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Abstract

This research evaluates how dynamic programming methods can help optimize asset alloc-

ation among stocks, bonds, and bills, considering varying investors’ preferences. Specifically,

it investigates the effectiveness of these approaches compared to simpler alternative weight-

choosing strategies using multiple performance measures. The study also aims to determine

the optimal asset allocation for investors with different levels of risk aversion and invest-

ment horizons. By employing real financial data and dynamic programming techniques, the

research identifies optimal allocation rules tailored to individual investor profiles. The find-

ings demonstrate that dynamic programming methods yield superior portfolio performance

and thus better allocation strategies compared to traditional methods, highlighting their

potential for enhancing investment decision-making.

1 Introduction

Asset allocation is a critical component of investment strategy that aims at determining the op-

timal distribution of assets within a portfolio to balance risk and reward. According to Statman

(2004), empirical evidence suggests that the typical investor does not diversify their portfo-

lio sufficiently. Even if investors initially diversify their portfolio, this optimal asset allocation

would eventually decay when it is not maintained and market conditions change. There are

many more reasons to adjust portfolio weights intermediately instead of using a buy-and-hold

strategy. First of all, returns are predictable using observable state variables and regime differ-

ences. Additionally, when external factors cause fluctuations in wealth. In all these situations,

dynamic programming can be beneficial.

Traditionally, investors have relied on methods such as the Mean-Variance Optimization by

Markowitz (1952) to guide them in optimizing their portfolios. However, these approaches of-

ten fall short of capturing the complexities of real-world markets, particularly when considering

varying levels of risk aversion and investment horizons. Therefore these methods fail at predict-

ing the optimal asset allocation out-of-sample. This was confirmed by DeMiguel et al. (2009),

where the equally weighted portfolio yielded superior results compared to the more refined Mean-

Variance portfolio and its extensions. Unlike traditional methods, dynamic programming can

incorporate a wide range of variables and constraints, offering a more flexible and potentially

more accurate framework for investment decision-making.

Dynamic Programming is an approach often used in mathematics and computer science to

solve big complex problems by breaking them down into smaller sub-problems. Solving each

sub-problem only once and storing the results avoids redundant computations, leading to more

efficient solutions for a wide range of problems. Brandt et al. (2005) introduced this as a prom-

ising approach for optimizing asset allocation. Value and portfolio iteration were developed to

remove the curse of dimensionality of the conventional DSS approach, making it more usable for

complicated investment settings. Theoretical research shows great potential for these methods

in asset allocation. Despite this potential, there is limited empirical research evaluating the

effectiveness of these dynamic programming approaches in real-world asset allocation scenarios.

This study aims to fill this gap by assessing how dynamic programming methods can optimize

asset allocation among stocks, bonds, and bills, tailored to different investor profiles.
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This research considers three potential investment types: stocks, bonds and bills. This is

an extension on Van Binsbergen and Brandt (2007) that applies dynamic programming for

choosing the weight an investor should put into stocks. The same methods and investment

setting are employed, but the latest data will be utilized to connect this study to real-world

applications. Furthermore, two additional state variables are used to enhance the simulation of

asset returns. Campbell et al. (2003) provides us with the short-term interest rate and yield

spread as additional state variables to the dividend-price ratio. The return simulations are a

crucial part of the dynamic programming methods because they determine the optimal asset

allocation based on the simulations.

Several performance measures are used to determine the empirical effectiveness of the dy-

namic programming methods, these are then compared to relevant benchmarks. This is import-

ant to ensure that the produced asset allocations are improved. The Sharpe and Sortino ratios

are evaluated to ensure an optimal risk-reward ratio. Also, the turnover will be measured to give

some insight into potential trading costs associated with the strategies. Lastly realized portfo-

lio returns and return volatility are provided to identify differences between strategies in more

detail. The resulting asset allocations are then discussed for the optimal dynamic programming

approaches, given the different investor preferences.

The dynamic programming methods resulted in slightly superior results, which confirms

their effectiveness and potential in investment decision-making. Especially when considering

long investment horizons the dynamic programming approaches seem useful. This led to certain

optimal asset allocations that are dependent on the investor’s risk aversion and investment

horizon. The findings have the potential to enhance investment decision-making processes and

contribute to the broader field of financial optimization.

The paper is further structured as follows. In section 2, the data used in this research

is provided. Following this, all methods, portfolios and performance measures are extensively

explained in section 3. Next, the results are presented and discussed in section 4. Lastly, the

main findings are summarized and the paper is concluded in section 5.

2 Data

This research considers three different assets: stocks, bonds and bills. The stock returns are

based on the S&P 500 index returns because they give a good indication of the overall stock

market returns. Next, the bond returns are based on the 10-year US bond returns. 10-year

maturity since it fits the sample size the best. Lastly, the bill returns are established from the

90-day US treasury bill returns, these serve as the risk-free rate. Excess stock and bond returns

are created by subtracting the risk-free rate.

To make predictions of future asset returns, state variables are needed to measure the direc-

tion of where the markets are going. The first state variable is the dividend price ratio, this is

an often-used predictor for stock returns. It is created by first taking the difference of the last 12

monthly value-weighted returns on the S&P 500 index including and excluding dividends, which

are then multiplied by their respective price indexes to make the sum of dividends over the last

year. Finally, this sum is divided by the current price index. This tells us how the stocks are

valued compared to their dividends. A high ratio, for example, would indicate that the stocks
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are undervalued which would lead to an increase in stock returns for the next periods. More on

the dividend-price ratio can be found in Campbell and Shiller (1988). The next state variable

considered is the short-term interest rate, for which the risk-free rate is used. The interest rate

is a powerful predictor of stock returns and bond yields, which is confirmed in a recent paper

by Rapach et al. (2016). When interest rates rise, it can make borrowing money for a company

more expensive, which means they have less money to invest back in the company and less

cash flow stability, leading to a decrease in stock returns. This inverse relation is also present

for bonds. When interest rates rise, investors will no longer prefer the lower fixed interest rate

paid by a bond, which eventually decreases bond prices. The third state variable employed is

the yield spread, this depicts the difference between longer uncertain bond returns and shorter

more certain bill returns. This research defines this the same as the excess bond returns. This

state variable tells a lot about the confidence of investors in the economy. When investors are

sceptical about the future economy they will put a greater portion of their wealth into the more

certain short-term assets, this would lead to more demand for bills and thus a lower bill rate.

Which further results in a higher yield spread. This variable has predictive power for all assets.

Lastly, the lagged excess stock returns will be used as a state variable because stock returns are

generally hard to predict.

All the data is obtained via Wharton Research Data Services (WRDS), which is a popular

provider of financial and economic data for research applications. This connection is used to

download the most commonly used data for stock and bond characteristics from the Center of

Research in Security Prices (CRSP).

Quarterly data is considered because the paper’s main goal is to study the optimal asset ratio

between stocks and bonds given the investors’ preferences and current state variables. Inside

each quarter of a year, investors can determine what stocks or bonds specifically are best to hold

to further increase returns, while taking into account the ratio between them. Furthermore, only

the last 50 years or 200 quarters of data are considered. This is split into 150 quarters in-sample

to estimate the VAR and 50 quarters out-of-sample to determine weights and test performance.

Here a moving estimation window is imposed to keep the estimation of the VAR based on the

last 150 quarters, but also dependent on the most recent information. Some characteristics of

the used data are displayed in table 1.

Table 1: Data characteristics

Sample Type Mean Standard dev. Skewness Kurtosis Min Max

Entire sample

Log excess stock returns 0.008 0.086 -0.967 4.664 -0.334 0.182

Log excess bond returns 0.004 0.042 0.355 3.123 -0.104 0.117

Gross bill returns 1.012 0.010 0.809 3.621 1.000 1.042

Log dividend-price ratio 0.028 0.012 0.726 2.335 0.011 0.059

Out-of-sample

Log excess stock returns 0.023 0.079 -1.232 4.897 -0.231 0.182

Log excess bond returns 0.002 0.038 0.242 3.528 -0.071 0.106

Gross bill returns 1.003 0.004 1.639 4.797 1.000 1.014

Log dividend-price ratio 0.019 0.003 -0.713 2.673 0.013 0.023
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From the table, the risk type of the assets is easily noticed. The stock returns have the highest

standard deviation, after this the bond returns and last the bill returns. But this is compensated

by higher mean returns for the more risky assets. The stocks are negatively skewed, which means

more stock returns are below the mean but this is compensated by some higher stock returns.

The reverse is true for the bond and bill returns. Furthermore, all assets have relatively high

kurtosis, which means that all asset returns are more likely to be near the mean compared to a

normal distribution. The risk types also coincide with the return ranges, because riskier assets

have a wider return range. The dividend-price ratio has a lower kurtosis and further a big

difference between both samples. Its skewness changes from positive to negative between the

samples, also the mean, standard deviation and range shrink when considering only the last 50

quarters. The assets also see a big difference between both samples. The stock returns are on

average higher in the last 50 quarters, while the bond and bill returns are lower.

Table 2 shows the first-order autocorrelations between the variables.

Table 2: First order autocorrelations entire sample

Log excess stock returns Log excess bond returns Gross bill returns Log dividend-price ratio

Log excess stock returns 0.087 -0.087 -0.160 -0.094

Log excess bond returns 0.159 0.020 -0.152 -0.043

Gross bill returns -0.119 0.014 0.936 0.167

Log dividend-price ratio 0.074 -0.007 0.158 0.972

Almost all variables have some first-order autocorrelation between them, this makes them

suitable for a vector autoregressive model.

3 Methodology

In this section, first, the data-generating process is described. Next, the different employed dy-

namic programming methods, which are largely in line with Brandt et al. (2005), are extensively

explained. Furthermore, the benchmark portfolios and performance measures are specified.

3.1 Data-generating process

The dynamic programming methods rely on simulated data, therefore an accurate data-generating

process is necessary. This paper employs the following vector autoregressive (VAR) model to

simulate asset returns.

yt = c+Φyt−1 + ϵt (1)

where

ϵt ∼ N(0,Σ) (2)

yt := (Rst , R
b
t , r

f
t , Zt)

′ is a 4× 1 vector of endogenous variables at time t. Furthermore, c is

a 4 × 1 vector of intercept terms and Φ is a 4 × 4 matrix of coefficients. Lastly, ϵt is a 4 × 1

vector of error terms at time t.
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Here Rst represents the quarterly log excess stock returns based on the S&P 500 index returns

and the 90-day US treasury bill returns. Next Rbt denotes the quarterly log excess bond returns,

these are based on the 10-year US bond returns and again the 90-day US treasury bill returns.

Third, rft depicts the quarterly gross risk-free rate, which is established from the 90-day US

treasury bill returns. Lastly Zt is defined as the log dividend price ratio.

The results section 4.1 contains the estimates for the entire sample to grasp how the model

will look approximately, and also to justify the validity of the simulation model.

3.2 Dynamic programming and problem setting

This paper considers a multi-period investing problem, given by the following general equations:

max
{xs}T−1

s=t

Et [u(WT )] (3)

subject to Ws+1 =Ws(x
′
srs+1 + rf ) for s = 1, . . . , T − 1 (4)

for a given utility function u, initial wealth Wt and risk-free rate rf . There are T portfolio

decisions, that result in optimal weights {xs}T−1
s=t . n assets, where rs+1 vector of excess returns

consists of the excess stock and bond returns in this case. Also a conditional expectation because

of m state variables zt, Et[·] = E[· | zt].
Furthermore, we define the value function:

V (Wt, zt) = max
{xs}T−1

s=t

E[u(WT ) | zt] s.t. equation 4 (5)

This function depicts the value of the optimal solution, which depends on wealth Wt and state

variables zt at time t. Also, the intermediate solution to the problem can be found by using the

next equation:

V (Wτ , zτ ) = max
{xs}T−1

s=τ

E[u(WT ) | zτ ] for t < τ < T (6)

The value function makes it possible to split the problem.

V (Wt, zt) = max
{xs}T−1

s=t

Et [u (WT )]

= max
xt

Et

[
max

{xs}T−1
s=t+1

Et+1 [u (WT )]

]
= max

xt

Et [V (Wt+1, zt+1)]

= max
xt

Et
[
V
(
Wt

(
x′trt+1 + rf

)
, zt+1

)]
(7)

Where the law of iterated expectations is used. The last equality is called the Bellman equation,

which allows us to split the problem into a set of recursive optimization problems.

Next, we need to define the power utility:

u (Wt) =
W 1−γ
t

1− γ
(8)
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Here γ represents the coefficient of relative risk aversion, which is the solution of−u′′ (Wt)Wt/u
′ (Wt).

The power utility function is homogeneous with degree 1−γ : u (cWt) = c1−γu (Wt). Combining

this with equation 4 yields:

u (Wt+1) =
W 1−γ
t

(
x′trt+1 + rf

)1−γ
1− γ

(9)

From this, we can conclude that the optimal portfolio x∗t in a single period optimization satisfies

Et
[(
x∗′t rt+1 + rf

)−γ
rt+1

]
= 0, independent of wealth since Wt > 0.

This allows us to rewrite the problem to the following form:

max
{xs}T−1

==1

Et

[
W 1−γ
T

1− γ

]

= max
{xs}T−1

s=t

Et

[
W 1−γ
t

1− γ

T−1∏
s=t

(
x′srs+1 + rf

)1−γ
]

= max
xt

Et[
W 1−γ
t

(
x′trt+1 + rf

)1−γ
1− γ︸ ︷︷ ︸
ν(Wt+1)

max
{x′}T−1

==t+1

Et+1

[
T−1∏
s=t+1

(
x′srs+1 + rf

)1−γ
]

︸ ︷︷ ︸
ψ(zt+1)

]

(10)

We can set Wt = 1 because the optimization is independent of wealth Wt. Now we can

recover the earlier denominated Bellman equation as:

1

1− γ
ψ (zt) = max

xt
Et

[
u
(
x′trt+1 + rf

)
ψ (zt+1)

]
(11)

The term 1/(1 − γ) is needed to get the first term in the product in equation 10 in the form

u
(
x′srs+1 + rf

)
. ψ (zt) now can be interpreted as a scaled value function. This makes it possible

for the optimization problem to simplify to a sequence of single-period optimizations that include

the scaled value function, instead of a much more complex multi-period optimization.

DSS

Discretizing the State Space is seen as a benchmark in Van Binsbergen and Brandt (2007)

and is the most popular dynamic programming approach. The entire procedure can be found

in appendix A, this can be useful for readers who are unfamiliar with the above-described

mechanism to understand the the next two methods better. It is however not used in this paper

because of an important drawback of the DSS approach, which is the curse of dimensionality.

This is caused by the fact that the number of grid points grows exponentially in the number

of state variables k. If you consider n points per state variable, the number of combinations is

nk. This makes the optimization very computationally heavy when wanting to consider many

grid points and multiple assets. Furthermore, interpolation becomes difficult when the number

of state variables grows. In this research, the VAR model is too large, making it unreasonable

and inefficient to use DSS.
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Value and Portfolio Iteration

Brandt et al. (2005) proposed an alternative to DSS: value and portfolio iteration. The general

idea is to generate a large set of paths for the returns and state variables, with the length of

each path equal to the investment horizon T . Next, calculate for a given weight the utility at

point s of path p, and use these to perform a regression on the utility of the different paths on

its state variables and a constant. The fitted values of this regression give the expected utility

of each path. Finally, use these fitted values to determine the optimal weight.

The main difference between both methods lies in the need for the value of future decisions

at time s + 1. It is possible to use the scaled value function or the optimal portfolio weights,

that belong to path p, which resulted from the optimization at time s + 1. Respectively these

are called value iteration and portfolio iteration. When the number of paths goes to infinity

both approaches are asymptotically the same. But simulating an infinite amount of paths is

impossible, thus there remains a small difference between them.

An example can further explain this. For the decision at time T − 1, calculate for a given

weight xT−1 the expected utility as the fitted value of a regression of the utility u (xT−1rT,p + rf )

on a constant and the state variables zT−1,p. Select the optimal weight for each path, denote this

as x∗T−1,p, and use the expected utility to construct the scaled value function ψ (zt−1,p). Next

for the decision at T − 2, include the value of the decision at T − 1. Value iteration includes the

expected value of the decision at T − 1, this leads to the following equation:

max
xT−2

ET−2

[
(xT−2rT−1 + rf )

1−γ ÊT−1

[(
x∗T−1rT + rf

)1−γ
1− γ

]]
(12)

But portfolio iteration includes the actual value for the path p of the decision at T − 1, and the

expected value comes from the equation:

max
xT−2

ET−2

[
(xT−2rT−1 + rf )

1−γ (x∗T−1rT + rf
)1−γ

1− γ

]
(13)

There is thus a small difference between both methods when using a finite number of simulations

because the moments are approximated.

Repeat these steps till time t, where the last iteration will produce the weights for the amount

invested in stocks and bonds for the upcoming quarter. Then move forward one period inside the

testing phases and repeat the same procedure. This would eventually generate asset allocations

for the 50 out-of-sample investing moments, for both dynamic programming approaches.

3.3 Benchmark portfolios

Evaluating the relative performance of a portfolio calls for some benchmark portfolios. This

research considers the following two strategies as benchmarks.

Myopic portfolio

This strategy only considers an investment horizon of one quarter. Therefore it does not use

dynamic programming because it only has to solve the optimization problem for the upcoming
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quarter. Optimization is done using equation 9 with the same power utility function and weight

restrictions. This makes it an excellent benchmark to test the dynamic programming part of

the value and portfolio iteration.

Buy-and-hold portfolio

This strategy again employs the same power utility function and weight restrictions, but this

time the utility will be calculated for the whole path at once. The weight that maximizes

the total utility, which is the sum of all paths, will be used and held for the entire upcoming

investment horizon. This portfolio will be calculated for each investor preference case. Again

this strategy does not use dynamic programming but it does employ the same time horizons,

which makes it suitable for determining the effectiveness of the dynamic programming part.

3.4 Performance measures

This paper evaluates different dynamic programming methods, which are then used for asset

allocation strategies. Three performance measures will be used to assess their effectiveness, these

are explained and motivated in this subsection.

Out-of-sample Sharpe ratio

One of the most used performance measures for portfolios is the out-of-sample Sharpe ratio,

denoted as ˆSHRk. This is defined as the ratio between the estimated mean excess return µ̂k

and the estimated standard deviation of the returns σ̂k of strategy k. This can be formulated

as follows:

ˆSHRk =
µ̂k
σ̂k

(14)

The Sharpe ratio serves as a gauge for the risk-return trade-off associated with a given allocation

strategy, where a higher ratio denotes a better risk-adjusted return. To determine the statistical

significance of the differences in Sharpe ratios across strategies, the Jobson-Korkie test (Jobson

and Korkie (1981)), which assesses the equality of Sharpe ratios, is employed. The computation

of this test’s p-value facilitates the determination of whether the Sharpe ratios of two distinct

strategies are statistically different. When it is stated that two Sharpe ratios significantly differ,

it was tested using a Jobson-Korkie test with a significance level of 0.1 (*), 0.05 (**) and 0.01

(***).

Out-of-sample Sortino ratio

A downside of the Sharpe ratio is that it considers the total standard deviation of the returns.

Thus, deviation caused by high positive returns is seen as bad risk, even though this is not

necessarily true. The Sortino ratio only considers the negative returns standard deviations, this

gives a better view of a portfolio’s risk-adjusted performance since positive volatility is a benefit.

In the equation below, σ̂d,k represents the standard deviation of the negative portfolio returns.

ˆSORk =
µ̂k
σ̂d,k

(15)
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Turnover

The turnover quantifies the frequency with which assets within a portfolio are bought and sold.

High turnover suggests frequent trading activity, while low turnover implies a buy-and-hold

strategy with less frequent trading. High turnover can lead to increased transaction costs,

which could mean that a strategy becomes less desirable even when its shape ratio seems great.

The turnover for the portfolio k is expressed in the following function.

Turnoverk =
1

T − 1

T−1∑
t=1

N∑
j=1

(∣∣ŵk,j,t+1 − ŵk,j,t+
∣∣) (16)

ŵk,j,t+1 is the portfolio weight before rebalancing at t + 1; and ŵk,j,t+ is the desired portfolio

weight at time t + 1, after rebalancing. T depicts the investment period. Although this study

does not account for transaction costs, turnover metrics are included to provide insights into the

trading activity associated with each portfolio strategy.

4 Results

Everything was coded in RStudio, R version 4.4.0 by R Core Team (2023) and used third-party

packages can be found in the footnote 1. All code has been run on an Intel(R) Core(TM)

i7-10870H CPU @ 2.20GHz 2.21 GHz laptop with 16,0 GB of RAM.

The dynamic programming weights were created using 1000 simulations to simulate the

returns and state variables. Also, the whole procedure was repeated five times and the resulting

portfolio weights are their average. There are two scenarios for the risk aversion coefficients

considered; 5 and 20. Five represents a moderate risk-averse investor and twenty represents an

extreme risk-averse investor. Also, four investment horizons are studied; 4, 8, 20 and 40 quarters.

In total, this makes 8 distinct investor types, covering a wide range of investor preferences. The

optimal portfolio weights are found by a grid search over the interval [0, 1] in steps of 0.05.

4.1 VAR results entire sample

The resulting VAR model for the entire sample is displayed below. The p-values of their re-

spective t-statistics are in parentheses after each coefficient.


Rst

Rbt

rft
Zt

 =


2.037(0.035)

0.032(0.947)

0.136(0.000)

−0.022(0.421)

+


0.058(0.412) 0.404(0.005) −2.045(0.035) 1.378(0.072)

−0.046(0.197) 0.030(0.673) −0.027(0.956) −0.017(0.963)

−0.000(0.924) −0.043(0.000) 0.863(0.000) 0.074(0.006)

−0.003(0.206) −0.009(0.029) 0.023(0.409) 0.964(0.000)



Rst−1

Rbt−1

rft−1

Zt−1

+


ϵ1,t

ϵ2,t

ϵ3,t

ϵ4,t


1The following third-party R packages were used: Pfaff (2008), Venables and Ripley (2002), Wickham (2016),
Kassambara (2023), Ardia and Boudt (2015), Komsta and Novomestky (2022), Van Domelen (2018)
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
ϵ1,t

ϵ2,t

ϵ3,t

ϵ4,t

 ∼ N



−3.589e− 18

−6.049e− 19

−2.805e− 19

6.810e− 21

 ,


7.065e− 03 −9.329e− 05 −2.042e− 05 −1.814e− 04

−9.329e− 05 1.770e− 03 1.188e− 05 −1.384e− 05

−2.042e− 05 1.188e− 05 8.588e− 06 8.058e− 07

−1.814e− 04 −1.384e− 05 8.058e− 07 5.949e− 06




The stock returns, bill returns and dividend-price ratio seem to be properly described by

multiple significant variables. Only the bond returns lack a significant variable but their error

term does not seem out of place compared to the others. The risk-free rate and the dividend price

ratio are mostly explained by themself, compared to the stock and bond returns that depend

more on other variables. Also, the earlier described economic relations between the variables are

present. Therefore it can be concluded that the VAR model is suitable for this research purpose

and will create accurate simulations.

4.2 Analyzing method dynamics

The upper two graphs in figure 1 show the results of the weights from the dynamic programming

methods, with a risk aversion coefficient of 20 and a time horizon of 8 quarters or 2 years. This

case is highlighted because it is the most sensitive to changes in the state variables. The other

cases can be found under appendix B. The remaining graphs in figure 1 display the behaviour of

the state variables during the out-of-sample testing phase, these are not results but it is easier

this way to see the method dynamics.
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Figure 1: Results for Time Horizon 8 and Risk Aversion 20

There appears to be a difference between the weights of both dynamic programming meth-

ods. The value iteration method allocates more wealth to stocks and bonds than the portfolio

iteration. This was already expected because in Van Binsbergen and Brandt (2007) it is shown

that for the same investor preferences, the weights in riskier assets were also substantially lower

for the portfolio iteration. This is further demonstrated by the bigger part of the wealth in

stocks than in bonds for the value iteration, while the portfolio iteration prefers to put more

wealth in bonds.

Another difference between the two models can be found around the first quarter of 2020.

There is a large decrease in the log excess stock returns, while the log excess bond returns increase

slightly. The dividend price ratio also peaks at the same time. Both methods react to this by
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increasing the next period’s total weight, but the value iteration does this by investing more in

stocks, while the portfolio iteration increases the bond’s weight. After this, the dividend price

ratios decrease fast for the next couple of quarters. Value iteration keeps the weight invested

in stocks high but portfolio iteration does the opposite. This again already came up in the

paper Van Binsbergen and Brandt (2007), where they provided graphs of the weight invested

in the risky asset relative to the state variable. All graphs showed higher weights in the risky

asset when the state variable was in a poor state for the value iteration. Furthermore, the gross

risk-free returns increase substantially towards the end of the testing phase. This would make

it more plausible to invest more in this asset. Both methods show that they adapt to this by

decreasing the total weight of stocks and bonds to put a bigger part of the wealth in the bills.

4.3 Performance measures

Table 3 contains all the resulting portfolio performance measures. There is a distinction between

the investors’ preferences because these can not be compared to each other. Only the Myopic

portfolio can be compared to the other strategies within the same risk aversion portfolios. The

realized return is also shown which is defined as the compounded excess portfolio returns. Also,

all portfolio return volatilities are revealed in the last column of the table to address differences

in Sharpe ratios better.
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Table 3: Performance measures

Risk Aversion Time Horizon Strategy Sharpe Ratio Sortino Ratio Turnover Realized Return Volatility

γ = 5

1 Myopic 0.400 0.651 1.581 0.926 0.034

4

Value 0.375 0.659 1.566 0.949 0.038

Portfolio 0.372 0.654 1.569 0.938 0.038

Buy-hold 0.420 0.460 0.406 1.045 0.036

8

Value 0.415 0.725 1.582 1.186 0.040

Portfolio 0.419 0.753 1.574 1.192 0.039

Buy-hold 0.396 0.460 0.205 0.985 0.037

20

Value 0.403 0.662 1.647 1.481 0.048

Portfolio 0.417 0.679 1.621 1.424 0.045

Buy-hold 0.407 0.475 0.069 1.161 0.040

40

Value 0.347 0.422 1.896 2.010 0.072

Portfolio 0.402 0.639 1.643 1.462 0.048

Buy-hold 0.360 0.380 0.035 0.915 0.038

γ = 20

1 Myopic 0.400 0.944 0.540 0.328 0.014

4

Value 0.477 1.486 0.662 0.479 0.017

Portfolio 0.444 1.138 0.625 0.401 0.016

Buy-hold 0.374 0.439 0.142 0.801 0.033

8

Value 0.395 0.624 1.204 1.111 0.040

Portfolio 0.464 1.172 0.740 0.463 0.017

Buy-hold 0.380 0.463 0.080 0.836 0.034

20

Value 0.372 0.427 1.775 1.423 0.052

Portfolio 0.453 0.956 0.849 0.486 0.018

Buy-hold 0.412 0.505 0.045 1.009 0.036

40

Value 0.177 0.256 1.646 0.434 0.047

Portfolio 0.439 0.993 1.015 0.725 0.026

Buy-hold 0.414 0.482 0.030 1.028 0.036

The tables make clear that for low values of the investment horizon T and risk aversion γ the

value and portfolio iteration methods are almost equivalent. When these increase both methods

begin to differ more, in these situations, the portfolio iteration seems to perform better.

First, the lower risk aversion scenarios are analyzed. The Sharpe ratios only slightly differ,

but this difference is for no combination significant according to the Jobson-Korkie test. The

Sortino ratios tell more, the buy-and-hold portfolios all have lower values than their respective

dynamic programming portfolios. Thus the buy-and-hold portfolio returns have more volatile

negative returns which is not desirable. This shows that the dynamic programming segment

is effective in this setting, which is elongated by the higher realized returns for the value and

portfolio iteration. Their return volatility is consistently higher but this is caused by more

volatility from positive returns which can not be seen as bad risk. The turnovers of the dynamic

programming are much higher than the buy-and-hold strategy because they are rebalanced more

often. However, this is not seen as a problem, because the allocations are only updated quarterly

and they are not extremely high. The improved portfolio performance significantly compensates

for the increased trading activity. The myopic benchmark strategy does seem to produce similar

results for most of the lower risk-averse scenarios, only its realized return is lower than the
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dynamic programming portfolios. This makes the dynamic programming methods slightly more

favourable for this setting, where between both for higher investment horizons the portfolio

iteration performs a little better.

Next, the extreme risk-averse investor scenarios. The Sharpe ratios seem to differ more,

however they still do not differ significantly in any case. This is due to the low out-of-sample

size of 50 quarters, which makes the Jobson-Korkie test not reject the null hypothesis of equal

Sharpe ratios. Just as in the other risk aversion case, the portfolio iteration performs better

when the investment horizon increases. The Sortino ratios indicate that the value iteration has

more volatile negative returns, which is not preferable. Also, their turnover is higher in all cases.

There is no clear winner when comparing their realized returns, but there is when looking at

the portfolio volatilities. The portfolio iteration volatility is much lower for all scenarios. Only

the myopic benchmark portfolio possesses lower volatility, but their other performance metrics

do not justify choosing this portfolio over the others.

4.4 Mean weights

Table 4 contains some more insights into the weights that the dynamic programming methods

produce for each asset given the investor’s preference. Now these weights can be combined with

the previous performance measures to determine the optimal asset allocation for an investor

with a certain investment horizon and risk aversion. However, this optimal asset allocation is

for this given setting and research and is not a guarantee of the optimal asset allocation in the

future.

Table 4: Mean weights

Risk Aversion Time Horizon Method Stocks Bonds Bills

γ = 5

4
Value 0.477 0.456 0.067

Portfolio 0.472 0.461 0.067

8
Value 0.519 0.420 0.061

Portfolio 0.514 0.421 0.065

20
Value 0.623 0.337 0.040

Portfolio 0.584 0.372 0.044

40
Value 0.909 0.077 0.014

Portfolio 0.642 0.307 0.051

γ = 20

4
Value 0.195 0.272 0.533

Portfolio 0.175 0.284 0.541

8
Value 0.443 0.303 0.254

Portfolio 0.199 0.321 0.480

20
Value 0.636 0.356 0.008

Portfolio 0.241 0.325 0.434

40
Value 0.196 0.760 0.044

Portfolio 0.320 0.332 0.348
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First, a moderate-risk investor with a risk aversion coefficient of five. Both methods give

approximately the same weights for the lower time horizons. When this given investor has a

short investment horizon it is best to maintain a 50:40:10 split between stocks, bonds and bills

respectively. If the investment horizon increases then the portfolio iteration method performs

better, therefore these weights will be chosen. It can be seen that the relative weights between

stocks and bonds change more in favour of the stocks, the optimal split would be approximately

65:30:5. This of course depends on the actual investment horizon an investor has, thus the

optimal allocation is time-dependent.

Next, a low-risk investor with a risk aversion coefficient of twenty. Here it is immediately

evident that a bigger portion is invested in the low-risk bills. Also, the optimal weights between

the two dynamic programming methods differ more. When this given investor has a short

investment horizon it seems best to maintain a 20:30:50 split between stocks, bonds and bills

respectively. If the investment horizon increases then the relative weights between stocks and

bills change more in favour of the stocks, and the optimal split would be approximately 30:30:40.

These results are from the portfolio iteration which seems superior in these cases. The shift

from wealth in bills to stocks can be explained by the reduced risk associated with stocks as

the investment horizon lengthens. This is due to the stocks being able to recover from large

negative returns by the increased likelihood of positive returns afterwards.

5 Conclusion

This study aimed to evaluate the effectiveness of dynamic programming methods in optimiz-

ing asset allocation among stocks, bonds, and bills, considering varying levels of investor risk

tolerance and investment horizons. The results demonstrate that portfolios optimized using

dynamic programming methods slightly outperformed those using simpler alternative weight-

choosing strategies. The study also identified optimal asset allocation rules tailored to different

investor profiles, emphasizing the importance of considering individual preferences in investment

decisions.

The practical implications of these findings are significant for investors and portfolio man-

agers. The superior performance of dynamic programming methods highlights their potential

to enhance investment decision-making processes, providing more precise and effective asset

allocation strategies compared to traditional approaches.

However, this study has some limitations. The assumptions made in the dynamic program-

ming models may not account for all market variables and investor behaviours. This research

only applied one testing phase, further studies could also investigate the long-term performance

and robustness of these methods in different economic scenarios. Future research could also

explore the application of dynamic programming methods to other asset classes and market

conditions, as well as the integration of other more complex state variables.
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A DSS

It follows the following procedure to solve the optimization problem.

1. Define a grid over the state variables.

2. Start with the last optimization at T − 1. For each grid point simulate the returns at T

and solve the optimization problem.

3. Calculate the scaled value function for each grid point.

4. Move to the decision at T − 2 and simulate for each grid point the returns and state

variables at T − 1.

5. Determine the scaled value function ψ (z̃T−1) for simulated state variables z̃T−1 by inter-

polation of the grid values of step 3.

6. Again solve the optimization problem for each grid point and calculate its scaled value

function.

7. Repeat steps 4 to 6 for decisions T − 3 till t+ 1.

Now make a final decision for time t by performing a final simulation for the current known value

of the state variable. Determine the final optimal weight xt by using the scaled value function

of t+ 1 and optimizing one last time.

B Weights

Figure 2: Results for Time Horizon 4 and Risk Aversion 5
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Figure 3: Results for Time Horizon 8 and Risk Aversion 5

Figure 4: Results for Time Horizon 20 and Risk Aversion 5
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Figure 5: Results for Time Horizon 40 and Risk Aversion 5

Figure 6: Results for Time Horizon 4 and Risk Aversion 20
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Figure 7: Results for Time Horizon 20 and Risk Aversion 20

Figure 8: Results for Time Horizon 40 and Risk Aversion 20
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