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Abstract
In the fast-evolving field of digital marketing, personalized online advertisements

remain crucial for direct communication with consumers. However, the effectiveness of
online advertising campaigns hinges significantly on the ability to personalize content
to meet diverse preferences. This study aims to explore the best personalized policy,
using several methods, for online advertisements to enhance consumer engagement and
response rates. It will not only investigate whether customers visit the advertisements
but also whether they make a purchase (conversion). Additionally, the policies will be
evaluated using the inverse propensity score estimator and the doubly robust estimator
to show that for our best model, an increase in conversion of 0.0294% and 0.389% for
visit can be found, compared with addressing every customer a treatment. Finally, we
show that personalized policies do not always outperform uniform policies and that
heterogeneity takes a significant role in creating personalized policies.

1 Introduction

Over the last few years online advertising has changed significantly. The desire of
companies to capture the attention of their audience has led to an increasingly important
role in personalized email campaigns. In these campaigns, the challenge lies not only in
reaching potential customers but also in engaging them effectively through personalized
content that meets individual preferences and behaviors. Therefore, these personalized
email campaigns are far from everyone’s cup of tea and can sometimes cause frustration
for customers. Something that often results in a counterproductive effect than what the
original intent of the advertisement was. For this reason, companies must determine which
types of advertisement to send to each customer, and when it is better to pass by certain
customers. As a result, it is of interest to develop personalized policies that provide a
customized treatment, to maximize the outcome variable.

To determine which personalized policy performs best, this research seeks to optimize
targeted online marketing strategies, specifically focusing on personalized email advertise-
ments. The goal is to improve the campaigns’ conversion and visit rates. This intuitive
raises a crucial question that we aim to answer in our research. Namely, how can we
optimize personalized email advertising to maximize conversion and visit rates?

The optimization starts with capturing customer’s heterogeneity responses to email ad-
vertisements. Therefore, a two-step approach is applied to design a personalized policy,
since an unstructured search for the optimal policy is not feasible in our high-dimensional
setting. First, using a model as a function of the customer’s characteristic variables. Then,
making a prediction with the model and the different treatments for each customer. This
allows us to finally assign the optimal treatment for each customer, that is the treatment for
which the probability of the outcome is the highest. The allocation of optimal treatment
forms then a personalized policy. Since we seek to optimize personalized online advert-
isement, several policies based on different outcome estimators will be used. Despite the
simple models, logistic lasso and logistic regression, tree-based methods are used, since they
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are able to model complex relations within large data. Heterogeneous treatment estimator
policies should also be designed, to seek for a different approach to partition within the
tree models. Second, the designed policies are evaluated using the inverse propensity score
reward estimator (IPS) and the doubly robust estimator (DR) and are compared to the
uniform policies, which are found by giving all customers the same treatment and calculat-
ing their effect. This way, a conclusion can be formed for optimizing personalized online
advertising based on policy evaluation.

This research brings the following aspects to the current literature. First, the effect of
advertisements on the visit and conversion rate will be examined. Then this effect will be
improved by designing different personalized policies. Eventually, an approach to design
and evaluate personalized policies to marketing companies will be presented. The poor
performance of some well-known estimators while designing these policies is highlighted,
emphasizing the necessity of offline policy evaluation.

This paper is organized as follows: First, the existing literature is discussed. In Section 3
we present the data that is used. In Section 4, the methods used in this paper are presented.
The numerical results are discussed in Section 5. At last, we present our conclusion and
suggest directions for future research.

2 Literature

Targeting customers with personalized policies is a hot topic in modern literature. Ran-
ging from medical treatment in healthcare to creating personalized exercises in fitness. All
seeking to find heterogeneity in customer response to treat them differently.

Firstly, understanding how much personalized advertisement plays a role in online ad-
vertisement, we delve into the research of Yan et al. (2009). They provide an empirical
study on the click-through log of advertisements collected from a commercial search en-
gine, to explore in what quantity behavioral targeting contributes to online advertising.
Impressive results were found on the impact of behavioral targeting in online advertising.
As personalized advertising has shown to be successful, we aim to find efficient approaches.
One approach was done in the research by Yoganarasimhan et al. (2023). Namely, they
examined significant heterogeneity in customer response to different free trial periods. This
shows that companies could benefit from assigning customers different trial periods, ac-
cording to his or her skills and origins. In their research different outcome estimators are
compared, of which the lasso-based personalized policy appears to be the best.

Despite the focus on the lasso method, machine learning appears to be a widely used
method in the personalization of digital products and promotions.

Ban and Keskin (2021) did comparable research about personalized dynamic pricing
with the use of machine learning. Where there was also a search for customer heterogeneity
in a large-scale field experiment. Since machine learning models learn from performing
problem-solving operations and algorithms, their use is only becoming more important for
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personalized marketing. Perlich et al. (2014) delves deeper into the use of machine learning
in personalized advertising. As they describe a multistage transfer learning system for
targeted display advertising to improve the effectiveness of advertising campaigns, using
machine learning techniques.

Policy evaluation plays a critical role in the development and refinement of targeted
policies, offering a structured approach in understanding the effectiveness and efficiency of
public programs. Besides this, it is also very important before implementing personalized
targeting, when dealing with different performances of the policies. Such off-policy evalu-
ation has become very popular within this field. Hanberger (2001) stated the importance
of the policy evaluation, hence addressing wrong medicines could have catastrophic con-
sequences. Simester et al. (2020) examines effective ways for managers to evaluate targeting
policies. They offer two insightful observations. Firstly, they point out that randomization
by action is better than randomization by policy, since it enables us to assess any policy
using an off-policy evaluation method. Secondly, they point out that we should understand
that, when comparing two policies, if they both advise a customer to do the identical action,
there is absolutely no difference in how well the policy performs for those customers.

As for our policy evaluation, we focus on the inverse propensity score reward estimator
as mentioned by Yoganarasimhan et al. (2023). Stating that the IPS is accurate if the
propensity scores are estimated accurately. Dudík et al. (2011) stated that the doubly
robust estimator could be seen as an improvement upon the IPS estimator as one of the
major advantages of the DR estimator over the IPS lies in variance. The DR estimator
obtains potentially lower variance allowing more stable estimates and faster convergence
rates, both very crucial for effective policy learning and development. Kang and Schafer
(2007) also examined the DR estimator, and marked that the DR estimator obtains lower
variance when optimizing the propensity score model with the outcome regression model.
A small variation immediately causes faster convergence, which ensures that the model is
more effective and efficient for the data used. This is a very important factor in determining
personalized policies. Because of this, both estimators are considered while evaluating the
policies.

3 Data

The data was captured on the Criteo AI lab and is related to a direct marketing
campaign with over twenty-five million customers. The CRITEO-UPLIFT-1 dataset was
collected using various incrementality tests, that is a specific type of randomized trial where
an arbitrary portion of the population is not targeted by advertising. This dataset includes
thirteen million customers, with each customer having multiple behaviors while responding
to marketing efforts that were captured on the advertiser’s website during the two-week
test period.
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For each consumer, the following information was captured: twelve pre-treatment vari-
ables indicating various customer and behavioral characteristics. A binary treatment vari-
able that specifies whether the customer received the marketing treatment. Both visit and
conversion are represented as binary variables, indicating whether the customer converted
or visited after the market treatment. For privacy reasons, the feature ‘names’ are an-
onymized, and their values are randomly projected to maintain predictive power, making
it impossible to identify the original context. Because of the vast size of the Criteo data,
a random sample was generated. This sample includes 100,000 customers with an overall
treatment ratio of 84.9%, similar to the original data. According to Table 4, the sample
data statistics are significant and represent the actual data accurately. The sample data is
split up into two independent samples. Namely, training data and test data. The training
data is utilized to learn model parameters as well as to select models. The test data serves
as a hold-out for evaluating the performance of personalized policies, designed on models
built with training data. 70% of the data is used for training, with the remaining 30% for
testing. Since the data is randomly divided across the two samples, the two data sets might
differ slightly. This will be used when comparing the outcomes.

The average effect of sending an advertising mail can be estimated by simply compar-
ing the percentages of the outcome of interest (conversion or visit). Since the mailing was
randomly selected in the experiment, it rules out the probability of self-selection into treat-
ments, which is a common problem in field experiments. Table 1 shows a summary statistics
of the sample data for the treatments. Assigning advertising emails increased website visit-
ors by 1.31 percentage points and conversion by 0.102 percentage points. When looking at
the total data, as can be found in Table 5, conversion improved by 0.115 percentage points,
while visits increased by 1.034 percentage points. As a result, issuing an advertising mail
will significantly increase visits and purchases.

Table 1: Summary Statistics of Conversion and Visit rates, and Treatment Assignment.

Sample data No treatment Treatment Total
Number of observations (N) 15,016 84,984 100,000
Percent of total observations 15.016 84.984 100
Number of visits 540 4,169 4709
Percent of total visits 11.467 88.533 100
Number of conversions 31 262 293
Percent of total conversions 10.580 89.419 100
Visit rate within group (in %) 3.596 4.906 4.709
Conversion rate within group (in %) 0.206 0.308 0.293
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4 Methodology

In our sample, the following was observed for each customer i: (1) twelve pre-treatment
explanatory variables (Xi), (2) the treatment assignment (Wi), and (3) the conversion
or visit indicator as the outcome variable (Yi). With these variables a certain model
f(x,w) = E[Y | Xi = x,Wi = w] can be learned. This model is the expected value of
the outcome variable, given the treatment and pre-treatment variables. First, every cus-
tomer is assigned to treatment Wi = 1 and Wi = 0 separately. Both models are then
predicted, in a way that f̂(x,0) and f̂(x,1) are obtained. As the aim is to optimize online
advertisement and therefore maximize the outcome variable, the model with the highest
estimated probability or value of the outcome variable is labeled as the optimal policy
for that customer, w∗ = argmaxw∈W f̂(Xi = x,w). By doing this for all consumers, a
personalized policy is designed, and can be formulated as πf (Xi) = w∗. The customer is
indifferent if the treatment variable’s probabilities are equal. After that, the client gets no
treatment. This is due to the expenses associated with mail assignments. The description
of the several policies that are used are shown below.

4.1 Logistic regression

As the outcome variable is predicted in probabilities, the logistic regression model is
used. That is based on the logistic function. It estimates the probability of Yi = 1 given
a set of predictors, Equation (1). Our model contains interaction terms to investigate the
potential combined effects of variables Xi and Wi on the outcome variable Yi. These terms
were included in the model to establish their predictive value and to find the effectiveness
of different treatments across customers. The logistic regression can be estimated instant-
aneously, as it does not apply hyper-parameters tuning. Further, the logistic regression
is known for its poor out-of-sample performance, which is of great value when creating
personalized policies. Therefore, we suspect that this method will perform poorly.

P (Yi = 1) =
1

1 + exp(−(β0 +Xiβ1 +Wiβ2 +XiWiβ3))
(1)

4.2 Logistic Lasso

In the research by Yoganarasimhan et al. (2023) different outcome estimators are com-
pared, of which the lasso-based personalized policy appears to be the best. The logistic
lasso is applied to capture the probability per treatment. Differing from the lasso model it
estimates a logistic regression to minimize the MSE, with an additional term to penalize
model complexity. Similar to the logistic regression, the logistic lasso contains interaction
terms to find the effectiveness of different treatments across customers. The estimates of
the logistic lasso can be shown as follows:
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(β̂0, β̂1, β̂2, β̂3) = argmin

{
−

N∑
i=1

[Yi log(P (Yi = 1)) + (1− Yi) log(1− P (Yi = 1))]

+λ (||β1||1 + ||β2||1 + ||β3||1)}

(2)

4.3 Tree-based methods

In addition to regression models, machine learning models are applied. Not only do
they have different outcome estimators, but these policies have been proven in the literature
to function effectively for personalized policies. According to Chen and Guestrin (2016)
and Breiman (2001), tree-based approaches have high predictive power and are capable of
handling complexity. These methods offer diverse modeling capabilities, allowing them to
capture complexity that simpler models might overlook.

4.3.1 Classification and Regression Tree

The Classification and Regression Tree (CART) recursively partitions the data into
subsets based on the values of input features. Within each of these partitions, the mean
value of Y is then noted as the predicted outcome, E(Y), for all observations. This results in
a tree-like structure, where each internal node represents a decision based on a feature, each
branch represents an outcome of that decision, and each leaf node represents a predicted
outcome.

Let M be the regions that are used to partition the data. ρm is the predicted value of
y in region Rm, and Rm is denoted as the mth region. This gives the following expression
for the CART model:

y = f(x,w) =

M∑
m=1

ρmI((x,w) ∈ Rm) (3)

In general, trees are trained by specifying the mean squared error that will be minimized
at each step of the tree-growing process using an algorithm. Often a penalty term is added
to the cost function, since overfitting is a well-known problem when working with trees.
The weights for this penalty term are learned from cross-validation on the data. Since
CART often has poor predictive accuracy due to its discontinuous nature and sensitivity
to outliers, random forest and XGBoost are introduced.

4.3.2 Random Forest

Typically the random forest consists of many trees. Where each tree is individually
created during the training phase on a bootstrap sample. A random subset of characteristics
is selected for splitting the tree. As done so, it adds randomness to the model and ensures
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that every tree is uniquely created. This helps to reduce variation and improve its ability
to perform well on new data. Consequently, the average prediction of the random forest
trees tends to be a better predictor than a single-trained tree. Equation (4) shows the
formulation of such prediction. The random forest is built upon the structure of the CART
model in Equation (3), but interprets multiple trees and averages their predictions. Let T

be the number of trees in the model. Each tree t partitions the data into M regions. R(t)
m is

the m− th region of tree t. Such that, ρ(t)m is the predicted value of y in region R
(t)
m . I(x,w)

denotes a indicator function that equals one if the observation(x,w) falls within the region
Rm and zero else.

y = f(x,w) =
1

T

T∑
t=1

Mt∑
m=1

ρ(t)m I((x,w) ∈ R(t)
m ) (4)

4.3.3 Extreme Gradient Boosting

XGBoost improves predictive performance through gradient boosting, where the er-
rors of the tree are corrected by a subsequent newly created tree. Eventually leading to
more accurate models. A gradient descent algorithm is used to minimize the specified loss
function. By doing so the XGBoost is able to capture complex patterns within the data,
that might be missed by random forest or CART, making it robust and very suitable for
high-dimensional data.

y = f(x,w) = FT (x,w) = F0 +

T∑
t=1

η

Mt∑
m=1

ρ(t)m I((x,w) ∈ R(t)
m ) (5)

The model of XGBoost is shown above. The difference from Equation (4) is that
each prediction is updated with a learning rate, rather than averaging the sum of the
predictions. F0 is the initial prediction, that is updated for all T trees with the learning
rate η. Eventually after T trees the final prediction FT (x,w) is constructed.

4.4 Heterogeneous Treatment Effect Estimators

Moreover, heterogeneous treatment estimators, such as causal tree and causal forest, are
also implemented. Athey and Imbens (2016) describe that these heterogeneous treatment
estimators were developed to better explain the variation in different treatments within
distinct sub-populations, and so perform better than tree-based policies. These approaches
present a varied image of how various components of a population react to different policies.
As it first obtains consistent estimates of heterogeneous treatment effects for each pair of
treatments for all customers and then uses them to assign treatments.

Consistent estimates of individual-level treatment effects are obtained, τw1,w0(x), for
the binary pair of treatments w. Hence the aim is to optimize online advertisement, the
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design of the optimal policy is done as follows. First, τ̂w1,w0 is estimated for all customers.
Then, treatment is assigned as the optimal policy if τ̂w1,w0 > 0. Vice versa, if τ̂w1,w0 < 0
the outcome variable is more likely to be obtained when assigning no treatment, so w0 is
labeled as optimal policy. Note that if τ̂w1,w0 equals zero, the probability of the outcome
variable for w1 and w0 is indifferent. Treatment w0 is then considered best due to the
expense of sending emails and shall be allocated as optimal policy for the customer.

4.4.1 Causal Tree

The causal tree is based on the CART model. However, the difference lies in its partition.
The causal tree partitions the covariate space into regions with similar within-partition
treatment effects, whereas the CART model divides the space to maximize prediction ability.
The causal tree estimates the treatment effect for each region, l(x), using Equation (6). As
separating observations with the same treatment effect has no effect on improving the target
function, the algorithm pools decision tree observations with the same treatment effects.
Due to its pooling, the main target for heterogeneous treatment effect estimators lies in
finding the optimal l(x).

Equation (6) forms a modified method that is applied to estimate individual-level treat-
ment effects. To deal with the high-dimensional covariate space, the modern heterogeneous
treatment effects estimators aim to pool observations that are near the covariate space
and place those observations in certain regions. To then estimate the conditional mean
treatment effect for sub-populations, under standard assumptions.

τ̂w1,w0(x) =

∑
Xi∈l(x),Wi=w1

Yi∑
1[Xi ∈ l(x),Wi = w1]

−
∑

Xi∈l(x),Wi=w0
Yi∑

1[Xi ∈ l(x),Wi = w0]
(6)

4.4.2 Causal Forest

Since the causal tree algorithm tends to suffer from the same weaknesses as those of the
CART, causal forest is introduced. Based on the design of random forest, causal forest can
be used to flexibly estimate any heterogeneous quantity from the data, including hetero-
geneous treatment effects. And improve robustness and accuracy in estimating treatment
effects. Causal forests consist of multiple trees generated during the training phase using a
bootstrap sample. The objective is to create partitions where the treatment effects are as
homogeneous as possible within each region. Consequently, the predicted treatment effect
should be consistent within each region. The estimated treatment effect τ̂w1,w0 for a total
of T trees, is the average over all the t− th tree treatment effect estimates, τ̂w1,w0,t(x), as
is shown below:

τ̂w1,w0(x) =
1

T

T∑
t=1

( ∑
Xi∈l(x),Wi=w1

Yi∑
1[Xi ∈ l(x),Wi = w1]

−
∑

Xi∈l(x),Wi=w0
Yi∑

1[Xi ∈ l(x),Wi = w0]

)
(7)
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4.5 Personalized Policy Evaluation

4.5.1 Inverse Propensity Score

The Inverse Propensity Score estimator is used to evaluate our designed personalized
policies. The IPS estimates the causal effect of a treatment. Because the treatment as-
signment happened non-randomly, the IPS adjust for biases. Providing a fair assessment
of each policy’s effectiveness. Through this comprehensive evaluation, we can identify the
most promising personalized policy that optimizes the desired outcomes. The IPS approach
relies on the propensity score, which is the probability of receiving a treatment given the
observed covariates.

The propensity score is estimated using a counting-based approach. For every person-
alized policy, this approach counts the occurrences of treatment and policy combinations
to estimate the empirical propensity score. The empirical propensity score in the counting-
based approach is the fraction of the number of times a certain treatment Wi is observed
given its prescribed treatment by the policy πi, divided by the total number of observations
where the policy applies the same treatment. The empirical propensity score êπ(Xi)(Wi)
is given in Equation (8), representing the probability of receiving the treatment under a
personalized policy π(Xi).

êπ(Xi)(Wi) =
1
N

∑N
j=1 1[Wj = Wi, π(Xj) = π(Xi)]

1
N

∑N
j=1 1[π(Xj) = π(Xi)]

(8)

With the propensity score the estimated IPS reward of a certain policy R̂IPS(π, Y )
can be formulated, as in Equation (9). The indicator function I(Wi = π(Xi)) denotes the
treatment that ought to coincide with the personalized policy’s treatment and is equivalent
to one if so.

R̂IPS(π, Y ) =
1

N

N∑
i=1

(
I(Wi = π(Xi)) · Yi

êπ(Xi)(Wi)

)
(9)

4.5.2 Doubly Robust Estimator

The doubly robust estimator is employed as an additional method of evaluation to
reach more complete results. Dudík et al. (2011) shows that the DR estimator combines
the estimation power of the IPS estimator and that from the direct outcome regression
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model (DM). The DM forms an estimate of the expected outcome conditioned on the pre-
treatment variables and policy assigned treatment. Note that the DM method estimates
without any knowledge of the policies. Therefore, it might occur that the approximating of
the estimate is mainly in areas that are not relevant to the reward. Since the DR estimate
is a broadening of the IPS estimate we try to evaluate the policies better. This hybrid form
of the models ensures that the estimator remains consistent as long as the models are well
specified. This enhances the reliability and robustness of the policy evaluation. The DR
estimator is given in Equation (10). Where Ŷz is the expected reward Yi given treatment
z. Compared to the IPS estimator, the DR estimator will be accurate if at least one of the
estimators, êπ(Xi)(Wi) or Ŷz are accurate.

R̂DR(π, Y ) =
1

N

N∑
i=1

(
(Yi − ŶWi(x))I(Wi = π(Xi))

êπ(Xi)(Wi)
+ Ŷπ(Xi)

)
(10)

5 Results

From the statistics in Section 3 it became clear that corporations gain conversion and
visit rates by assigning advertising mailings. Consequently, the personalized policies will
now be explore in further detail, as previously mentioned in Section 4. The outcomes of the
personalized policy evaluation and the advantages over the non-personalized policies will
be covered in this section.

Two uniform policies are defined, for the non-personalized policies. π0 is the uniform
policy that assigns no treatment to all its customers. On the other hand, π1 assigns a
treatment to every customer. With the use of the IPS and DR estimators, the rewards
are estimated for each policy and can be found in Table 2. High rewards indicate a higher
outcome rate, demonstrating how well the model adapts the policy to the specific charac-
teristics and preferences of each customer. What is also shown in the table is the number
of treated customers. That is the number of customers that were assigned a treatment,
within the sample data. Since the π1 treats all customers, the treatment column is set to
the size of the data, which for our case is 30.000 for the test data, and vice versa 0 for π0.

Focusing on the IPS evaluation first, it can be seen from Table 2, that the uniform
treatment approach of sending treatment to all customers, resulted in mostly higher or
comparable estimated reward rates for the outcome variable. Such that most personalized
policies, despite their complexity, failed to deliver significantly better outcomes. Only πLasso
for conversion, and πXGBoost for visit were able to estimate a higher IPS reward. Compared
to the IPS, the DR evaluation looks somewhat brighter. For visit the personalized policies
of πLR, πLasso, πXGBoost and, πRForest do perform better compared to the uniform ones. For
conversion this applies for πLasso and πXGBoost. Policies based on heterogeneous treatment
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effects estimators, causal tree and causal forest, do not personalize treatment assignment
and end up giving each customer a treatment equal to one, that is π1 ≡ πCTree ≡ πCForest.
πCART performs the poorest, as it ends up treating no single customer. Further, something
that could be seen as remarkable is that, for optimizing the hyper-parameters of causal forest
the IPS and DR estimator reward degraded. For example, without tuning an IPS reward
for conversion of 0.0032 with 24910 customers assigned to the treatment was found. This
means that optimizing the hyper-parameters for causal forest deteriorates the estimated
rewards.

Looking at the rewards on the train data in Table 3, it can be found evident that
policies based on non-heterogeneous treatment effects function better than the uniform
ones. Again, πCTree, πCForest, and πCART fail to assign personalized treatment. That the
rewards perform better on the train data than on the test data is not surprising. Outper-
forming train data is a common phenomenon within machine learning, where the primary
cause is overfitting. Due to overfitting, the model does not generalize well on new data(in
this research test data). The fact that the random forest performs well on train data but
not on test data may be due to model bias. Decision tree methods, like random forest, are
very sensitive to overfitting. Having a deep decision tree can perform poorly on the test
data but well on the train data. The slight variations and the sample size in the test and
train data could also be a factor in the observed discrepancies in the results. Therefore,
it can be concluded that a prediction made using a model that has been trained on train
data will perform better. As a result, more personalized policies perform better than the
uniform policies.

Table 2: IPS and DR rewards on test data.

Conversion Visit
Policy IPS DR Treated IPS DR Treated
πLR 0.002514462 0.002481429 27531 0.04788889 0.04740907 29836
πLasso 0.003142166 0.003213283 5624 0.04803754 0.04774164 13798
πCART 0.002205558 0.002205558 0 0.03573004 0.03573004 0
πRForest 0.002527458 0.002309057 5373 0.046085658 0.04608566 23437
πXGBoost 0.003098368 0.003193879 24547 0.04788889 0.04849897 29823
πCTree 0.003102175 0.002900225 30000 0.04861384 0.04459967 30000
πCForest 0.003102175 0.002900225 30000 0.04861384 0.04459967 30000
π1 0.003102175 0.002900225 30000 0.04861384 0.04459967 30000
π0 0.002205558 0.002205558 0 0.03573004 0.03573004 0

The relationship between the estimates of treatment effects and the performance of the
policy is examined. Figure 1 shows the cumulative density function (CDF) for conversion
and visit for all the designed personalized policies. Low heterogeneity, that occurs within
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Table 3: IPS and DR rewards on train data.

Conversion Visit
Policy IPS DR Treated IPS DR Treated
πLR 0.003303817 0.003568392 64202 0.04954432 0.04887055 69545
πLasso 0.003074454 0.003103019 12745 0.04881205 0.04855096 32209
πCART 0.002003434 0.002368053 0 0.036061820 0.03964438 0
πRForest 0.003762671 0.003812206 12415 0.065389023 0.06333313 54120
πXGBoost 0.003663866 0.003488562 69200 0.04988612 0.04937113 65274
πCTree 0.003074700 0.003041969 70000 0.049245606 0.04847139 70000
πCForest 0.003074700 0.003041969 70000 0.049245606 0.04847139 70000
π1 0.003074700 0.003041969 70000 0.049245606 0.04847139 70000
π0 0.002003434 0.002368053 0 0.036061820 0.03964438 0

the CART, causal forest, and causal tree methods, is clearly visible within the CDF graph.
This refers to the vertical lines positioned at or to the right of zero. This lack of variability
indicates that these policies do not differentiate sufficiently between individual users, leading
to poor performance, as these policies cannot properly improve customer’s responses. It
does not come as a surprise that the estimated rewards of πCART , which moves vertically
on zero, is equal to π0. As πCART does not differentiate between the customers, it assigns
all customers to no treatment. Similar applies for πCForest and πCTree. Due to the low
heterogeneity and a constant difference in predicted probability, that is greater than zero,
it assigns all customers to a treatment. Resulting in an equal reward as π1. In contrast,
the treatment effect estimates based on Lasso exhibits the highest degree of heterogeneity,
as can be seen in the CDF graph. This indicates that this model captures a wide range
of treatment effects across individuals, leading to an improvement in estimated reward
(Table 2). However, this is not the case for the outcome of the variable visit in the IPS
estimate. This may suggest that it suffers from overfitting.

In the mid-range of Figure 1, the CDFs of treatment effect estimates from XGBoost,
logistic regression, and random forest can be found. This indicates that these policies show
a moderate degree of heterogeneity. Thus, these policies can effectively design personalized
policies, while not causing overfitting. Nevertheless, this only applies to XGBoost, given
the poor IPS and DR rewards of logistic regression and random forest. The ability of
XGBoost to show an appropriate level of heterogeneity in treatment effect estimates, while
still performing good in the evaluation, demonstrates its good performance. Thus, taking
the DR and the CDFs of treatment effect into account, XGBoost optimizes personalized
advertisement most effectively, while not suffering from the negative effects of overfitting.

In a deeper analysis of the CART model, its poor performance can be explained in two
different scenarios. As the tree of the CART model is pruned with a very small complexity
parameter, it mainly focuses on the f1 variable, leaving the treatment variable entirely out
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Figure 1: CDF of Estimated conditional average treatment effects for conversion and visit on the
test data

Conversion Visit

of the tree. As a consequence, no distinction can be made between a treatment or not.
When there does not exist a distinction between treatments, every customer is assigned
to no treatment. If the model is used without any pruning, the treatment variable is not
significant. Even though the treatment variable is conditional, it influences only a very
small part of the tree, with the majority of the other variables being more prominent.
Further, when the tree is not pruned, it becomes excessively large, leading to substantial
bias and overfitting. This causes that the treatment variable is not incorporated into the
tree.

As mentioned by Yoganarasimhan et al. (2023), one would expect that personalized
policies should work better than non-personalized policies. Nevertheless, π1 performs equi-
valent to almost all policies or even better, especially on the IPS rewards. This raised the
question of whether the poor performance is due to the policies or some other factor. Look-
ing at the statistics of the data, it can be concluded that the poor performance in certain
policies does not depend on the policy itself, but is due to the data. Since multiple random
samples were tested and gained similar outcomes. A closer inspection of the sample reveals
significant variation within the different variables. The statistics of the variables can be
seen in the appendix in Table 6. Here it can be seen that for some variables the kurtosis and
skewness differ a lot from the normal distribution. For eight of the twelve pre-treatment
variables, the kurtosis exceeds the normal value between [−3, 3]. For example, the f1 vari-
able has a kurtosis of 321.6. This normally suggests the presence of outliers. However, when
zooming in on the values of these particular poor performance variables, we find something
noticeable. Namely, almost all the values within a variable are the same, which can be seen
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in the frequency histogram in Figure 2. The specific distribution of values within f1 are
shown in Table 7. The unequal distribution found in a variable ensure that, whenever a
certain value deviates from the ‘most common’ value, it becomes immediately an outlier.
For all variables that exceed the interval of the normal distributed kurtosis, the same result
is found. Thus, there exists a coherence between the extreme value of the kurtosis and the
number of values that are equal within a variable. Namely, if all values are virtually the
same, a single deviation is immediately regarded as an extreme outlier. Because of all this,
data trimming has become a very impossible task, only data clustering could be a sufficient
option. To ensure that this high kurtosis is not due to the sample data, the statistics of
the entire data were analyzed and found similar high kurtosis for the same variables.

In short, this high frequency of the same values within a variable that occurs in eight
of the twelve variables results in homogeneity. Earlier we saw in Figure 1 that under some
policies this was already occurring. This homogeneity among variables causes personalized
policies to perform poorly. This is because personalized policies per definition target the
heterogeneity of customers, in order to make a prediction for each person, with unique
characteristic properties, and finally assign this specific prediction to this person. There-
fore, because this heterogeneity is missing, some personalized policies are unable to create
a better policy than the non-personalized policy. This suggests that advertising firms may
sometimes be better off adopting uniform policies instead of investing in complex person-
alizing policies based on those methods. Further, in the comparison of evaluation policies,
it was found that the DR generally performs better. This is because the DR uses the IPS
with a corrective factor. Especially for visit their is an improvement present in the policies
compared to the uniform policies.
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6 Conclusion

This research compares personalized email advertising policies. Where several personal-
ized policies are evaluated using the DR and IPS estimators. After evaluation, it becomes
clear that the personalized policies are better evaluated using the DR estimator. As the
DR estimator implies the IPS with a corrective factor. Within this specific DR estim-
ator the πXGBoost and πLasso performed best, resulting in an increase in conversion and/or
visit rate, to the extent that there are policies for which personalization is profitable. As
πXGBoost not only performs better than the uniform policies but also addresses a higher
amount of treatments to the customers, it forms the optimal personalized policy for online
advertisement.

The CDF analysis shows that methods such as CART, causal forest, and causal tree
perform poorly due to high homogeneity. In contrast, XGBoost along with Lasso, demon-
strated a moderate level of heterogeneity, balancing personalization without overfitting, and
confirming their better performance. Finding heterogeneity among the customers was very
difficult due to data characteristics. Extremely high kurtosis is formed because the features
within the variables are almost all the same, hindering the effectiveness of personalized
policies. This results in a disappointing performance of some personalized policies. Fi-
nally, the extremely poor performance of the CART model can be explained either through
excessive pruning or lack of significant inclusion.

Further research should focus on improving data quality, by employing advanced pre-
processing techniques, and developing adaptive learning models to be able to adjust to
changing data characteristics and customer behaviors. Through this implementation, per-
sonalized marketing strategies can be expected to be further optimized, guaranteeing better
outcomes for advertising companies.
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7 Appendix

7.1 Hyper-parameter Optimization for the Models Estimated

In addition to the optimized hyper-parameters for the Lasso model, we do the same for
the other models. Where for each model a five-fold cross-validation is used to optimize the
hyper-parameters. The optimization of the models chance be described as follows:

• In the lasso model, The standard cross-validation procedure is implemented in the
glmnet package in R. In our case the best λ is equal to 2.12 × 10−4 for conversion
and 6.92 × 10−4 for visit.

• For the CART model, the GridSearchCV was used from the sklearn Python package.
For which we found an optimal complexity parameters (ζ of 0.307 for conversion and
2.2 ×10−4.

• For the Random Tree model, the GridSearchCV from the sklearn Python package was
also used. For the Random Forest we optimized three hyper-parameters. (1) ηtree,
the number of trees over which the ensemble forest is build. (2) maxf , the maximum
number of features the algorithm try for any partition. (3) ηmin, the minimum number
of samples required to partition an internal node.

All three parameters are optimized within an interval, and is shown below.

– ηtree ∈ [10,200] and η∗Conversion
tree = 28, η∗V isit

tree = 154.

– maxf ∈ n, sqrt(n), log2(n) and max∗Conversion
f = log2(n), max∗V isit

f = sqrt(n).

– ηmin ∈ [1,10] and η∗Conversion
min = 3, η∗V isit

min = 9.

• For the XGBoost method follow the hyper-parameter tuning from Yoganarasimhan
et al. (2023), where they optimize three parameters. (1) α is an L1 regularization
parameter. (2) η is the learning rate. (3) dmax is the maximum depth of the trees.
For the optimization the grid expansion function from the "caret" package in R is
used. The optimal values with its intervals are as follows:

– α ∈ 5,10,25,50,100,150,200 and α∗ = 50

– η ∈ 0.01,0.1,0.3,0.5 and η∗ = 0.1

– dmax ∈ 4,6,8,12 and d∗max = 4

• For the Causal Tree we make use of the "causalTree" and "caret" packages in R. Where
the complexity parameter ζ is tuned using "causalTree" and the minimum number of
treatment and control observations in each leaf (q) is tuned using grid-search.

– q ∈ [1,100] and q∗ = 1
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– ζ ∈ [0.0001,0.01] and ζ∗ = 5× 10−4

• Last, three hyper-parameters were tuned for the Causal Forest. (1) mtry, the number
of variables tried for each split. (2) maximb, the maximum allowed imbalance of a
split. (3) q, the minimum number of observations per condition(control, treatment) in
each partition. These hyper-parameters were tuned using the sklearn Python package,
for which we found the following:

– q ∈ [1,15] and q∗Conversion = 2, q∗V isit = 5

– maximb ∈ [0,0.05] and maximb∗Conversion = 0.08679, maximb∗V isit = 0.3516

– mtry∗Conversion = 5, and mtry∗V isit = 6

Table 4: Summary statistics of conversion and visit.

Full data Sample data
Variable Mean Standard deviation Mean Standard deviation
Visit 0.0470 0.212 0.0471 0.212
Conversion 0.00292 0.0539 0.00293 0.0541

Table 5: Summary Statistics of Conversion and Visit rates, and Treatment Assignment for the
CRITEO-UPLIFT1 dataset

CRITEO-UPLIFT1 dataset No treatment treatment Total
Number of observations (N) 2,096,937 11,882,655 13,979,592
Percent of total observations 14.999 85 100
Number of visits 80,105 576,824 656,929
Percent of total visits 12.194 87.806 100
Number of conversions 4,063 36,711 40,774
Percent of total conversions 9.965 90.035 100
Visit rate within group (in %) 3.820 4.854 4.699
Convertion rate within group (in %) 0.194 0.309 0.292
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Table 6: Statistics of pre-treatment and treatment variables in test data

Mean Sd Median Min Max Range Skew Kurtosis Se
f0 19.609 5.369 21.930 12.616 26.745 14.128 -0.245 -1.626 0.031
f1 10.070 0.105 10.060 10.060 15.070 5.010 14.219 321.622 0.001
f2 8.444 0.298 8.214 8.214 9.052 0.838 0.824 -0.975 0.002
f3 4.179 1.336 4.680 -5.318 4.680 9.998 -3.179 10.395 0.008
f4 10.339 0.352 10.281 10.281 18.353 8.072 9.078 108.263 0.002
f5 4.030 0.418 4.115 -4.944 4.115 9.060 -6.830 63.383 0.002
f6 -4.176 4.596 -2.411 -25.334 0.294 25.629 -1.137 0.777 0.027
f7 5.099 1.197 4.834 4.834 11.993 7.159 4.559 19.555 0.007
f8 3.933 0.057 3.972 3.665 3.972 0.307 -1.600 1.824 0.000
f9 16.049 7.029 13.190 13.190 65.006 51.816 2.818 7.747 0.041

f10 5.333 0.167 5.300 5.300 6.474 1.173 5.349 27.942 0.001
f11 -0.171 0.025 -0.169 -1.023 -0.169 0.855 -15.269 304.275 0.000

Treat 0.849 0.358 1.000 0.000 1.000 1.000 -1.948 1.794 0.002

Table 7: Distribution of values within variable f1 in test data

Value 10.0596 10.6795 11.1193 11.4604 11.7392
Frequency 29611 281 59 27 11
Value 11.9748 12.1789 12.5201 12.7988 15.0696
Frequency 2 5 2 1 1

8 Programming code

The code to obtain all results consists of several parts. TestData and TrainData rep-
resents the used sample data. The designed personalized policies are constructed in Cart.py,
causalForest.py, causalTree.R, Lasso.R, Linear.R, RandomForest.py, and XGBoost.R. Where
the hyper-parameters optimization is incorporated into the files. To evaluate the person-
alized policies the estimators are given in InversePropensityScoreestimator.R and Doub-
lyRobustestimator.R. A more detailed explanation of the codefiles can be found in the
ReadMe.txt.
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Figure 2: Histogram of distribution of values within the variables in test data
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