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Abstract

The Kidney Exchange Program (KEP), through which those experiencing kidney failure

can match with other patients’ donors, has been around for a little over two decades in the

Netherlands. The topic has been highly researched in terms of the efficiency of its algorithm,

allowing patient-donor pairs and altruists alike to participate in the Dutch National KEP.

However, few have looked toward incentivising new altruistic or non-directed donors, who

have the ability to help more than one patient with a single donation. These potential

donors could be more inclined to participate when reassured that they help a young patient

in particular. In this thesis, I aim to find out whether this phenomena, referred to as

semi-directed donation, results in matches that are of lower quality than the average. I do

so by studying the weights of the donations in an offline and online context. While the

offline algorithm did not show significant results, the online model seems to indicate that

semi-directed donors on average take part in higher quality matches. This hypothesis, in

combination with the models provided in this thesis, is a starting point for the research that

is left to be done on this type of altruism. The methods used in this thesis are applicable to

an array of other potential incentives that could be used to increase the number of altruistic

donors in the Kidney Exchange Program.



Contents

1 Introduction 1

2 Literature 3

3 Problem description 4

4 Formulations 5

4.1 Selective altruism models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.1.1 Base model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1.2 Test model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Weights estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.3 Selective altruism in an online algorithm . . . . . . . . . . . . . . . . . . . . . . . 8

5 Data 9

5.1 Offline algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.2 Online algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Results 11

6.1 Offline algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6.2 Online algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7 Conclusion 17

A Code IV

B Replication of results IV



1 Introduction

According to the most recent report of the International Society of Nephrology (2023), kidney

failure affects around 0.1 percent of the global population. The disease, characterised by an

irreversible loss of kidney function, has become so prevalent that it is predicted to be the fifth

leading cause of death worldwide by 2040 (Foreman et al., 2018). The preferred treatment

for kidney failure is transplantation, but since the disease is so widespread the waiting list for

deceased donor kidneys is much too long to cater to (Yi et al., 2021). Even if a patient is able

to find a live donor, such as a friend or a relative, they are still not guaranteed to receive this

kidney as a lot of donors are incompatible with their intended recipient. For those who do find

a compatible donor, there is always the possibility that their body will reject the kidney after

the operation.

To combat the shortage of kidneys, hospitals have started matching the patients of incom-

patible patient-donor pairs to other pairs’ donors. This is called the Kidney Exchange Program

(KEP). In its simplest form, it works by finding two patients with incompatible donors, who

match with each other’s donors, such that they both receive a kidney. This is called a 2-way or

a 2-cycle exchange and it also works for more pairs than just two. Intuitively, a larger exchange

would allow more people to receive a donation, but this does not translate into practise knowing

the risks of kidney transplants. Last-minute tests may show that two people, who were assumed

to be a match, are in fact incompatible (Constantino et al., 2013). To avoid transplanting only

one person in a pair, hospitals try to perform the operations simultaneously and most of them

will not have the capacity to facilitate large exchanges. Most KEP cycles include two pairs,

after which 3-way exchanges are also fairly common. Both are usually implemented side by side,

depending on the patient-donor pool (Kute et al., 2021).

Another form of exchange happens when a person, who is not linked with any patient, decides

that they want to give one of their kidneys to a person in need. Since this donor does not expect

a transplant in return, the patient receiving their kidney runs no risk of losing a paired donor

if the operation fails. When such a non-directed donor (NDD) helps an incompatible pair, the

donor of that patient can subsequently donate their kidney to the next pair, who then does the

same. In the end, the last donor either donates their kidney to a patient on the deceased donor

waiting list or they are part of a future chain (A. Roth et al., 2006). Thus, we are able to build a

chain of patient-donor pairs around their donation, an example of which is shown in Figure 1.1.

These transplants do not have to happen simultaneously, because a patient receives a kidney

before their donor has to donate. Still, while in theory these types of k-exchanges can go on

forever, in practise their length varies and there has been debate about whether or not longer

chains result in more matches (John P. Dickerson, 2012).
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Figure 1.1: Example of a chain started by a non-directed donor, ‘ndd’ , wherein ‘p’ stands for patient
and ‘d’ for donor.
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While NDD chains are an efficient way of helping patients who otherwise do not have a

compatible donor, their implementation is directly limited by the number of altruistic donors.

Many countries have strong legislative rules that apply specifically to kidney exchanges and,

moreover, altruistic donation. Donors often go through a long process of psychological and

medical tests. When they do check all the boxes, they can still be rejected because of quality

issues (Ashlagi & Roth, 2021). Over the past two decades, several articles have appeared on the

sorts of incentives that could bring more altruistic donors into the Kidney Exchange Program.

However, these incentives have never been taken into account in Kidney Exchange models.

This thesis explores one of the proposed stimuli, in which an altruistic donor is assured that

their donation goes toward a young patient. By restricting to whom it goes, this is no longer

a non-directed but rather a semi-directed donation. I aim to answer the question: Do semi-

directed donations result in matches of lower quality? Additionally, I seek to find out whether

the overall quality of the other matches declines. The quality of a match is dependent on both

the donor and patient’s characteristic, to measure this I include a weights formula. The data

used in this thesis are predominantly from Dutch sources.

By recreating the KEP algorithms put forward by Constantino et al. (2013) and adjusting

them to fit the research question, I am able to form a Base and a Test model. The first acts as a

measure of the number of patients that receive a kidney when there is a normal ratio of altruistic

donors to pairs, including their respective weights. The second formulation tells us what would

happen if we had more altruistic donors, but some of their donations are constricted by an age

limit. An online algorithm is later applied to both models, in which a matching round is held

in every quarter while people arrive to and leave the program.

This thesis provides important context to the philosophical debate surrounding semi-directed

kidney donation. Methods used are simple enough to be applied to a wide array of other

incentives, including but not limited to other donor preferences.

In Section 2 of this thesis I go through some of the current literature on incentivising donors,

including the organisations that implement it and other factors that are taken into account when

prioritising patients. Next, Section 3 contextualises the different elements to this problem, while

Section 4 shows the models used to answer them. Section 5 contains the different sources from

which data is taken in order relate the outcomes as closely as possible to the population of the

Netherlands. Finally, Section 6 will go over the relevant results, while 7 summarises the findings.

2



2 Literature

The Kidney Exchange Program (KEP) was initially suggested in 1986, in response to the growing

waiting lists for deceased donor kidneys (Rapaport, 1986). A first implementation of the program

took place in South Korea in 1999, initially only allowing family of the patient to donate (Park

et al., 1999). At first, kidney exchanges happened mostly within localised patient-donor pools.

While there had been some earlier suggestions of models for a national KEP, Abraham et al.

(2007) and A. E. Roth et al. (2007) proposed the first formulations that could handle the

large patient-donor pools and match more than two pairs to one another. Their Edge and

Cycle formulations were a breakthrough in terms of efficiency, solving the NP-hard problem

to optimality for as much as ten thousand pairs at a time. The main idea of these models

is that each incompatible pair is a vertex in a weighted, directed graph. Arcs then represent

compatibilities between donors and patients of different pairs, such that cycles in the graph

equate to exchange cycles. By enforcing a maximum size on those cycles, it became much easier

to restrict the number of transplants to be performed simultaneously while also finding more

and better matches.

Since 2007, both the Edge and the Cycle models have been used for many applications due

to their general applicability. Constantino et al. (2013) has since suggested a more compact

formulation, as well as an extension for the inclusion of altruistic donors. While there have been

many improvements made to KEP algorithms in the past decade, the simplicity of these models

in particular means that they are a great starting point for this thesis.

Altruistic donation has been a possibility in the Netherlands since the first matching round

of the Dutch KEP in 2004 (Glorie et al., 2022). One non-directed donor can start a chain

of non-simultaneous donations, offering opportunities for pairs that are otherwise unsuccessful

in the KEP (Roodnat et al., 2010). Most recently, a study by Thomas et al. (2021) talks of

luring in prospective altruists by, among others, directing their donation to a particular group

of people. It hints that there is evidence to show that people may be more inclined to donate

to children or underprivileged patients. A term used for this is ‘moral particularism’, which

means that we prefer giving to those whom we feel connected with, such as a member of a

community or network (Thomas et al., 2021). It could be argued that campaigns such as

Dove’s Kidney Donation for US Veterans is a form of the concept (Dove, 2024), or that smaller

religious organisations have implemented similar tactics. However, these organisations connect

new incompatible pairs, making them part of the direct donations.

A method of incentivising donors could be by allowing anonymity to be broken after the

surgery. The United Kingdom is currently the only European country where this is possible.

It has proven to be successful, with 92 percent of survey respondents saying that they broke

anonimity and most being content with their decision (Pronk et al., 2022). Posner et al. (2013)

has even suggested that the patient donate money to a non-profit of their donor’s choosing,

thereby walking the line of a monetary reward system.

A lot of these suggestions have never been included in the KEP because of obvious moral

objections, but there has been one country to explicitly test the consequences. Israel openly

engages in what is referred to as semi-directed donation with the help of the Matnat Chaim

organisation. This organisation allows altruistic donors to set certain requirements for their
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recipient, such as religious belief. Rather than using a linear programming model, the organisa-

tion uses direct matching of donors to patients who meet their criteria (Matnat Chaim, 2024).

Between 2013 and 2020, the share of live kidney transplants in Israel that were realised through

Matnat Chaim, has grown from 24 to 67 percent (Dienstag et al., 2024). Since its establishment

however, the organisation has been the subject of criticism because of allowing donations to be

determined by religious belief. Other research on the topic, by Dienstag et al. (2024), showed

that donations to both Jewish and Arab recipients have increased.

Even if the results in Israel seem promising, they cannot be applied to the Netherlands.

A near ninety percent of semi-directed donors in Israel identified as either observant or highly

observant Jews in 2022, while at the time they represented only a fifth of Israeli society. In

addition to that, while most Israeli donors wanted to meet the recipient of their kidney, a

minority of Dutch non-directed donors feels the same way (Slaats et al., 2018). Outside of

Israel, to the extent of this research, there have not been any instances of clear preferential

treatment in altruistic kidney donation.

Currently, KEPs weights are based on more than simply the success of the transplant. Things

such as a patient’s time on dialysis or whether they have the same blood type as a potential

donor can influence whether a match is chosen. In many countries, including the Netherlands,

patients that are difficult to match will be prioritised when there is an available donor (Biró et

al., 2021). Age and age difference are taken into account as well, with recent research showing

that donations from older donors to older patients carry the highest risk (Hiramitsu et al., 2021).

Moreover, a patient’s Panel Reactive Antibody (PRA) level also contributes to the quality of

their match. Being based on the percentage of antigens in the population for which a patient has

developed antibodies, the PRA value is used to estimate the chance that a patient will reject

their new kidney after the operation (Glorie, 2012). Regardless of the country’s preferences

however, almost all of them will first optimise the total number of matches before finding the

best ones. This happens through optimising the model multiple times and forcing the new model

to adhere to previous optima, a technique called hierarchical optimisation (Delorme et al., 2023).

As the patient-donor pool grows, it becomes increasingly important to balance quality and

equity when matching patients. This thesis aims only to explore the possibility of including

semi-directed donations in the KEP, without commenting on the moral implications of such a

system. They are included in the altruist category for no other purpose than the clarity of this

thesis and its models.

3 Problem description

In order to assess the effect of semi-directed donation on the quality of matches, two different

scenarios were considered. The first scenario being a standard Kidney Exchange Program (KEP)

with altruists. The second uses a similar structure but includes semi-directed donors (SDDs) into

its mixed patient-donor pool. While these donors fall into the altruist category, they will only

donate their kidney to a patient that is below a certain age. Both integer programming models

used the principal of hierarchical optimization, where they first optimised the total number of

matches and only then sought to maximise the sum of weights, which is the way that it is done

in most KEPs (Biró et al., 2021). To test the effect of introducing SDDs over time, models
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were studied in online algorithms with Poisson arrivals and departures. During a simulated

time period of two years, both models received new admissions into their KEP at the beginning

of each quarter while departures were scheduled after each matching round, at the end of the

quarter.

To judge the quality of additional matches made with SDDs, the differences in their average

weights were studied. This way, donations by semi-directed donors were compared to other,

young patients who found a match in the KEP, as well as the overall averages in both previously

mentioned scenarios. Weights are dependent on the age difference between the patient and

donor, as well as the patients’ crossmatch probability through their Panel Reactive Antibody

level (Santos N., 2017). Both the online and offline algorithms ran for maximum cycle sizes

equal to 3, 4 or 5, and for age limits of 25 and 35 years old.

4 Formulations

4.1 Selective altruism models

The models used in this thesis are based on the reduced Extended Edge formulation of Con-

stantino et al. (2013). In this paper, the authors show how to adjust their model to accommodate

non-directed donors (NDDs). This forms the foundation for the Base model and the Test model.

The first one of which reflects a general KEP. The Test model includes additional altruists that

can only donate to a subset of patients. Before going through the modified version of the integer

programming problem, I first redefine the notation.

Define V = {1, . . . ,m+ n} as the set of all patient-donor pairs in the form of vertices. This

includes m altruistic donors who are each matched with a dummy patient and n incompatible

pairs. Since altruistic donors do not require a donation in return, their patient is set to be

compatible to all paired donors j ∈ {m+1, . . . ,m+ n}. Then, we define the directed, weighted

graph G(V, A) and consider A the set of arcs. Vertices i, j ∈ V are connected by an arc (i, j) if

the donor in pair i is able to donate to the patient of pair j. Each arc has a weight wij , (i, j) ∈ A.

Define k′ and k as the maximum number of arcs in cycles with or without an altruistic donor,

respectively. Then, take L copies of graph G, where L = |V | is the upper bound on the number

of cycles in the graph. Each copy l ∈ L of the graph contains at most max{k′, k} arcs.

Every l ∈ L, if there is a cycle in copy l of the graph, represents the lowest index of any

vertex used in that cycle. It does not include any other vertices whose index is lower than l.

Hence, define dlij as the shortest path distance between vertices i and j for i, j ∈ Ṽl such that

the path passes only through vertices of the set Ṽl = {i ∈ V : i ≥ l}, (Constantino et al., 2013).

This prompts the new set V l for each vertex l ∈ V , which is the set of vertices who have a

possibility of being in copy l of the graph. We define V l differently for altruistic donors than we

do for patient-donor pairs:

V l = {i ∈ V | i ≥ l and dli + dil ≤ k′} ∀l ∈ {1, . . . ,m′}, (1)

V l = {i ∈ V | i ≥ l and dli + dil ≤ k} ∀l ∈ {m′ + 1, . . . , L}. (2)
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Following this trend, define the set Al to indicate the possible arcs in copy l of the graph as

follows:

Al = {(i, j) ∈ A | i, j ∈ V l and dli + 1 + djl ≤ k′} ∀l ∈ {1, . . . ,m′}, (3)

Al = {(i, j) ∈ A | i, j ∈ V l and dli + 1 + djl ≤ k} ∀l ∈ {m′ + 1, . . . , L}. (4)

Lastly, to further reduce the number of variables in this problem, l is only sampled from

L ⊆ {1, . . . , L}, which is the set of indices l for which {V l \ {l}} ̸= ∅. Define the decision

variables xlij :

xlij =

1 if arc (i, j) is selected to be in copy l of the graph,

0 otherwise.
∀l ∈ L, (i, j) ∈ Al.

The integer programming problem becomes as follows:

maximise
∑
l∈L

∑
(i,j)∈Al

wijx
l
ij , (5)

subject to
∑

j:(j,i)∈Al

xlji =
∑

j:(i,j)∈Al

xlij ∀i ∈ V l,∀l ∈ L, (6)

∑
l∈L

∑
j:(i,j)∈Al

xlij ≤ 1 ∀i ∈
⋃
l∈L

V l, (7)

∑
(i,j)∈Al:i,j∈{l}∪{m+1,...,L}

xlij ≤ k′ ∀l ∈ L : 1 ≤ l ≤ m, (8)

∑
(i,j)∈Al:i,j∈{m+1,...,L}

xlij ≤ k ∀l ∈ L : m+ 1 ≤ l ≤ L, (9)

∑
j:(i,j)∈Al

xlij ≤
∑

j:(l,j)∈Al

xllj ∀i ∈ V l,∀l ∈ L, (10)

xlij ∈ {0, 1} ∀(i, j) ∈ Al,∀l ∈ L. (11)

The objective of this model maximises the weighted sum of all matches between donors and

patients. When the weights are unitary this equates to maximising the total number of matches.

Constraints (6) state that the number of kidneys given by a pair is equal to the number of kidneys

that they receive, within each copy l of the graph. Constraints (7) make sure that each vertex

belongs to at most one copy of the graph, thus, each copy will have a unique index l. The

cardinality constraints in this model, in (8) and (9), each set the maximum number of arcs in

every copy of the graph. The maximum allowed path length for cycles starting with an altruistic

donor differs from those consisting of only incompatible pairs. What is important to note here,

is that altruists will only ever appear in a copy of their own index. This is because they have

the lowest indices of all vertices and it is not possible to make one chain that has two altruistic

donors. Lastly, constraints (10) enforce that all copies of the graph indeed carry the index that

is the lowest out of its vertices, while constraints (11) show that all of the decision variables are
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binary.

4.1.1 Base model

Assume that the semi-directed donors (SDDs) have the lowest m′ indices of all altruistic donors

and thereby all vertices V . For the Base model, add the following constraint to (5) - (11):∑
l∈L:l≤m′

∑
(i,j)∈Al

xlij = 0. (12)

In the Base model, SDDs are not matched with any patients, thus the sum of their matches

is equal to zero. The model will first optimise based on unitary weights wij , whereafter it is

optimised based on the weights formula in Section 4.2.

4.1.2 Test model

In the Test model, there is only a subset of vertices Q ∈ V who qualify for a donation from a

semi-directed donor. These are the pairs whose patient falls below the age limit, thus Q = {i ∈
V : patientAgei ≤ ageLimit}. Therefore, for each l ∈ L where l ≤ m′, copy l of the graph can

only contain vertices that are in Q ∩ V l. To the model (5) - (11), add the following constraint:

∑
l∈L:l≤m′

∑
∀j:(l,j)∈Al,j /∈Q

xllj = 0. (13)

This constraint ensures that no semi-directed donation can go to a person that is outside of

the subset Q. Again, this model first maximises the total number of matches before doing so

with the weighted sum.

4.2 Weights estimation

Lack of academic uniformity and little data on the medical characteristics of participants in

KEPs mean that there is no one way to estimate weights such that they accurately represent

reality. Things like lifestyle, medical history and time on the waiting list no doubt play a role

in the success of a candidate. However, in this thesis I focus only on two characteristics that

have been proven to have an impact in the literature. That is, we look at a person’s Panel

Reactive Antibody (PRA) level and the age difference between a donor and their recipient. The

specific role of the former was studied by Glorie (2012), and later adopted by Santos N. (2017)

to generate the probability of a crossmatch for each patient. This probability cij , between the

donor of pair i and the patient of pair j, is calculated using the cumulative distribution function

of the standard normal distribution:

cij = Φ(−1.5007 + 0.0170× PRAj) ∀j ∈ {m+ 1, . . . , L} : (i, j) ∈
⋃
l∈L

Al. (14)

If there is a positive crossmatch between the blood of a donor and that of their intended

recipient, then this means that the recipient has too many antibodies against the donor’s cells and

the operation can no longer take place. Age difference is also considered to have an effect on the
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survival rate of the patient after the operation, with a number of countries having incorporated

this into their weights already (Biró et al., 2021). For each match between a patient and a donor,

where the patient is not an altruist’s dummy patient, calculate the weight wij as follows:

wij =
cij√

αij + 10
+ ϵij ∀j ∈ {m+ 1, . . . , L} : (i, j) ∈

⋃
l∈L

Al. (15)

Where αij = |donorAgei − patientAgej | represents the absolute value of the age difference

between the donor and patient. The error term is distributed as follows ϵij ∼ N(0, (σw
h )2), where

σw is the standard deviation of a larges sample of weights before the error term is added, and h

is a parameter to adjust the size of this standard deviation. As shown in Figure 4.1, setting the

formula up in this manner ensures that if the age difference is very low, the match is assigned a

high weight. Meanwhile, larger age differences will have less effect on the quality of the match.

Furthermore, patients with higher PRA values are prioritised, since they have more antibodies

and therefore a lower chance of being matched in the future. In Figure 4.1 as well as in the

results of this thesis, weights have been standardised to fit between 0.5 and 1.5 before error

terms.

Figure 4.1: Standardised weights versus age difference for various PRA values
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4.3 Selective altruism in an online algorithm

In the online version of the models a simulation is run over a period of time, in which a new

matching process takes place four times per year.

Before starting the optimisation process, arrival and departure times of pairs, altruistic

donors and SDDs are generated using a Poisson process. For each new arrival, characteristics

are determined and stored ahead of time, such that they remain the same in both the Base and

Test model. All of the initial vertices and arcs are also added into sets and every arc is assigned

a weight.

As seen in Figure 4.2 , at the beginning of each quarter, all of the vertices and arcs either

from the initial graph or the end of the previous quarter are put into a new graph. Then, arrivals

are incorporated and new weighted arcs are generated and added to the graph as well. Which

new arcs to make is determined using the algorithm of Santos N. (2017). A patient and donor

are compatible if the blood type of the donor in i and that of the patient in j is compatible, and
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if a random number r < PRAj , where i ∼ U(1, 100). Then, finding the best cycles works with

the Base and Test model to optimise the number of matches and total objective weights. After

the optimisation, the weights of each individual match is stored, as well as their type. Then, the

unused vertices and arcs of the graph are stored and any vertices or arcs pertaining to either

the solution or the departures are removed. While the arrivals were added at the beginning of

each period, departures are removed at the end. Finally, this process is repeated until there are

no quarters left in the time horizon.

As seen in Figure 4.2, the only difference in the Test model compared to the Base model is

whether semi-directed donors are included in the Poisson arrivals.

Figure 4.2: Online algorithm implementing the Base and Test models.

5 Data

In this paper, the aim was to find data concerning, or relating closely to, the Netherlands. All

sources that were used are mentioned in the following subsections.

5.1 Offline algorithm

To determine how many altruistic donors to include in the patient-donor pool, I looked toward

the Erasmus MC. They announced that, between January of 2018 and December of 2020, the

Netherlands had seen an average of 32 unspecified donations per year (Joyce de Bruijn, 2022).

Meanwhile, the average amount of people on the complete waiting list for a kidney in those

same years (2018-2020) was 795 people (Nederlandse Transplantatie Stichting, 2024). Assuming
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that the unspecified kidneys were distributed evenly over patients who are and are not part of

the Kidney Exchange Program, this amounts to one unspecified kidney donation per 25 people.

I also assumed that most altruistic donors, who were added to the KEP pool, found a match

within one year. This way, I ended up with a simplistic ratio to generate three kinds of test

instances, each consisting of 30, 50 or 80 incompatible pairs and 2, 4 or 6 altruistic donors,

respectively. Half of the latter are considered to be semi-directed donors, which were randomly

reassigned for every run. Note that, since there was no available data on the potential increase

in donations if preferential treatment were to be implemented, this ratio is not the product of

any calculations.

For the offline algorithm, test instances were generated based on the blood types of both the

patient and donor, as well as the patient’s PRA level from the United States National Kidney

Registry. The altruistic donors were linked with a dummy patient that is compatible to every

other paired donor. Per size, 10 different instances were provided by the Erasmus School of

Economics.

To calculate the weight of a potential match, both the patient and the donor are assigned an

age. For the patient’s ages, I used data from the Dutch National Kidney Waiting List between

2018 and 2020 (Nederlandse Transplantatie Stichting, 2024). After adding the patients aged

under 16 and above 85 to the nearest age category because of their low occurrence, I ended up

with the following rounded numbers: 45% aged 16-55, 25% aged 56-64, 26% aged 65-74, 4%

aged 75-85.

For the donor’s age, this same distribution was used, under the assumption that the donors’

ages are similar to those of the patients. While this is a grave assumption, it is known that

around half of living donors are the husband or wife of their patient (A. E. Roth et al., 2007),

and that most of the other paired donations are from friends or family. In the case of the donor

being a friend or spouse, I assumed that their age is close to the patient’s age. In the case of

them being a relative, it is unclear what their relation is.

Lastly, out of 1 million estimates of the weights before error terms, the standard deviation

was shown to be σw = 0.2086, this value was used in the final weights formulation of Section ??.

In addition, the parameter h = 6 was used, but can be replaced with other values according to

the desired distribution. Furthermore, in section 6, the weights have been scaled to fit between

0.5 and 1.5 before error terms.

5.2 Online algorithm

The initial data set for the online algorithm remained the same as for the offline algorithm. Over

a simulated two years, additional patients and donors were generated using a Poisson Process

as well as the departure times of pairs in the KEP. The Poisson rates were based on data of

the National Kidney Waiting List in the Netherlands (Nederlandse Transplantatie Stichting,

2024), which details the number of patients that were admitted to and let go from the waiting

list between 2018 and 2020. After fitting these numbers to scale, they resulted in a rate of

λa = 0.521471 ·size for the arrivals and λd = 0.467972 ·size for the departures, per year. Again,

we use the ratio of 1 altruistic donor per 25 patient-donor pairs, meaning that the Poisson arrival

rate of both NDDs and SDDs was λa/25.
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There is little data available on the common blood types amongst patients signing up to

the KEP. Therefore, it is hard to decipher the proportion of blood types that are the result of

harder to match patients, who generally wait longer before their transplant. In this thesis, I

chose to take the same distribution for candidate patients as for patients who are already on the

waiting lists for deceased donor kidneys and the KEP. To simulate donors’ blood types, a general

estimate of the blood types in the Netherlands in 2020 was used (Haakman-Groot, 2020).

The allocation of an age to both the patient and donor in a new pair, happened in the same

way as in subsection 5.1.

In order to generate a new patient’s PRA level, I used a distribution based on patients from

the Dutch National KEP between October 2003 and January 2011. Specifically, PRA levels with

respect to the donor population. In Glorie (2012), these are categorized into three levels: 48%

low (1-9), 35% medium (10-79) and 17% high (80-100). Each new patient was first assigned to

either one of these levels with the respective probability, after which the exact PRA level was

found through uniform sampling over the level’s bounds.

To generate a new pair, a donor and patient were assigned characteristics and if their blood

type was not compatible, they were immediately included in the KEP pool. If their blood types

were compatible, then a random integer r between 0 and 100 would determine their overall

compatibility. Only if the patients’ PRA was above this random number (r < PRA), the pair

could be included in the patient-donor pool. Pairs who did not meet this condition, whose PRA

values were generally lower, were assumed to be compatible and were not included in this kidney

exchange program. This method is based on the pool generation module in Santos N. (2017).

While it does drive the overall PRA level distribution up, because more of the lower values are

discarded, this effect is assumed to be minimal in an algorithm of this size. Over a sample of 1

million pairs, the average PRA levels were are around 13 values higher than when we did not

discard compatible pairs and had a standard deviation that was 2 values larger.

6 Results

All of the following results were obtained with Gurobi 11.0.2 on IntelliJ 2023.2.4. with an

Intel(R) Core(TM) i7-1065G7 processor at 1.30GHz and 16GB RAM.

For this thesis a large part of the results shown in Constantino et al. (2013) were replicated.

As they are of no relevance to this thesis, I have included all outcomes and a short description

in Appendix B.

As mentioned in Section 5, in both algorithms the Base and the Test model were run on

instances of sizes 32, 54 and 86, which are referred to as sizes S, M and L from here on out. Each

size ran with two different age limits for SDD patients, 25 and 35. Additionally, each combination

of size and age limit was studied for three different values of k: 3, 4 and 5. Unless mentioned

explicitly in the following subsections, the algorithms each ran for 10 different instances.

To further enhance the clarity of the tables in this section, weights in the Test algorithm

will be shown as a the percentage increase of decrease in comparison to their Base counterparts.

For SDDs this means they are compared to other matches of patients under the age limit made

with the Base model.
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6.1 Offline algorithm

For sizes M, the values given in Table 6.2 are the averages of 6 out of 10 instances for k = 5.

The L data sets ran for all but 2 instances for k = 5, and all instances for other values of k. All

other sizes and values of k were solved to optimality.

After a single matching round, it is shown in Table 6.2 that the average number of additional

matches made in the Test algorithm compared to the Base algorithm ranges from 0 to 1.66

matches per instance. In most cases, the number of matches starting in an SDD is more than

the increase in total matches. This suggests that these donors are used for more than extra

transplants, but also replace old matches with higher weights. However, the effects of those

weights are barely noticeable in the final outcome. This can be because of the small number of

SDD donations or because the algorithm compensated other match qualities to use the SDD,

dampening the positive effect on the final objective.

The average total weights per match in the Test algorithm, denoted by wtotal, remain very

similar to those using the Base model. For the smallest instances, in which only half will use

the SDD when available, this is no surprise. The largest data sets’ average Test objectives also

remain the same if not slightly better for all three values of k.

Looking at the average number of semi-directed donors, especially in smaller patient-donor

pools, not all of them ended up donating in this one matching round. This was likely because

the 8 to 23% of patients they could have donated to were incompatible to them or offered no

additional matches.

The representation of pairs whose patient is under the age limit in the Test algorithm was

higher than in the Base model. In some cases, this lead to an over-representation of young

patients compared to their presence in the KEP pool, denoted by Q in Table 6.2.

Lastly, p in Table 6.2 are the p-values of a Mann-Whitney U test that was performed on

two disjoint groups of outcomes: semi-directed donations and all other donations to pairs in Q.

Aside from one outlier, for the smallest instance of ageLimit = 35 and k = 3, the weights of

their matches did not differ significantly at the 5% level.

Overall, there was no indication that including semi-directed donors in an offline KEP causes

any harm to the overall quality of the matches. Nor was there evidence to show that these kinds

of matches will have significantly lower weights than other donations to people under the age

limit. Even so, most of the SDDs had higher weights than their young counterparts, though this

difference was not significant.

6.2 Online algorithm

The Online algorithm was solved to optimality for all instances and values of k. The averages

of all instances are given in Table 6.3.

The introduction of semi-directed donors in the Test algorithm seems to have had a negative

impact on the overall quality of matches in all cases. This could be the effect of matching more

young patients, who have relatively lower weights. It could also be that the model compensates

on quality in order to reach the most amount of transplants.

The Test model had a positive effect on young patients, in particular those who were matched

with a semi-directed donor. There were few cases for which the average weight of the SDD

12



matches was lower than that of the young patients in the Base algorithm. In general, the

positive effect much outweighed the negative. Especially when the age limit is set to 35 years

old, the additional possibilities for semi-directed altruists cause their matches to be up to 25%

higher than those in the Base algorithm.

In two of the largest cases, for patients up until age 25 and k = 5 and for the age limit

being 35 and k = 4, the weights of SDD matches differ significantly from other young patients

in the Test model, at a 5% level of significance. Because these were some of the largest groups

of matches on which the Mann-Whitney U test was performed, it could be that other significant

differences went unnoticed due to a small sample size.

The connected scatter plots in Figure 6.1 and Figure 6.2 show the matches with semi-directed

donors compared to the outcomes for those same patients in the Base algorithm, for data set L

and k = 5. If a red data point is not connected to a grey match, this means that the patient did

not receive a kidney in the Base model. When a patient found a kidney donor in both algorithms,

the quality of those donations was not too far apart for most. As shown in Table 6.1, with an

age limit of 25, 2 of the matches including SDDs had a weight that was more than 1 standard

deviation lower in the Test model compared to the Base model. This could be one of the reasons

as to why this subgroup showed a significant difference in the Mann-Whitney U test. While no

patients got a match that was more than a standard deviation higher, more of them did get a

match with a positive difference larger than half of a standard deviation.

The time in which a patient received a transplant did differ for both models, with some

patients in the under 35 instances having to wait an additional year or more depending on the

algorithm they were in. In some cases, patients would receive their match sooner in the Test

algorithm, but in others this was true for the Base algorithm. When patients get a later match

in the Test model, it could be because the introduction of an SDD arrival made other, better

matches possible. It is also a possibility that the solver simply found multiple solutions with the

same objective.

Because new arrivals had different characteristics and thereby different weights, I will not

compare the online results to those in Table 6.2. Furthermore, other than there being slightly

more matches made with semi-directed donors when the age limit is 35 compared to 25, the

data shows no clear patterns of overall improvement in the total number of matches. Most of

the large increases relate directly to an increase in Base matches as well, suggesting that they

could be caused by dissimilar characteristics in the KEP pool.

Overall, there is an indication that weights are on average higher for patients whose donor

is an SDD than for other young patients. On the other hand, because the optimisation process

first looks to maximise the total number of matches, the quality of other matches seemingly

declines. A difference in both groups was proven to be significant only for the largest instances

and certain values of k.
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Figure 6.1: Weights of patients under 25 who matched with SDDs in the Test algorithm, red, compared
to their weights in the Base algorithm, grey, and the quarter in which they were matched1. Results for
instances of size L, with k = 5 and ageLimit = 25.
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Figure 6.2: Weights of patients under 35 who matched with SDDs in the Test algorithm, red, compared
to their weights in the Base algorithm, grey, and the quarter in which they were matched1. Results for
instances of size L, with k = 5 and ageLimit = 35.
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Table 6.1: Number of patients matched with SDDs in the Test algorithm, nsdd, versus how many of
them obtained a match in the Base algorithm, nbase. The last 4 columns reflect the number of patients
whose SDD match was more than σw higher, more than σw lower, σw

2 higher or σw

2 lower than their Base
match. Results for instances of size L, with k = 5 for age limits 25 and 35.

ageLimit nsdd nbase > σw < −σw > σw
2 < −σw

2

25 46 40 0 2 3 3
35 48 35 0 1 4 1

1Matches are spread out over the length of their quarter to increase visibility.
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7 Conclusion

In this thesis, I set out to study the effect of allowing certain altruistic donors in the Kidney

Exchange Program (KEP) to donate only to young patients. More specifically, what would the

inclusion of these kinds of donations mean for the quality of the matches, both directly and

indirectly. While the debate surrounding semi-directed donors (SDDs) has been one of ethical

concern, the aim of this thesis was to look into the efficiency of such a measure without making

any further conclusions.

The methods used to investigate the quality of the matches were based on the compact

Extended Edge formulation of Constantino et al. (2013). Their model formed the foundation for

the Base and Test models, both of which were applied in an offline and online algorithm. Within

the first context, donations by SDDs seemingly had a higher weight associated to them than other

donations to patients under the age limit, which was either 25 or 35 years old. However, this

effect was insignificant as per the Mann-Whitney U tests. The average weight over all matches

remained nearly the same in every Test scenario, regardless of whether additional SDDs were a

part of the KEP pool.

The results of the online algorithm were slightly more conclusive. In this context, average

weights of donations made by SDDs were almost exclusively higher than similar patients’ matches

in the same KEP pool, and often much higher than those in the Base model. While most

differences were insignificant, two of the largest instances did produce weights that differed

from other young patients in their KEP pool at the 5% level. It is unclear if this was due to

outliers or if semi-direct donors consistently provide higher quality matches. On the contrary, the

average weights of matches in the Test algorithm were lower. This difference could potentially

be attributed to the higher proportion of young matches in the outcome, who generally produce

lower weights.

In general, there is an indication that donations by semi-directed donors produce matches

of significantly different, and on average higher, quality. In the research question of this paper,

it was assumed that these donors would produce lower weights, as they are limited in options.

However, in the online algorithm, it seems that the benefit of being an altruistic donor outweighs

the drawbacks of donating to only a subset of patients, especially when that subset is larger.

In future research, this hypothesis should be tested on instances with more patients and a

known weight distribution. It should also implement common random numbers for the pool’s

characteristics of each test instance. Additionally, since the weights now rely on the age of

patients, it could be interesting to use another formula or choose an unrelated characteristic on

which to differentiate patients.

This thesis contributes to the literature by providing the models and algorithms to test

differences in the KEP with and without semi-directed donors. Even if more conclusive proof

would show that these SDDs indeed bring higher quality matches into the program, they also

declined the quality of some of their patients’ matches compared to the Base model. Thereby,

one should be careful not to compensate the weight of other matches in order to include these

SDDs and create more transplants.
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A Code

The code used to generate the results in this thesis are in a zip file. It contains four projects, one

having been used to replicate the results of Constantino et al. (2013), another to generate large

samples of weights and extract summary statistics while the last two run the offline and online

algorithms of this thesis. As mentioned in the results section of this thesis, not all instances

of the offline algorithm were able to run fully, while they were for the online algorithm. This

means that the code for my online model is likely more efficient. Regardless, all other instances

ran within at most a couple of minutes. Within the zip file I have also attached a document

with steps showing how to recreate my results for each part of the thesis, but since each of the

larger projects has an Interface class this will not take much time to understand. All of the

projects used for this thesis were made with IntelliJ as a Maven project. If not familiar with

Maven, it suffices to click the round arrow in the maven file of the project to download all of

the dependencies that were used.

B Replication of results

To replicate both the Edge (E) formulation and the reduced Extended Edge (EE) formulation

from Constantino et al. (2013), I used both blood type and density test instances. The latter are

matrices that indicate the compatibility between donors and patients of different pairs, where

the chance of a match between each is either 0.2, 0.5 or 0.7 . The other instances reflect a

compatibility that is based on the blood types of both the patient and donor, as well as the

patient’s PRA level. These instances were provided by the Erasmus School of Economics (ESE).

It is important to note that in either case, no donor is compatible to their own patient. Each

data set consists of 50, 70, 100 or 200 incompatible patient-donor pairs and contains no altruistic

donors.

While the model of this thesis does not seem more efficient, as it does not have fewer variables

or constraints, it performs better for k = 4 and k = 5 in low density graphs. This is likely due to

the improvements to this software over the last decade, and the use of Gurobi instead of CPLEX.

Thereby, computation time was consistently lower for large instances, as shown in Table B. The

notation used in both tables is the same as in Constantino et al. (2013):

• n is the number of nodes in the graph;

• k is the maximum length of the cycles;

• tp is the average CPU time needed to solve for all paths in the graph, rounded to the nearest

integer. In the EE model this time is negligible and thus not mentioned in Table B;

• T is the average CPU time it took Gurobi to solve the optimization problem, rounded to the nearest

integer. The time limit for this was 1800 seconds;

• #opt is the number of instances that were solved to optimality within the given time limit. Each

kind of data set, for each k, was run for 10 different instances. If there is no number given then

this means that all were solved to optimality;

• gap is the average LP gap associated to the formulation. If UB is the upper bound provided by

the linear relaxation of the problem, and Opt is the optimal value of the problem, then gap =
(UB−Opt)

Opt · 100% ;

• When a space is left empty, this means that the result was not relevant to the comparison. If a

cell is filled with (-), this means that none of the instances produced results within 1800 seconds.
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Table B.1: Results for small instances

n k E EE

tp/T #opt gap #var #con T gap #var #con

Blood type test instances
50 3 10/91 0.0 0 0.0

4 28/447 0.0 0 0.0
5 54/1037 5 0.0 0 0.0
6 - - 0 0.0

Low density test instances
50 3 0/2 0.0 2500 48651 0 0.0 6276 792

4 0/1 8 0.0 2500 475449 1 0.0 6390 1810
5 1/17 9 0.0 2500 > 3 ∗ 106 1 0.0 6439 2315
6 - - - > 3 ∗ 106 1 0.0 6572 2402

Medium density test instances
50 3 0/2 9 0.0 2500 731982 4 0.0 17420 2024

4 - - - > 3 ∗ 106 3 0.0 17273 2622
5 - - - > 3 ∗ 106 4 0.0 17215 4101
6 - - - > 3 ∗ 106 3 0.0 17579 2632

High density test instances
50 3 0/8 0.0 2500 2073433 2 0.0 15345 2429

4 - - - > 3 ∗ 106 4 0.0 26509 2640
5 - - - > 3 ∗ 106 4 0.0 29440 3642
6 - - - > 3 ∗ 106 3 0.0 29010 2641

V



Table B.2: Results for large instances

n k T gap

Blood type test instances
70 3 1 2.0
100 3 1.9
200 53 0.8
70 4 1 2.0
100 3 1.9
200 55 0.8
70 5 1 2.0
100 3 1.9
200 54 0.8
70 6 1 2.0
100 3 1.9
200 55 0.8

Low density test instances
70 3 1 0.0
100 4 0.0
70 4 4 0.0
100 4 0.0
70 5 11 0.0
100 4 0.0
70 6 10 0.0
100 4 0.0

Medium density test instances
70 3 7 0.0
100 24 0.0
70 4 16 0.0
100 24 0.0
70 5 13 0.0
100 24 0.0
70 6 11 0.0
100 24 0.0

High density test instances
70 3 14 0.0
100 50 0.0
70 4 31 0.0
100 50 0.0
70 5 13 0.0
100 50 0.0
70 6 21 0.0
100 50 0.0
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