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Abstract

This study replicates the results of the original Quantile Regression Forests (QRF) paper

(Meinshausen, 2006) and extends on it by examining variable importance across quantiles.

Using datasets—Boston Housing, Ozone, Abalone, Big Mac, and Fuel—this replication com-

pares QRF to other quantile regression methods, including Linear Quantile Regression with

interaction terms (LQR), and without interaction terms (QQR), and tree-based regression

models (TRC, TRM, TRP). The findings show QRF generally achieves the lowest average loss

and is robust to noise. Differences in some datasets and models suggest potential updates

or data processing differences. The extension introduces two methods to assess predictor

importance at different quantiles using standard and conditional permutation schemes. Ap-

plied to NHANES and Boston Housing datasets, results indicate predictor importance varies

across quantiles. For NHANES for instance, BMI more important at lower quantiles and Age

at higher quantiles. This information can help tailor prediction models for specific quantiles

in order to make their predictions more reliable.



1 Introduction

“If your head is in the oven and your feet are in the freezer, on average, you feel just fine.” This

common saying in statistics highlights how misleading averages can be, as they do not account

for the spread of the data. Despite this, many prominent regression and classification techniques

rely on these averages. To instead gain a deeper understanding of a variable’s full distribution,

one can consider quantiles. Particularly conditional quantiles are a great tool, as they show how

the various quantiles of a response variable can differ given a change in a predictor’s value. When

making predictions, these conditional quantiles can then serve as confidence bounds that present

the best and worst-case scenarios, which provides information on the reliability of the forecast.

This information is crucial for many fields, such as finance or healthcare, where outcomes can

change significantly based on dynamic conditions and where the stakes of making a dependable

prediction are high.

Meinshausen (2006) presents a way of viewing these conditional quantiles by incorporating

quantile regression (QR) into random forests (RF), known accordingly as quantile regression

forests (QRF). QR (Koenker, 1978) builds on linear regression as it is able to predict the con-

ditional quantiles of the response variable rather than just the mean. RF (Breiman, 2001), on

the other hand, is an ensemble learning method that constructs multiple decision trees during

training and outputs the mode of their predictions for classification or the mean for regression.

The authors of QRF realised that the nature of the RF regression model allows for determining

the full conditional distribution of a response variable. Moreover, they found that QRF generally

performs better than linear quantile regression (LQR) and other tree-based quantile regression

methods.

In this paper, an attempt is made to replicate the results of the original QRF paper (Mein-

shausen, 2006). To do this, the same data sets as in the original paper are used, namely the

Boston Housing, Ozone, Abalone, BigMac, and Fuel datasets, found from the mlbench (Leisch,

2024) (Blake, 1998) and alr4 (Weisberg, 2014) packages from RStudio (R Core Team, 2023), as

well as the UCI machine learning repository. It is noteworthy that some of these datasets have

been updated since the original paper was published, which can cause the results of this paper to

differ from the original paper. Moreover, as in the original paper, this paper compares the QRF

method to several other quantile regression methods, starting with LQR and a method called

QQR, which is like LQR but then with added interaction terms. Then, QRF is compared to

different variations of regression trees, consisting of quantile regression trees with with piecewise

constant (TRC), piecewise multiple linear (TRM), and piecewise second-degree polynomial form

(TRP). Each of these models and datasets are also evaluated under the addition of noise, as in

the original QRF paper. Moreover, prediction intervals are constructed for the datasets using

QRF to replicate the original QRF paper.

Afterwards, as an extension on the ideas of the QRF paper, this paper explores the concept

of variable importance at different quantiles of the response variable. Variable importance refers

to the extent to which the inclusion of a predictor variable in the model improves the accuracy of

the prediction. This paper investigates whether, for instance, a variable can be a better predictor

for a response variable at a lower conditional quantile as opposed to a higher conditional quantile.

As mentioned before, the conditional quantiles act as confidence bounds, and the smaller these

1



confidence bounds are, the more reliable a prediction is. When we know which predictors are

most important at a certain quantile, we can tailor the model to include those predictors, leading

to more accurate predictions. This variability of predictor importance at different quantiles is

also relevant to know in fields that need to deal carefully with their predictions. In finance, this

can involve risk management, where an understanding of what causes low losses or high profits

can help to develop strategies that take these factors into account. Likewise, in healthcare,

analysing variable importance at different quantiles can allow for more personalised medicine,

as it can help identify for example which factors are critical at different stages, or quantiles,

of a disease. For standard random forests, a well-known technique for determining variable

importance in regression tasks is known as the mean decrease in accuracy (MDA), which is a

permutation-based scheme. However, this paper prefers to use the term Mean Increase in Error

(MIE) to describe the technique, as it is a more accurate description of what is being calculated.

This paper proposes an adapted approach to MIE to include the variable importance at different

quantiles, which is explained in more in detail in Sec. 4. Since variable importance techniques can

introduce bias (Strobl et al., 2007), as is detailed further in Sec. 2, this paper proposes another

method that incorporates the so-called conditional variable importance devised by Strobl et al.

(2008) into calculating the importance of variables across quantiles. This concept of variable

importance across quantiles has to my current knowledge not been explored in other literature.

This paper therefore intends to fill this gap in knowledge. This leads to the main research

question of this paper:

How does the importance of predictors vary across different quantiles in the distri-

bution of a response variable when analysed with QRF?

This research question comes with various different subquestions too. First of all, what

method can be used to effectively determine the importance of predictors at various quantiles?

Then, due to the potential relevance in the context of healthcare, a second subquestion arises:

“What are the implications of predictor importance variability for practical applications in health-

care?” To explore this second subquestion, the well known medical NHANES dataset from the

R package NHANES (Pruim, 2015) is used to explore the effect of several predictors on blood

pressure at different quantiles. This is to test the hypothesis that for a given set of predictors, the

importance of those predictors differs at various quantiles of blood pressure. For instance, Body

Mass Index (BMI) might be a more important predictor for higher quantiles of blood pressure

compared to lower quantiles of blood pressure, as is highlighted in a study by Linderman et al.

(2018) that involved 1.7 million Chinese adults and found that the association of blood pressure

and BMI was stronger in groups with higher BMI. Lastly, to investigate the generalisability of

this approach, the third subquestion is in kind: How robust are the findings across different

datasets? To do this, the MIE across quantiles approach is also implemented on the Boston

Housing dataset.

In the replication part of this paper, the results indicate that the QRF model generally

exhibits the lowest average loss across most quantiles compared to other methods. However,

unlike in the original paper, the TRM model sometimes outperforms other models, though with

more variability. Additionally, QRF is robust to noise, showing minimal change in loss across

datasets, unlike LQR and QQR models, which display more variable results when noise is added.
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However, this paper finds that some datasets and models do not produce the same output when

an attempt is made to replicate them. It is suspected that this is due to updated datasets or

software since the original paper was published, or a failure of the original paper to mention any

data pre-processing steps.

In terms of determining variable importance across quantiles, this paper found some in-

triguing results. When evaluated on the NHANES and Boston Housing datasets, the standard

variable importance and conditional variable importance showed different results. Interestingly,

for the conditional variable importance of NHANES, the variable BMI seems to be the most im-

portant at lower quantiles, but is overtaken by the variable Age at higher quantiles, showing that

the importance of variables can change across quantiles. However, the importance scores show

an interesting trend across these quantiles. Both standard and conditional importance scores

tend to peak around the middle quantiles and decrease for the more extreme values, giving an

almost parabolic shape. It is theorised that this could be due to heteroscedasticity and the tails

of a variable likely having more outliers, which could deflate the importance of predictors. This

makes it more difficult to get a true sense of variable importance at extremer quantiles. This

paper proposes several future research directions that could allow for a more truthful view of

the importance of predictors at extremer quantiles. These involve using a weighted quantile

loss function, considering extremal random forests, or using a localised permutation scheme.

However, the proposed method is a good tool for when you are interested in a broader range of

quantiles, not just the extreme values.

The github code of this paper is https://github.com/QuintyOk/BachelorThesisEconometrics.git.

The rest of this proposal is structured as follows. In Sec. 2, a brief literature overview of variable

importance measures is given, followed by Sec. 3, in which the datasets are discussed in greater

detail. Then, Sec. 4 thoroughly explains the used methodologies, after which a discussion of the

results follows in Sec. 6, and ending with a conclusion in Sec. 7.

2 Theory and Relevant Work

To my current knowledge, variable importance across quantiles in QRF has not been explored in

other literature. Therefore, this study first investigates how similar models determine variable

importance.

2.1 QR

In QR, for instance, variable importance is measured and interpreted similarly to that of standard

linear regression. The QR model looks as follows

QY (α | X) = X⊤β(α) (1)

where QY (α | X) is the α-th conditional quantile of Y given X, X is the matrix of predictors

including an intercept term, and β(α) is the vector of coefficients corresponding to the α-th

quantile. We can obtain an estimate for the α-th quantile regression estimator, namely β̂(α),

by solving the following optimisation problem
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β̂(α) = arg min
β∈Rp

n∑
i=1

Lα(yi − x⊤
i β) (2)

where xi is the i-th observed vector of predictors with their corresponding coefficients β, n is

the number of observations in the dataset and

Lα =

α|yi − qαi | if yi > qαi

(1− α)|yi − qαi | if yi ≤ qαi

(3)

is a type of loss function called the ‘pinball’ or quantile loss function, which penalises the over

predictions proportionally to the corresponding quantile α. Here, yi is the i-th observed value

of the response variable, and qαi is the predicted value of the quantile α in question for yi.

The intercept coefficient β0(α) is then interpreted as the α-th quantile of the response variable

when all other predictors are zero. Furthermore, each slope coefficient βj(α) represents the

change in the α-th quantile of the response variable for a one-unit increase in the predictor Xj ,

holding all other predictors constant.

2.2 RF and QRF

The theory behind RF is discussed in detail in Sec. 4, but in simple words, it performs regression

as follows. Starting of with a set of predictor variables and a certain response variable, decision

trees are built using a technique called bootstrapping. Bootstrapping involves randomly selecting

data points with replacement from the original data to create a new dataset of the same size as

the original dataset, meaning that some data points may appear more than once in a dataset.

Each of these new bootstrapped datasets is then used to grow a decision tree. When growing

each tree, the model makes splits in the data in order to create branches, which are based on a

random subset of predictor variables. The tree will continue to recursively split the data until

a stopping criterion is reached, such as the maximum tree depth or minimum amount of data

points in leaf node. After all decision trees are built, predictions can be made for the response

variable based on the features of a new data point by dropping it down each individual decision

tree and storing which leaf node it ends up in. Since the trees were built on different samples

and considered different predictor variables at each split, the leaf nodes the new data point ends

up in can be different for each decision tree. Then, the final prediction of the RF model is the

average of all the individual decision tree predictions.

QRF builds on the RF model for regression by not only predicting the average outcome

but also estimating the conditional distribution of the response variable. It achieves this by

using the same collection of decision trees as in the RF model, but instead of just averaging the

predictions, it keeps track of all the response variable values in the leaf nodes to estimate the

quantiles of the response variable. When considering the prediction error of predictions made

via QRF, a special loss function needs to be considered, which happens to be the same quantile

loss function as for QR, presented in Eq. 3.
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2.3 Variable Importance

The original RF paper (Breiman, 2001) was the one to introduce MDA, which still appears to be

most prevalent variable importance technique. This technique starts of by using the out-of-bag

samples (OOB) for each tree, which are the remaining data points that were not used in the

bootstrapped sample to train that tree, to calculate the prediction error. In RF, this prediction

error is usually calculated using Mean Square Error (MSE). Hence, let us denote this error

by MSEOOB. Then, for each predictor Xj for which we want to determine the importance,

we permute the values of Xj in the OOB samples in order to break the relationship between

it and the response variable. We then calculate the new prediction error using the permuted

OOB values, and denote its error by MSEOOB−Perm. The MDA for predictor Xj can then be

calculated as the relative increase in error due to the permutation of Xj of all k = 1, ...,K trees

MDA(Xj) =
1

K

K∑
k=1

(
MSEOOB-Perm(Xj)−MSEOOB

MSEOOB

)
(4)

It is important to note that the interpretation of these variable importance scores are relative.

The importance score of one variable can for instance only be evaluated in the context of the

importance scores of other variables. This also means that the importance of a variable at a

certain quantile is also relative to the importance of that variable at other quantiles. To therefore

interpret the results, this paper looks at multiple quantiles at once in order to see whether the

importance at these quantiles changes.

There are some issues regarding bias and interpretability with this technique that are crucial

to consider. According to Strobl et al. (2007), particularly when predictors are correlated with

each other, bias in the variable importance measure can arise, leading to unreliable results.

This bias has two main causes when the MDA technique is used.The first issue occurs during

the construction of decision trees in RF. When predictors are correlated with other important

predictors, they are more likely to be used for splitting nodes in the decision tree. This correlation

can make them appear more informative than they actually are. As a result, these predictors

might receive higher importance scores than they truly deserve, despite them not being as crucial

in predicting the response variable. The second cause of bias occurs during the permutation

process of MDA. The standard permutation importance calculation does not take the correlation

structure of predictors into account either. When a predictor is permuted, and before the

permutation it was correlated with other predictors, the correlation with this predictor is also

broken during the permutation. This leads to a higher increase in error as the predictors no

longer give coherent information together, leading to an overestimation of the importance of the

predictor of interest.

To mitigate these biases, another paper by Strobl et al. (2008) introduces a framework

called conditional variable importance. This procedure permutes the predictor variable whilst

preserving the correlation with other predictors. In simple words, it uses the splits created by

the fitted RF model to condition the permutations, better reflecting the true impact of each

predictor variable. This technique is discussed more in detail in Sec. 4, as it is used for my

extension.
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3 Data

3.1 Replication

As mentioned in Sec. 1, the datasets used in the replication part are obtained from the following

R software packages. mlbench (Leisch, 2024), alr4 (Weisberg, 2014) and the UCI machine

learning repository. These datasets include the following: the Boston Housing data set, which

contains information on housing in Boston; the Ozone data set, which involves different variables

related to air quality, with missing values removed as in the original paper; the Abalone data set,

which includes measurements of a type of snail called abalones, limited to 500 randomly chosen

observations as in the original paper; the Big Mac data set, which contains economic indicators

related to the price of a Big Mac in various cities around the world; and the Fuel data set,

which contains data about average gas consumption for all states in the U.S. The original paper

does not mention the response variables for all datasets, but in this paper they are assumed

to be medv for the Boston Housing dataset, V4 for the Ozone dataset, Rings for the Abalone

dataset, and BigMac for the BigMac dataset. The response variable for the Fuel dataset is said

to be the average gas-mileage in the original paper, constructed by the ratio of total gallons of

gasoline sold and the approximate number of miles driven. This paper assumes this is done by

dividing the variable FuelC, which is the Gasoline sold for road use (1000s of gal.), divided by

the variable Miles, which represents the miles of Federal-aid highway miles in the state. This

new response variable was named GasM, and Miles and FuelC were removed from the list of

predictor variables. Another pre-processing step that this paper takes is to remove the first three

variables of the Ozone dataset, namely V1, V2 and V3. These variables represent the month,

day of month, and day of week respectively, and were causing issues in numerous models due

to mutli-collinearity, in particular in the QQR and tree-based methods. This paper is unsure

whether the original paper also took these pre-processing steps. A summary of all observations

and predictor variables is shown in Tab. 1.

Table 1: Summary of datasets used in the study, including the number of observations n and number
of predictor variables p.

Property Boston Housing Ozone Abalone Big Mac Fuel

n 506 203 500 69 51

p 13 9 8 9 5

3.2 Extension

For the extension part of this paper, the National Health and Nutrition Examination Survey

(NHANES) dataset is used, which is a collection of extensive health information from a nationally

representative sample. This dataset was part of the a package in R called NHANES (Pruim,

2015). A subset of variables is taking from this dataset, namely our response variable - average

blood pressure (BPSysAve), and some well-known predictors of blood pressure - BMI, Age, Total

Cholesterol, Alcohol per Year, and the Number of Physical Active Days. All of the missing

values were removed, leaving us with n = 4161 observations and p = 5 predictor variables. Then
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as an additional dataset to test the extension on the same Boston Housing dataset as in the

replication part is used. To see how the variables in the datasets are correlated with each other,

two correlation matrices are computed, as shown in Fig. 1 and 2. In the NHANES dataset, none

of the variables are highly correlated with each other. In the Boston Housing dataset, on the

other hand, we can see that some variables are indeed highly correlated with each other. The

conditional variable importance permutation scheme that this paper applies hopes to reduce the

effect of these correlations in the importance scoring process.

Figure 1: The correlation matrix of the vari-
ables in the NHANES dataset.

Figure 2: The correlation matrix of the vari-
ables in the Boston Housing dataset.

4 Methodology

4.1 Replication

As outlined in Sec. 1, this paper will compare QRF to other quantile regression methods. In

this section, these methods are described in greater detail. As in the original QRF paper, all

the models are evaluated with the following quantile loss function

Lα =
1

n

n∑
i=1

Lα (5)

which takes the average of the individual quantile loss functions Lα of all n observations in the

dataset, where Lα is

Lα =

α|yi − qαi | if yi > qαi

(1− α)|yi − qαi | if yi ≤ qαi

(6)

where yi is the observed value, qαi is the quantile estimate at level α, and α is the quantile

level, and which calculates the weighted absolute differences between the observed values and

the estimated quantiles, where . This loss function is more robust when dealing with quantile

estimations as it appropriately weights overestimation and underestimation.

Furthermore, all of the models are evaluated within a 5-fold cross validation loop. This means

that the data is divided into five equal parts, known as folds. In each iteration of the cross-

validation loop, the model of interest is trained using four of these folds, while the remaining
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fold is used to evaluate the model. This process is repeated five times, each time with a different

fold as the test set.

To evaluate how QRF performs compared to the other methods, 95% bootstrap confidence

bounds are constructed for those methods. The original QRF paper was not clear in the meth-

odology of creating those confidence bounds, but this paper interprets it as follows. For each

quantile, the average losses of all fold are resampled 1000 times, after which the mean loss is

computed again. Then, the 2.5th and 97.5th percentiles of these bootstrap means are computed

to obtain the confidence bound.

4.1.1 RF

As mentioned before, QRF is an extension of the RF model, which was explained briefly in

Sec. 2. It grows trees in the same manner as RF, but instead of only keeping the mean of

the observations in each leaf, QRF keeps the full set of observations in order to estimate the

conditional distribution of Y given X = x. Using the same notation as in Meinshausen (2006)

and Breiman (2001), let θ represent the random parameter vector that determines tree growth,

such as the m out of p predictors to consider for splits. The tree corresponding to θ is denoted

by T (θ). The predictor space B ⊆ Rp represents the range of possible values for the predictor

variables X. Each leaf l of a tree T (θ) corresponds to a rectangular region Rl ⊆ B. For any

x ∈ B, there is a unique leaf l(x,θ) such that x ∈ Rl.

A tree’s prediction for an input X = x is the average of the values in the leaf that ends up

containing the input x. The weight vector wi(x,θ) is defined as a positive constant if observation

xi from the original dataset is in the same leaf as x, and is otherwise set to zero. If xi is in

the same leaf as x, the weight of observation i becomes one divided by the amount of times an

observation xj is in the same leaf node as x, as shown in

wi(x,θ) =
1{xi ∈ Rl(x,θ)}

#{j : xj ∈ Rl(x,θ)}
(7)

The prediction for input x using a single tree is then

µ̂(x) =
n∑

i=1

wi(x,θ)Yi (8)

RF models aim to approximate the conditional mean E(Y | X = x) by averaging the predictions

of k trees, where each tree is constructed with an independent parameter vector θt. The average

weight wi(x) across all trees is

wi(x) =
1

k

k∑
t=1

wi(x,θt) (9)

The overall prediction for the random forest is then given by

µ̂(x) =
n∑

i=1

wi(x)Yi (10)

This approach gives weights to the observations based on how similar the conditional distribution

8



of Y given X = xi is to the conditional distribution of Y given X = x.

4.1.2 QRF

QRF extends this idea to estimate the full conditional distribution of Y given X = x. The

conditional distribution function F (y | X = x) is defined as

F (y | X = x) = P (Y ≤ y | X = x) = E(1{Y ≤ y} | X = x) (11)

QRF uses the same weights wi(x) as random forests, but applies them to indicator functions

instead of the response variable directly. Thus, the estimate for the conditional distribution

function is

F̂ (y | X = x) =
n∑

i=1

wi(x)1{Yi ≤ y} (12)

The procedure for computing F̂ (y | X = x) can be summarised as follows: First, grow k trees

T (θt), t = 1, . . . , k, recording all observations in each leaf. For a given X = x, drop x down all

trees to compute wi(x,θt), and average these weights to get wi(x)

wi(x) =
1

k

k∑
t=1

wi(x,θt) (13)

Then, compute the estimated distribution function for all y

F̂ (y | X = x) =
n∑

i=1

wi(x)1{Yi ≤ y} (14)

Finally, conditional quantiles Q̂α(x) are derived from the estimated distribution F̂ (y | X = x).

As in the original QRF paper, this paper uses the R package quantregForest to implement

QRF (N. Meinshausen, 2017). The same parameters as in the original paper are used too, which

includes building k = 1000 trees, setting the number of variables to use for splitting a node, or

mtry, to one-third of all variables, and restricting each node to have more than 10 observations.

4.1.3 LQR and QQR

The theory of linear quantile regression is discussed in Sec. 2, and its main goal is to optimise

the problem in Equation 2. The author of the original QRF paper does not elaborate in detail

on how this LQR model is built, but this paper uses the R package quantreg R. Koenker (2024).

For QQR, the original papers instructs to start from the LQR model and then add interaction

terms between variables by forward selection until the 5-fold cross validation error attains a

minimum. This paper interprets this as iteratively adding a certain interaction term to the

model when the quantile loss in Eq. 5 of the model with that interaction term is lower than the

quantile loss of the model without that interaction term, as well as lower than adding any other

interaction term, until this quantile loss function has reached a minimum.

In summary, the LQR and QQR are generated as follows for each fold and quantile α in the

cross validation:

9



Algorithm 1 LQR and QQR for each fold

Initialize:

M0 ← LQR model

E0 ← 1
n

∑n
i=1 LossLQR

Define interaction terms:

Interaction terms← {xh · xj | h ̸= j}
Iteratively improve the model:

Improved← True

while Improved do

Improved← False

for all xh · xj where h ̸= j do

Mcurrent ←Mbest + xh · xj
for all α ∈ quantiles do

Calculate the loss for Mcurrent for quantile α using Eq. 5:

β̂current(α)← argminβ
∑n

i=1 Lα(yi − x⊤
i β)

ŷi(α)← x⊤
i β̂current(α)

Losscurrent ← 1
n

∑n
i=1 Lα(yi − ŷi(α))

if Losscurrent < Ebest then

Mbest ←Mcurrent

Ebest ← Losscurrent

Improved← True

end if

end for

end for

end while

Final model:

Mfinal ←Mbest

4.1.4 TRC, TRM, and TRP

As in the original QRF paper, the tree-based methods TRC, TRM and TRP are also compared

with QRF. In TRC, each leaf node of the tree predicts a constant value for each quantile

of the response variable. TRM, on the other hand, has each leaf node fit a linear model

to predict the quantile of the response variable. TRP takes this one step further as it has

each leaf node fit a second-degree polynomial model to predict the quantile of the response

variable. Hence, TRC is the simplest and most interpretable, whilst the other two allow for

more flexibility and complexity. To replicate these results, we use the same software pack-

age as in the original QRF paper called GUIDE, which is now currently available from ht-

tps://pages.stat.wisc.edu/ loh/guide.html - a different page than the original QRF paper.

We use this package for all three tree-based methods, and use the default settings for each

method, as in the original QRF paper.
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4.1.5 Adding additional noise to models

The original QRF paper tests the models under the addition of noise as well. This paper

replicates this too. The methodology used for this is as follows. For each dataset, every predictor

variable is taken and randomly permuted. Then all permuted predictor variables are added

as additional variables to the model, meaning there are now double the amount of predictor

variables. Then, all of the models are retrained on the new set of predictor variables, and the

average quantile loss is recalculated.

4.1.6 Prediction Intervals for QRF

This paper also replicates the 95% prediction intervals created by the original QRF paper. For

each data point in the test fold, the conditional quantiles are estimated with QRF using 5-fold

cross-validation. Then, for better visualisation, the observations are ordered according to the

length of their prediction interval.

4.2 Extension

In this sub section, the methodology of this paper’s extension is presented. Firstly, this paper

illustrates a proposed standard permutation technique based on MDA for measuring variable

importance across quantiles in QRF is illustrated. This method is referred to as the standard

variable importance across quantiles. Next, this paper proposes an augmented version of that

technique, referred to as the conditional variable importance across quantiles, which aims to

produce more unbiased and accurate results. These methods are based on the following proposed

equation to measure the variable importance, namely MIE

MIEj,α =
Lα,permuted − Lα

Lα
(15)

where Lα is the quantile loss function in Eq. 5 and how Lα,permuted is computed depends on the

type of method used, which are explained in the next two subsections.

As in the replication part if this paper, the importance values, or MIE, are calculated within

a 5-fold cross validation loop. As explained before, this means the data is split into 5 equal folds

and in each iteration one fold is used as a test set, whilst the remaining folds are used as the

training set. When training the QRF models, an mtree value of 2, a minimum nodesize of 10,

and a total of 1000 trees are used.

4.2.1 Standard Variable Importance across Quantiles

This proposed method is inspired by a common way to determine the importance of a predictor

variable in random forests — MDA, which works as follows. First, the QRF model, as described

in sub Sec. 4.1.1, is trained on the in-bag sample of the dataset. Then, the baseline accuracy,

or prediction error, of the QRF model is calculated by using each OOB sample as a test set for

the trees that did not use that sample during training. Next, the OOB values of the predictor

variable for which we wish to know the importance are permuted to break its relationship with

the other variables, and the prediction error is recalculated. The importance of that variable
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can now be computed as the relative increase in prediction error of the original and permuted

model. To adapt this for QRF, we use the quantile loss function shown in Eq. 5 to determine

the accuracy per quantile instead of the MSE. Furthermore, instead of using the OOB sample

as a test set, we use a 5-fold cross validation mechanism to make the predictions.

The steps to calculate the standard variable importance across quantiles in QRF are outlined

as follows:

Algorithm 2 Standard Variable Importance using MIE in QRF with 5-Fold Cross Validation

Step 1: Initialize

Split the dataset into 5 folds.

Step 2: Cross-validation loop

for k = 1 to 5 do

Use fold k as the test fold and the remaining folds as the training folds.

Step 3: Train QRF model using the training folds

Step 4: Predict the conditional quantiles for observations in the test fold

Step 5: Calculate prediction error

for all quantiles α do

Calculate the prediction error using the quantile loss function Lα (see Eq. 5).

end for

Step 6: Permute variable j and calculate loss

Permute the values of the variable of interest j in the test fold data.

for all quantiles α do

Predict quantiles using the permuted data and recalculate the quantile loss Lα,permuted

(see Eq. 5).

end for

Step 7: Calculate variable importance

for all quantiles α do

Calculate the importance of variable j (see Eq. 15).

end for

end for

The larger the relative increase in error or quantile loss, the more important variable j is

at predicting the response variable at quantile α. Hence, this approach adapts the traditional

MDA method to work with quantile regression forests, allowing for the assessment of variable

importance across different quantiles of the response distribution.

4.2.2 Conditional Variable Importance across Quantiles

To address the limitations of standard variable importance measures in the presence of correlated

predictors as mentioned in Sec. 2, we employ a conditional permutation scheme to compute the

importance of each variable while accounting for the correlations with other predictors. This

methodology is inspired by Strobl et al. (2008) and works as follows.

As mentioned before, the variable importance across quantiles, or MIE, will be calculated

within a 5-fold cross validation loop. After training the QRF model on the training folds, the
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model predicts the conditional quantiles for the observations in the test fold for all desired

quantiles. The prediction error for each quantile is then again calculated using the quantile loss

function as defined in Eq. 5. Next, to assess the importance for a certain predictor variable

j, the most important conditioning variables for that variable j are identified. Conditioning

variables are those that have the highest correlation with the predictor variable j. Then, a grid

of data points is constructed by extracting the cut points from the trained QRF model. These

cut points are specific values at which the data is split by the conditioning variables during the

tree-building process. The grid then effectively holds the partitions of the data created by the

cut points from the splits of the conditioning variables. Following this, the values of variable j

are permuted within each partition of the grid. Hence, the values are randomly shuffled in each

separate partition to break the association with the response variable. The quantile loss is then

recalculated with the permuted data using the same quantile loss function in Eq. 5. As in the

standard variable importance in the above sub section, the conditional variable importance can

also be calculated with the MIE in Eq. 15. In this way, the effect of correlated predictors is

reduced, as only the impact of each variable within context-specific data partitions is assessed

according to Strobl et al. (2008).

Algorithm 3 Conditional Variable Importance using MIE in QRF with 5-Fold Cross Validation

Step 1: Initialize

Split the dataset into 5 folds.

Step 2: Cross-validation loop

for k = 1 to 5 do

Use fold k as the test fold and the remaining folds as the training folds.

Step 3: Train QRF model using the training folds

Step 4: Predict the conditional quantiles for observations in the test fold

Step 5: Calculate prediction error

for all quantiles α do

Calculate the prediction error using the quantile loss function Lα(y,q) (see Eq. 5).

end for

Step 6: Identify conditioning variables for each predictor j

Step 7: Construct grid by extracting cut points from the trained QRF model.

Step 8: Permute variable j and calculate loss

for all quantiles α do

Permute the values of variable j within each partition of the grid and recalculate the

quantile loss Lα,permuted(y,q) (see Eq. 5).

end for

Step 9: Calculate variable importance

for all quantiles α do

Calculate the importance of variable j (see Eq. 15).

end for

end for

Again, the larger the difference in quantile loss, or relative increase in prediction error, the
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more important variable j is at predicting the response variable at quantile α. Therefore, this

method adapts the standard MDA method to work with QRF, allowing for the assessment of

variable importance across different quantiles of the response distribution, while accounting for

the conditional dependencies among predictor variables.

To determine the conditioning variables for a target variable j, the importance scores of

all predictors excluding the response variable are calculated for each j using a random forest

model, where j is now the response variable. Then, the two most important predictors are

selected as conditioning variables for that target predictor j. This paper choose two conditioning

variables to reduce computation time, but more conditioning variables can be selected if need be.

Furthermore in the permutation step of the variable importance measure, this paper randomly

permutes the variables 100 times. For each permutation, it calculates the quantile loss and then

aggregates these results to achieve a more robust outcome. A summary of the procedure is given

below:

5 Results

5.1 Replication

First, the average loss for the several quantiles and methods explained in Sec. 4 are replicated

which. The results of this replication are shown in Fig. 3, which corresponds to Fig. 1 in

the original paper. Then, the replication results for the average loss under additional noise are

displayed in Fig. 9 in the appendix, whic correspond to Fig. 2 in the original paper. The vertical

bars indicate the 95% bootstrap confidence intervals. According to the original QRF paper, if

these intervals do not cross the horizontal striped line, which represents the average loss of QRF,

the difference in average loss is statistically significant. Note that these graphs are do not have

the same scale as the original paper, which can make the results appear to be different. First,

Fig. 3 is discussed. In the Fuel dataset, QRF generally performs well, with its average loss

being lower than or comparable to other methods across most quantiles. For the 0.5 quantile,

however, the TRM method shows a significantly higher loss, as its confidence interval does not

overlap with the QRF benchmark. In the Boston Housing dataset, QRF consistently shows

the lowest average loss, particularly at the extreme quantiles (0.005, 0.025, 0.975, 0.995), where

TRM and other methods show higher losses with non-overlapping confidence intervals, indicating

statistical significance. In the Ozone dataset, QRF also outperforms other methods across most

quantiles, with only minor exceptions at the extreme quantiles where TRC and TRP sometimes

show comparable performance. Again, TRM is has a significantly lower average loss at the

0.5th quantile. For the Abalone dataset, QRF maintains the lowest average loss across nearly

all quantiles, with the other methods showing statistically significant higher losses at several

points. In the BigMac dataset, QRF generally performs better, though TRM shows better

performance at the higher quantiles (0.95, 0.975, 0.995), where its lower average loss and non-

overlapping confidence intervals suggest statistical significance. Most of the results are similar

to the original QRF paper, with the exception of the Fuel dataset, which shows completely

different loss values, as well as the tree-based methods TRC, TRM and TRP. Theories on why

these differences occur are discussed in Sec. 6.
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Figure 3: For each dataset, method and quantile, the average loss is depicted. From left to
right, the dots present QRF, LQR, QQR, TRC, TRM and TRP respectively in each graph. The
columns represent the seven quantiles, whilst the rows illustrate the five different datasets. The
vertical bars represent the 95% bootstrap confidence bounds.

When noise is added to the model, which is shown in Fig. 9 in the appendix, the loss of

QRF does not change much in all datasets, showing that it is robust to noise. LQR and QQR,

on the other hand, show more varying results compared to their counterparts without noise.

Sometimes their loss is lower, and sometimes their loss is higher than the models without noise.

The average loss of the tree-based models also do not differ significantly from their non-noise

equivalents.

In Fig. 4, the prediction intervals explained in sub Sec. 4.1.6 are illustrated for the Boston

Housing dataset, which correspond to Fig. 3 in the original QRF paper. These results are similar

to the original paper, such as the length of the prediction intervals varying greatly, meaning some

observations can be predicted with more accuracy than others. The ordered prediction intervals
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for the other datasets are shown in Fig. 10 in the appendix, which again look similar to the

original QRF paper’s Fig. 4, except for the Fuel dataset. The theory for that is again discussed

in Sec. 6.

Figure 4: On the right, the observed values of the Boston Housing dataset are plotted in red
against the predicted median values. Prediction intervals are displayed for each i = 1, . . . , n as
transparent grey bars, with vertical black lines marking the lower and upper bounds. In the
left graph, the observations i = 1, . . . , n are sorted by the length of their respective prediction
intervals and the average of the upper and lower bounds of the prediction intervals is subtracted
from all observations and prediction intervals.

5.2 Extension

Figure 5 shows the standard variable importance calculation for the sampled NHANES dataset,

as described in sub Sec. 4.2.1. The way this graph is interpreted is as follows. Since the MIE

calculates the relative increase in prediction error, shown in Eq. 15, we can interpret a predictor’s

importance score of zero as the prediction error not changing when that predictor is permuted,

and hence that predictor not creating a better predictive accuracy and thus not being important.

A positive MIE indicates that the prediction error increases when the predictor is permuted,

indicating that when that predictor is included in the model, it has allows for a better predictve

accuracy. Vice versa, when the MIE is positive, the inclusion of the predictor is actually worse

for the model. Since the MIE is a relative measure indicating how much the error has increased

relative to the initial error, it doesn’t have units or a specific scale, making it a pure number.

Notably, Age emerges as the most important predictor throughout the quantiles, reaching its

peak around the median quantile before decreasing again towards the extremes. BMI follows

a similar pattern with slightly lower importance values. Total Cholesterol (TotChol) shows

moderate importance compared to Age and BMI, and is followed by Alcohol Consumption per

Year and Physical Activity (PhysActive). Note that the importance of these variables are all

relative to one another, meaning Age and BMI are more important predictors relative to the

others. The apparent parabola shape of the importance values is interesting, and theories of

why this arises are also discussed in Sec. 6.
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Figure 5: The standard variable importance by
permutation (MIE) for the NHANES dataset
across quantiles

Figure 6: The conditional variable importance
by permutation (MIE) for the NHANES data-
set across quantiles

In Fig. 6 the conditional variable importance of the NHANES dataset is calculated, which

was described in sub Sec. 4.2.2. It is immediately evident that this graphs looks different to

the standard variable importance graph on the left. Particularly, the importance scores are a

lot lower compared to the standard variable importance values, suggesting that the standard

values were indeed inflated due to the correlation between the predictors. Again, BMI and

Age are the most important predictors relative to the other predictors, but interestingly BMI

appears to be a the most important predictor for blood pressure at lower quantiles, whilst Age is

the most important at higher quantiles. This shows that variable importance can indeed differ

across quantiles. It is also noteworthy that the variable Alcohol per Year now seems to be much

more important than Total Cholesterol, and that Total Cholesterol and Physically Active Days

are now significantly less important than all of the other predictors. This suggests they were

perhaps highly correlated with the other predictors. Again, the graph of the conditional variable

importance values follow this parabola shape, where the variables appear to be less important

at extreme quantiles. Theories for this are discussed in Sec. 6 as well.

To test the outcome of the proposed variable importance across quantiles procedure on a

different dataset, the Boston Housing dataset is used. The standard variable importance is for

this dataset is shown in Fig. 7, where it is clear that the variables rm and lstat appear most

important. When applying the conditional permutation scheme shown in Fig. 8, we see that the

importance value dynamic shifts completely, with variable crim proving to be more important.

The importance values are almost ten times lower as well, meaning the correlations were inflating

the importance scores quite a bit. When looking at the correlations matrix of the variables in

Fig. 2, we see that there are quite a few significant correlations between several variables, which

can explain this more drastic change as compared to the NHANES dataset. The shape the

variable crim, which stands for per capita crime rate, is also interesting. It peaks around the 0.5

quantile, dips down to the 0.8, but then rises up again after. This dip implies that for homes in

the higher value range closer to the 0.8 quantile, crime rate becomes less critical as a predictor.

One possible explanation is that high-value neighborhoods might have better security measures

in place, making the crime rate less variable and hence less significant in predicting home values.

However, the rise in importance of crim after the 0.9 quantile indicates that at the very high
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end of the housing market, the crime rate once again becomes a significant predictor. This could

be due to the increased attractiveness of high-value homes to potential criminals.

Figure 7: The standard variable importance by
permutation (MIE) for the whole Boston Hous-
ing dataset.

Figure 8: The conditional variable importance
by permutation (MIE) for the whole Boston
Housing dataset.

6 Discussion

6.1 Replication

Starting with our replication results, some significant differences are observed compared to the

original QRF paper, despite using the same methods. The QRF results for all datasets, except

the Fuel dataset, match those in the original QRF paper, which suggests that there may be an

issue with the Fuel dataset. The original QRF paper was published in 2006, and since then the

package alr3 that hosts the Fuel dataset is no longer available and replaced by the package alr4.

It is unsure whether this means that the dataset was updated, but it could provide a reason for

why the replication results of this paper are so different to the original paper. Another reason

why the Fuel dataset has such different results could be to do with the response variable. To

my understanding and as described in Sec. 3, the response variable is calculated by dividing

the FuelC by Miles in order to obtain the average gas-mileage. Perhaps the response variable in

the original paper was calculated in a different way but not clearly described, leading to such

different results.

The replicated LQR and QQR methods have values that are close to the original QRF paper,

but not completely. This could be due to a difference in implementation. In the original paper, it

is not described how LQR and QQR are implemented. This paper used the R package quantreg to

perform both. This difference in implementation could cause the results to differ. Furthermore,

for QQR, the original paper is somewhat vague on the method of adding interaction terms.

It could be that they use a slightly different methodology of adding the interaction terms, or

evaluate the cross validation error with another loss function than the quantile loss function,

which could explain the differences.

For the replicated tree-based methods, the only method that appears to produce the same

results as in the original paper is the TRC method. The fact that TRM shows loss values so

much lower than in the original QRF paper, even lower than the QRF method sometimes, is
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intriguing, as just like in the original paper, the default settings were used. It appears as though

the software package GUIDE that is used to run these regression trees is regularly updated,

which could perhaps explain the difference. The latest update even appears to be April 27th

2024. Apart from that reason, this author has no other arguments as to where the difference

could come from, as GUIDE is a very straight-forward program to use.

6.2 Extension

This part intends to discuss the results of the extension of this paper, which was to determine

the variable importance across quantiles for the NHANES dataset. In particular, the reason for

the parabolic shape in Fig. 5 and Fig. 6, which suggests that the predictor variables are less

important at extreme quantiles. This result seems less intuitive, but let us discuss theories as

to why this may happen and how we should then interpret the results.

One possible explanation is the presence of heteroscedasticity, where in the context of QRF

at extreme quantiles, the spread of the data points can be larger. This increased variance makes

it more challenging for the model to capture the relationship between predictors and the response

variable. This can result in the predictors appearing less important at these extreme quantiles

because the model’s predictions are more influenced by this noise. Furthermore, the tails of the

distribution representing the extreme quantiles are often more likely to contain outliers. This

can blur the true relationship between the predictors and the response variable and thereby

decrease the importance of the predictors.

The effects of predictors at extreme quantiles are being underestimated with this approach,

which can have negative effects in fields such as healthcare or finance, where understanding the

behavior of predictors at extreme quantiles is crucial. This leads to a few future research direc-

tions that can potentially help with the true interpretation of the importance scores at extreme

quantiles. First of all, a weighted quantile loss function can make the model more sensitive to

extreme values by giving more weight to observations in the tails of the distribution. This may

help reduce the parabolic shape of the importance values across quantiles. Extremal random

forests are another interesting future research direction to consider. This type of random forest

focuses specifically on capturing the behavior of extreme values, which can help interpret the

importance values of those extreme values better. Moreover, perhaps a localised permutation

importance measure could improve interpretation of extreme quantiles by restricting permuta-

tions to data subsets at specific quantiles. Lastly, when it comes to selecting the conditioning

variables for the conditional variable importance measure, instead of using standard random

forests, an interesting area to look into are conditional inference forests, as they help reduce bias

in variable selection.

7 Conclusion

This study aims to replicate the results of the original QRF paper (Meinshausen, 2006) and

extend the idea of QRF by examining variable importance across quantiles. This replication

involves using the same datasets - Boston Housing, Ozone, Abalone, BigMac, and Fuel - to see

how QRF compares to other quantile regressions methods in terms of predicting conditional
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quantiles. These comparison methods include LQR, QQR, TRC, TRM and TRP. The results

indicate that most of the time QRF achieves the lowest average loss, which is consistent with

the results of the original QRF paper. Additionally, QRF is robust to noise, showing minimal

change in loss across datasets, unlike LQR and QQR models, which display more variable results

when noise is added. However, for the Fuel dataset, the results of this paper are very different

from the original paper, which could be due to updates in the dataset or differences in response

variable calculation. Moreover, the some of tree-based methods - TRM and TRP - produce

results dissimilar to the original paper, with TRM occasionally outperforming the other models.

This could be attributed to the software program used for the tree-based models receiving regular

updates since the original paper was published, or to pre-processing steps that are taken in the

original paper but not explicitly mentioned. Regardless, the findings of this paper reinforce the

effectiveness of QRF.

The extension of this paper focuses on developing a method to assess the importance of a

predictor at several different conditional quantiles in QRF. The proposed methods are all based

on a permutation scheme and the MIE, which represents the relative increase in prediction error

when a model uses a permuted variable compared to the original variable. The first proposed

method, termed standard variable importance, uses the permutation scheme without any modi-

fications. In contrast, the second method, called conditional variable importance, adjusts for

correlations between variables by permuting values only within partitions defined by the cut

points of conditioning variables in the QRF model. These concepts have not been explored in

other literature until now, so this paper also investigates whether the importance of predictors

changes across quantiles. To examine this, the proposed methods are applied to the NHANES

dataset, where the importance of several predictors on the response variable blood pressure is

analysed, as well as the Boston Housing dataset in order to test the generalisability of the results.

The findings reveal that the standard and conditional permutation schemes produce different

results, with the conditional permutation results being significantly lower, suggesting that the

standard importance values are indeed being inflated due to correlations between predictors. For

the NHANES dataset, the results indicate that Age and BMI are the most important predict-

ors of blood pressure overall. Interestingly, the conditional variable importance results reveal

that BMI is more important at lower conditional quantiles, whereas Age is more important at

higher conditional quantiles, signifying that the importance of predictors can indeed vary across

quantiles. For the Boston Housing dataset, there are some interesting patterns in the import-

ance scores, with for instance the variable crim peaking around the 0.5th quantile, then dipping

down to the 0.8th quantile, and then rising again afterwards, which again implies that the im-

portance of variables is dependent on conditional quantiles. The importance scores do tend to

drop at extremer quantiles, which can be due to heteroscedasticy or outliers in the tails, which

can make those results difficult to interpret truthfully. This paper suggests that future research

could explore methods to improve this interpretation of importance scores at extreme quantiles,

such as weighted quantile loss functions, extremal random forests, and localised permutation

importance measures. Overall, the findings from the extension indicate that predictor import-

ance is indeed quantile-dependent. Consequently, it is possible to adjust the model to include

predictors specific to the conditional quantiles of interest to achieve more reliable predictions.
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B Extension

B.1 Replication

Figure 9: For each dataset, method and quantile, the average loss under additional noise is de-
picted. From left to right, the dots present QRF, LQR, QQR, TRC, TRM and TRP respectively
in each graph. The columns represent the seven quantiles, whilst the rows illustrate the five
different datasets. The vertical bars represent the 95% bootstrap confidence bounds.
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Figure 10: The sorted prediction intervals, as in Fig. 4, for the remaining datasets.

B.2 Extension

Since the Boston dataset yields such variable results, the five most important predictors accord-

ing to Fig. 8 are selected and both the standard variable importance and conditional variable

importance are calculated across quantiles, which are respectively illustrated in Fig. 11 and

Fig. 12. Interestingly, instead of crim being the top predictor, lstat, which represents the lower

status of the population, is the most important predictor, and shows an upwards trend across

quantiles. Again, the importance values are different when computed with the conditional per-

mutation scheme, with crim being the second most important predictor, whilst indus and nox

appear to have no importance whatsoever, whilst dis fluctuates between being a positive and

negative predictor, meaning that for some quantiles it is better to include it for predictions and

for others it is worse.
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Figure 11: The standard variable importance
by permutation (MIE) for the Boston Housing
dataset with a subset of its variables.

Figure 12: The standard variable importance
by permutation (MIE) for the Boston Housing
dataset with a subset of its variables.
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