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Abstract

Regression discontinuity (RD) designs are used to evaluate the causal effects of a

treatment on an outcome variable based on a cutoff value that determines treatment

exposure. The ‘donut’ RD design excludes observations in a small area around the

cutoff to avoid possible data distortion caused by systematic sorting or other data

issues. The donut addition is used as a robustness measure in RD designs.

We study and evaluate the use of the donut design in both basic and covariate-

adjusted RD designs, the latter of which include additional covariates in the estima-

tion process. Furthermore, we compare the performances of the different covariate-

adjusted models using the basic RD design as a benchmark.

We employ two simulation studies and an empirical application based on child

mortality in the United States to evaluate the models. We compare bias, standard

deviation and root mean squared error as main performance measures. Additionally

we provide t-statistics-based tests and a bootstrap estimation to have a comprehens-

ive overview of the models.

Our findings indicate that while donut designs have higher standard deviations,

they exhibit relatively low biases, highlighting their effectiveness as a robustness

measure when data distortion around the cutoff is present. We also conclude that

the covariate-adjusted RD design proposed by Frölich & Huber (2019) generally

yields more precise results compared to the other models considered.
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1 Introduction

The regression discontinuity (RD) design is a method used to estimate the effect that a

certain treatment has on an outcome variable Y . It does so by comparing the treatment

group to the control group, where assignment to the treatment group is determined by a

running variable X and a fixed cutoff point c for each unit. There are two types of RD

designs. The sharp RD (SRD) design, where every unit with X > c is assigned to the

treatment group, and fuzzy RD (FRD) design, where each unit has a certain probability

of being assigned to the treatment group based on the value of X. A more detailed

description of RD designs is provided by Imbens & Lemieux (2008).

The so-called ‘donut’ RD design was first introduced by Barreca et al. (2011). It estim-

ates treatment effects by excluding observations with X values in a specific range around

the cutoff c. The decision to employ the donut RD design is usually driven by concerns

about potential distortions in RD treatment effect estimation due to systematic sorting or

other data issues. The rationale is that if these concerns are unfounded, using the donut

design should not significantly alter the estimates, thereby improving the robustness of

estimations.

In addition Calonico et al. (2019) and Frölich & Huber (2019) have developed methods

that include additional covariates in the RD design, which are not dependent on the

running variable. We will refer to these models throughout the paper as CCFT and

FH RD designs respectively. The aim of covariate-adjusted RD designs is to improve

estimation accuracy.

The primary scope of this paper is to investigate whether the donut RD design im-

proves the estimation of treatment effects. To do so, we evaluate basic and covariate-

adjusted RD designs with and without the use of the donut. Additionally we compare

the performance of covariate-adjusted RD designs to determine which performs best.

Our results will be divided in two parts. Firstly we’ll consider two simulation studies,

of which the first replicates the work of Noack & Rothe (2023). The second one extends

it by including the covariate-adjusted designs. Subsequently, we provide an empirical

application to analyze the impact of Head Start assistance on child mortality in the

United States, utilizing a dataset compiled in 1965 based on 1960 census information.

From our findings, we will evaluate the cases for which the donut implementation is most

efficient, therefore helping policymakers and researchers in selecting the most appropriate

models with a more complete overview on the topic.

To our knowledge, no previous research has evaluated the combination of donuts

with covariate-adjusted RD designs, nor has there been a direct comparison of differ-

ent covariate-adjusted RD designs. We contribute to the literature by addressing these

aspects. Our findings support the use of the donut as robustness measure for RD designs.

This paper is structured as follows. We present a literature review on RD designs
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in Section 2. In Section 3, we describe the methodology for the various models. We

illustrate the simulation studies in Section 4 and present the empirical application in

Section 5. Lastly, we draw our conclusions in Section 6.

2 Literature Review

RD designs were first introduced by Thistlethwaite & Campbell (1960) as methods of

testing causal hypotheses, used to study the effect of student scholarships on career aspir-

ation. Their procedure consists in estimating two different regressions on each side of a

cutoff which determines whether the treatment is applied to each unit. The estimates are

obtained by subtracting the values of the two regressions when close to the cutoff. Hahn

et al. (2001) and Imbens & Lemieux (2008) provide an extensive overview on RD designs

and their estimation.

In recent years RD designs popularity has had a high increase, being applied in many

different fields. Ludwig & Miller (2007) used RD designs to study the effect of Head Start

assistance on child mortality in the United States, Salman et al. (2022) apply the fuzzy

RD design to study the effect of Paris Agreement on global environmental efficiency and

Ebenstein et al. (2017) study the effects that pollution has in China’s life expectancy.

Barreca et al. (2011) estimate effect of very low birth weight classification on infant

mortality, in doing so they introduce a ‘donut’ design, which excludes observations near

the cutoff to avoid possible distortions of the data. Noack & Rothe (2023) further study

the donut RD design, providing results that incentivize its use as a robustness measure.

Even being a very recent method, Salvi et al. (2023) apply it in a study that focuses on

the effect of exceeding the deductible on insurees’ healthcare consumption in Switzerland.

Additionally, some papers developed some covariate-adjusted RD designs, where ad-

ditional covariates are added in order to improve their estimation accuracy. The first

covariate-adjusted model we consider in the paper is presented by Calonico et al. (2019),

it proposes an addition to the local linear RD treatment effect estimator to include the

covariates. They evaluate the model by estimating it on the Head Start dataset on child

mortality in the United States which, as mentioned previously, was originally studied by

Ludwig & Miller (2007) and will be also included in this paper’s evaluations. Marshall

(2024) applies their design to estimate the effects that certain characteristics of candidates

have on winning elections and Carta & Rizzica (2018) uses it to study the effects that an

early access to subsidized childcare for 2-year-old children in Italy has on several measures

of maternal labor supply and on children’s cognitive outcomes.

The second covariate-adjusted design is introduced by Frölich & Huber (2019), they

propose a nonparametric approach to estimate the covariate-adjusted effects and evaluate

it first on a simulation study, from which we take inspiration for our simulation, and on

an empirical dataset. Bonfim et al. (2023) make use of their estimator to evaluate the
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effects that supporting small firms in Portugal has on the access to a government credit

certification program.

This paper will expand the literature by providing a direct comparison of covariate-

adjusted designs and by evaluating the use of the donut on these models.

3 Methodology

This section outlines the methodologies used to construct and evaluate our models.

3.1 Sharp regression discontinuity designs

The goal of RD designs is to estimate the causal effects of a treatment on an outcome

variable Y . Each unit in the sample either receives the treatment or does not. Denote

Yi(1) and Yi(0) as the outcomes with and without exposure to the treatment, respectively.

We focus on the comparison between Yi(1) and Yi(0), often denoted by their difference.

Since we cannot observe both Yi(1) and Yi(0) for the same unit, our focus is on the average

effects of the treatment over the sample.

Let Wi ∈ {0, 1} such that Wi = 0 denotes that unit i received no treatment, and

Wi = 1 denotes that unit i received the treatment. The observed outcome of unit i is

then:

Yi = (1−Wi) · Yi(0) +Wi · Yi(1). (1)

Additionally, we can observe the pretreatment variables Xi and Zi, where Xi is a scalar

variable and Zi is an M -vector. Which are not affected by the treatment. For each unit

in the sample we observe the following quadruple (Yi,Wi, Xi, Zi).

In sharp RD designs (SRD), the assignment variable Wi is a deterministic function of

Xi: Wi = 1{Xi ≥ c}, where c is the cutoff over which units are assigned to the treatment

group. In SRD designs, we study the discontinuity of the outcome given the covariate in

order to estimate the average causal effect of the treatment:

lim
x↓c

E[Yi | Xi = x]− lim
x↑c

E[Yi | Xi = x], (2)

which can be interpreted as:

τSRD = E[Yi(1)− Yi(0) | Xi = c]. (3)

In this paper each model will be estimated with a sharp RD design. Further insights on

RD designs are available in Imbens & Lemieux (2008).

We now define some regularity conditions that are needed to allow for (donut) sharp

RD designs estimations and evaluations. These assumptions follow from Noack & Rothe
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(2023).

Assumption 1: Xi is continuous, with a distribution that follow the density function fX ,

which is bounded away from the cutoff and includes the donut hole.

Assumption 2: For all x ∈ X and q > 2, E[(Yi − E[Yi|Xi])
q|Xi = x] exists and is

bounded uniformly. Furthermore, V[Yi|Xi = x] is L-Lipschitz continuous ∀x ∈ X \ {c}
and bounded uniformly away from c.

Assumption 3: The kernel K is a both symmetric and bounded density function, con-

tinuous in some compact set. It is always equal to zero outside that interval.

These assumptions are useful to allow approximations in the methodology. The triangular

and Epanechnikov kernels, as many other kernels, satisfy Assumption 3 and therefore can

be used in our estimations.

3.2 Basic RD estimators

As in Noack & Rothe (2023), the estimate of τ using basic RD design will be made through

local linear regression with the following formula:

τ̂(h) = e⊺1 argmin
β

n∑
i=1

Kh(Xi − c)(Y − (Wi, (Xi − c),Wi(Xi − c), 1)⊺β)2, (4)

where K is a kernel function with compact support and Kh(x) = K(x/h)/h. The band-

width h > 0 determines the area of data around the cutoff used to estimate the treatment

effects. Lastly e1 = (1, 0, 0, 0)⊺ selects the right coefficient from the rest of the formula.

This approach fits two different linear specifications for each side of the cutoff using

weighted least squares, giving non-zero weights only to values Xi ∈ [c− h, c+ h].

The donut RD estimate is found by excluding the values of Xi close to the cutoff. The

constant d determines the excluded area.

τ̂(h, d) = e⊺1 argmin
β

n∑
i=1

Kh(Xi − c)(Y − (Wi, (Xi − c),Wi(Xi − c), 1)⊺β)21{|Xi − c| ≥ d}.

(5)

The latter works equally to the previous estimator, the only difference being that it only

includes values Xi ∈ [c − h, c − d] ∪ [c + d, c + h]. Note that the two estimators are the

same when d = 0, which means τ̂(h) = τ̂(h, 0).

Finally, for this design, we assume that µ∗ belongs to the typical smoothness class

of functions that are twice continuously differentiable, excluding the cutoff. With µ∗ =

E{Yi|X∗
i = x}, where X∗

i is the value that the running variable would have without any

5



data issues. This can be written as

µ∗ ∈ F(M) = {m1(x)1{x ≥ 0}+m0(x)1{x < 0}, ∥m′′
t (·)∥∞ ≤ M, t ∈ {0, 1}}, (6)

where we assume the analyst to know the value of the uniform smoothness bound M > 0.

3.3 CCFT RD design

The covariates-adjusted models additionally include the vector of covariates Zi in the

estimation. This is done in order to remove small sample bias and improve the precision.

The CCFT RD design was first presented by Calonico et al. (2019), it substitutes the

standard local linear RD treatment effect estimator in (4) with:

τ̂CCFT (h) = e⊺1 argmin
β

n∑
i=1

Kh(Xi − c)(Y − (Wi, (Xi − c),Wi(Xi − c), Z⊺
i , 1)

⊺β)2. (7)

From which we can derive the donut variation

τ̂CCFT (h, d) = e⊺1 argmin
β

n∑
i=1

Kh(Xi−c)(Y−(Wi, (Xi−c),Wi(Xi−c), Z⊺
i , 1)

⊺β)21{|Xi−c| ≥ d}.

(8)

For this design we need some additional assumptions to allow for the inclusion of covari-

ates, the same used by Calonico et al. (2019). For t ∈ {0, 1} and ∀x ∈ X :

Assumption 4: E[Zi(t)|Xi = x] is thrice continuously differentiable and E[Zi(t)Yi(t)|Xi =

x] is continuously differentiable.

Assumption 5: V[(Yi(t), Zi(t)
⊺)|Xi = x] is continuously differentiable and invertible.

Assumption 6: E[∥(Yi(t), Zi(t)
⊺)∥4|Xi = x] is continuous, with ∥ · ∥ being the Euclidean

norm.

3.4 FH RD design

The last model was presented in Frölich & Huber (2019). Their paper states that under

a set of assumptions the treatment effect is nonparametrically identified as

τFH(h) =

∫
(m+(z, c)−m−(z, c)) · f+(z|c)+f−(z|c)

2
dx∫

(d+(z, c)− d−(z, c)) · f+(z|c)+f−(z|c)
2

dx
, (9)
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where m+(Z, x) = limϵ→0 E[Y | Z,X = x + ϵ], m−(Z, x) = limϵ→0 E[Y | Z,X = x − ϵ],

d+(Z, x) and d−(Z, x) defined in the same way with W replacing Y . The estimator used

for (9) is

τ̂FH(h) =

∑n
i=1(m̂

+(Zi, c)− m̂−(Zi, c)) ·Kh(Xi − c)∑n
i=1(d̂

+(Zi, c)− d̂−(Zi, c)) ·Kh(Xi − c)
, (10)

where m̂ and d̂ are nonparametric estimators, K is a kernel function and Kh(x) =

K(x/h)/h. For the sharp design it can be simplified to

τ̂FH(h) =

∑n
i=1(m̂

+(Zi, c)− m̂−(Zi, c)) ·Kh(Xi − c)∑n
i=1Kh(Xi − c)

. (11)

Including the donut hole this finally becomes:

τ̂FH(h, d) =

∑n
i=1(m̂

+(Zi, c)− m̂−(Zi, c)) ·Kh(Xi − c) · 1{|Xi − c| ≥ d}∑n
i=1 Kh(Xi − c) · 1{|Xi − c| ≥ d}

. (12)

3.5 Performance measures

To assess models performance we compute the bias b(h, d), standard deviation s(h, d),

and root mean squared error (RMSE) r(h, d). Given the actual value of the parameter

τ ∗, these measures for estimate τ̂(h, d) can be found as

b(h, d) =
n∑

i=1

ωi(h, d)(µ(Xi)− τ ∗),

s(h, d) =

√√√√ n∑
i=1

ωi(h, d)2σ2
i ,

r(h, d) =
√
b2(h, d) + s2(h, d),

(13)

where µ(x) = E[Yi|Xi = x], with ωi being the weights selected from the running variable

and with σi = V[Yi|Xi].

3.6 Confidence intervals

We employ ‘bias-aware’ confidence intervals (Armstrong & Kolesár, 2018), as utilized by

Calonico et al. (2019), to evaluate the donut estimator in the replication. To compute

them we first need to find the ‘worst case’ bias of the donut RD estimator:

b̄(h, d) = −M

2

n∑
i=1

ωi(h, d)X
2
i sign(Xi). (14)

By denoting its conditional variance as
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ŝ2(h, d) ≡
n∑

i=1

ωi(h, d)
2σ̂2

i , (15)

where σ̂2
i are the estimates of the conditional variance σ2

i = V(Yi|Xi). We decompose the

usual t-statistic as

τ̂(h, d)− τ ∗

ŝ(h, d)
=

τ̂(h, d)− τ ∗ − b(h, d)

ŝ(h, d)
+

b(h, d)

ŝ(h, d)
. (16)

We can therefore find the bias-aware confidence intervals as

Cn(d) =

[
τ̂(h, d)± cv1−α

2

(
b̄(h, d)

ŝ(h, d)

)
ŝ(h, d)

]
, (17)

with cv1−α
2
(r) the 1− α

2
quantile of N(r, 1).

3.7 Specification testing

Here, we present methods to assess the statistical significance of model differences. The

first two are used in Noack & Rothe (2023) and will be used for the replication part of

this paper, while the third one will be used to additionally compare the covariate-adjusted

models.

3.7.1 Donut and conventional

Firstly, we focus on comparing the donut estimates with the conventional ones. To do so

we define the following null hypothesis

H0 : µ(x) = µ∗(x) for all |x| < d, (18)

and define the difference between the two estimates as

∆̂(h, d) ≡ τ̂(h, d)− τ̂(h, 0) =
n∑

i=1

(ωi(h, d)− ωi(h, 0))Yi. (19)

With the following bias and conditional variance

b∆(h, d) =
n∑

i=1

(ωi(h, d)− ωi(h, 0))µ(Xi) and

s2∆(h, d) =
n∑

i=1

(ωi(h, d)
2 + ωi(h, 0)

2 − 2ωi(h, d)ωi(h, 0))σ
2
i .

(20)

Which can be estimated as
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sup
µ∈F(M)

|b∆(h, d)| ≡ b̄∆(h, d) = −M

2

n∑
i=1

ωi(h, d)− ωi(h, 0))X
2
i sign(Xi) and

ŝ2∆ =
n∑

i=1

(ωi(h, d)
2 + ωi(h, 0)

2 − 2ωi(h, d)ωi(h, 0))σ̂
2
i ,

(21)

with σ̂2
i a nearest-neighbor estimate of σ2

i . We can now formulate the following t-statistic

and decision rule.

t∆ =
∆̂(h, d)

ŝ∆(h, d)
,

Reject H0 if |t∆| > cv1−α
2

(
b̄∆(h,d)

ŝ∆(h,d)

)
.

(22)

3.7.2 Donut and within donut

The next test compares the donut estimator with a basic RD design using d as bandwidth.

Therefore making a comparison between the effects inside and outside of the donut area.

The test follows the same structure of the previous one, but replacing ∆̂(h, d) with

Γ̂(h, d) ≡ τ̂(h, d)− τ̂(d, 0) =
n∑

i=1

(ωi(h, d)− ωi(d, 0))Yi. (23)

The rest of the test is formulated in the same way as the previous one, leading to the

following t-statistic and decision rule

tΓ =
Γ̂(h, d)

ŝΓ(h, d)
,

Reject H0 if |tΓ| > cv1−α
2

(
b̄Γ(h,d)
ŝΓ(h,d)

)
,

(24)

with cv1−α
2
(r) the 1− α

2
quantile of N(r, 1).

3.7.3 Covariate-adjusted and conventional

Lastly, we want to compare the performances of the covariate-adjusted models. To do so

we use the following steps in order to compare them with the conventional RD and with

each other. This method simply consists in a t-test between the estimates of two models

τ̂1 and τ̂2. We formulate the following null hypothesis

H0 : τ̂1 = τ̂2, (25)
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and define the variable

Ω̂(h, d) = τ̂1(h, d)− τ̂2(h, d), with h > d ≥ 0. (26)

We can now define the t-statistic and the decision rule:

tΩ =
Ω̂(h, d)

ŝΩ(h, d)
,

Reject H0 if |tΩ| > cv1−α
2
(0),

(27)

where cv1−α
2
(r) is the 1− α

2
quantile of N(r, 1) and ŝΩ(h, d) is the conditional variance of

Ω̂.

3.8 Empirical application: bootstrap

Lastly, for the empirical application, we will apply a bootstrap method to compare the

results, this was also done by Frölich & Huber (2019). The bootstrap method involves

randomly selecting observations from the dataset with replacement. This process creates

bootstrap samples of the same size of the original dataset, which will be used to compute

the estimates. We will repeat this procedure r times, resulting in r estimates for each

model.

We will extract the model estimates by taking the simple averages of the outcomes.

This method is advantageous because it allows us to estimate 95% bootstrap percent-

ile confidence intervals by selecting the values below and above which lie 2.5% of the

bootstrap estimates, resulting in robust results (Hesterberg, 2011).

4 Simulation studies

We utilize two distinct simulated datasets. The first dataset is equivalent to the one used

by Noack & Rothe (2023), and is used for the replication of their results. The procedure

is delineated as follows:

Xi ∼ U(−1, 1)

Yi = λL(Xi) + ϵi, where ϵi ∼ N (0, 0.5) independent of Xi, with

λL(x) = sign(x)x2 − Lsign(x)((x− 0.1 · sign(x))2

− 0.12 · sign(x))1{|x| < 0.1} for L ∈ {0, 10, ..., 40}.

(28)

Here, Xi and Yi denote the running and outcome variables, respectively. This dataset will

be re-estimated for each value of L, which indicates the distortion of the data inside the

interval (−0.1, 0.1). The case where L = 0 indicates no need for the donut estimator. We

set the number of observations to n = 1000 and replications to r = 10000.
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Tables 1, 2 and 3 display results from the replication of Noack & Rothe (2023), these

estimations are made by using a triangular kernel, with MSE-optimal bandwidths, d = 0.1

and M = 21. As we can notice, these tables do not align with the results reported by

Noack & Rothe (2023), which could be caused by a possible computation mistake in their

estimations.

Table 1: Replication results: point estimation.

Bias Std. Dev. RMSE
L Regular Donut Regular Donut Regular Donut
0 -0.049 -0.128 0.098 0.152 0.110 0.199
10 -0.118 -0.127 0.099 0.150 0.153 0.197
20 -0.187 -0.128 0.100 0.149 0.212 0.196
30 -0.255 -0.127 0.101 0.152 0.274 0.198
40 -0.322 -0.127 0.103 0.149 0.338 0.196

Table 2: Replication results: confidence intervals.

CI Coverage CI Length
L Regular Donut Regular Donut
0 0.950 0.946 0.431 0.749
10 0.836 0.950 0.430 0.749
20 0.607 0.950 0.431 0.748
30 0.351 0.949 0.430 0.749
40 0.150 0.950 0.431 0.749

Table 3: Replication results: specification testing.

Rejection Frequency

L Λ̂ Γ̂
0 0.027 0.029
10 0.012 0.018
20 0.023 0.062
30 0.057 0.186
40 0.131 0.410

Table 1, shows that the donut estimates consistently have higher standard deviations

compared to standard RD. In terms of bias and RMSE, we only see an improvement in

performance when L ≥ 20. In Table 2, we note that the confidence intervals estimated

with standard RD are less reliable when L ≥ 10, while donut confidence intervals always

keep a coverage of ≈ 95%. Lastly, Table 3 shows that the donut estimates provide

a statistically significant improvement compared to conventional estimates solely when

L ≥ 30, and to the within donut estimates when L ≥ 20. These outcomes suggest that

1These estimations are done in R using the RDHonest package
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substantial data distortion around the cutoff is necessary to justify donut estimations.

However, standard RD remains preferable in scenarios with lower distortions. Proving

that the donut estimates can be used as a more robust method, at the cost of some loss

of precision.

The second simulated data will be used for the further methods comparisons, it is a

combination of the simulations presented by Frölich & Huber (2019) and Noack & Rothe

(2023), therefore allowing for both additional covariates and data distortion. It is fully

described by Equation (29).

Xi, Ui, Vi,Wi ∼ N (0, 1) independently of each other,

Di = 1{Xi > 0}, Z1i = αDi + 0.5Ui, Z2i = αDi + 0.5Vi,

Yi = λL(Xi) +Di + β(Z1i + Z2i) +
β

2
(Z2

1i + Z2
2i) +Wi, with

λL(x) = 0.5x− 0.25x1{x > 0}+ 0.25x2 − Lsign(x)((x− 0.1 · sign(x))2

− 0.12 · sign(x))1{|x| < 0.1} for L ∈ {0, 10, ..., 40}.

(29)

Where Yi and Xi are respectively the outcome and running variables, with Z1i and Z2i

being the additional covariates. The variable α defines the strength of the relationship

between Z1i and Z2i and β defines their effect on Yi. In this research, we set them as

α = 0 and β = 0.4 such that the covariates remain balanced around the threshold while

still having an effect on Yi. Finally L is defined analogously as in the replication dataset

(8) and is needed for the donut estimations. For estimations we will use M = 2, d = 0.1

with the Epanechnikov kernel (Wang & Van Ryzin, 1981). The number of observations

will again be set to n = 1000 and the replications to r = 10002.

Tables 4, 5 and 6 display bias, standard deviation and RMSE for each model. Starting

with the basic RD model in Table 4, for L = 0 both the conventional and donut estimates

have close to no bias. As L increases, the donut estimate demonstrates to consistently keep

low biases, having instead an increase in standard deviations, showing an improvement

in RMSE only when L = 40.

Basic RD design

Bias Std. Dev. RMSE
L Standard Donut Standard Donut Standard Donut
0 -0.00 0.00 0.20 0.27 0.20 0.27
10 -0.05 0.01 0.19 0.27 0.20 0.27
20 -0.11 -0.02 0.20 0.27 0.23 0.27
30 -0.14 -0.00 0.20 0.27 0.25 0.27
40 -0.20 -0.00 0.20 0.28 0.29 0.28

Table 4: Simulation results: (donut) basic RD design.

2The estimations are computed in R with the packages RDHonest, rdrobust and np
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Similarly, the CCFT RD design design (Table 5) does see an improvement in the bias by

using the donut estimate when L increases. However, due to its higher standard deviation,

the RMSE never improves with the use of donut.

Comparing the CCFT RD estimates with the basic donut RD estimates we find that

the covariate-adjusted design demonstrates slightly worse biases and standard deviations

when the donut is not included. When the donut hole is included, the standard deviation

further diverge with the basic RD design one. Demonstrating consistently higher RMSEs,

and therefore worse precision.

CCFT RD design

Bias Std. Dev. RMSE Ω̂ Rejection Frequency
L Standard Donut Standard Donut Standard Donut Standard Donut
0 -0.00 0.01 0.21 0.34 0.21 0.34 0.055 0.056
10 -0.05 0.02 0.20 0.33 0.21 0.33 0.058 0.061
20 -0.12 -0.02 0.21 0.35 0.25 0.35 0.049 0.048
30 -0.16 -0.01 0.23 0.34 0.28 0.34 0.051 0.065
40 -0.23 0.01 0.24 0.37 0.34 0.37 0.073 0.043

Table 5: Simulation results: (donut) CCFT RD design.

Lastly, when investigating the FH RD design biases, standard deviations and RMSEs

(Table 6) we again have similar findings. The donut bias does have an improvement

whenever L increases, with a fairly low standard deviation. The RMSE sees an improve-

ment when L ≥ 20.

FH RD design does see an improvement when compared to basic RD biases, displaying

slightly lower values. Standard deviation tends to increase with L, resulting in lower

RMSEs when L ≤ 30 and slightly higher otherwise. When the donut hole is included, this

model shows to be the best performing, keeping both low biases and standard deviations.

With consistently lower RMSEs than the other two models.

These findings align to our predictions and maintain consistency between each other.

It is clear that the inclusion of the donut hole in RD designs does improve their biases

when a distortion is included. On the other hand, this increases the standard deviations of

the estimates, which lowers the precision of the results. Considering the RMSE results we

find that the donut estimate improves estimations strictly when the values of L get bigger,

never being able to improve the results when the distortion is not present. These findings

provide an indication that the donut design can be justified when a possible distortion of

the data is expected or taken into consideration.

Finally Table 7 shows the t-test performed between the two covariate-adjusted models

with and without the donut hole. The two models show to have a small statistically

significant difference in performance, with all values > 0.05. Indicating FH to be a better

model for all values of L both with and without the donut hole.
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FH RD design

Bias Std. Dev. RMSE Ω̂ Rejection Frequency
L Standard Donut Standard Donut Standard Donut Standard Donut
0 -0.01 -0.01 0.17 0.22 0.17 0.22 0.047 0.036
10 -0.04 0.00 0.17 0.21 0.18 0.21 0.059 0.048
20 -0.09 -0.01 0.20 0.21 0.22 0.21 0.045 0.056
30 -0.13 -0.00 0.23 0.21 0.26 0.21 0.052 0.052
40 -0.19 0.01 0.25 0.21 0.32 0.21 0.056 0.048

Table 6: Simulation results: (donut) FH RD design.

Surprisingly, from the results we find the CCFT RD design to have the worse perform-

ances, even lower than the basic RD design. The FH RD design turns out to be the most

precise design, it seems to perform better compared to the other models both when the

distortion of the data is low or when the donut hole is included. Making it clear that

when both some distortion or no distortion is expected, FH RD design could be the best

choice, respectively with the donut hole or without. The only case in which the basic RD

would have better performance is if the distortion is present but not expected, leading to

a model without the donut hole even if needed.

Ω̂ Rejection Frequency
L Standard Donut
0 0.061 0.052
10 0.059 0.063
20 0.053 0.064
30 0.056 0.060
40 0.063 0.051

Table 7: Simulation results: comparison of the covariate-adjusted models.

5 Empirical application

Lastly, we consider a real dataset for a further comparison of the models. We follow

Calonico et al. (2019)’s approach and study the effect of Head Start assistance on child

mortality in the United States. We use as running variable the county-level poverty

index, which was constructed in 1965 by the federal government based on 1960 census

information, with cutoff x̄ = 59.2, and as outcome variable the child mortality rate due

to causes affected by Head Start’s health services components. The dataset contains nine

additional variables, for faster computations we will only include two of those as additional

covariates. We select the variables with the highest absolute correlation to the outcome

variable. All the correlations are shown in Appendix A. Table 8 shows summary statistics

of the variables we use in our designs.
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Mean Std. Dev. Median Min. Max. Skewness Kurtosis

mort HS 2.26 5.73 0 0 136.1 10.0 177.9
povrate60 36.7 15.3 33.6 15.2 81.6 0.6 -0.6
pctsch534 0.55 0.06 0.55 0.20 0.75 -0.4 1.8
pctblack 10.6 16.8 1.5 0.0 83.4 1.8 2.4

Table 8: Summary statistics of Head Start dataset. Here mort HS is the outcome variable, it
is the United States morality rates per 10000 children between 5 and 9 years old between 1973-
1983. The running variable is povrate60, the county’s poverty rate in 1960 relative to the 300th

poorest county. Lastly pctsch534 and pctblack are the additional covariates, they respectively
are the percentage of children aged 3 to 5 and the percentage of black population. Observations
with missing values were discarded prior to the calculations.

We estimate the models using the bootstrap samples with r = 200, the Epanechnikov

kernel (Wang & Van Ryzin, 1981), M = 1 and d = 0.2. The means and confidence

interval lengths of the resulting estimates are displayed in Table 9, together with the

point estimates obtained with the full dataset. We additionally provide plots that show

the distribution of the estimates and their confidence intervals in Figure 1. These are

added to allow for a direct visual comparison of the models.

Basic RD CCFT RD design FH RD design
Standard Donut Standard Donut Standard Donut

Point estimate -3.28 -3.20 -1.96 -1.86 -1.67 -1.39
Bootstrap estimate -3.48 -3.32 -2.76 -2.71 -1.38 -1.30
Bootstrap interval length 5.22 5.85 5.41 5.93 7.37 8.36

Table 9: Empirical application results.

The bootstrap and standard estimates seem to have close values for basic RD and FH RD

designs, with the CCFT RD design having the highest differences. This could be a sign

of being more sensitive to duplicate observations. For what regards the use of the donut

hole, we find similar results to the simulation study. the donut hole has a small effect on

the estimates, while having an higher effect on the confidence intervals due to the higher

standard deviations.

When comparing the models we find that the confidence intervals overlap, indicating

that the estimates have similar values. With the CCFT RD design having slightly larger

confidence intervals compared to the basic RD. Surprisingly, the FH results display signi-

ficantly larger confidence intervals, giving an indication of the FH RD design having less

accuracy compared to the other models. This could be a sign of the FH RD design being

more sensitive to the different bootstrap samples. This can also be noticed in the estim-

ates plots, where basic and CCFT RD designs have many values near the average, being

closer to a normal distribution. The FH RD results’ estimates are instead more uniform

across the interval. These results do not completely align to the simulation results, where

FH standard deviations were closer, and often lower, to the basic RD designs’.
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Figure 1: Plots of bootstrap results. For each model, the blue bars correspond to the frequency
of each resulting estimate. The black dashed lines represents the average bootstrap results, the
red dashed lines display the confidence intervals. The tables are all set in the same scale to allow
for a direct comparison of the plots.

6 Conclusion

The scope of this research was to assess the performance of basic and covariate-adjusted

regression discontinuity designs when estimating the causal effect of a treatment on an

outcome variable. Donut RD designs serve as a robustness measure in our models by

excluding a small area of observations suspected of distortion. Our models include the
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basic and two covariate-adjusted RD designs, each estimated with and without the donut

hole. This approach allowed us to assess the donut design performance and to compare

covariate-adjusted models across an empirical dataset and two simulated datasets.

Our simulation findings have indicated donut designs having higher standard devi-

ations compared to standard designs, leading to slightly inferior performances when the

data distortion is minimal or not present. On the other hand it significantly improves

biases and root mean squared errors under conditions of high distortion, demonstrating

its effectiveness in ensuring robustness when distortion is suspected.

Regarding the comparison of covariate-adjusted models, we surprisingly find that

Calonico et al. (2019)’s model does not outperform the basic RD design, consistently

resulting in inferior estimates. Frölich & Huber (2019)’s model instead proves to be a

significant improvement to the basic RD for small amounts of distortion and over all

amounts of distortion when the donut hole is included. These findings suggest Frölich

& Huber (2019)’s model performs best overall, making it the recommended choice in the

presence of covariates.

The empirical application indicates similar conclusions for what regards the donut

implementation and Calonico et al. (2019)’s model performance, it however shows lower

precision by Frölich & Huber (2019)’s design. This could be due to a higher sensitivity

to the bootstrap samples.

For future research we make the following suggestions. Firstly, we did not account for

different bandwidth optimization or kernels, these could provide a more complete view of

the results with additional insights. We then suggest comparing different donut values, at

the moment the donut size is an arbitrary choice, a research on finding an optimal donut

value could help for further improvement of the models. Lastly, we propose evaluating the

various models under conditions where covariates are correlated, to investigate potential

impacts on the estimates.
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A Covariates correlations

The Head Start dataset contains nine possible additional covariates for our models. These

variables are levels and percentages of the population population for children aged 3 to 5,

children aged 14 to 17 and adults older than 25. The total population and the percentages

of black and urban populations are also included. To have easier computations we only

select two, based on their absolute correlation with the outcome variable. This is done

to increase the effects these covariates have on the estimates. Figure 2 displays the

correlation of every covariate with the outcome variable. Even though all values show low

correlations, we find pctsch534 and pctblack to have the highest absolute correlations.

Figure 2: Correlations between each covariate and the outcome variable, red and blue bars
represent negative and positive correlations respectively.
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