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Abstract

The problem this paper aims to solve is how model averaging methods (MMA and FMA)

compare to model selection methods (AIC and BIC) in a financial data application, such

as closing stock prices of Apple Inc. common stock historical quotes of one year. Model

selection methods based on AIC and BIC are used on financial data of the stock Apple Inc.

of one year. Next to that, model averaging methods such as MMA and FMA are used on

Apple Inc. stock data. After that, the results of these methods are compared to each other

and evaluated according to some appropriate evaluation criteria to see how they relate to

each other. This research broadens the empirical applications of these methods from its

theoretical background. The main results are that by applying MA methods to the data

instead of MS methods to account for model uncertainty, the models will have a higher

predictive accuracy according to the evaluation criteria MSE. The data that is used is Apple

Inc. common stock historical quotes of one year from the website of Nasdaq (2024).

1 Introduction

In this section, the theoretical background of model selection and model averaging methods is

described as first, after that the research question is formulated, following that the motivation

of the research problem is explained and finally the relevance for the subject is outlined.

To begin with, model selection (MS) and model averaging (MA) are two important meth-

ods in statistical modeling and predictive analytics. Model selection involves choosing the best

‘single’ model from a set of candidate models. Various model selection criteria have been sugges-

ted according to optimality factors including minimizing the estimated prediction risk such as

AIC (Akaike, 1973). Another model selection criteria that is suggested according to optimality

factors is asymptotically maximizing the posterior probability of a model such as BIC (Schwarz,

1978). Model selection relies on criteria that balance model fit and complexity. AIC (Akaike,

1973) and BIC (Schwarz, 1978), as an example for model selection criteria to choose a best

model, penalize the likelihood of the model by the number of parameters to prevent over fitting.

The selected model may not be robust to model uncertainty and may perform poorly if the

chosen model is not the true model according to the research of Chatfield (1995), Draper (1995)

and Yuan & Yang (2005). To address this issue, model averaging provides a robust alternative

by combining predictions from multiple models, thereby enhancing performance and reliability

in the presence of model uncertainty and also reduce modeling biases. Model averaging is based

on the principle that taking the average of a set of models can mitigate the risk of selecting

a poor model. This method can therefore improve predictive performance and reliability by

accounting for model uncertainty and reducing the risk of over fitting which is a challenge and

problem in model selection methods. There are a lot of different model averaging methods, such

as Mallows Model Averaging (Hansen, 2007), Bayesian Model Averaging (Adrian E. Raftery &

Hoeting, 1997) and Frequentist Model Averaging (Claeskens, 2003). This research is going to

use two of them in a financial application that is related to stocks.

This paper is therefore going to investigate the following research question:

How do model averaging methods compare (improve predictive accuracy or not) to model

selection methods in a financial application, such as closing stock prices from Apple Inc.?
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Accurate stock price prediction is crucial in finance. This is due to the fact that market

volatility and complexity exists. But, traditional model selection methods like AIC (Akaike,

1973) and BIC (Schwarz, 1978) often do not include model uncertainty which may result in

sub-optimal predictions. An interesting alternative is offered by model averaging techniques

where multiple models are used together to enhance forecasting performance such as Mallows

Model Averaging according to the approach of Hansen (2007) and Frequentist Model Averaging

(FMA) according to the paper of Claeskens (2003). However, we don’t know enough about

how well these methods work when applied to financial problems, specifically applied to Apple

Inc.’s common stock historical quotes of the last year. The problem with this kind of research

is that most research has looked at these methods, but only from theoretical or non-financial

perspectives without making direct comparisons with real financial data. And also most of

the studies have focused on static models while ignoring dynamic nature of financial markets

influenced by various macroeconomic factors. Thus, it is important that further study is carried

out to confirm through empirical analysis if model averaging techniques are more efficient than

conventional procedures such as model selection methods for predicting stock prices. Better

risk management and investment decisions require accurate forecasts. The practical application

of the benefits and limitations of using model averaging techniques in the case of forecasting

Apple’s share price will be investigated using actual financial data from the website of Nasdaq

(2024).

There are several reasons why this research is important and relevant. The first reason is

that this research fills in the empirical comparison gap amongst the model selection and model

averaging methods in academic literature. Next to that, this study can improve financial stability

by increasing risk management and improve investment strategies in stocks such as Apple Inc.

common stock. Lastly, this research is relevant because it develops advanced financial models

that will go a long way to benefit in the wider finance industry.

2 Literature

Within this section, an overview of the existing literature pertaining to model selection and

model averaging in empirical applications (also finance related) is provided. First, a summary

is given of the results that have been obtained in previous research on this topic. Following

that, a summary is given of how this research relates to the existing literature. After that, the

structure of the remaining sections of this research are outlined.

Over time, an array of studies has delved into the model selection methods and model

averaging methods. Most of the times, those studies were purely theoretical papers like the

research of Peng & Yang (2022) that answers if model averaging methods offer any significant

improvement over model selection methods in regression estimation without using an empirical

application. The research of Johnson & Omland (2004) uses an empirical application for model

selection methods that are well developed in certain fields, like in molecular systematics and

mark recapture analysis. But, model selection methods are less used in other areas, like in

evolution and ecology where those methods could be useful. By investigating this, researchers

in ecology and evolution find a valuable alternative to traditional null hypothesis testing. Those

aforementioned fields are a small subset of fields where the use of model selection methods is
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needed. So, other empirical applications that need model selection methods to reduce estimation

risk instead of evolution and ecology could be in finance, economics or marketing. The study of

Hartman & Groendyke (2013) uses model selection methods (based on AIC, BIC and DIC) and

model averaging methods in an empirical application that is finance related. Namely, financial

risk management where the MS and MA methods are applied to total return data from the S&P

500. Their research specifically considers MS methods that provide posterior probabilities being

the best, enabling MA and providing deeper insights into the relationships between the financial

risk management models. While model selection methods in empirical applications provide

a robust framework for the best fitting models, model averaging methods offer an additional

approach to take model uncertainty into account by integrating multiple models. So, while

the literature that pertains to model selection methods in empirical applications have been

discussed in this paragraph, the literature that pertains to model averaging methods in empirical

applications will be provided in the next paragraph.

Another empirical application where model averaging methods are used for research is in

the paper of Moral-Benito (2015). This paper reviews the literature on model averaging spe-

cifically on the applications in economics. Their main conclusion is that model averaging takes

into account the model uncertainty surrounding the selection of controls in a natural manner

in applications that relate to economics. To understand the role of model averaging in address-

ing model uncertainty even better (also in other applications than economics), the review of

Wasserman (2000) offers an in-depth examination of objective Bayesian methods. These meth-

ods described by Wasserman (2000) highlight the use of non informative priors and the practical

aspects of the implementation. The main points of the research of Wasserman (2000) are that

the Bayesian model selection and averaging methods are straightforward and unified approaches.

BIC (Schwarz, 1978) provides a useful approximation for well-behaved models and large sample

sizes. Intrinsic Bayes factors are suggested for nonstandard problems and averaging predictions

from multiple models is highlighted. Lastly, the paper emphasizes objective Bayesian methods

instead of subjective priors and acknowledge robust Bayesian inference as a bridge between ob-

jective and subjective Bayesian methods. Building on the study of Wasserman (2000) that is a

detailed analysis of Bayesian methods in MS and MA, the discussion is extended to practical

approaches for addressing model uncertainty in linear regression models in the study of Adrian

E. Raftery & Hoeting (1997). ‘Occam’s window’ and a Markov chain Monte Carlo method,

which are the Bayesian model averaging methods used in the paper, both improve predictive

performance by considering a subset of models or directly approximate the exact solution. The

conclusion of the paper of Adrian E. Raftery & Hoeting (1997) is that the choice between the

two Bayesian model averaging methods depends on the application. ‘Occam’s window’ is better

and faster for inferring relationships between variables, while Markov chain Monte Carlo is bet-

ter in making predictions or investigating posterior distributions when computation time is not

a constraint. Both of the two Bayesian model averaging methods are flexible and can be used

for inference and prediction for accounting model uncertainty. Following these explorations of

Bayesian MA methods, the paper of Goodness Aye (2015) further explores advanced predictive

models for financial applications, specifically focusing on variables of gold returns. Results of

this study show that dynamic model selection (not dynamic model averaging) is the best across
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all different forecast horizons. The exchange rate has the strongest predictive power to predict

the price of gold in the research of Goodness Aye (2015).

This research in model selection & model averaging methods applied to a financial application

(historical quotes of Apple Inc. common stock) relates to the existing literature by broadening

the empirical applications of these methods from its theoretical background. The theoretical

paper of Peng & Yang (2022) discusses model selection and model averaging methods and no

empirical application is provided (only related simulations that confirm what they theoretically

argued in their study). Yet, studies from Johnson & Omland (2004) and Hartman & Groendyke

(2013) show that MS and MAmethods are being actively used in fields, such as ecology, evolution

and financial risk management, in practice. The use of MS and MA methods to economic data

and an in-depth examination of objective Bayesian methods, is guided by the insights from

Moral-Benito (2015) and Wasserman (2000). The significance of managing model uncertainty

and the usefulness of Bayesian techniques are the main topics of these studies. More recent

papers that have investigated Apple stock data are papers from Rai et al. (2018) and Banerjee

(2020). In the research of Rai et al. (2018) stock market movements are analyzed using several

internet sources including stock prices and transaction volumes data of Apple and other big

companies. The study of Banerjee (2020) forecasts Apple Inc. common stock prices using

the S&P 500. So, Apple data is popular to use for research, however there are hardly any

papers to find where MS and MA methods are applied to Apple stock data. That is where

this research is breaking new ground. Furthermore, this study advances knowledge about the

potential applications of MS and MA in the finance industry by examining their predictive power

for stock returns. The results of Goodness Aye (2015) on gold returns and dynamic model

selection are consistent with the present study. This demonstrates the potential for enhancing

prediction accuracy and lowering estimation risk in a financial application (like Apple Inc. stock),

in addition to validating the adaptability of MA methods in a variety of empirical applications.

To address the research question, the data is presented first in Section 3, accompanied by the

summary statistics. Following that, the methodology is outlined in Section 4, where Subsection

4.1 is the methodology for the replication part and Subsection 4.2 the methodology for the

extension part. The results are displayed in Section 5, where Subsection 5.1 are the results for

the replication part and Subsection 5.2 the results for the extension part. The conclusion is

presented at the end of this paper in Section 6.

3 Data

In this part, the data that is used is described and how to obtain that data. In Subsection

3.1 this is done for the data of the replication part of the research of Peng & Yang (2022). In

Subsection 3.2 this is done for the data of the extension part of this research.

3.1 Replication

The data that is used in Section 5 for the simulation settings to compare MS with MA of

the paper of Peng & Yang (2022)is not a certain dataset. The data is generated or produced
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according to a linear regression model, which is the data generating process (DGP):

yi = µi + ei =

pn∑
j=1

θjxji + ei, i = 1, ..., n (1)

where pn = ⌊5n2/3⌋, x1i = 1, the leftover xji’s are independently generated from N(0, 1), the

random errors ei are iid from N(0, σ2) and are independent of xji’s and n is the number of

observations that varies with n = 50, 150 or 400 for Figures 1 and 2 in Section 5 of the research

of Peng & Yang (2022) and n varies with 50, 100, 500, 1000 and 5000 for Figures 3 and 4 in

Section 5 of the research of Peng & Yang (2022). The population R2 = V ar(µi)/V ar(yi), which

looks like Signal-to-Noise-Ratio (SNR), is regulated in the range of [0.1, 0.9] via the parameter

σ2. Two cases are considered with slowly decaying coefficients and fast decaying coefficients:

• Slowly decaying coefficients: θj = j−α1 and α1 is set to be 1, 1.5 or 2.

• Fast decaying coefficients: θj = exp(−α2j) and α2 is set to be 1, 1.5 or 2.

To obtain the data that is generated according to the previous specified process that comes

from the paper of Peng & Yang (2022) simulations are done in a program like Python to generate

the synthetic data. The data is simulated according to the theoretical model (DGP), a linear

regression model as specified above.

3.2 Extension

To address the research question, data used in this analysis was obtained from the freely available

website of Nasdaq (2024), which is a dataset about Apple Inc. common stock historical quotes

of one year. It provides a daily record of Apple Inc. common stock performance over the

period of 1 year, so from the 31th of May in 2023 till the 30th of May 2024 including detailed

price movements of the stock and trading volume. The data includes the following column,

one variable to predict (also column) and four covariates (which are also columns): ‘Date’,

‘Close/Last’, ‘Volume’, ‘Open’, ‘High’ and ‘Low’.

The column ‘Date’ gives the specific trading date in the format month/day/year (American

style). This column captures each trading day within the one-year period. So, all the weekend

dates are missing out in this dataset, because these are no trading days. Next to that, all the US

holiday calendar dates are also missing out in this dataset, because these are not trading days as

well. To be precise, it is about New Year’s Day (January 1, 2024), Martin Luther King Jr. Day

(January 15, 2024), Washington’s Birthday (February 19, 2024), Memorial Day (May 27, 2024),

Independence Day (July 4, 2023), Labor Day (September 2, 2023), Columbus Day (October

14, 2023), Veterans Day (November 11, 2023), Thanksgiving Day (November 28, 2023) and

Christmas Day (December 25, 2023). Because of this, the dataset has 252 observations (rows in

Excel data document).

The target variable (to predict variable) ‘Close/Last’ captures the closing price of Apple Inc.

stock on the given date (given row in dataset), represented in USD. The ‘Close/Last’ price in

USD is the final price at which the stock traded during that day after regular trading hours.
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The covariate (or predictor) ‘Volume’ stands for the total number of shares of Apple Inc.

that were exchanged during that trading day. This column gives information about the trading

activity and liquidity of the stock on a particular day.

The covariate (or predictor) ‘Open’ represents the opening price of Apple Inc. stock on the

given date (given row in dataset), also represented in USD. The ‘Open’ price is the price in USD

at which the stock first traded upon the market opening that day.

The covariate (or predictor) ‘High’ indicates the highest price of Apple Inc. stock that was

reached during that particular trading day, in USD.

The covariate (or predictor) ‘Low’ indicates the same as the covariate ‘High’, but then for

the lowest price of Apple Inc. stock that was reached during that specific day.

How do the covariates actually relate to each other? To begin with, the difference between

the ‘High’ and ‘Low’ prices indicate the volatility of the Apple Inc. stock on the given day.

Large differences between ‘High’ and ‘Low’ indicate high volatility. On top of that, there is a

positive correlation between ‘Volume’ and the size of price changes (difference between ‘Open’

and ‘Close/Last’ or between ‘High’ and ‘Low’). This positive correlation can be seen in Table

7 in Section A.4. High trading volumes lead to larger price movements. Lastly, there is a

relationship between ‘Open’ and ‘Close/Last’ prices. They show the overall trend of the Apple

Inc. stock price during the day whether the price increased, decreased or stayed relatively stable.

This overall trend can be seen in Table 8 in Section A.4.

Secondly, we will zoom in if the data contains missing observations or outliers that can impact

the results when performing model selection and model averaging techniques. This dataset about

historical quotes of the common stock Apple Inc. does not contain any missing values, so we

do not have to have an approach to handle these missing observations as they are not there.

Next, we will identify if there are any outliers present in the data. Common approaches to

detect outliers are: empirical relations in normal distributions and IQR (Inter Quartile Range)

in skewed distributions. In our case, we use IQR as an outlier detection method. For the reason

that the data follows a slightly skewed distribution (See Table 1 for skewness of the target

variable and the covariates of the data). The IQR for each covariate of the data is calculated

and identified if they lie beyond the 1.5 times the IQR from the first and third quartiles. As

a result in the dataset, only the covariate ‘Volume’ contains outliers, namely 16 observations.

The other covariates in the data do not contain outliers. Common approaches to handle outliers

are: trimming (remove extreme values), capping (replace outlier values with nearest non-outlier

values), discretization (categorize outliers into specific group with same behavior), treating them

as missing values or transform them (logarithmic transformation to reduce impact of them).

Capping is the most appropriate approach in this case, because outliers in the ‘Volume’ column

of the stock trading data of Apple Inc. can vary significantly and therefore handle these outliers

in a proper way without losing valuable information. The outliers in the ‘Volume’ column have

been capped at the 5th and 95th percentiles. Still, the number of outliers in that column stays

the same, because the extreme values were replaced but are still considered as outliers according

to the IQR method. Taking this all into account (missing observations and outliers), the data

is cleaned and ready for analysis.

Finally, some relevant statistics about the data are provided in Table 1.
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Table 1: Summary Statistics of Apple Inc. common stock (AAPL) historical quotes from 31th
of May 2023 till the 30th of May 2024

Mean Median Standard Error Skewness Kurtosis

Close/Last 182.39 182.66 0.53 -0.11 -1.13
Volume 58,258,780 53,261,680 1,184,039 2.06 6.02
Open 182.32 182.43 0.54 -0.09 -1.15
High 183.80 184.23 0.52 -0.11 -1.09
Low 180.93 181.15 0.54 -0.04 -1.18

4 Methodology

In this segment, the econometric methods and techniques that will be applied in this research

are explained and why they are appropriate for this research specifically to answer the research

question. In Subsection 4.1 this is done for the econometric methods of the replication part of

the research of Peng & Yang (2022). In Subsection 4.2 this is done for the econometric methods

of the extension part of this research.

4.1 Replication

Several simulation settings are considered to compare MS method(s) with MA method(s). This

is for the reason to illustrate the theoretical results presented in the paper of Peng & Yang (2022).

AIC (Akaike, 1973) and BIC (Schwarz, 1978) are chosen as MS methods and MMA (Hansen,

2007) is chosen as MA method as representative. The data of these replication methods of the

study of Peng & Yang (2022) is described in Subsection 3.1. The method(s) that is/are used

to replicate the results of the research of Peng & Yang (2022) is that Mn nested approximating

models are considered that consists of the first s regressors for 1 ≤ s ≤ Mn. After that, all

the candidate models are estimated by ordinary least squares (OLS). Then, the precision of

each procedure on the observed data is measured in terms of squared L2 loss at 10000 new

independently drawn covariates. This squared L2 loss or risk has the following formula:

R(f, f̂) =
1

n
E
∥∥∥f − f̂

∥∥∥2 = 1

n
E

n∑
i=1

[
f(xi)− f̂(xi)

]2
(2)

where n in Equation 2 is the number of replications, f(xi) is the true estimator function (θxi),

f̂(xi) is the estimated estimator function based on the model (θ̂xi) and the xi’s are the new

independently covariates that are drawn (10000 according to the research of Peng & Yang

(2022)).

This procedure is replicated 1000 times (n = 1000 in Equation 2) to compute the risk

functions of MS and MA methods. In each simulation, the risks of the MS methods and the MA

methods are divided by the risk of MMA. So, the risk of the MA method (MMA in this case) is

divided by itself.

In the simulation settings, the effects of n (sample size), R2 = V ar(µi)/V ar(yi) (which

looks like SNR) and coefficient decaying order (slowly and fast) are investigated on relative

performances of MS and MA in two different ways. The first way is presented in Figures 1
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and 2, that implement the approach of Hansen (2007) to compare the risk as a function of the

population R2 for different n (n = 50, 150 and 400). When looking at the settings of Hansen

(2007), Mn is set to be 11,16 and 22 under the three different sample sizes. The second way

is displayed in Figures 3 and 4, that investigate the relative risks of the MS and MA methods

as a function of n, where n increases from 50 to 5000 on a logarithmic scale. In Case 1, where

we have slowly decaying coefficients Mn is set to be 3
(

n
σ2

) 1
2α1 . In Case 2, where we have fast

decaying coefficients Mn is set to be 4.5
α2

log
(

n
σ2

)
These are multiples of the optimal model size

in each case of decaying coefficients. The second way (Figures 3 and 4) correspond more to

asymptotic statements in the main theorems of the paper of Peng & Yang (2022). The first way

(Figures 1 and 2) correspond to the information on the impact of the SNR at a given sample

size.

4.1.1 Model selection method(s) based on AIC and BIC

The model selection methods that are executed in the research of Peng & Yang (2022) and on

the financial data in this research (extension) are based on AIC and BIC. Here is an overview

of these methods (description of symbols in Equations can be found in Section A.3):

Akaike Information Criterion (AIC) (Akaike, 1973):

2k − 2 log(L) (3)

Bayesian Information Criterion (BIC) (Schwarz, 1978)

k log(n)− 2 log(L) (4)

4.1.2 Mallows Model Averaging

The model averaging method that is executed in the research of Peng & Yang (2022) and on

the financial data in this research (extension) is Mallows Model Averaging (MMA) according to

the approach of Hansen (2007). MMA is a Model Averaging (MA) technique that selects the

weights of the model by minimizing a Mallows criterion, which is an estimate of the average

squared error from the model average fit. Following that, the formulas are as follows (for the

model average estimator in 5 of ΘM in matrix notation and Mallows criterion for the model

average estimator in 6 also in matrix notation, so not in vector notation θj like what is done in

Subsection 3.1, this to present the Equations 5 and 6 in an easier and more compact way):

Model average estimator:

Θ̂ =
M∑

m=1

wm

(
Θ̂m

0

)
(5)

where m are the approximating models, M = Mn ≤ n and m ≤ M where M is the max model

size (so max amount of models that can be considered), wm the weight that corresponds to the

m-th approximating model and Θ̂m is the least squares estimate of Θm.

Mallows criterion for the model average estimator:
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Cn(W ) = (Y −XM Θ̂)′(Y −XM Θ̂) + 2σ2k(W ) (6)

where Y = XmΘm + bm + e or Y = (y1, ..., yn)
′, XM is the n × kM matrix with the with the

ij-th element xji, Θ̂ is the model average estimator from 5, σ2 unknown and k(W ) the effective

number of parameters.

The σ2 is going to be replaced with an estimate according to the approach of Hansen (2007).

The Mallows criterion in Equation 6 may be used to select the weight vector W . First, the

empirical Mallows selected weight vector is introduced:

Ŵ = arg min
W∈Hn

Cn(W ) (7)

whereHn in Equation 7 is the non negativity and summation constraint that follows the following

notation:

Hn =

{
W ∈ [0, 1]M :

M∑
m=1

wm = 1

}
(8)

There is no closed form solution to Equation 7, so the weight vector must be found numerically.

Therefore Equation 6 can be written in the following form:

Cn(W ) = W ′ēē′W + 2σ2K ′W (9)

where W = (w1, ..., wM )′, ē = (ê1, ..., ˆeM ) is the n×M matrix of residuals where êm is the n× 1

residual vector from the mth model and K = (k1, ..., kM )′ is the M × 1 vector of the number of

parameters in the M models.

Then Equation 9 is linear quadratic in W . The solution of Equation 7 minimizes Equation 9

subject to Equation 8. This is a typical quadratic problem for which numerical algorithms can

be used that are available.

4.2 Extension

4.2.1 Frequentist Model Averaging

The model averaging method that is performed on the financial data of Apple stock in this

research is Frequentist Model Averaging (FMA) according to the approach of Buckland & Au-

gustin (1997) that is described in the paper of H. Wang & Zou (2009). They introduce the

model averaging estimator of a parameter µ as follows:

µ̂B =
K∑
k=1

λkµ̂k (10)

where k is the k-th candidate model, µ̂k is the estimator of µ of the k-th candidate model, λk

the weight associated with µ̂k and all the weights (λk’s) of the candidate models must sum up

to 1 as a constraint.

The weights are in practice estimated according to the following information criteria:
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Ik = −2 log(Lk) + ℓ, (11)

where Lk is the maximized likelihood function under the k-th model and ℓ is a penalty function

for the number of parameters and/or observations. Then following the approach of Buckland &

Augustin (1997), they recommend to use the following formula for the weights:

λk =
exp(−Ik/2)∑K
i=1 exp(−Ii/2)

, k = 1, 2, . . . ,K. (12)

If ℓ = 2p in 11, where p is the number of parameters, Ik would be AIC. This assumption is made

in this paper because it is grounded in the theoretical principles of information theory, practical

need to balance model fit and complexity and to simplify the Equation for the weights in 11 and

in 12. Therefore the estimator is called smooth AIC estimator with Akaike weight. Theoretical

study is not conducted on such estimators, but numerical examples are presented to demonstrate

the reliability of them. The weights according to Equation 12 have been extensively used in the

literature, for example in the research of Wan & Zhang (2009), Wagenmakers & Farrell (2004)

and F.E. Turheimer & Cunningham (2003).

4.2.2 Evaluation criteria

The evaluation criteria that are used after having applied model selection and model averaging

methods to evaluate the performance of the models are MSE, MAE and R2, which can be seen

in Table 6 and Table 5 in Section A.2. The formulas of these criteria can be found in Section

A.2 (also how the data is split).

5 Results

In this section, the most important empirical findings and relevant results are presented. Next

to that, necessary explanations, implications and interpretations are provided to validate the

results. In Subsection 5.1 this is done for the results of the replication part of the research of

Peng & Yang (2022). In Subsection 5.2 this is done for the results of the extension part of this

research.

5.1 Replication

Firstly, the normalized risk functions for AIC, BIC and MMA when θj = j−α1 with α1 = 1 in

first row, α1 = 1.5 in second row and α1 = 2 in third row (of the subplots) are presented in

Figure 1. The subplots correspond to slowly decaying coefficients.
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Figure 1: Normalized risk functions for AIC, BIC and MMA when θj = j−α1 with α1 = 1 in

first row, α1 = 1.5 in second row and α1 = 2 in third row. The graphs correspond to slowly

decaying coefficients.

The y-axis in each subplot represents ‘Risk’ (squared L2 risk according to Equation 2)

associated with each criterion (AIC, BIC and MMA). The x-axis in each subplot presents the

info R2 = V ar(µi)/V ar(yi), which represents the Signal-to-Noise Ratio (SNR) in a slightly

different way, controlled in the range of [0.1, 0.9] via the parameter σ2 (unknown, but estimated

according to the approach of Hansen (2007)). These criteria are compared in terms of risk,

with AIC and BIC showing lower risks compared to MMA in each of the subplots of Figure

1 (different result than in research of Peng & Yang (2022)). BIC shows even a higher risk

compared to AIC in in the first two subplots of Figure 1 for the small values of R2 and then

BIC becomes equal to AIC for bigger values of R2. If the sample size n increases from n = 50

to n = 400, the trend is that the risks for AIC and BIC remain relatively similar but become

slightly less volatile. MMA stays the same for different values of n, because the risk of MMA

is normalized by itself. If the α1 values increase from α1 = 1 to α1 = 2, the trend is that the

risks of AIC and BIC decreases, especially when R2 increases. However, MMA remains robust

for different values of α1. To conclude, AIC and BIC consistently outperforms MMA in terms

of risk for different n and for different parameter values (α1’s). Therefore model selection is a

more reliable and robust approach under various conditions (different n and different parameter

values) compared to model averaging according to Figure 1 (different result than in research of

Peng & Yang (2022)).

The results of Figure 1 do not match the published Figure 1 of the research of Peng &

Yang (2022) exactly. Possible reasons for this could be differences in simulation parameters

& data generation, differences in model specification & implementation, differences in software

and differences in plotting & normalization. Firstly, with differences in simulation parameters

it is meant that n,R2, α1 and simulation values should be exactly the same between the results
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of this research and the published figures. Even small deviations could lead to significant dif-

ferences. This research uses n values of 50, 150 and 400, α1 values of 1, 1.5 and 2, R2 values

that span the range from 0.1 to 0.9 in equal increments of 0.1 and 500 simulations. The only

difference between this research in terms of parameters and the research of Peng & Yang (2022)

is that this research uses 500 simulations instead of 1000, as 1000 simulations are challenging.

This can cause the difference in results and is a limitation. Secondly, with differences in data

generation it is meant that the DGP of this research should be exactly the same as the DGP

from the published research. This research uses the linear regression model for response variable

y in matrix notation, so y = XΘ+ e instead of yi = µi + ei =
∑pn

j=1 θjxji + ei. But, this study

uses the same pn, first column to 1 as per the given DGP, same distribution for X and e and

independent elements of X. Next to that, this research uses the same R2 formula as published

research and the σ2 that is estimated by the formula in the paper of Hansen (2007) with the

θj = j−α1 and α1 is set to be 1, 1.5 or 2. So, the difference in linear regression model for response

variable y in matrix notation can cause the difference in results and can be a limitation and the

other settings not as they are exactly the same as in Peng & Yang (2022). Thirdly, there could

be some mistakes in the Python code or in the order of doing things in the code. This study

first introduces parameters in the code, then presents the function to calculate the risk with the

given DGP from the research of Peng & Yang (2022) on page 251 in the beginning of Section 5,

after that the σ2 is estimated according to the formula in Hansen (2007) on page 1181 on line

21, following that the AIC and BIC calculations are done across different model complexities

following the AIC and BIC formulas out of the paper Hansen (2007) on page 1182, thereafter the

models are selected with minimum AIC and BIC, consequently MMA is introduced in the code,

then the risk calculation(s) is/are parallelized and finally the results are reshaped and plotted

in the code. This can cause different figures than in the pubished research. Fourthly, the MMA

based on Mallow’s criterion in this research can differ a little bit from the published research

of Hansen (2007) because his Gauss procedure to compute MMA least squares estimates is not

used in the code in this research. This can cause some different results than the study of Peng

& Yang (2022). Finally, there could be some differences in used software, software versions

and libraries. This could lead to different figures than the published figures. This research is

performed on an Acer i7 laptop 16.0 GB (15.9 GB usable) of RAM, using Python 3.12 (64-

bit) as a program. The research of Peng & Yang (2022) is probably done on another laptop or

computer with another app or program to perform the results what can lead to minor differences.

Secondly, the normalized risk functions for AIC, BIC and MMA when θj = exp(−α2j) with

α2 = 1 in first row, α2 = 1.5 in second row and α2 = 2 in third row are presented in Figure 2.

The subplots correspond to fast decaying coefficients.
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Figure 2: Normalized risk functions for AIC, BIC and MMA when θj = exp(−α2j) with α2 = 1

in first row, α2 = 1.5 in second row and α2 = 2 in third row. The graphs correspond to fast

decaying coefficients.

The y-axis in each subplot represents the same as in Figure 1 and the x-axis represents the

same as in Figure 1. The criteria are compared in terms of risk, with AIC and BIC showing

lower risks compared to MMA in each of the subplots of Figure 2. AIC shows even a higher risk

compared to BIC in the first three subplots of Figure 2 when n = 50 for small values of R2 .

If the sample size n increases from n = 50 to n = 400, the trend is that the risks for AIC and

BIC remain relatively similar but become slightly less volatile and become eventually the same.

MMA stays the same for different values of n, because the risk of MMA is normalized by itself.

If the α2 values increase from α2 = 1 to α2 = 2, the trend is that the risks of AIC and BIC

increase, especially when R2 values are small and AIC and BIC decrease, especially when R2

values are large. However, MMA remains robust for different values of α2. To conclude, AIC and

BIC consistently outperforms MMA in terms of risk for different n and for different parameter

values (α2’s). Therefore model selection is a more reliable and robust approach under various

conditions (different n and different parameter values) compared to model averaging according

to Figure 2 (different result than in research of Peng & Yang (2022)).

The results of Figure 2 do not match the published Figure 2 of the research of Peng & Yang

(2022) exactly and also do not show the same trends in the subplots. Possible reasons for this

are the same reasons mentioned that apply to Figure 1 as argued before.

Thirdly, the normalized risk functions for AIC, BIC and MMA when θj = j−α1 with α1 = 1

in first row, α1 = 1.5 in second row and α1 = 2 in third row are presented as a function of n

(number of samples) for different values of R2 (0.25, 0.5 and 0.75) and different values of α1.

The subplots correspond to slowly decaying coefficients.
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Figure 3: Normalized risk functions for AIC, BIC and MMA when θj = j−α1 with α1 = 1 in

first row, α1 = 1.5 in second row and α1 = 2 in third row. The graphs correspond to slowly

decaying coefficients. The risk functions for AIC, BIC and MMA are now shown as a function

of n (number of samples) for different values of R2 and α1 instead of that the risk functions are

shown as a function of R2 in the range of [0.1, 0.9] for different values of n and α1 like in 1.

The y-axis in each subplot represents ‘Risk’ (squared L2 risk or loss according to Equation

2) associated with each criterion (AIC, BIC and MMA). The x-axis in each subplot represents

the number of samples n (for n = 50, 100, 500). (That is different than in Figures 1 and 2

and different than in research of Peng & Yang (2022) ). These criteria are compared in terms

of risk, with AIC and BIC showing lower risks compared to MMA in each of the subplots of

Figure 3. BIC shows even a higher risk compared to AIC in the first two subplots of Figure 3 for

small values of n and then BIC becomes equal to AIC for bigger values of n. If R2 (which looks

like SNR) increases from R2 = 0.25 to R2 = 0.75, the trend is that the risks for AIC and BIC

remain relatively similar but become slightly less volatile and converge to each other. MMA

stays the same for different values of R2, because the risk of MMA is normalized by itself. If the

α1 values increase from α1 = 1 to α1 = 2, the trend is that the risks of AIC and BIC increase

a little bit, especially when n is small. However, MMA remains robust for different values of

α1. To conclude, AIC and BIC consistently outperforms MMA in terms of risk for different

R2 and for different parameter values (α1’s). Therefore model selection is a more reliable and

robust approach under various conditions (different n and different parameter values) compared

to model averaging according to Figure 3 (different result than in research of Peng & Yang

(2022)).

The results of Figure 3 do not match the published Figure 3 of the research of Peng &

Yang (2022) exactly and also do not show the same trends in the subplots. Possible reasons

for this are the same reasons mentioned that apply to Figure 1 as argued before. Besides that,

500 repetitions are executed instead of 1000 which are challenging and a smaller sample size of
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n = 50, 100, 500 is used instead of n = 50, 100, 500, 1000 and 5000 because of computation time

issues. This can also cause different results and is a limitation of this study.

Lastly, the normalized risk functions for AIC, BIC and MMA when θj = exp(−α2j) with α2 = 1

in first row, α2 = 1.5 in second row and α2 = 2 in third row are presented as a function of n

(number of samples) for different values of R2 (0.25, 0.5 and 0.75) and different values of α2 in

Figure 4. The subplots correspond to fast decaying coefficients.

Figure 4: Normalized risk functions for AIC, BIC and MMA when θj = exp(−α2j) with α2 = 1

in first row, α2 = 1.5 in second row and α2 = 2 in third row. The graphs correspond to fast

decaying coefficients. The risk functions for AIC, BIC and MMA are now shown as a function

of n (number of samples) for different values of R2 and α2 instead of that the risk functions are

shown as a function of R2 in the range of [0.1, 0.9] for different values of n and α2 like in 2.

The y-axis in each subplot represents the same as in Figure 3 and the x-axis represents the

same as in Figure 3 (Different than in Figures 1 and 2). These criteria are compared in terms of

risk, with AIC and BIC showing lower risks compared to MMA in each of the subplots of Figure

4. AIC shows even a higher risk compared to BIC in the first three subplots of Figure 4 when

R2 = 0.25 and for small values of n. If R2 (which looks like SNR) increases from R2 = 0.25 to

R2 = 0.75, the trend is that the risks for AIC and BIC remain relatively similar but become

slightly less volatile and converge to each other. MMA stays the same for different values of

R2, because the risk of MMA is normalized by itself. If the α2 values increase from α2 = 1 to

α2 = 2, the trend is that the risks of AIC and BIC increase a little bit for every possible n (n =

50, 100, 500). However, MMA remains robust for different values of α2. To conclude, AIC and

BIC consistently outperforms MMA in terms of risk for different R2 and for different parameter

values (α2’s). Therefore same conclusion can be drawn as in Figure 3.

The results of Figure 4 do not match the published Figure 4 of the research of Peng & Yang
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(2022) exactly and also do not show the same trends in the subplots. Possible reasons for this

are the same reasons mentioned that apply to Figure 1 and Figure 3 as argued before.

5.2 Extension

5.2.1 Model selection methods based on AIC and BIC

To begin with, the results of the model selection methods based on AIC and BIC criteria are

presented in Table 2. The AIC and BIC values are given in the table of all the candidate models,

which are shown in the rows of the table.

Table 2: AIC and BIC values for Candidate Models to select the best model

Model Predictors Used AIC BIC

1 Volume 1421.70 1428.31
2 Open 813.20 819.81
3 High 655.01 661.62
4 Low 610.60 617.20
5 Volume, Open 811.49 821.40
6 Volume, High 629.79 639.70
7 Volume, Low 610.05 619.96
8 Open, High 648.95 658.86
9 Open, Low 594.13 604.04
10 High, Low 579.36 589.27
11 Volume, Open, High 613.51 626.72
12 Volume, Open, Low 586.78 600.00
13 Volume, High, Low 579.48 592.69
14 Open, High, Low 480.78 493.99
15 Volume, Open, High, Low 481.14 497.66

The best model to select out of all the candidate models to predict the closing stock prices of

Apple Inc. in Table 2 based on AIC is the model with all the predictors in it except the predictor

‘Volume’ (‘Model 14’), so the model that contains ‘Open’, ‘High’ and ‘Low’ as predictors. This

model has the lowest AIC of 480.78, as can be seen from Table 2 in bold. The AIC value

of ‘Model 14’ is the lowest compared to the other models, because this model with all the

predictors except the predictor ‘Volume’ in it is the most likely to provide the best fit to the

training data. Therefore this model achieves the highest log-likelihood (log(L)) compared to all

the other candidate models with other predictors, which results in the lowest AIC value when

looking at Equation 3 in Section 4.1.1. While ‘Model 14’ has many parameters (high value of

k in Equation 3), the improvement of fit of the model (high value of log(L) in Equation 3)

outweighs the penalty for having more parameters. This therefore results in the lowest AIC

value of ‘Model 14’ compared to the other models. The simpler models with less predictors

used have higher AIC values, because they do not fit the data as well as ‘Model 14’ resulting

in a significantly lower log-likelihood (log(L)). The reduction in the complexity penalty (2k in

Equation 3) is not enough to compensate for the loss in fit (lower log(L) in Equation 3), leading

to higher overall AIC values for the simpler models. ‘Model 15’ has a slightly higher AIC value

than ‘Model 14’, because it includes an additional predictor increasing complexity.
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The best model to select out of all the candidate models to predict the closing stock prices of

Apple Inc. in Table 2 based on BIC is the model with all the predictors in it except the predictor

‘Volume’ (‘Model 14’), so the model that contains ‘Open’, ‘High’ and ‘Low’ as predictors. This

model has the lowest BIC of 493.99, as can be seen from Table 2 in bold. The BIC value of

‘Model 14’ is the lowest compared to the other models, because ‘Model 14’ fits the data well

but not as perfectly as ‘Model 15’ (so lower log(L) for ‘Model 14’ in Equation 4 than log(L)

for ‘Model 15’). On top of that, BIC has a heavier penalty on ‘Model 15’ than on ‘Model 14’

because of the number of parameters that is penalized heavier (k in Equation 4 is higher for

‘Model 15’ than for ‘Model 14’). ‘Model 14’ has one fewer predictor (‘Volume’) in comparison

with ‘Model 15’, which strikes the balance by providing a good fit without the penalty for the

parameter that affects ‘Model 15’. So, that is the reason why ‘Model 14’ has the lowest BIC

value and the other models have higher BIC values.

As can be seen from Table 5 in Section A.2, the MSE and MAE are slightly lower for ‘Model

15’ (second best model according to AIC and BIC). This indicates better predictive accuracy

for ‘Model 15’ instead of ‘Model 14’ (chosen as best according to AIC and BIC values) when

looking at these evaluation criteria. This is against expectation, because ‘Model 14’ should

be the best in terms of MSE, MAE and R2 according to AIC and BIC values. However, the

extra predictor of ‘Model 15’ slightly improves fit (lower MSE and MAE) despite AIC and

BIC penalties. This indicates that ‘Model 15’ captures more data variability and nuances than

‘Model 14’. Both models (‘Model 14’ and ‘Model 15’) have very high R2 values, implying that

both models explain a very high proportion of the variance in the target variable. Therefore

both models show excellent predictive performance with low MSE and MAE values and high R2

values. However, ‘Model 15’ (not selected by AIC or BIC) performs slightly better according to

the evaluation criteria compared to ‘Model 14’ (selected by AIC and BIC). This suggests that

‘Model 15’ may be the better choice for the predictive accuracy in this context.

To manage the model uncertainty in this financial application of Apple Inc. stock, model

averaging can be applied. This method combines the strength of multiple models, maybe leading

to even better predictive performance than in the situation where we choose one single best

model (model selection). For instance, ‘Model 15’ can be weighted alongside other strong models

(‘Model 14’) to improve the predictive performance of Apple Inc. stock historical quotes of one

year.

5.2.2 Mallows Model Averaging (MMA)

Secondly, the results of the model averaging method based on minimizing Mallows criterion

are shown in Table 3. The results in Table 3 indicate that ‘Model 14’ has the highest weight

(0.9637). This suggests that this model is the best balance between fit and complexity after

having performed MMA as method (same conclusion as for AIC and BIC values across different

candidate models but now not weight 1). The combined information from the predictors ‘Open’,

‘High’ and ‘Low’ provides an extensive overview of market dynamics, capturing both price move-

ments and volatility effectively and is therefore most valuable for predicting the target variable

‘Close/Last’. Following that, ‘Model 11’ has a notable weight (0.0185) because adding ‘Volume’

to ‘Open’ and ‘High’ helps capturing trading activity, which might be crucial in predicting the
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target variable. Moreover, ‘Model 9’ has a notable weight as well (0.0177) because it provides

valuable and complementary information that improves the predictive accuracy when combined

with the other models. ‘Model 1’ with a very small weight of 0.000115 indicates that ‘Volume’

has some predictive power but is relatively weak compared to other predictors. So, these models

are included to some extent but not as influential (reason why the weights are very small). The

reason why a lot of models have weight 0 or close to zero is due to the fact that they do nothing

in terms of adding information since it shows no improvement in overall fit or they provide re-

dundant info (reason why left out as models in Table 3). This redundancy occurs when different

models include highly correlated predictors (between ‘Volume’ and size of price changes as can

be seen in Table 7 in Section A.4).

Table 3: Model Weights after performing Mallows Model Averaging (MMA)

Model Predictors Used Model Weights of MMA

1 Volume 0.000115
9 Open, Low 0.017722
11 Volume, Open, High 0.018475
14 Open, High, Low 0.963687

To summarize, models with better predictive performance on the training data are favored

(that is why they have higher weights), simpler models that achieve similar predictive perform-

ance to more complex models are preferred to avoid over fitting and models with redundant

information (models that include predictors that are already well presented in higher weighted

models) are given quite low weights.

In Table 6 in Section A.2, the MSE, MAE and R2 values can be seen for each model individu-

ally on the 20% test set after having performed MMA. ‘Model 15’ has the lowest MSE and MAE

of all candidate models. On top of that, ‘Model 15’ has the highest R2 value of all candidate

models. ‘Model 14’ has the second lowest MSE and MAE and second highest R2 value across

all the different candidate models. The risk in terms of MSE for the method MMA on the 20

% test set of the data with the given weights from Table 3 is 0.5706. This MSE is smaller than

the MSE of ‘Model 14’ (chosen as best according to AIC and BIC) and bigger than the MSE

of ‘Model 15’ (chosen as best according to MSE and MAE). So, MMA with the given weights

per model in Table 3 shows a small improvement in MSE compared to choosing only ‘Model

14’, but not as good as the MSE of ‘Model 15’ seperately. Therefore MMA does improve the

predictive accuracy in terms of MSE when choosing ‘Model 14’ only as benchmark (according

to AIC and BIC) So, MMA lowers the MSE risk compared to the MSE risk of choosing only

‘Model 14’ based on AIC and BIC (0.5706 is smaller than 0.5737). However, MMA does not

improve the predictive accuracy in terms of MSE when choosing ‘Model 15’ only as benchmark.

So, MMA does not lower the MSE risk compared to the MSE risk of choosing only ‘Model 15’

(0.5706 is bigger than 0.5688).

5.2.3 Frequentist Model Averaging

Thirdly and lastly, the results of the frequentist model averaging method are shown in Table 4.

The findings in Table 4 indicate that ‘Model 14’ has the highest weight (0.544879) and ‘Model
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15’ has the second highest weight (0.455121). ‘Model 14’ has the highest weight after having

performed FMA, because this model has the lowest AIC value (480.78 in Table 2) as this model

is the best balance between fit and simplicity (explained in 5.2.1). Therefore in Equation 11 Ik

(actually AIC) is the lowest across all the other candidate models. This results in the highest

weight for ‘Model 14’ according to Equation 12. This model is thus the most preferred by a

significant margin because of the relatively high weight of 0.544879. ‘Model 15’ has the second

highest weight after having performed FMA, because this model has the second lowest AIC value

(481.14 in Table 2). Therefore in Equation 11 Ik (actually AIC) is the second lowest across all

the other candidate models. This results in the second highest weight for ‘Model 15’ according

to Equation 12. This model is a good model (weight of 0.455121), but significantly less preferred

than ‘Model 14’ (weight of 0.544879). All the remaining models have very high AIC values (See

Table 2) relative to ‘Model 14’ and ‘Model 15’, leading to extremely low weights (effectively zero

according to Equation 12). These models are less preferred according to the best models (and

left out in Table 4).

Table 4: Model Weights after performing Frequentist Model Averaging (FMA)

Model Predictors Used Model Weights of FMA

14 Open, High, Low 0.544879
15 Volume, Open, High, Low 0.455121

The MSE, MAE and R2 values for each model individually on the 20% test set after having

executed FMA are the same as in Table 6 in Section A.2 after having performed MMA. The

risk in terms of MSE for the method FMA on the 20% test set of the data with the given

weights from Table 4 is 0.5723. This MSE is a little bit smaller than the MSE of ‘Model 14’

(chosen as best according to AIC and BIC) and bigger than the MSE of ‘Model 15’ (chosen

as best according to MSE and MAE). So, FMA with the given weights per model in Table 4

shows a small improvement in MSE compared to choosing only ‘Model 14’ (0.5723 is smaller

than 0.5737), but not as good as the MSE of ‘Model 15’ (0.5723 is bigger than 0.5688). So,

FMA lowers the MSE risk compared to the MSE risk of choosing only ‘Model 14’ based on AIC

and BIC. However, FMA does not lower the MSE risk compared to the MSE risk of choosing

only ‘Model 15’. This is the same reasoning and conclusion that can be drawn after having

performed MMA as method. The MSE risk of FMA of 0.5723 is bigger than the MSE risk of

MMA of 0.5706. So, MMA is preferred over FMA as method when looking at MSE risk in this

given empirical application.

6 Conclusion

In the first place, this paper has worked on the problem regarding model selection methods

(based on AIC and BIC) and model averaging methods (MMA and FMA) to choose the best

model or average with weights across more models in a financial application like Apple Inc.

common stock historical quotes of one year. After that, these methods are evaluated based on

some appropriate evaluation criteria (MSE and MAE, MSE mainly) to compare the methods

(MS and MA) with each other (MA improve predictive accuracy or not).
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Following that, the first important result of this research is that according to the model

selection method based on AIC the model with the predictors ‘Open’, ‘High’ and ‘Low’ in it

(‘Model 14’ in Table 2) is the best model to select. Besides that, another important result using

the BIC criterion for model selection, the model with the predictors ‘Open’, ‘High’ and ‘Low’

in it (‘Model 14’ in Table 2) is the best model to select based on BIC values. The MSE and

MAE values of ‘Model 15’ are the lowest compared to ‘Model 14’ and all the other candidate

models when looking at Table 5. So, ‘Model 15’ is the best choice for predictive accuracy based

on MSE and MAE values and ‘Model 14’ is the best according to AIC and BIC model selection

methods.

According to the MMA method, ‘Model 14, 11, 9 and 1’ are weighted with each other to

account for model uncertainty in Table 3. The important result of this method is that the MSE

risk of MMA does not improve MSE risk of choosing ‘Model 15’ only, but does improve MSE

risk of choosing ‘Model 14’ only. Following the FMA method, ‘Model 14 and 15’ are weighted

with each other to account for model uncertainty in Table 4. The most relevant outcome of this

method is that the MSE risk of FMA does not improve the MSE risk of MMA and choosing

‘Model 15’ only, but does improve the MSE risk of choosing ‘Model 14’ only.

The study shows that model averaging, whether MMA or FMA, reduces model selection

uncertainty and leads to better predictive accuracy when compared to individual models like

‘Model 14’ but not necessarily with respect to the best model chosen according to MSE and

MAE (‘Model 15’). This has a very important practical ramification: whereas comprehensive

models, like ‘Model 15’, are necessary in financial applications for accuracy, model averaging

provides insulation against the selection of poorer models.

Some interesting question to be investigated for future work is do this research using other

stocks or financial instruments in order to validate its generalizability across different cases.

These vary greatly depending on time period covered including daily, weekly, monthly or more

than one year data periods. Shorter durations can be considered to capture high-frequency

trading dynamics and longer periods can be taken into account to figure out long-term trends

and cycles. More research needs to be done where different model averaging techniques as well

as more advanced machine learning algorithms can be checked against it. The predictive power

of the models could be improved by including macroeconomic factors and exogenous variables,

such as interest rates and GDP growth.

To summarize and to conclude, in this paper we have shown that MMA and FMA improve

predictive accuracy of ‘Model 14’ (chosen based on AIC and BIC) but MMA and FMA do not

improve predictive accuracy of ‘Model 15’ (lowest MSE and MAE) in a financial application

such as closing stock prices from Apple Inc. of one year. The limitation of this research and

work is that it is one empirical application of one stock during one year with only four predictors

where MSE risk is used as evaluation criteria.
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A Appendix

A.1 Programming code

Will be available in Python documents in the zip file that is handed in on the 1st of July 2024

via sin online in Thesis Hub.

The first Python document is called datasummarystats. When running this Python docu-

ment, the output in Table 1 can be obtained. In the document, the code is well-documented

enough to provide a short explanation of the code.

The second Python document is called risk simulation figure1 aicbicrisks. When running

this Python document, the output in Figure 1 can be obtained. In the document, the code is

well-documented enough to provide a short explanation of the code.

The third Python document is called risk simulation figure2 aicbicrisks. When running this

Python document, the output in Figure 2 can be obtained. In the document, the code is well-

documented enough to provide a short explanation of the code.

The fourth Python document is called risk simulation figure3 aicbicrisks. When running

this Python document, the output in Figure 3 can be obtained. In the document, the code is

well-documented enough to provide a short explanation of the code.

The fifth Python document is called risk simulation figure4 aicbicrisks. When running this

Python document, the output in Figure 4 can be obtained. In the document, the code is well-

documented enough to provide a short explanation of the code.

The sixth Python document is called MSResultsAICBIC. When running this Python doc-

ument, the output in Table 2 can be obtained. In the document, the code is well-documented

enough to provide a short explanation of the code.

The seventh Python document is called MMAFINANCIALDATAREVISEDMSEPERMODEL.

When running this Python document, the output in Table 5, Table 6 and the risk MSE for MMA

on the test set can be obtained. In the document, the code is well-documented enough to provide

a short explanation of the code.

The eight Python document is called mmafinancialdatarevisedversion. When running this

Python document, the output in Table 3 can be obtained. In the document, the code is well-

documented enough to provide a short explanation of the code.

The ninth Python document is called FMAResultsFinancialData. When running this Python

document, the output in Table 4 can be obtained. In the document, the code is well-documented

enough to provide a short explanation of the code.

The tenth Python document is called FMAEvaluationMSEPerModel. When running this

Python document, the output in Table 6 can be obtained and the MSE, MAE and R2 can be

obtained of the FMA model performance. In the document, the code is well-documented enough

to provide a short explanation of the code.

The eleventh Python document is called CorrelationVolume. When running this Python

document, the output in Table 7 can be obtained. In the document, the code is well-documented

enough to provide a short explanation of the code.

The twelfth Python document is called RelationshipOpenCloseLastPrices. When running

this Python document, the output in Table 8 can be obtained. In the document, the code is
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well-documented enough to provide a short explanation of the code.

A.2 Evaluation criteria tables, equations and data split

To start with, MSE has the following formula:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (13)

where n is the number of observations, yi is the actual value of the model and ŷi is the predicted

value that is estimated based on the model. The lower the value of the MSE, the better the

performance of the model. The higher the value of the MSE, the worser the performance of the

model.

Secondly, MAE has the following equation:

MAE =
1

n

n∑
i=1

|yi − ŷi| (14)

where n is the number of observations, yi is the actual value of the model and ŷi is the predicted

value that is estimated based on the model. The lower the value of the MAE, the better the

performance of the model. The higher the value of the MAE, the worse the performance of the

model.

Lastly, R2 which indicates the goodness of fit of a model has the following expression:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(15)

where n is the number of observations, yi is the actual value of the model and ŷi is the predicted

value that is estimated based on the model, ȳ is the mean of the observed data. R2 is the

proportion of variance in the dependent variable (Close/Last in this paper) that is predictable

from the independent variables (Volume, High, Low and Open in this paper). The closer the

R2 value to 1, the better the fit is of the model.

The data is preprocessed and split at first. Then the dates are ordered before splitting the

dataset. After that, models are created based on the predictors mentioned (for ‘Model 14’:

Open, High and Low and for ‘Model 15’: Volume, Open, High and Low). At this point, we have

training sets (80 %) and test sets (20 %) of the data. Based on this data split, the evaluation

criteria are calculated for each model. So, we can fit linear regression models now for ‘Model 14’

and ‘Model 15’ using their respective predictors and also for the other candidate models with

their predictors. The evaluation criteria of how the models (especially ‘Model 14’, which is the

best according to AIC and BIC values and ‘Model 15’ which is the second best according to

AIC and BIC values) performed are shown in Table 5 in this Section.
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Table 5: Evaluation Criteria after applying Model Selection Methods based on AIC and BIC

Evaluation criteria Model 14 Model 15

MSE 0.5737 0.5688
MAE 0.5944 0.5929
R² 0.9930 0.9931

Table 6: MSE, MAE and R2 values of each model individually

Model Predictors Used MSE MAE R2

1 Volume 86.921326 7.614943 -0.057678
2 Open 2.858476 1.279722 0.965217
3 High 0.981008 0.765765 0.988063
4 Low 1.333712 0.866787 0.983771
5 Volume, Open 3.011932 1.300197 0.963350
6 Volume, High 0.854371 0.682570 0.989604
7 Volume, Low 1.277140 0.846875 0.984459
8 Open, High 1.012111 0.776344 0.987684
9 Open, Low 1.261749 0.838418 0.984647
10 High, Low 0.941784 0.747966 0.988540
11 Volume, Open, High 0.782258 0.633201 0.990481
12 Volume, Open, Low 1.153164 0.797645 0.985968
13 Volume, High, Low 0.934432 0.745020 0.988630
14 Open, High, Low 0.573685 0.594359 0.993019
15 Volume, Open, High, Low 0.568807 0.592910 0.993079

A.3 Description symbols equation(s)

The description of the symbols in Equation 3 in Section 4.1.1 is as follows: where k in 3 is the

number of parameters in the model and L the log likelihood of the model.

The description of the symbols in Equation 4 in Section 4.1.1 is as follows: where k in 4 is

the number of parameters in the model, n the sample size and L the log likelihood of the model.

A.4 Tables of how covariates relate to each other

Table 7: Correlation between Volume and Price Differences

Volume and Open-Close Difference Volume and High-Low Difference

Correlation 0.08 0.52
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Table 8: Trend of Apple Inc. Stock Prices (Open vs Close)

Trend Count

Increase 131
Decrease 121
Stable 0
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