25

193 }

194 }

195

196 private void twoOpt() {

197 for (int i = 0; i < nDrivers; i++) {

198 for (int a = 0; a < driverNodes[i].size() - 2; a++) {

199 for (int b = a + 1; b < driverNodes[i].size() - 1; b++) {

200

201 int a0 = driverNodes[i].get(a);

202 int a1 = driverNodes[i].get(a + 1);

203 int b0 = driverNodes[i].get(b);

204 int b1 = driverNodes[i].get(b + 1);

205

206 double oldDist = distance[a0][a1] + distance[b0][b1];

207 double newDist = distance[a0][b0] + distance[a1][b1];

208

209 if (oldDist > newDist) {

210 for (int s = driverNodes[i].indexOf(a1), r =

driverNodes[i].indexOf(b0); r - s > 0; s++, r--)

{

211 Collections.swap(driverNodes[i], s, r);

212 }

213 driverLength[i] += (newDist - oldDist);

214 }

215 }

216 }

217 }

218 }

219

220 private static boolean checkFeasibility(MainDVRP7R test) {

221 for (int i = 0; i < nDrivers; i++) { // voor elke route

222 if (driverLength[i] > T) {

223 return false;

224 }

225 }

226 return true;

227 }

228

229 private void constructVehicleRoutes(String[] fileBestRoutes) {

230 this.vehicleNodes = new ArrayList[maxDrivers];

231 for (int i = 0; i < nDrivers; i++) { // loop over all routes

232 fileBestRoutes[i].replaceAll("[", "");

233 fileBestRoutes[i].replaceAll("]", "");

234 fileBestRoutes[i].replaceAll(", ", "");

235 vehicleNodes[i] = new ArrayList<Integer>();

236 int j = 0;

237 while (Integer.parseInt(fileBestRoutes[i].substring(j, j+1)) !=

exchangeLocation) {

26

238 vehicleNodes[i].add(Integer.parseInt(fileBestRoutes[i].

substring(j, j+1)));

239 j++;

240 }

241

242 if (i % 2 == 0) {

243 int k = fileBestRoutes[i + 1].indexOf(exchangeLocation);

244 while (Integer.parseInt(fileBestRoutes[i + 1].substring(k,

k+1)) != depot2) {

245 vehicleNodes[i].add(Integer.parseInt(fileBestRoutes[i +

1].substring(k, k+1)));

246 k++;

247 }

248 vehicleNodes[i].add(depot2);

249 } else {

250 int k = fileBestRoutes[i - 1].indexOf(exchangeLocation);

251 while (Integer.parseInt(fileBestRoutes[i - 1].substring(k,

k+1)) != depot1) {

252 vehicleNodes[i].add(Integer.parseInt(fileBestRoutes[i -

1].substring(k, k+1)));

253 k++;

254 }

255 vehicleNodes[i].add(depot1);

256 }

257 }

258 }

259

260 private double calculateOptSol() {

261 totalCost = 0;

262 for (int i = 0; i < nDrivers; i++) {

263 for (int j = 0; j < driverNodes[i].size() - 1; j++) {

264 totalCost += costs[driverNodes[i].get(j)][driverNodes[i].

get(j + 1)];

265 }

266 }

267 return totalCost;

268 }

269

270 private static int calculateStartDrivers(int T, int dim) {

271 double nodesPerDriver = (T-1.5)*2;

272 if(nodesPerDriver*2>dim) {

273 return 2;

274 } else if(nodesPerDriver*4>dim) {

275 return 4;

276 } else {

277 return 6;

278 }

279

27

280 }

281 private static void runFile(String filename, int Toverwrite, int

startDrivers, BufferedWriter writer2) throws IOException {

282

283 int maxIter = 100000;

284 double fileBestSol = Double.POSITIVE_INFINITY;

285 String fileBestRoutes[] = new String [maxDrivers];

286

287 double [] fileBestDriverLength = driverLength;

288 boolean isFeasibleFound = false;

289 long startTime = System.currentTimeMillis();

290 while(isFeasibleFound == false) {

291 MainDVRP7R test = new MainDVRP7R(filename, Toverwrite, startDrivers

);

292

293 name = name.replace(’ ’, ’_’);

294 name = name.replace(’:’, ’_’);

295 name = name.replace(’.’, ’_’);

296 name = name.substring(9);

297 String outputFile = "C:\\Users\\floor\\Documents\\Bachelor\\

Bachelor jaar 3\\Bachelor scriptie\\Output\\" + name+ T + ".txt"

;

298 System.out.println(outputFile);

299 BufferedWriter writer = new BufferedWriter(new FileWriter(

outputFile));

300 writer.write(name);

301 writer.write("\ndepot 1: " + depot1 + " \ndepot 2: " + depot2 + "\

nexchange point:" + exchangeLocation + "\nT = " + T);

302

303 //main loop starts here

304 for (int nIter = 0; nIter < maxIter; nIter++) {

305 test.constructDrivers();

306

307 if (maxIter < 200) {

308 writer.write("\nNA CONSTRUCT DRIVER");

309 for (int i = 0; i < nDrivers; i++) {

310 writer.write("\nRoute" + i + ": " + driverNodes[i].

toString());

311 }

312 for (int i = 0; i < nDrivers; i++) {

313 writer.write("\nDriver Length " + i + ": " +

driverLength[i]);

314 }

315 }

316

317 test.calculateOptSol();

318

319 double bestSol = Double.POSITIVE_INFINITY;

28

320 ArrayList<Integer>[] bestDriverNodes = driverNodes;

321 double[] bestDriverLength = driverLength;

322 double lastOptSol = test.calculateOptSol();

323

324 for (int i = 0; i < 100; i++) {

325 if(isFeasibleFound == false && nIter > 80000) {

326 test.localSearch(2);

327 } else {

328 test.localSearch(0);

329 }

330 double newOptSol = test.calculateOptSol();

331

332 if (maxIter < 200) {

333 writer.write("\nNa local search");

334 for (int w = 0; w < nDrivers; w++) {

335 writer.write("\nRoute" + w + ": " + driverNodes[w].

toString());

336 }

337 for (int w = 0; w < nDrivers; w++) {

338 writer.write("\nDriver Length " + w + ": " +

driverLength[w]);

339 }

340 }

341 if (newOptSol == lastOptSol) {

342 break ;

343 }

344 lastOptSol = newOptSol;

345

346 }

347

348 bestSol = Double.POSITIVE_INFINITY;

349 bestDriverNodes = driverNodes;

350 lastOptSol = test.calculateOptSol();

351

352

353 for (int i = 0; i < 100; i++) {

354 test.twoOpt();

355 double newOptSol = test.calculateOptSol();

356 if (maxIter < 200) {

357 writer.write("\nNa 2-opt");

358 for (int w = 0; w < nDrivers; w++) {

359 writer.write("\nRoute" + w + ": " + driverNodes

[w].toString());

360 }

361 for (int w = 0; w < nDrivers; w++) {

362 writer.write("\nDriver Length " + w + ": " +

driverLength[w]);

363 }

29

364 }

365 if (newOptSol == lastOptSol) {

366 break ;

367 }

368 lastOptSol = newOptSol;

369 }

370

371 test.calculateOptSol();

372 boolean feasible = checkFeasibility(test);

373 // Try if shift possible.

374 double TotalDriversLenght = 0 ;

375 for (int w=0 ; w < nDrivers ; w++){

376 TotalDriversLenght += driverLength[w] ;

377 }

378 if (feasible && totalCost < fileBestSol) {

379 fileBestSol = totalCost;

380

381 for(int f = 0; f<nDrivers; f++) {

382 fileBestRoutes[f] = driverNodes[f].toString();

383 }

384

385 fileBestDriverLength = Arrays.copyOf(driverLength, nDrivers

) ;

386 isFeasibleFound = true;

387 bestIter = nIter;

388 }

389 }

390 if(isFeasibleFound == false) {

391 startDrivers = startDrivers + 2;

392 continue;

393 }

394 test.constructVehicleRoutes(fileBestRoutes);

395

396 long endTime = System.currentTimeMillis();

397 long totalTime = endTime-startTime;

398

399 test.calculateOptSol();

400

401 writer.write("\nBest Routes");

402 for (int i = 0; i < nDrivers; i++) {

403 writer.write("\nRoute" + i + ": " + fileBestRoutes[i]);

404 }

405 writer.write ("\nDriver Length: " + Arrays.toString(

fileBestDriverLength));

406

407 writer.write("\nTotal Best Costs: " + fileBestSol + "\n");

408

409 writer.write("\nTime: " + totalTime);

30

410

411 writer2.write("\nLast" + name + " T: " + T + " nDrivers: " +

nDrivers + " Total Costs: " + fileBestSol + " Time: " +

totalTime + " best Iter: " + bestIter);

412 writer2.flush();

413 writer.close();

414 }

415

416 }

31

