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Abstract

Demand response programs are widely used to consume electricity more efficiently and

to decrease the electricity bill of households. Henggeler Antunes et al. (2022) proposes

a formulation for different appliances, the appliance operation model is computationally

expensive, mainly caused by the model for the electric water heater. This paper compares

two alternative approaches for modelling the electric water heater. An adapted formulation

is described and a simulated annealing heuristic is created. These approaches do not result

in any improvement over the original model for the electric water heater. However, when the

overall model with other appliances is considered the simulated annealing heuristic manages

to obtain a better solution is less computation time. The original model still outperforms

both approaches with more computation time.

1 Introduction

The growing usage of renewable energy sources is decreasing the dependence of fossil fuels in

order to generate electricity for households. As of 2020 around 29% of global electricity is

produced from renewable sources, not including nuclear (International Energy Agency, 2021).

For the foreseeable future the generated electricity will be a mix of renewable sources and fossil

fuels.

This leads to an increasing complexity of the electricity supply. The supply of electricity

generated from fossil fuels is static and does not depend on external factors, while the supply

of electricity generated from renewable sources is dynamic and depends on factors such as the

time of day or the weather. In order to combat the fluctuations in energy supply many demand

response programs have been developed.

These programs can be divided into incentive based, which pays consumers who decrease

their electricity usage during peak hours, and price based, which charges different electricity

prices to the consumer, depending on the electricity supply cost (Jordehi, 2019). Incentive

based programs can be further divided into into direct load control, load curtailment, demand

bidding emergency demand reduction, and price based programs can be further divided into time

of use, real time pricing, critical peak pricing and inclining block rate. This paper focuses on one

of these programs, namely time of use pricing, where the cost per kWh paid by the consumer

depend on the time of day. The main question this paper aims to answer is ’How can we

develop a more computationally efficient method for appliance operation, specifically focusing

on electric water heaters, that maintains accuracy in meeting comfort and safety constraints

within demand response programs?’ In order to answer this question this paper describes two

alternative approaches to the electric water heater model within the appliance operation model

from Henggeler Antunes et al. (2022). One of these approaches is an adapted linear programming

model, which uses a different formulation for calculating the water temperature, as well as

formulating the requirement to heat the water in order to kill harmful bacteria in a different

way. The second approach is a simulated annealing heuristic, which does not use a solver

to obtain the optimal solution, but instead computes a good solution quickly using simulated

annealing. The efficiency of these models is compared on their own to the original electric water

heater model as well as in part of the overall appliance operation model.
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Section 2 provides a review of relevant literature, Section 3 describes the problem this paper

aims to solve in more detail. Section 4 provides an overview of the used data. Section 5 describes

the methodology used in this paper to obtain the results. Section 6 summarises the results which

have been obtained from the implemented methodology. Section 7 provides a conclusion on the

paper.

2 Literature review

Demand response programs and their applications have been extensively studied and many

different methods have been developed, this has lead to a general decrease in the load of the

power grid in regions that are able to make use of these programs. These demand response

programs are typically implemented in developed countries, where the infrastructure allows for

such programs, but even in emerging countries there are opportunities to implement demand

response programs (Martinez & Rudnick, 2012). Examples of methods for demand response that

have been implemented include inverse optimization to design incentive based demand response

programs (Murakami et al., 2017).

Home energy management systems are used by households in order to make use of the

different response programs. These systems determine when to operate what appliances based on

factors such as the current electricity price and user comfort variables. A widely used approach

of minimising the electricity price using home energy management systems is by means of a

Mixed Integer Linear Program (MILP). A straightforward implementation views all appliances

as shiftable loads, which operation time can be shifted to a certain degree and is determined

by the model, the model proposed in Javadi et al. (2021) describes one of these models, which

can be solved efficiently. These models however lack the complexity to model some of the

more complex appliances, such as the air conditioner or electric water heater, which operation

cannot be shifted without impacting external factors. The appliance operation model described

in Henggeler Antunes et al. (2022) accounts for these appliances by proposing a modular set

of constraints for shiftable loads, an air conditioner, an electric water heater and a static and

electric vehicle battery, as well as the option of selling back energy to the grid. The model

schedules the operation times of the appliances such that the electricity cost is minimized whilst

ensuring a certain comfort level is met, e.g. a minimum and maximum water temperature level.

The electricity pricing structure consists of a time of use tariff, supplemented with a fixed price

paid per power level, which increases as more electricity is used in total throughout the day.

The model proposed by Henggeler Antunes et al. (2022) is effective in decreasing the elec-

tricity bill of households, but it is computationally expensive. Implementing this model in

household management systems would require expensive hardware, which increases the prices

and limits the implementation of these household management systems, especially in less de-

veloped regions where it is crucial to keep the costs of these home energy management systems

as low as possible.

The complexity of the model is caused by the electric water heater, without the electric water

heater the model would be solved to optimality within seconds (Henggeler Antunes et al., 2022).

Much research has been done on the modelling of electric water heater and alternative models

and methods have been developed, such as a genetic algorithm (Lin et al., 2017), which shows
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a huge decrease in electricity costs compared to conventional electric water heater systems. Wu

et al. (2019) describes a linear approximation of a non-linear model for electric water heaters,

which can be solved within a minute. The improved performance of the model from Wu et al.

(2019) is partially caused by a decrease in realism. The model from Henggeler Antunes et al.

(2022) assures the water inside the tank is heated up above a certain temperature in order to kill

harmful bacteria, while this model does not account for this. There is currently no optimization

model for the electric water heater which is as realistic as Henggeler Antunes et al. (2022) and

can be solved efficiently.

3 Problem statement

This paper aims to find a more efficient appliance operation model over the model proposed in

Henggeler Antunes et al. (2022) where the distinction is made between four different appliance

types. These types are shiftable loads, electric water heater, air conditioner and static and

electric vehicle battery. These appliances are combined into one model, with the objective

to satisfy a certain level of service for the household which these appliances reside in, while

minimising the total energy costs. The energy cost follows a time of use tariff, where the price

paid per kWh of electricity is determined by the time of day and is known beforehand. The

model considers a time span of one day, and determines the operation of the appliances per

minute. The following paragraphs explain each of the appliances and the complete appliance

operation model in more detail.

Shiftable loads

Shiftable loads are determined by appliances which only need to be operational for a set time

and their performance is independent on the time they operate. These appliances also have

a uninterruptible operation cycle. Appliances of these types include a laundry machine and

dishwasher for example. The model determines when the appliances should be used under

the constraints that each appliance should only be used within a comfort time slot, as well as

accounting for differing electricity draws for each operation stage of each appliance.

Electric water heater

The model for the electric water heater determines when the heater should be enabled or dis-

abled, whilst ensuring the temperature of the water is always between predefined bounds. The

water temperature is only allowed to fall below the minimum temperature if the electric water

heater is enabled and similarly the water temperature is only allowed to rise above the maximum

temperature if the electric water heater is disabled. This distinction is necessary, as the model

would otherwise be infeasible if the starting temperature would be too high or if the temperature

would be too low due to excessive water consumption. The model does also ensure the water is

heated up to a certain temperature for a certain amount of time in order to kill harmful bacteria

such as legionella.
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Air conditioner

The model determines when the air conditioner should be enabled or disabled, it ensures the

indoor temperature stays between defined boundaries, the model does also account for the

thermal characteristics of the building. Additionally the air conditioner is only allowed to start

operating if the indoor temperature falls below the minimum allowed temperature, and is only

allowed to stop operating once the indoor temperature has exceeded the maximum allowed

temperature. This restriction limits the amount of operation switches and increases the lifespan

of the air conditioner.

Static and electric vehicle battery

The model allows the static and electric vehicle battery to be used to store energy, the electric

vehicle battery is only available when the vehicle is present and has to be charged to a certain

amount before departure, the amount of energy that the electric vehicle uses on its trip is known.

The static battery is available at any time and does not require a certain charge level.

Appliance operation model

The overall model ensures all conditions for the appliances are met, whilst minimizing total

costs, additionally the model accounts for the possibilities of local electricity generation, e.g.

through solar panels, and to sell electricity back to the grid for a constant price. The amount of

electricity that is locally generated differs depending on the time of day, but is known beforehand.

The price at which electricity can be sold back to the grid is a fraction of the weighted average

buying price.

4 Data

In order to accurately compare the efficiency of the model this paper makes use of the same data

as in Henggeler Antunes et al. (2022). This data is obtained from field audits and actual equip-

ment technical specifications and contains information on the pricing structure, consumption

and comfort parameters of the household, temperature and parameters of the different types of

appliances. This paper assumes temperature and household consumption are deterministic and

known beforehand.

5 Methodology

The demand response models for shiftable loads, air conditioner and static and electric vehicle

batteries are equivalent to the models described in Henggeler Antunes et al. (2022). As these

can already be solved to optimality within seconds, there is currently little need to improve these

models. The model for the entire household management system, which schedules the appliance

operation, as well as a power component remains unchanged as well, this model obtains the

optimal solution in seconds without considering the electric water heater (Henggeler Antunes

et al., 2022), but takes over an hour including the electric water heater model. In order to
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improve the efficiency of the this model it is intuitive to improve the most inefficient aspect,

which is clearly the electric water heater. This paper develops an adapted formulation and a

simulated annealing heuristic for the electric water heater model. The following sections provide

the models of the appliances used in Henggeler Antunes et al. (2022) in more detail, as well as

the two alternative approaches for the electric water heater. The parameters T , ∆t and Cbuy
t

are used in all models and denote the time horizon, the time step size and the buying price of

electricity respectively.

The alternative approaches are compared to the original electric water heater model from

Henggeler Antunes et al. (2022) as well as their implementation in the overall model, a more

detailed description of how these different models are compared is given in section 5.8.

5.1 Shiftable loads model

Parameters

J : number of shiftable loads

T (j) : allowed operation times for load j

Tstart(j) : allowed starting times for load j

R(j) : number of stages for load j

Tlj : earliest allowed starting time of load j

gjr : power requirement of load j at stage r

Variables

sjt :

1 if load j starts operating at time t

0 otherwise

PSh
jt : required power for load j at time t

Formulation

min
T∑
t=1

J∑
j=1

Cbuy
t PSh

jt ∆t (1)

∑
t∈Tstart(j)

sjt = 1 j = 1...J (2)

PSh
jt =

∑
r∈R(j);r≤t∧r≤t+1−TLj

gjrsj(t−r+1) j = 1...J, t ∈ T (j) (3)

PSh
jt = 0 j = 1...J, t /∈ T (j) (4)

sjt ∈ {0, 1} j = 1...J, t ∈ Tstart(j) (5)

Equation (1) is the objective function, which aims to minimize the total costs of operating

the shiftable loads, equation (2) ensures every shiftable load is started exactly once. equation (3)
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sets the correct power level for each appliance at every time within the allowed operation times,

for all other times the power level is set to zero, this is done by equation (4).

5.2 Electric water heater model

Parameters

PR : power draw of the resistive heating element

A : area of the tank

U : heat transfer coefficient of the tank

M : capacity of the tank

τamb
t : ambient temperature at time t

mt : water withdrawal at time t

τnet : inlet water temperature

cp : specific heat of water

τmin : minimum allowed water temperature

τmax : maximum allowed water temperature

treq : required time to heat water to kill bacteria

τ req : required temperature to kill bacteria

Variables

vt :

1 if the electric water heater is turned on at time t

0 otherwise

P losses
t : amount of heat lost at time t

τt : water temperature at time t

nt :

1 if τt > τ req for the first time at time t

0 otherwise
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Formulation

min

T∑
t=1

Cbuy
t PRvt∆t (6)

P losses
t = AU(τt − τamb

t ) t = 1...T (7)

τt+1 = (
M −mt

M
τt +

mt

M
τnet) +

PRvt − P losses
t

Mcp
∆t t = 0...T − 1 (8)

τt ≥ τmin −Nvt t = 1...T (9)

τt ≤ τmax +N(1− vt) t = 1...T (10)

T−treq+1∑
t=1

nt = 1 (11)

τt ≥
treq∑

t′=1(t′≤t)

τ reqnt−t′+1 t = 1...T (12)

vt, nt ∈ {0, 1} t = 1...T (13)

P losses
t ≥ 0 t = 1...T (14)

τt ≥ 0 t = 1...T (15)

Equation (6) is the objective function, which minimizes the total costs. Equation (7) cal-

culates the correct amount of energy lost based on the water temperature and the ambient

temperature, equation (8) sets the correct value of the water temperature at every time. Equa-

tion (9) ensures the water temperature can only fall below the minimum temperature if the

electric water heater is turned on, equation (10) works similarly, but instead ensures the water

temperature is only allowed to exceed the maximum temperature if the electric water heater is

turned off, N is a sufficiently large number. Equation (11) ensures that there is exactly one time

period where the water temperature is high enough to kill harmful bacteria for the first time.

Equation (12) requires the temperature of the water to be above the required temperature for

at least treq periods before nt is allowed to equal one.

5.3 Air conditioner model

Parameters

PAC : power of the air conditioner heating element

β : heat loss coefficient, defined as (UA/C)∆t,

where UA is the thermal conductance of the building and C the thermal capacity

θextt : outside temperature at time t

γ : efficiency of the air conditioner

θmin : minimum allowed indoor temperature

θmax : maximum allowed indoor temperature
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Variables

sAC
t :

1 if the air conditioner is turned on at time t

0 otherwise

θint : indoor temperature at time t

zt :

1 if θint > θmin

0 otherwise

yt :

1 if θint < θmax

0 otherwise

Formulation

min
T∑
t=1

Cbuy
t PACsAC

t ∆t (16)

θint = (1− β)θint−1 + βθextt−1 + γPACsAC
t−1 t = 1...T (17)

θint ≥ θmin −MsAC
t t = 1...T (18)

θint ≤ θmin +Mzt t = 1...T (19)

θin ≥ θmax −Myt t = 1...T (20)

zt + yt − sAC
t−1 + sAC

t ≤ 2 t = 1...T (21)

zt + yt + sAC
t−1 − sAC

t ≤ 2 t = 1...T (22)

θint ≤ θmax +M(1− sAC
t ) t = 1...T (23)

sAC
t , zt, yt ∈ {0, 1} t = 1...T (24)

Equation (16) is the objective function, which aims to minimize the total costs of oper-

ating the air conditioner. Equation (17) sets the correct indoor temperature based on the

previous temperature, the outside temperature and the enabled status of the air conditioner.

Equation (18) ensure the air conditioner is turned on when the indoor temperature is too low.

Equations (19) to (22) only allow the air conditioner to switch enabled status if the temperature

falls outside the allowed range. Equation (23) ensure the air conditioner is turned off when the

indoor temperature is above the maximum temperature.
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5.4 Static and electric battery model

Parameters

x : type of battery, either static (B) or electric vehicle (V )

ηchx : charging efficiency of battery x

ηdchx : discharging efficiency of battery x

Emin
x : minimum allowed charge level for battery x

Emax
x : maximum allowed charge level for battery x

P ch max
x : maximum charging power for battery x

P dch max
x : maximum discharging power for battery x

Ereq
B : required charge level at the end of the time horizon for the static battery

Ereq
V : required charge level at the time of departure for the electric vehicle battery

Variables

P x2H
t : power flow from battery x to home grid

PH2x
t : power flow from home grid to battery x

Ex,t : charge level of battery x

sx2Ht :

1 if battery x is discharging

0 otherwise

sH2x
t :

1 if battery x is charging

0 otherwise
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Formulation

min

T∑
t=1

Cbuy
t PH2x∆t (25)

Ex,t = Ex,t−1 + (ηchx PH2x
t ∆t)− (

P x2H
t ∆t

ηdchx

) t ∈ Tx, x ∈ {B, V } (26)

Emin
x ≤ Ex,t ≤ Emax

x t ∈ Tx, x ∈ {B, V } (27)

0 ≤ PH2x
t ≤ P ch max

x sH2x
t t ∈ Tx, x ∈ {B, V } (28)

0 ≤ P x2H
t ≤ P dch max

x sx2Ht t ∈ Tx, x ∈ {B, V } (29)

sH2x
t + sx2Ht ≤ 1 t ∈ Tx, x ∈ {B, V } (30)

EB,T ≥ Ereq
B (31)

EV,td ≥ Ereq
V (32)

sH2x
t , sx2Ht ∈ {0, 1} t ∈ Tx, x ∈ {B, V } (33)

Equation (25) is the objective function, which aims to minimize the total costs, equation (26)

sets the correct charge level for the batteries. Equation (27) ensures that the charge level does

not exceed the bounds, equations (28) and (29) sets the power flow to be at most the maximum

allowed flow, and only allows power to flow to the batteries if it they are charging and power

to flow to the home if the batteries are discharging. Equation (30) ensures that the batteries

cannot both charge and discharge at the same time, equations (31) and (32) make sure that the

charge level of the battery is at least the required level at the end of the time horizon or at the

time of departure.

5.5 Appliance operation model

Parameters

Csell : price of selling electricity back to the grid

L : set of power levels

cCont
l : price of power level l

PCont
l : maximum allowed power for power level l

PG max : maximum power flow

Bt : base load at time t

PPV
t : local power generation at time t

J : set of shiftable loads

PAC : power of the air conditioner heating element

PR : power of the electric water heater heating element
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Variables

PG2H
t : power flow from grid to home at time t

PH2G
t : power flow from home to grid at time t

uCont
l :

1 if power level l is the maximum power level

0 otherwise

sG2H
t :

1 if power is flowing from grid to home

0 otherwise

sH2G
t :

1 if power is flowing from home to grid

0 otherwise

PSh
jt : power required by shiftable load j at time t

sAC
t :

1 if the air conditioner is turned on

0 otherwise

vt :

1 if the electric water heater is turned on

0 otherwise

PH2B
t : power flow from home to static battery at time t

PB2H
t : power flow from static battery to home at time t

PH2V
t : power flow from home to electric vehicle battery at time t

P V 2H
t : power flow from electric vehicle battery to home at time t

Formulation

The formulation of the appliance operation model consists of equations (34) to (42) which models

the power component and the power flow from the grid to the home, as well as equations (2)

to (5) for the shiftable loads, equations (7) to (15) for the electric water heater, equations (17)

to (24) for the air conditioner and equations (26) to (33) for the static and electric vehicle

battery.
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min
T∑
t=1

((Cbuy
t PG2H

t ∆t)− (CsellPH2G
t ∆t)) +

L∑
l=1

(cCont
l uCont

l ) (34)

PG2H
t ≤

L∑
l=1

PCont
l uCont

l t = 1...T (35)

L∑
t=1

uCont
t = 1 (36)

0 ≤ PG2H
t ≤ PG maxsG2H

t t = 1...T (37)

0 ≤ PH2G
t ≤ PG maxsH2G

t t = 1...T (38)

sG2H
t + sH2G

t ≤ 1 t = 1...T (39)

PG2H
t − PH2G

t + PPV
t =

Bt +
J∑

j=1

PSh
j,t + PACsAC

t + PRvt + (PH2B
t − pB2H

t ) + (PH2V
t − pV 2H

t ) ∀t ∈ Tv (40)

PG2H
t − PH2G

t + PPV
t =

Bt +
J∑

j=1

PSh
j,t + PACsAC

t + PRvt + (PH2B
t − pB2H

t ) ∀t ∈ T \ Tv (41)

uCont
t ∈ {0, 1} l = 1...L (42)

(43)

Equation (34) is the objective function, which minimizes the total cost of operating the ap-

pliances, the costs consist of three parts, the bought electricity, the sold electricity and the power

level. Equations (35) and (36) are responsible for setting the correct power level, equations (37)

and (38) ensure the amount of flow does not exceed the maximum flow. Equation (39) makes

sure that flow is only flowing in one direction at a time. Equations (40) and (41) set the correct

amount of power to be used, these equations only differ depending on the availability of the

electric vehicle.

5.6 Adapted Electric water heater model

The alternative model for the electric water heater is described in equations (44) to (52), the

calculation of the water temperature is based on the model from Wu et al. (2019), which uses

linearization techniques to transform a non-linear electric water heater model to a MILP prob-

lem. In order to maintain the same level of realism as the model from Henggeler Antunes et al.

(2022) additional constraints to ensure harmful bacteria are killed by high water temperatures

are added to the model. The model is specified as follows:
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Parameters

cp : specific heat of the water

ρ : density of water

R : water heater thermal resistance

M : tank capacity

η : efficiency of the electric water heater

PR : power of the resistive heating element

δ : the length of one time unit

mt : water withdrawal at time t

τmax : the maximum allowed temperature of the water

τnet : the inlet water temperature

τ req : the required temperature to kill bacteria

treq : the required time the water has to be above the required temperature to kill bacteria

Variables

τt : the temperature of the water at time t

vt :

1 if the electric water heater is turned on

0 otherwise

αt :

1 if τt > τ req

0 otherwise

βt :

1 if τt > τ req for period t and all the treq − 1 following periods

0 otherwise
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Formulation

min

T∑
t=1

Cbuy
t pR∆tvt (44)

τmax ≥ τt ≥ τnet t = 1...T (45)

τt+1 =

(1− δ

cpρRM
)τt +

∆tµPR

cpρM
vt +

δ

cpρMR
τamb
t +

δ

M
(τnet − τt)mt t = 0...T − 1 (46)

τt ≥ τmin −Nvt t = 1...T (47)

τt − τ req ≤ Nαt t = 1...T (48)

τ req − τt < N(1− αt) t = 1...T (49)

treq−1∑
i=1

αt+i ≥ treqβt t = 1...T − treq + 1 (50)

T−treq+1∑
t=1

βt ≥ 1 (51)

vt, δt, αt, βt ∈ {0, 1} t = 1...T (52)

The only parameter values that are not defined in the dataset (Henggeler Antunes et al.,

2022) are δ and R. δ is the length of one time unit, as the time horizon is divided into 1440

equal units each unit has a length of one minute. So the value of δ equals 1. The water

heater thermal resistance R is set as 17.922 Kday/kWh, this value has lead to the best results

in previous research (Nel et al., 2018). In the formulation described above equation (44) is

the objective function, which aims to minimize the total costs of operating the electric water

heater throughout the day. Equation (45) limits the temperature of the water to be between

the temperature of the inlet water and maximum allowed temperature of the water inside the

tank. Equation (46) calculates the temperature of the water inside the tank for the next time

interval. The constraints account for heat loss through the tank and inefficiency of the electric

water heater unit. Equation (47) sets the minimum temperature of the water and allows the

temperature to be lower if the electric water heater is enabled, it is not possible to simply replace

τnet by τmin in Equation (45) as the water temperature falls sharply at times of consumption.

Equations (48) and (49) ensure that the value of αt is set correctly for every time period.

Equation (50) only allows βt to equal 1 if the temperature of the current period and all treq − 1

periods afterwards is above the required temperature to kill the bacteria. Equation (51) forces

the solution to have at least one sequence of treq periods where the temperature is high enough

to kill the bacteria. Equation (52) simply puts the binary constraints on the variables.

5.7 Simulated annealing heuristic

The second approach used to efficiently obtain a solution for the electric water heater is a

simulated annealing heuristic. The general procedure of this heuristic is to first obtain an initial

feasible solution, which is set as the current best solution, after which new solutions are generated
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which are slightly different from the current best solution in order to find better solutions, a

new solution is always accepted as the new current best objective if the solution is feasible and

if the objective value is lower, in order to escape a local minimum the solution also has a chance

to be accepted if it is feasible, but does not have a lower objective value. Infeasible solutions

are discarded and a new solution is generated to replace the infeasible solution. The probability

of a worse feasible solution being accepted is generally high at the start, but decreases over

time. This decreasing likelihood of accepting worse solutions is aimed to escape local minima

and instead end up in the global minima. This method mimics methods in metallurgy, on which

the simulated annealing heuristic was originally based (Tsallis & Stariolo, 1996). Simulated

annealing typically outperforms heuristics where the objective value is only allowed to decrease,

such as local search.

Algorithm 1 describes the procedure of the heuristic in more detail. The heuristic uses the

following parameters:

• T0: The initial temperature of the heuristic

• α: the cooling rate, i.e. the rate at which the temperature decreases

Algorithm 1 Simulated annealing heuristic for the electric water heater

bestSolution = getInitialSolution()
bestObjective = getObjectiveValue(bestSolution)
T = T0

while Stopping condition not met do
candidateSolution = getCandidate(bestSolution)
if isFeasible(candidateSolution then

candidateObjective = getObjectiveValue(candidateSolution)
if candidateObjective < bestObjective then

bestSolution = candidateSolution
bestObjective = candidateObjective

else
∆ = candidateObjective - bestObjective
if random() < exp(−∆ / T ) then

bestSolution = candidateSolution
bestObjective = candidateObjective

end if
end if

end if
T = (1− α)T

end while

The initial solution is generated by calculating the water temperature at time 1 if the electric

water heater would be turned off at that time, if the temperature would fall below the required

temperature to kill harmful bacteria the electric water heater is turned on at that time, this

procedure is repeated for all following time periods. This ensures a feasible solution as long as

the problem itself is feasible.

Candidate solutions are generated by enabling or disabling the electric water heater and

random time points, each time a candidate solution gets generated there is a probability that
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the candidate solution attempts to fix any time periods where the water temperature is below

the minimum temperature or above the maximum temperature, this increases the likelihood

of a candidate solution being feasible and thus being considered as a possible improvement.

The procedure of fixing a candidate solution is similar to generating the initial solution, the

water temperature is iteratively calculated and the electric water heater is turned enabled or

disabled if the water temperature exceeds the predefined bounds. The heuristic will continue to

search for better solutions until the stopping condition is met, in order to easily compare the

heuristic approach to the MILP models the heuristic continues searching for solutions until a

predetermined time has passed.

5.8 Comparison of models

The adapted model and the simulated annealing heuristic are implemented as standalone models

for the electric water heater, and they are also implemented in an overall model which includes

shiftable loads, an air conditioner and a static and electric vehicle battery as well. The adap-

ted model simply replaces the original electric water heater model in the overall model from

Henggeler Antunes et al. (2022). The implementation of the simulated annealing heuristic into

the overall model is less straightforward, as the heuristic and the overall model cannot be solved

simultaneously. Instead the simulated heuristic runs first for a fraction γ of the allowed solving

time. The obtained solution for the electric water heater is passed to the overall model, which

sets the found solution for operating the electric water heater as the initial solution and then

solves the appliance operation model with the remaining fraction 1− γ of the available solving

time to compute a solution.

In order to accurately compare the efficiency of the adapted formulation and the simulated

annealing heuristic to the original electric water heater model their objective value and MILP

gap are compared after solving times of 5, 10, 30 and 60 seconds, as well as 5, 10 and 60

minutes. These solving times provide a clear view of how the objective changes over time, which

is essential as the efficiency of the models not only depend on the found objective value, but

also on the time it takes to find good objective values.

6 Results

All the models have been implemented in Java using the Gurobi solver, the computations have

been performed with an AMD Ryzen 7 5700U, 1.80 GHz, 16GB RAM. A brief description of

the code used to obtain these results and the performed runs can be found in the appendix.

Table 1 displays the objective values for the shiftable loads, air conditioner and static and

electric vehicle battery models. All of these models were solved to optimality within less than 5

seconds. The found objective values are equal to those of the same models in Henggeler Antunes

et al. (2022) which serves as validation that these models are correct and that they can be used

in the appliance operation models.
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Table 1: Objective value of original models
Shiftable Loads Air Conditioner Battery

0.470 2.442 1.720

6.1 Electric Water Heater

The Electric Water Heater model from Henggeler Antunes et al. (2022) is computationally

expensive, thus two alternative approaches for modelling the Electric Water Heater have been

developed. The simulated annealing heuristic makes use of the parameters T0 and α for the

initial temperature and the cooling rate. The values 0.01 and 1 · 10−5 for T0 and α respectively

are used as the initial values for the simulated annealing heuristic, these values ensure that the

probability of accepting a worse solution is high enough at the start and decreases slowly. In

order to obtain the optimal parameter values the heuristic is run with an allowed solving time

of 60 seconds with these parameter values, as well as the values which differ 5, 10, 15 and 20

percent from the initial values. The results can be found in table 2, as can be seen from this

table, the parameter values 0.0085 for T0 and 1.15 · 10−5 for α provide the best results, these

values are thus further used for the simulated annealing heuristic.

Table 3 displays the objective value of the original model after different solving times, as well

as the adapted model and the simulated annealing heuristic. The percentages indicate the MILP

gap of these models after the given solving time has passed. The simulated annealing heuristic

does not consist of an linear programming model and thus no lower bounds are calculated, which

are necessary to compute the gaps, instead the gaps for the simulated annealing heuristic are

calculated based on the lower bound obtained by the original model with the same solving time.

The efficiency of the electric water heater, denoted by µ is set to 100% in order to match the

heating power of the original model.

Table 2: Objective value simulated annealing heuristic with different parameters
α · 10−6

8 8.5 9 9.5 10 10.5 11 11.5 12

T0

0.008 1.309 1.312 1.312 1.323 1.318 1.305 1.310 1.314 1.320
0.0085 1.307 1.310 1.306 1.305 1.312 1.321 1.305 1.299 1.316
0.009 1.310 1.312 1.312 1.310 1.309 1.316 1.308 1.312 1.309
0.0095 1.307 1.308 1.306 1.303 1.313 1.312 1.307 1.305 1.314
0.01 1.313 1.307 1.306 1.323 1.311 1.314 1.310 1.321 1.307
0.0105 1.320 1.311 1.314 1.314 1.313 1.313 1.305 1.327 1.307
0.011 1.311 1.309 1.314 1.317 1.307 1.312 1.308 1.309 1.317
0.0115 1.305 1.311 1.310 1.302 1.319 1.307 1.309 1.301 1.303
0.012 1.303 1.311 1.307 1.311 1.318 1.305 1.307 1.310 1.315

The optimal values of the original model and the adapted model will most likely slightly vary,

as both models use separate formulations for calculating the water temperature. Comparing the

MILP gaps of these two models shows that the original model outperforms the adapted model

for all solving times. The simulated annealing heuristic does not manage to find a better solution

than the original model, this is most likely caused by the candidate solutions generated by the

heuristic not being diverse enough to escape local minima or by the temperature and cooling
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value not allowing for different neighbourhoods to be accepted, further tuning of the heuristic

and the set parameters could prevent this.

Table 3: Objective value of electric water heater models
Solving time Original Model Adapted Model Simulated Annealing

5 sec 1.349 (6.95%) 1.704 (21.34%) 1.360 (7.72%)
10 sec 1.285 (1.95%) 1.698 (20.94%) 1.311 (3.89%)
30 sec 1.279 (0.21%) 1.401 (4.19%) 1.319 (3.26%)
60 sec 1.279 (0.19%) 1.386 (3.16%) 1.305 (2.14%)
5 min 1.279 (0.16%) 1.377 (1.03%) 1.309 (2.44%)
10 min 1.279 (0.16%) 1.375 (0.55%) 1.302 (1.92%)
60 min 1.279 (0.16%) 1.377 (0.98%) 1.297 (1.54%)

6.2 Appliance operation Model

In order to compare the different models the correct selling price of electricity needs to be

determined first, the selling price is a fixed price (Henggeler Antunes et al., 2022). This value

is determined as a fraction of the weighted average buying price. Table 4 displays the objective

value of the original appliance model for different fractions of the selling price, these values have

been obtained with a running time of 5 minutes each. The objective value of 4.098, obtained

with a selling price fraction of 0.875 is the closest to the found objective in Henggeler Antunes

et al. (2022), so this fraction is further used for the appliance operation models.

Table 4: Objective value of original model with different selling price fractions
Selling price fraction Objective value

≤ 0.65 4.518
0.675 4.513
0.7 4.500
0.725 4.436
0.75 4.382
0.775 4.327
0.8 4.273
0.825 4.213
0.85 4.161
0.875 4.098
0.9 4.041
0.925 3.977
0.95 3.911
0.975 3.820
1 3.722

Figures 1 to 3 displays the found solution for the original appliance operation model with a

solving time of 60 minutes. Figure 3 matches exactly with the results from Henggeler Antunes

et al. (2022) whereas figures 1 and 2 are slightly different. These different results will most likely

be caused by the unspecified selling price in Henggeler Antunes et al. (2022). This paper studies

the efficiency of different approaches for the electric water heater model, which is unaffected

by the power consumption of the appliance operation model and the battery charge levels,
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these differences are thus not problematic for the comparisons between electric water heater

approaches.

Figure 1: Power flow to and from the grid over time

Figure 2: Charge level of static and electric vehicle battery over time

The appliance operation model with the simulated annealing heuristic for the electric water

heater makes use of the variable γ in order to determine the fraction of time that should be

spend on the heuristic, the remaining time will be spend on the appliance operation model. As

can be seen from table 3 the simulated annealing heuristic continues finding improvements with

longer solving time, however the improvements are minimal, and will most likely be outweighed

by the appliance operation model. The majority of the solving time should thus be dedicated

to the appliance operation model, the fraction of the time spend on the heuristic is set as 0.3.

Table 5 displays the objective value of the appliance operation models, as well as the MILP

gap after each solving time. Both the adapted model and the simulated annealing model out-

perform the original model for solving times under five minutes. For longer solving time the

original model performs generally better, this complies with the results from Table 3, as the

original electric water heater model outperforms the two alternative approaches.

Figure 4 visualises the objective values for the three appliance operation models for the first

30 seconds. This figure further shows that the adapted model and the simulated annealing

model outperform the original appliance operation model significantly with short time limits.

Especially the simulated annealing model finds a good solution within a small time limit.
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Figure 3: indoor and water temperature over time

Table 5: Objective value of overall models
Solving time Original Model Adapted Model Simulated Annealing

5 sec 27.080 (85.66%) 27.080 (85.40%) 4.520 (-)
10 sec 27.080 (85.16%) 5.267 (22.46%) 4.345 (-)
30 sec 4.139 (1.78%) 4.412 (6.77%) 4.192 (3.33%)
60 sec 4.114 (1.07%) 4.401 (6.54%) 4.129 (1.53%)
5 min 4.104 (0.41%) 4.273 (3.73%) 4.105 (0.85%)
10 min 4.104 (0.40%) 4.273 (3.73%) 4.108 (0.92%)
60 min 4.104 (0.26%) 4.272 (3.72%) 4.107 (0.25%)

Table 6 displays the found objective values for the three appliance models with different

comfort parameters, these parameter changes correspond with those from Henggeler Antunes et

al. (2022). These values have been obtained with a solving time of 5 minutes, as can be seen

from this table the simulated annealing performs slightly better than the original model.

Table 6: Results for different comfort parameters
Solving time Original Adapted Simulated Annealing

Original model 4.104 4.273 4.105
θmin = 19 4.030 4.182 4.030
τmin = 43 4.040 4.125 4.036
Ereq

V = 30 3.832 3.931 3.830
θmin = 19, τmin = 43 3.966 4.064 3.964
θmin = 19, τmin = 43, Ereq

V = 30 3.694 3.845 3.694

7 Conclusion

This paper proposes two different approaches for the electric water heater model from Henggeler

Antunes et al. (2022), which aim to improve the efficiency of this model. The first approach

is a different linear programming formulation of the problem, the seconds approach is a simu-

lated annealing heuristic to determine when the electric water heater should operate. Neither

approaches have managed to obtain a better solution when only considering the electric water

heater itself. When other appliances, which includes shiftable loads, an air conditioner, a static
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Figure 4: Objective value of overall models over time

and electric vehicle battery and a power component, are taken into account the simulated an-

nealing heuristic outperforms both the original and the adapted model with less computation

times, with longer computation times the original model still performs the best. Which model

is the most efficient to use thus depends on how limited the available computational power is.

With limited computation time the simulated annealing model can be used to more efficiently

obtain solutions for the appliance operation. This approach could be further researched, per-

haps with different heuristics for the electric water heater, which may in turn lead to even better

results for the overall model. The simulated annealing heuristic itself could also be improved,

as it currently does not manage to find the global minimum of the electric water heater.

A Explanation of code

The results from this paper have been obtained with use of Java and the commercial Gurobi

solver. All data from Henggeler Antunes et al. (2022) has been manually copied to an Excel

document, which can be loaded with the DataReader class. Once loaded in all the data is stored

within the DataSet class and can be accessed easily. The parameters are stored in subclasses in

order to make the code more readable. Each of the implemented models is its own class which

inherits of the general Model class. This class consists of a Gurobi model and provides all the

functionality that is shared by all MILP models, this has been done to reduce the amount of

repetitive code. This class holds the Gurobi model variables and provides a clear interface for

the SolutionWriter class to write a solution to a file. Each model can be optimised by using the

solve method, and automatically reports the found solution, the objective value and the MILP

gap in an excel file if a solution has been found. The simulated annealing model does not consist

of a Gurobi model and is thus implemented separately. The public methods are the same as for

the other models. The provided code has been set up in such a way that simply running the

program will compute all results in Tables 1 to 6 and figures 1 to 4, this will however take over

9 hours.
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B Performed runs

In order to obtain the results from tables 1, 3 and 5 all 9 models have been run for 5 seconds,

10 seconds, 30 seconds, 60 seconds, 5 minutes, 10 minutes and 1 hour. The solving times below

60 seconds have been chosen to accurately determine how the efficiency of the different models

differ for low time limits, the solving times of 5 and 60 minutes serve to make comparisons to

Henggeler Antunes et al. (2022) easier, as the same time limits are used in that paper.

The results from tables 2, 4 and 6 have been obtained with a solving time of 60 seconds, 5

minutes and 5 minutes respectively. The random seed, which is used in the simulated annealing

heuristic is set as 0 for all of the runs. The results in Figure 4 has been obtained by running the

original appliance operation, adapted appliance operation and the simulated annealing model

for every time t ∈ 1...30 and plotting the results.
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