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Abstract

The transition from the use of internal combustion engine vehicles to electric vehicles has

prompted a change in infrastructure, giving rise to various recharging technologies, with typ-

ically non-linear recharging rates. To model this real-world scenario in the context of vehicle

routing problems, we consider the electric vehicle routing problem with time windows and

partial recharging, and adapt it to include multiple chargers and non-linear recharging rates

(EVRPTW-NLPR-MC). We propose a matheuristic to solve this problem, which combines

an adaptive large neighbourhood search with a set partitioning formulation. Furthermore,

we test for a variant of this matheuristic by introducing a labeling algorithm with different

recharge policies, to insert charging stations on the routes. A computational study is con-

ducted using benchmark instances from literature. Firstly, we conclude that using the set

partitioning formulation as an additional step can reduce the solution cost by up to 5.27%

compared to the neighborhood search alone. Secondly, we find that the standard matheur-

istic outperforms the variant with the labeling algorithm, offering an average reduction of

solution cost by 0.43% and significantly lower computational time - 32 times faster. Thirdly,

we observe that solution costs for linear and non-linear recharging scenarios differ only by

0.12% on average. Lastly, including multiple technologies allows for cost savings up to 8.32%

relative to the scenario with a single charger.

1 Introduction

Harbouring a 25% share of the world’s CO2 emissions, the transport sector raises concerns over

the global energy consumption and greenhouse gas (GHG) emissions (United Nations Environ-

ment Programme, 2024). Road transport accounts for the highest proportion of transport GHG

emissions in the EU at 76% in 2021. Meanwhile, the demand for freight transport in the EU has

increased by 22% between 2000 and 2019 (European Environment Agency, 2022). Therefore, the

European Parliament (2022) necessitates the reduced use of internal combustion engine vehicles

(ICEVs); 50% reduction in ICEVs in urban transport by 2030 and complete phase-out by 2050.

In this pursuit to achieve a carbon-neutral transport sector, the paradigm shift from ICEVs to

electric vehicles (EVs) proposes a promising future, especially for freight transport. However, the

mass implementation of EVs is still restricted given issues such as limited driving ranges due to

battery capacity and degradation, long recharging times, restricted availability of infrastructure

in terms of public charging stations and a high initial investment cost (Touati-Moungla & Jost,

2012). In EV management, a crucial aspect which justifies that investment cost is precise,

efficient and real-time EV routing; it plays a significant role in promoting the use of EVs (see

survey on VRP by Toth and Vigo (2002), Golden, Raghavan and Wasil (2008)). Therefore,

this has given rise to the Electric Vehicle Routing Problem (EVRP), which aims to discover

the optimal routing strategy with the primary objective of minimising the total distance or cost

(including energy consumption costs) incurred by a fleet of EVs. Recent literature on EVRP

and its variants attempt to make this combinatorial optimisation problem a tractable one.

Initial research dealing with routing problems in greener transportation mediums includes

the Green Vehicle Routing Problem (GVRP) by Erdoğan and Miller-Hooks (2012). While the

vehicles in GVRP benefit from rapid recharging times, the limited availability of biodiesel or

CNG recharging stations poses a problem. Therefore, in contrast to GVRP, the Electric Vehicle
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Routing Problem with Time Windows (EVRPTW) introduced by Schneider, Stenger and Goeke

(2014), focuses on a fleet of EVs whose battery discharges proportional to the distance travelled.

Thus, the EVs may require recharging stops to complete their tour. The authors assume a linear

recharge rate, proportional to the recharge amount needed and also assume full recharging (FR)

of the battery. Keskin and Çatay (2016) relax the FR assumption and cater to partial recharging

(PR), to reduce recharging time based on the practical insights such as FR being unnecessary

for a vehicle nearing the end of its tour to reach the depot. Hence, improved solutions may be

found through permitting the EV to attend another unvisited customer in the freed up time

window.

Further delving into managing the battery and recharging aspect of EVs, a battery recharge

operation may take place via different technologies, suggesting different recharge times and

corresponding costs. For instance, slow chargers are the cheapest charging option, necessitating

a few hours of recharge time; suitable for overnight charging at the depot. Other types of

charging technologies allow for faster yet more expensive recharges, such as the CHAdeMO

protocol (e.g. Paschero, Anniballi, Del Vescovo, Fabbri and Mascioli (2013)), which permits

full battery recharges within an hour. Therefore, the optimisation problem posits a tradeoff

between the lower recharge times and the higher energy cost of using more efficient recharging

technologies, as explored by Felipe, Ortuño, Righini and Tirado (2014). In addition to this,

Montoya, Guéret, Mendoza and Villegas (2017) were the first to model and incorporate non-

linear (NL) recharging functions for various charging technologies in their EVRP-NL model. This

adds a realistic component to the EVRP problem, since battery level increases concavely over

time (Pelletier, Jabali, Laporte & Veneroni, 2017), suggesting different charging rates despite

using the same technology.

In this paper, we extend the EVRPTW-PR to a more practical setup with multiple chargers

and non-linear recharging (EVRPTW-NLPR-MC), and present a mathematical formulation of

the problem in terms of a mixed-integer linear program (MILP). Due to the complexity of the

formulation, we present a two-stage matheuristic with Adaptive Large Neighbourhood Search

(ALNS) and a set partitioning formulation (ALNS-SP) to optimise the combination of routes

selected to minimise costs. Moreover, as an alternative method, we employ a labeling algorithm

with the ALNS framework following Zhao and Lu (2019), to allow for optimal station insertion

in the routes. This paper finds that ALNS-SP outperforms ALNS on average by 0.53%, with the

largest improvement at 5.27%. We also discover that the standard ALNS-SP outperforms the

ALNS-SP with labeling algorithm and FR policy by 0.43% for the objective value, and benefits

from approximately 32 times faster average computational time. Moreover, the solution cost

when adopting non-linear recharging is on average 0.12% higher than linear recharging; therefore,

the linearity assumption for battery recharging is sufficient. Lastly, leveraging multiple charger

technologies can reduce the average cost by up by 8.32% when using fast instead of slow chargers.

The remainder of the paper is organised as follows: Section 2 presents a literature review on

the related studies in this field. Section 3 provides the problem description and the formulation of

the mathematical model. Section 4 details the methodology including the ALNS-SP framework

and the labeling algorithm. The computational study and discussion of results can be viewed in

Section 5. Finally, concluding remarks and directions for future research are given in Section 6.
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2 Literature review

Literature on EVRPs have been increasing in the recent years. The Recharging VRP (RVRP)

was first presented by Conrad and Figliozzi (2011), where the EVs are able to recharge at specific

customer nodes while servicing those customers. Routes in RVRP were iteratively constructed

and improved, with the dual objective of minimising the size of the EV fleet used and also

reducing total costs computed based on distance travelled, recharging and service times. By

assumption, recharging time is constant and upon departure from a node, the battery level state

of charge (SoC) could be fully or partially recharged; capped at 80% of battery capacity.

A key extension to VRP models was developing the EVRP with various recharging policies

as well as time windows for customer deliveries. Primary, an EVRP was studied by Wang and

Cheu (2013) through modelling an electric taxi fleet, wherein they aimed to minimise total

distance travelled given an upper bound on the route time and recharging constraints. They

assume constant battery discharge and recharge rates, as well as full recharging at charging

stations (CSs). They also provided three different recharging plans offering different driving

ranges and compared it with the FR policy. Their initial solution is constructed using a nearest-

neighbour, sweep and earliest time window insertion heuristic and improved via Tabu Search

(TS). Secondly, Schneider et al. (2014) introduced EVRP with time windows (EVRPTW) and

tested the performance of their proposed hybrid Variable Neighborhood Search (VNS) and

TS method on GVRP and Multi-Depot VRP with Inter-Depot Routes instances. Also, they

modified and extended data simulated by Solomon (1987) for EVRPTW instances and reported

their results. Thirdly, as an extension to EVRPTW, Keskin and Çatay (2016) proposed a PR

model (EVRPTW-PR) with ALNS and simulated annealing (SA) as the acceptance criterion.

For EVRP, authors also placed importance on extending and adapting the methodological

framework of ALNS to yield better quality solutions. For instance, Keskin and Çatay (2016)

developed several custom destroy-repair operators for customers and stations, and showed that

their PR scheme tested on EVRPTW instances from Schneider et al. (2014) improved the solu-

tion quality. In contrast, Zhao and Lu (2019) replace the destroy-repair operators for stations

in the ALNS framework with a labeling algorithm, for optimal station insertion. Additionally,

Zhao and Lu (2019) and Gunawan, Widjaja, Vansteenwegen and Yu (2020) among others per-

formed the ALNS-SP for other variants of VRPs with promising results. This hybrid approach

leverages the potential of ALNS to generate good quality solutions for both small and large

instances, and the capacity of SP to improve the feasible solutions to nearly optimal solutions.

Concerning the study of using different options to charge EVs, Felipe et al. (2014) were

the first to model partial recharging with multiple technologies (slow, medium, fast) in EVRP.

They provided different linear recharging rates and associated costs for various technologies, in

contrast to the constant recharging rates assumed by prior models. They adopted a constraint on

the duration of the total route but not time windows, and proposed a metaheuristic approach

involving local search algorithms and SA. Keskin and Çatay (2018) built on this study and

extended their EVRPTW-PR presented in 2016 with multiple chargers. They developed a

matheuristic approach to solve ALNS with an exact method in CPLEX, and demonstrated its

effectiveness and the advantages of employing fast chargers on fleet size and total energy costs.

Since all previous studies considered EVRP with PR and linear recharging functions, the
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following studies explore more realistic modelling of battery recharging through non-linear char-

ging functions. Montoya et al. (2017) pioneered the extension of EVRP-PR with non-linear

charging (EVRP-NL), based on the study by Pelletier et al. (2017) showcasing that battery

level increases concavely over time. Montoya et al. (2017) presented a metaheuristic to optimise

charging decisions along fixed routes. Froger, Mendoza, Jabali and Laporte (2019) proposed

new formulations of EVRP-NL in terms of replication-based models for creating copies of CSs

and also a path-based model without CS copies. Similar to Montoya et al. (2017), they also

used heuristics and a labeling algorithm to determine optimal charging decisions. Other works

on EVRP-NL involve Lee (2021) and Karakatič (2021). The global optimal algorithm for EVRP

with an exact non-linear charging function was designed by Lee (2021), where they employed

the branch-and-price method to solve the problem. Karakatič (2021) extended EVRP-NL to

multi-depot EVRPTW-NL and solved it using a Two-Layer Genetic Algorithm.

Shifting the focus from solely EVs to mixed fleet models, authors have proposed different

variants of these models and methods to solve them. Goeke and Schneider (2015) extended

EVRPTW to incorporate a mixed fleet of ICEVs and EVs, with the objective to minimise

energy consumption and solved it using an ALNS approach. Hiermann, Puchinger, Ropke and

Hartl (2016) also used ALNS but with both local search and labeling mechanisms to solve the

Fleet Size and Mix Vehicle Routing Problem with Time Windows, with only EVs. In more

recent research, Dönmez, Koç and Altıparmak (2022) extended the above fixed fleet problem by

including PR with multiple chargers. It aims to minimise both emissions and energy consumption

and does so with an ALNS based algorithm, wherein they introduced new mechanisms to handle

the complexity of the new constraints.

Overall, this paper fills the gap in the literature firstly from a modelling perspective by

catering to time windows within an EVRP with various PR policies, multiple recharging tech-

nologies and non-linear recharging functions. Secondly, this paper builds upon the works of

Zhao and Lu (2019) and offers a methodological extension by performing ALNS with a labeling

algorithm instead of destroy-repair operators for stations. Specifically, we introduce various

recharging policies for the labeling algorithm, to evaluate its performance. Lastly, we apply the

set-partitioning formulation to potentially improve the solution quality.

4



3 Problem description and model formulation

In this paper we explore the electric vehicle routing problem with time windows, non-linear

partial recharging and multiple chargers (EVRPTW-NLPR-MC). This problems entails a set

of customers with predefined demand levels, time windows for delivery and service durations.

The deliveries are serviced by a homogeneous fleet of EVs with fixed cargo load capacities and

battery capacities. Hence, while the EVs are travelling, they may require a battery top-up to

complete their route, since their battery level degrades proportional to the distance they travel.

Under the assumption of PR, the battery level may be recharged to any quantity (only bounded

by the battery capacity). Note that the EV departs from the depot fully charged, and it may

arrive at / depart from a station with any battery level. However, it must return to the depot

with an empty battery level if it has been recharged at least once during its route.

Additionally, we consider two extensions: multiple charging technologies and non-linear

recharging. For multiple chargers, all three types (slow, medium, fast) are available at each

CS, with different recharging costs (e/kwh). Hence, an EV may stop at a CS and utilise any

of the three technologies to recharge; the choice of technology depends on the cost and rate

of recharging, such that the cost is kept at a minimum and the time spent recharging does

not violate time windows of customers on the route. The overall objective is to find a set of

feasible routes covering the demand of all customers with minimum total distance travelled for

the EVRPTW-PR, or minimum total cost for the EVRPTW-NLPR-MC. Note that the total

cost includes recharging costs and unit costs for each unit of distance travelled.

We present the following model in line with the description provided by Keskin and Çatay

(2016). Let V = 1, . . . , N denote the set of customers and F denote the set of CSs. We assume

that a CS may be visited multiple times by the same or different EVs depending on the route

requirements, and also may not necessarily be visited. Thus, we define the set F’ which contains

β dummy variables of each CS in F such that |F ′| = |F | · (1+β), with β illustrating the number

of visits per CS permitted. Let vertices 0 and N +1 denote two artificial nodes representing the

depot, for departure and arrival respectively, such that every route must start at node 0 and

terminate at node N +1. Let V ′ be the set of vertices assigned by the union of all customer and

(dummy) CS nodes: V ′ = V ∪F ′. We define further sets associated with either the departure or

arrival depot nodes (subscripted); namely, F ′
0 = F ′ ∪ 0, V ′

0 = V ′ ∪ 0, V ′
N+1 = V ′ ∪N + 1. Then,

the problem can be represented by a complete directed graph G = (V ′
0,N+1, A), with the set of

arcs A = (i, j)|i, j ∈ V ′
0,N+1, i ̸= j.

Every arc has three attributes: a distance dij (km), a travel time tij (hours) and we introduce

a cost cij , which is unitary in this case (e1/km). All EVs have a predefined load capacity C

(kg) and battery capacity Q (kW). Moreover, the battery discharges at a constant rate of h

(kWh/km) proportional to the distance dij travelled by the EV (h · dij). Every customer i ∈ V ′

has a positive demand qi (kg) with service duration si and time window [ei, li].

We introduce the decision variables τi, ui, yi which track the starting service time (minutes),

the remaining cargo level (kg) and the battery SoC measured in kWh, when arriving at node

i ∈ V ′
0,N+1 respectively. Moreover, the decision variable Yi (kWh) permits partial recharges,

denoting the battery SoC upon departing from node i, such that the recharge quantity results

in Yi−yi, where Yi is not necessarily equal to Q. Lastly, the binary decision variable xij is equal
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to 1 if the arc (i, j) is traversed, else it is equal to 0. The MILP is written as follows:

Minimise:
∑
i∈V ′

0

∑
j∈V ′

n+1,i ̸=j

dijxij (1)

s.t.
∑

j∈V ′
n+1,i ̸=j

xij = 1 ∀i ∈ V (2)

∑
j∈V ′

n+1,i ̸=j

xij ≤ 1 ∀i ∈ F ′ (3)

∑
j∈V ′

0 ,i ̸=j

xij −
∑

j∈V ′
n+1,i ̸=j

xij = 0 ∀j ∈ V ′ (4)

τi + (tij + si)xij − l0(1− xij) ≤ τj ∀i ∈ V0, ∀j ∈ V ′
n+1, i ̸= j (5)

τi + tijxij + g(Yi − yi)− (l0 + gQ)(1− xij) ≤ τj ∀i ∈ F ′,∀j ∈ V ′
n+1, i ̸= j (6)

ej ≤ τj ≤ lj ∀j ∈ V ′
0,n+1 (7)

0 ≤ uj ≤ ui − qixij + C(1− xij) ∀i ∈ V ′
0 , ∀j ∈ V ′

n+1, i ̸= j (8)

0 ≤ u0 ≤ C (9)

0 ≤ yj ≤ yi − (h · dij)xij +Q(1− xij) ∀i ∈ V,∀j ∈ V ′
n+1, i ̸= j (10)

0 ≤ yj ≤ Yi − (h · dij)xij +Q(1− xij) ∀i ∈ F ′
0, ∀j ∈ V ′

n+1, i ̸= j (11)

0 ≤ yi ≤ Yi ≤ Q ∀i ∈ F ′
0 (12)

xij ∈ {0, 1} ∀i ∈ V ′
0 , ∀j ∈ V ′

n+1, i ̸= j (13)

The objective function (1) minimises the total distance travelled by the EV. Connectivity

constraints (2) and (3) ensure that customers are visited exactly once and CSs are visited at most

once, respectively. Constraint (4) maintains flow conservation for the incoming and outgoing arcs

at each vertex. Constraints (5) - (7) ensure the time feasibility of service times when travelling

from customers (and depot) or CSs to another vertex. Constraints (8) and (9) guarantee that

customer demands are satisfied by ensuring sufficient cargo levels are present. The battery SoC

is updated and kept non-negative through constraints (10) - (12), when travelling from customers

or CSs (and depot) to another node. Constraints (13) define the binary decision variable xij to

determine which arcs are traversed by the EV.

Keskin and Çatay (2018) suggested a formulation to incorporate multiple chargers m ∈ M ,

where M = {1, 2, 3} for slow, medium and fast technologies respectively. We extend their

notation to include non-linear recharging, as specified by Montoya et al. (2017). We introduce

the charging function gmi (yi,∆i) for every CS i ∈ F ′ and technology m, where ∆i denotes the

time spent charging at CS i and the output is the battery SoC upon leaving the CS. Details

on the specification can be seen in Section 3.1. We compute the recharge rate µm
i (yi,∆i) as

∂gi(qi,∆i)
∂∆i

. Additionally, let θmi be the amount recharged at CS i using technology m, and let cm

be the cost of recharging with technology m. Note that we assume that every CS is equipped

with all three technologies. Hence, the binary variables ai and bi are used to determine which

equipment is being used to charge the EV at CS i ∈ F ′: ai = 1 for slow charger, bi = 1 for

medium charger and ai = bi = 0 for fast charger usage. The adjusted MILP is written as follows:
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Minimise:
∑
i∈F ′

∑
m∈M

cmθmi +
∑
i∈V ′

0

∑
j∈V ′

n+1,i ̸=j

cijdijxij (14)

s.t. (2)− (5) and (7)− (13)

τi + tijxij +
∑
m∈M

µm
i (yi,∆i)θ

m
i − (l0 + gQ)(1− xij) ≤ τj ,

∀i ∈ F ′,∀j ∈ V ′
n+1, i ̸= j (15)

Yi − yi =
∑
m∈M

θmi ∀i ∈ F ′ (16)

0 ≤ θ1i ≤ Qai ∀i ∈ F ′ (17)

0 ≤ θ2i ≤ Qbi ∀i ∈ F ′ (18)

0 ≤ θ3i ≤ Q(1− ai − bi) ∀i ∈ F ′ (19)

ai, bi ∀i ∈ F ′ (20)

The objective function (14) minimises the total energy cost and comprises of two terms. The

first term indicates the total recharging cost proportional to the total recharge amounts. The

second term incorporates the unit costs associated with the total distance travelled. Constraint

(6) is replaced by constraint (15) to account for the different recharging technologies and en-

sure no violation of time windows when travelling from CSs to another node. Constraint (16)

establishes the amount of energy recharge required by the EV at a CS. Constraints (17) - (19)

construct bounds for the energy recharge amount and control the recharging technology used.

Note that ai = bi = 1 is not possible due to the non-negativity constraint on θ3i . Constraint (20)

defines the binary decision variable.

3.1 Modelling the charging functions

Following the estimation method used by Montoya et al. (2017), we define a recharging function

gmi (yi,∆i) for every CS i ∈ F ′, where m ∈ M indicates the function specific to the charger in

use (slow, medium, fast). This function intakes two inputs; the battery SoC when arriving at

i (yi) and the time spent recharging at i (∆i). Montoya et al. (2017) adopt the transformation

proposed by Zündorf (2014) as follows to estimate a one-dimensional function. We assume that

given yi = 0 and the battery is charged for l time units (∆i = l), then the charging function can

be estimated as ĝmi (l). Furthermore, note that ∆i = ĝmi
−1

(Yi) − ĝmi
−1

(yi) by using the inverse

functions to retrieve the corresponding time units. Therefore, gmi (yi,∆i) can be estimated by

ĝmi (∆i + ĝmi
−1

(yi)).

Bruglieri, Colorni and Lue (2014) and Hõimoja, Rufer, Dziechciaruk and Vezzini (2012),

among others, claim that the function ĝmi (l) is known as a concave function with a horizontal

asymptote at Q. Moreover, Zündorf (2014) claim that ĝmi (l) can be approximated rather accur-

ately through piecewise-linear functions, and Montoya et al. (2017) demonstrate this empirically

by fitting such functions to the data provided by Uhrig, Weiß, Suriyah and Leibfried (2015).

They do so with nominal average absolute error rates of 0.90%, 1.24%, and 1.90% for CSs of

11, 22, and 44 kW, respectively. Hereforth, we utilise the piecewise-linear function estimated by

Montoya et al. (2017) and present a visual representation of this below in Figure 1.
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Figure 1: The linear and non-linear recharging functions

Figure 1 shows the linear and non-linear recharging functions with the assumption that the

linear recharging rate is 3 min/kwH, and the battery capacity of the EV is 16 kWh (Montoya et

al., 2017). The following breakpoints for time in minutes and battery level in kWh are employed:

(0, 0), (37.2, 13.6), (46.2, 15.2) and (60.6, 16); at 0%, 85%, 95% and 100% of the battery capacity.

To illustrate how the recharging time is estimated in the non-linear case, assume that the arrival

battery of an EV is 10 kWh and it needs to recharge until 14.5 kWh. We first calculate the

corresponding time in minutes, 27.4 and 81.56 minutes respectively. Therefore, the recharging

time required is ∆ = 81.56− 27.4 = 54.16 minutes.

4 Methodology

As adopted by Keskin and Çatay (2016), we introduce ALNS to solve the EVRPTW-PR. Sec-

tion 4.1 describes the standard ALNS procedure and Section 4.2 explains the construction of

the initial solution. Sections 4.3.1, 4.3.2, 4.4.1 and 4.4.2 detail the Customer Removal (CR),

Customer Insertion (CI), Station Removal (SR) and Station Insertion (SI) heuristics employed

within ALNS. Extending the works of Keskin and Çatay (2016), we employ a matheuristic;

namely, ALNS-SP. Section 4.5 presents the SP formulation and elaborates how it is employed

to build the ALNS-SP procedure. Furthermore, we introduce the labeling algorithm in Section

4.6 and provide an alternative ALNS framework with the labeling algorithm in Section 4.6.1.

Our aim is to investigate the following: the effectiveness of ALNS-SP against ALNS, and the

performance of the standard ALNS with customer and station destroy-repair operators against

ALNS with only customer destroy-repair operators and the labeling algorithm. We then apply

the best method to the linear and non-linear recharging cases, to compare the effects of the

recharging functions. Finally, we will proceed with one type of recharging functions and apply

it to the case of multiple chargers.
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4.1 Standard Local Search

The ALNS heuristic is performed with CR (Section 4.3.1), CI (Section 4.3.2), SR (Section 4.4.1)

and SI (Section 4.4.2) operators. The initial solution is constructed as described in Section 4.2,

and ALNS attempts to improve it iteratively for a finite number of iterations. In each iteration,

a feasible solution (routes) is destroyed using either SR, CR or Random Route Removal (RRR) /

Greedy Route Removal (GRR); as detailed in Algorithm 1. SR removes stations from the route

and requires the potentially infeasible solution to then be repaired with SI. CR or RRR/GRR

are conducted to omit visited customers or entire routes from the solution, followed by CI to

re-insert those customers into existing or new routes. In case CI creates a battery-infeasible

route, Greedy Station Insertion (Section 4.4.2) is utilised to make the route battery-feasible.

The selected operators iteratively explore the search space until they cannot further minimise

the cost function. This local search continues until a local minimum is found in all operators.

Note that in each iteration, the operators are chosen randomly based on an adaptive weighting

scheme (Section 4.1.1). Moreover, for each iteration, a solution is either accepted or rejected

using the SA acceptance criterion (Section 4.1.2).

4.1.1 Choice of destroy-repair operators

The choice of destroy-repair operators depends on a dynamic weighting and scoring procedure,

which are adapted for each heuristic based on its past performance, to prepare a set of selection

probabilities for all heuristics. Each heuristic i has a weight wi and a score πi which are initialised

to zero at the start of ALNS. The score may be updated in three ways. If a pair of insertion

and removal heuristics discover a new best solution, their scores improve by σ1; if it yields a

solution that is not yet accepted but is better than the previous solution, their scores increase

by σ2; if the solution is worse but accepted in the current iteration due to the SA acceptance

criteria (Section 4.1.2), their scores increase by σ3. This iterative ALNS process is split into

several segments, with NC and NS iterations for customer-related and station-related operators

respectively, as seen in Algorithm 1. When a segment s ends, the weight of heuristic i for the

next segment s+ 1 is updated as ws+1
i = ws

i (1− ρ) + ρπi/θi, where θi is the number of times it

was used in segment s and ρ is a roulette wheel parameter. Finally, the selection probability of

heuristics i ∈ 1, . . . , k for the next segment is P s+1
i = ws

i /
∑m

l=1w
s
l .

4.1.2 Acceptance Criteria

Similar to Keskin and Çatay (2016), we use the SA acceptance criteria to avoid getting trapped

in a local minimum, as seen in Algorithm 1. A new solution Xnew is always accepted if its cost

function is smaller or equal to the current best solution Xcurrent (f(Xnew) <= f(Xcurrent)).

Otherwise, Xnew is accepted with probability e−(f(Xnew)−f(Xcurrent))/T , where T denotes the

current temperature. Based on Ropke and Pisinger (2006), T is initialised as T0 and is reduced

in every iteration proportional to a cooling parameter ϵ ∈ (0, 1), such that T = T · ϵ. T0 then

equals −ω · f(X0)/ln(0.5), where ω is the initial temperature control parameter and a solution

ω% worse than the initial solution X0 is accepted with probability 0.5.
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Algorithm 1 ALNS algorithm with CR, CI, SR, SI

1: Generate an initial solution

2: j ← 1

3: repeat

4: if j ≡ 0 (mod NSR) then

5: Select SR algorithm and remove stations

6: Select SI algorithm and repair solution

7: else if j ≡ 0 (mod NRR) then

8: for nRR iterations do

9: Select RRR or GRR algorithm and destroy ω routes from the initial solution

10: Select CI algorithm and repair partial solution

11: Perform Greedy Station Insertion to insert CS if required

12: end for

13: else

14: Select CR algorithm and remove customers

15: if destroyed solution infeasible then

16: Select CI algorithm and repair solution

17: Perform Greedy Station Insertion to insert CS

18: end if

19: end if

20: Utilise SA criterion to accept/reject solution

21: j ← j + 1

22: if j ≡ 0 (mod NC) then

23: Update adaptive weights wi of CR and CI algorithms

24: else if j ≡ 0 (mod NS) then

25: Update adaptive weights wi of SR and SI algorithms

26: end if

27: until stopping criterion met

4.2 Construction of initial solution

Following from Keskin and Çatay (2016), the initial solution for the ALNS is constructed by

iteratively generating feasible routes. Firstly, an empty route is initiated and customer k ∈ V

closest to the depot is added to the route. The set V̂ keeps a track of all unvisited customers,

and thus is updated by removing the initial customer visited from this set. The insertion cost

cijk = dji + dik − djk is then computed for all i ∈ V̂ and the customer with the minimum cost is

added to the route and removed from V̂ , if their insertion is feasible. This implies that the time

windows of the customers must be respected. If no customer can be added due to insufficient

battery SoC, then a CS may be inserted.

For the standard ALNS detailed by Keskin and Çatay (2016), we perform Greedy Station

Insertion (Section 4.4.2) to determine the cheapest feasible insertion of the station to the current

route. For the alternative case, different to Keskin and Çatay (2016), we instead adopt a labeling

algorithm (Section 4.6) to determine the optimal positioning of stations for the given route. If
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no customer can be inserted due to time window and battery SoC violations, then a new route

is created and this process is repeated until all customers have been visited i.e. V̂ = ∅. The

initial solution construction is detailed below in Algorithm 2.

Algorithm 2 Initial solution construction

1: Initiate a new route and add the customer k ∈ V closest to the depot
2: Let set of unvisited customers be V̂ = V \ {k}
3: repeat
4: Insertion cost cijk = dji + dik − djk

5: Compute cijk∀i ∈ V̂ on the current route
6: if no feasible insertion of customer possible then
7: Initiate a new route and add the unvisited customer l ∈ V̂ closest to the depot
8: Update V̂ = V̂ \ {l}
9: else

10: Select customer l s.t. cljk = min∀i∈V̂ cijk and make the insertion

11: Update V̂ = V̂ \ {l}
12: end if
13: if a recharging station is required then
14: Perform Greedy Station Insertion / Labeling Algorithm
15: end if
16: until all customers are visited i.e. V̂ = ∅

4.3 Destroy-Repair operators for customers

4.3.1 Customer removal

Previous literature by Ropke and Pisinger (2006) and Demir, Bektaş and Laporte (2012) have

stated well-known customer removal heuristics. These include Random, Worst-Distance, Worst-

Time, Shaw, Proximity-based, Time-based, Demand-based, Zone, RRR, and GRR. In each iter-

ation of ALNS, one of these CR operators is chosen in an adaptive manner (see Section 4.1.1) to

remove γ customers from the route and store them in a removal list L. The number of customers

nc determine the value of γ ∈ (nc, nc) randomly via the uniform distribution.

Random Removal selects γ customers at random and removes them from their respective

routes. Worst-Distance Removal calculates the removal costs of customers as the sum of the

distances between the customer and its preceding and succeeding nodes, while Worst-Time

Removal calculates the cost as |τi− ei|. After collating a sequence of non-increasing costs, these

operators repeatedly remove the customer at index ⌊|γ|λκ⌋, until γ = 0, where λ ∈ [0, 1] and

κ ≥ 0 to introduce randomness in the selection of customers. Shaw Removal applies a relatedness

measure to remove customers that have similar attributes, such as close proximity, time windows

and demand levels: Rij = ϕdij + ϕ2|ei − ej |+ ϕ3lij + ϕ4|Di −Dj |. The higher Rij , the greater

the similarity between customers i and j, where ϕ1 − ϕ4 are the Shaw parameters and lij = −1
if i and j are on the same route. After arranging relatedness measures in a non-decreasing

order, the customer at index ⌊|γ|λη⌋ is removed, until γ = 0, where η ≥ 0. Proximity-based,

Time-based and Demand-based removals are special cases of Shaw Removal, where ϕ1, ϕ2, ϕ4 are

1 respectively, while other Shaw parameters are 0. Zone Removal requires the customers to be

assigned to one of the nZ zones in the Cartesian coordinate system, and all the customers from
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a randomly chosen zone are removed from the solution.

RRR and GRR remove ω routes randomly or greedily (removing route with highest number

of customers first) from a feasible solution to try and service all customers over a smaller set

of routes, thereby minimising the number of vehicles used. Shorter routes may prompt lower

objective values by removing unnecessary trips to and from the depot. Keskin and Çatay (2016)

introduced two CR operators which we will also employ in our research; namely, Remove Cus-

tomer with Preceding Station (RCwPS) and Remove Customer with Succeeding Station (RCwSS)

operators. If a customer is removed from the route, then the battery SoC may be sufficient to

visit the following customer without recharging, eliminating the need to visit a station and

reducing battery recharging costs.

4.3.2 Customer insertion

Following Keskin and Çatay (2016), we employ the following customer insertion operators iter-

atively to insert all the customers in L back into the solution: Greedy, Regret-k, Time-based and

Zone insertions. Greedy Insertion inserts the lowest-cost customer i between two feasible nodes

j and k. Regret-k insertion calculates the difference between a customer’s first best insertion and

kth best insertion. The customer with the highest difference is then inserted at its best position,

to prevent inserting customers earlier on which may yield higher costs in subsequent iterations.

We employ Regret-2 and Regret-3 methods in our research. Time-based Insertion calculates the

difference between the total route times before and after adding a customer to the route at a

given position. The customer with the lowest insertion cost is inserted first at its best position.

Zone insertion only considers a subset of routes in contrast to all the routes in the solution. If

a randomly selected zone contains customers already visited on certain routes (V \ L), it adds
those routes to the subset. It then calculates the same cost measure as Time-based Insertion,

and attempts to insert customers in L solely in the subset routes.

4.4 Destroy-Repair operators for stations

4.4.1 Station removal

The station removal operators used in this research include Random Station, Worst Distance

Station, Worst-Charge Usage Station and Full Charge Station Removal. The number of stations

σ to be removed are determined similarly as γ, depending on the total number of stations (and

their copies) available for recharging. Random Station and Worst Distance Station Removal

work similarly to Random Customer and Worst Distance Customer Removal. Worst-Charge

Usage Station Removal sorts stations in non-increasing order of the battery SoC with which the

EV visits the station, and removes the first σ stations. The idea is to deplete the battery as much

as possible prior to visiting a station, thereby improving the efficiency in station usage. Lastly,

for the Full Charge Station Removal operator, Keskin and Çatay (2016) suggested removing σ

stations randomly where EVs are fully recharged. However, we modify this operator and instead

remove the first σ stations which have the highest battery recharge amounts at a station. This

modification is better suited for the partial recharging situation, since experimentation with

various datasets showed that battery levels rarely reach the full recharge amount.
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4.4.2 Station insertion

After removing stations from the solution, some routes may become battery-infeasible. There-

fore, with every iteration of station removal, one of these station insertion operators is employed:

Greedy Station Insertion, Greedy Station Insertion with Comparison or Best Station Insertion.

Greedy Station Insertion identifies a customer/depot on the route with negative battery SoC,

and attempts to insert the minimum-cost (least increase in distance) station on the arc between

that customer/depot and the previous node. If this insertion is infeasible, then the operator

checks to insert a station in the previous arcs. Greedy Station Insertion with Comparison com-

pares the cost of inserting the best station on the arc before the negative battery customer as

well as the previous arc. The position which yields a lower cost is chosen for station insertion.

If neither position offers feasible insertion, then Greedy Station Insertion is performed on the

remaining previous arcs. Finally, Best Station Insertion considers the cost of inserting a station

on all previous arcs of the negative battery customer until we hit a station or a depot. The com-

bination of station and position which yields the lowest increase in distance is selected. These

station insertion operators are iterated until no negative customer/depot exists on the route.

Note that when SI is required to make a feasible trip to an unvisited customer, Keskin and

Çatay (2018) use these insertion operators only in conjunction with the fastest recharging option

station insertions. In this paper we consider all three recharging options: slow, medium and fast,

to evaluate the trade-off between the number of EV routes required to service all customers and

the total routing cost for all EVs. For instance, one may argue that a medium recharging option

might be the best to balance number of vehicles used and total energy costs. However, another

argument could be that by only allowing the fast charging option during station insertion, we

reduce charge durations (∆i) which could help one EV serve more customers. Moreover, the

recharging cost related decisions are optimised in the second stage of the matheuristic; the SP

formulation as described in Section 4.5.

4.5 Using Set Partitioning

We consider a set partitioning (SP) formulation as the second stage of the matheuristic approach.

Let Ψ be the set of feasible routes for EVs, which are local optimum solutions populated from

various ALNS iterations. We declare a route r ∈ Ψ feasible if the time windows of the customers

are respected, the total cargo load does not exceed the EV’s capacity, the battery levels are

non-negative and sufficient to visit the next node on the route, and the route starts and ends

at depot nodes 0 and N + 1 respectively. The rationale for using SP as a post-processing stage

of ALNS results is as follows. Keeping in mind our cost minimisation objective (1) or (14), it

may be possible that a combination of routes across two local optimum solutions belonging to

different ALNS iterations yields a lower total cost of the route.

We introduce a binary decision variable xr and two parameters αir and cr. Note that xr

takes the value 1 if route r ∈ Ψ is selected in the optimal solution, else it is 0. αir is equal to 1 if

the customer i is in the selected route r ∈ Ψ, else it is 0. Finally, cr is the total cost associated

with the route. The formulation can then be written as follows:

13



Minimise:
∑
r∈Ψ

crxr (21)

s.t.
∑
r∈Ψ

αirxr = 1 ∀i ∈ V (22)

xr ∈ {0, 1} ∀r ∈ Ψ (23)

This SP outputs an optimal solution consisting of a subset of the routes {r1, r2, . . . , rk} ⊆ Ψ.

The objective function (21) minimises the total cost of the optimal solution, aggregated over the

costs of individual routes. We only impose one constraint (22), which necessitates that every

customer node should be covered exactly once by one of the routes in the optimal solution.

Constraint (23) states the binary nature of xr.

The SP model (21) - (23) is solved using a mixed-integer programming solver, Gurobi. The

MILP can be provided a warm start with the best solution of ALNS to reduce the runtime

(Zhao & Lu, 2019). The optimisation terminates either upon finding an optimal solution or

exceeding the predefined time limit. We will compare the objective values and runtimes of

ALNS and ALNS-SP, to evaluate whether ALNS-SP outperforms ALNS. Our hypothesis is that

better solutions overlooked by ALNS can be found during this second stage of the matheuristic,

and thus ALNS-SP will outdo ALNS. The ALNS-SP procedure is detailed below.

Algorithm 3 ALNS-SP procedure

1: z ← Initial solution

2: z∗ ← ALNS(z)

3: Add local optimum z∗ to Ψ

4: repeat

5: Update local optimum z∗ ← ALNS(z∗)

6: Add local optimum z∗ to Ψ

7: until stopping criterion met

8: z∗ ← Solve SP with input Ψ

9: return z∗

4.6 Labeling algorithm

Taking a different approach than Keskin and Çatay (2016), instead of defining CS removal and

insertion operators, we adopt a labeling algorithm following Zhao and Lu (2019) to optimise the

placement of CSs in our routes. As seen in Figure 2 below, the labeling algorithm takes as input

the route of artificial depot nodes and customers r = 0, v1, v2, . . . , vn, N + 1, where |V | = n as

well as the set of CSs F (and their respective copies), where |F | = m. For the scenario with

multiple chargers, the set F will contain all stations with three charger types. For example, for

station S13 the set F contains S13-A, S13-B, S13-C for three types of recharging options and

their associated copies (see Section 3). Note that the route r satisfies constraints such as time

windows and load capacities, but battery SoC constraints may be violated. Hence, the labeling

algorithm attempts to satisfy the energy constraints by finding the cheapest feasible insertions

for CSs and thus the cheapest overall route from 0 to N + 1.
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Figure 2: Auxiliary graph for demonstrating the labeling algorithm

We simplify the notation from Zhao and Lu (2019) for our case and denote the label of cus-

tomer i ∈ r as li = (τi, yi, fi, i, l). As stated previously, τi and yi denote the start of service time

(i.e. arrival time) at customer i and the battery SoC when arriving at customer i respectively.

fi is the current accumulated value of the total energy costs (see Equation (1)) and l precedes

the label li. We then define Li as the set of labels for customer i, and li ∈ Li is one such label.

When travelling from customer i to j, two situations may arise. Firstly, the EV may travel

directly from customer i to j, yielding one label. Secondly, the EV may travel from customer

i to j via a CS ∈ F , generating at most m labels. Note that in this case it is important to

determine the amount of energy that should be recharged at the CS as the recharging time will

affect visits to other customers in the route. Since it is difficult to determine an optimal re-

charging policy, we explore few suggestions from literature and devise the following 5 strategies:

Full Recharge (Schneider et al., 2014), Fixed Partial Recharge at 80%, 60% and 40% of battery

capacity (Keskin & Çatay, 2016), and Free Partial Recharge with 2 customers (Zhao & Lu,

2019). The last policy suggests that the EV should be charged such that it is able to reach the

next customer j + 1; if that violates the time window of j, then the EV should just be charged

sufficiently to travel from the CS to customer j.

We consider a label to be valid if it does not violate time window and battery SoC constraints.

Also, we state that a label li = (τi, yi, fi, i, l) dominates a label l
′
i = (τ

′
i , y

′
i, f

′
i , i, l

′
) for customer

i if: τi ≤ τ
′
i , yi ≥ y

′
i, fi ≤ f

′
i and at least one of the inequalities is strict. We prefer a label

which has an earlier arrival time at a customer, because each route is time-limited and it allows

the EV to meet the time windows of other potential customers yet to be added to the route.

Similarly, we prefer a label which has a higher battery SoC upon arrival at a customer, since the

EV has more energy to continue its route and can reduce unnecessary visits to CSs; important

for lowering both route distance and energy costs. These dominance rules allow for pruning

of feasible solutions and focusing on more promising routes by removing the dominated labels;

reducing the number of labels to be considered and thus improving the efficiency of the algorithm.

Let v0 = 0 and vn+1 = N + 1. Now, for each vertex vi−1, i ∈ 1, . . . , n+ 1 we create a set

of labels L1, . . . , LN+1 and only include valid labels for each vertex, which are not dominated

by other labels of the same vertex. Then, we find the cheapest label in LN+1 (end of route)

and trace back to v0 following the cheapest predecessor labels. Finally, the labeling algorithm
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outputs the cheapest path from v0 to vn+1. Else, if the labeling algorithm cannot find the

cheapest v0, vn+1-path we consider the inputted sequence of customers to be infeasible.

4.6.1 Alternative Local Search: Labeling Algorithm

As an alternative to the ALNS procedure described in Algorithm 3, we propose a modified

ALNS framework wherein CR and CI operators are present; however, SR and SI operators are

replaced with the labeling algorithm (Section 4.6) for the optimal positioning of CSs on a given

route. Therefore, in each ALNS iteration, either CR or RRR/GRR is performed, followed by

CI. During CI, the labeling algorithm is employed to find the cheapest feasible insertion of CSs.

The weights are only updated for customer-related operators per segment of size NC , as shown

in Algorithm 4. The motivation behind applying the labeling algorithm instead of the SI and

SR operators is that it systematically tracks all feasible, non-dominated labels of an EV. Hence,

this results in a more extensive search for optimal station positioning in a route, which may

be overlooked by the heuristic-based station operators. Note that it cannot be guaranteed that

the labeling algorithm will always find a solution that is at least as good at the SI operations,

because the quality of solutions depend upon the dominance rules that are applied. Dominance

rules can help reduce the computational time, but may lead to premature pruning of potentially

optimum solutions in some cases, depending on the nature of the rules.

Algorithm 4 ALNS algorithm with CR, CI and Labeling Algorithm

1: Generate an initial solution

2: j ← 1

3: repeat

4: if j ≡ 0 (mod NRR) then

5: for nRR iterations do

6: Select RRR or GRR algorithm and destroy ω routes from the initial solution

7: Select CI algorithm and repair partial solution

8: Perform labeling algorithm to insert CS if required

9: end for

10: else

11: Select CR algorithm and remove customers

12: if destroyed solution infeasible then

13: Select CI algorithm and repair solution

14: Perform labeling algorithm to insert CS

15: end if

16: end if

17: Utilise SA criterion to accept/reject solution

18: j ← j + 1

19: if j ≡ 0 (mod Nc) then

20: Update adaptive weights wi of CR and CI algorithms

21: end if

22: until stopping criterion met
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5 Computational study

Within the computational study, we first discuss the performance of ALNS versus ALNS-SP by

reporting the results for the small instances. We then evaluate the results for large instances

with the better model, for various PR policies (free and fixed) and compare them against the

benchmark of the FR policy. Secondly, we compare the results of the standard ALNS model

against the alternative ALNS with labeling algorithm for various recharging policies and evaluate

the models based on computational efficiency and solution quality. Thirdly, we proceed with

the best model from the previous step to run analysis for the cases of linear and non-linear

recharging functions. Finally, we select either the linear or non-linear functions depending on

how different the solution cost is under those two cases, and showcase the effect of multiple

chargers on the solution cost through sensitivity analysis.

5.1 Set-Up

The proposed ALNS procedure was validated through running computational experiments on

EVRPTW test instances generated by Schneider et al. (2014), which were originally introduced

by Solomon (1987). The instances differ based on the type of customer geographical distribution:

clustered (C), randomly distributed (R), and both clustered and randomly distributed (RC).

The 56 large instances include these problems with 100 customers and 21 recharging stations,

wherein each problem contains two subsets, which have different time window lengths, battery

and vehicle load capacities. The 36 small instances consist of 3 subsets for 5, 10 and 15 customers

respectively, drawn randomly from the 100-customer instances. For hyperparameter tuning, we

refer to Keskin and Çatay (2016) and utilise the following parameters present in Table 1.

Table 1: Results from hyperparameter tuning

Customer Removal Station Removal Shaw parameters ALNS iterations ALNS solution

κ = 4 mr = 0.3 ϕ1 = 0.5 NSR = 60 σ1 = 25

η = 12 ns = min(0.1|FN |, 30) ϕ2 = 13 NRR = 2000 σ2 = 20

nz = 25 ns = min(0.4|FN |, 60) ϕ3 = 0.15 nRR = 1250 σ3 = 21

nc = min(0.1|VN |, 30) ϕ4 = 0.25 NS = 5500 ρ = 0.25

nc = min(0.4|VN |, 60) NC = 200 ϵ = 0.9994

µ = 0.4

All the results were run on a MacBook Air M2 (2022) with 8-core GPU. The MILP model was

coded in Java and solved with a mixed-integer programming solver, Gurobi (11.0), and the time

limit was set to 7200 seconds per instance. The ALNS algorithm was also coded in Java, where

small instances were run for 25,000 iterations, because it was observed that additional runtime

improved the solution quality; similar observations were made by Ropke and Pisinger (2006)

and Keskin and Çatay (2016). Since the large instances were more computationally expensive,

we performed them for 3,000 iterations and our reported results show relatively similar values

to those found by Keskin and Çatay (2016).
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5.2 Numerical results for standard ALNS

In order to report the numerical results for ALNS, we consider the performance of ALNS verus

ALNS-SP. Note that for implementing the ALNS-SP, we established a criteria to select the

subset of routes to be considered for post-processing with the SP formulation. The criteria is

as follows: in a given ALNS iteration, if a solution is a local optimum such that it is better

than the previous solution found by ALNS, or if it is the current global optimum such that it

is better than the previous global optimum, then we input the routes from these solutions into

the subset of routes for SP. We applied both ALNS and ALNS-SP on the small instances, to

compare objective values and runtimes, and we present the results in Table 8 (Appendix A).

Table 8 (Appendix A) showcases that on average, ALNS-SP results in 0.53% lower objective

value than ALNS, with the largest improvement at 5.27%, for the instance R102-15. This can

be justified due to the fact that Gurobi solved this instance until the runtime limit, thereby

providing an upper bound on the objective value, but not necessarily the optimal objective

value. Hence, ALNS-SP was able to find a lower but not necessarily optimal upper bound for

this instance. In most cases, ALNS-SP provides better or the same objective values as ALNS, as

hypothesised in Section 4.5. Moreover, the additional runtime required for ALNS-SP relative to

ALNS is 0.05 to 0.75 seconds depending on the size of the instance. Hence, at the cost of nominal

runtime increase, ALNS-SP proves to be an efficient and effective matheuristic for minimising

the distance travelled by EVs. Hereforth, we only present results gathered under the context of

ALNS-SP.
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5.2.1 Numerical results for small-size instances

In Table 2 below, we present results for the FR case solved by Gurobi, and the PR case solved

by both Gurobi and ALNS-SP, for small-size instances.

Table 2: Comparison of results obtained with Gurobi and ALNS-SP on the small-size instances

Instance FR optimal PR Gurobi PR ALNS-SP

#Veh TD #Veh TD Time (sec) #Veh TD ∆Gurobi % ∆FR % Time (sec)

C101-5 3 247.15 3 247.15 0.23 3 247.15 0.00 0.00 4.35

C103-5 3 165.67 3 165.67 0.05 3 165.67 0.00 0.00 5.30

C206-5 2 236.58 2 236.58 0.05 3 236.58 0.00 0.00 7.47

C208-5 3 158.48 3 158.48 0.06 1 158.48 0.00 0.00 9.48

R104-5 2 136.69 2 136.69 0.01 2 136.45 -0.18 -0.18 3.59

R105-5 2 156.08 2 156.08 0.02 2 156.08 0.00 0.00 4.12

R202-5 1 128.78 1 128.78 0.02 1 128.78 0.00 0.00 7.02

R203-5 1 179.06 1 179.06 0.03 1 179.06 0.00 0.00 10.31

RC105-5 3 238.05 3 233.77 0.06 3 238.05 1.80 0.00 4.54

RC108-5 2 253.93 2 253.93 0.06 2 253.93 0.00 0.00 3.80

RC204-5 1 176.39 1 176.39 0.07 1 176.39 0.00 0.00 9.40

RC208-5 1 167.98 1 167.98 0.04 1 167.98 0.00 0.00 5.07

C101-10 4 393.76 4 388.25 575.43 4 383.56 -1.22 -2.66 17.26

C104-10 2 273.93 2 273.93 2.50 2 273.93 0.00 0.00 19.38

C202-10 2 243.20 2 243.20 7.85 2 243.20 0.00 0.00 34.25

C205-10 2 228.28 2 228.28 0.02 2 228.28 0.00 0.00 16.28

R102-10 3 249.19 3 249.19 1.40 4 258.03 3.43 3.43 9.66

R103-10 3 202.85 3 202.85 13.41 3 202.85 0.00 0.00 10.69

R201-10 3 217.68 3 217.68 0.08 3 217.68 0.00 0.00 42.76

R203-10 1 218.21 1 218.21 21.21 1 218.21 0.00 0.00 30.33

RC102-10 4 423.51 4 423.51 0.07 4 423.51 0.00 0.00 10.64

RC108-10 3 345.93 3 345.93 2.90 3 345.11 -0.24 -0.24 13.12

RC201-10 3 310.06 3 310.06 0.04 3 310.06 0.00 0.00 37.85

RC205-10 2 325.98 2 325.98 0.09 2 325.98 0.00 0.00 33.03

C103-15 3 371.70 3 371.70 7200.00 4 369.32 -0.64 -0.64 49.48

C106-15 3 275.13 3 275.13 0.50 3 275.13 0.00 0.00 30.06

C202-15 3 376.79 3 376.79 2300.00 3 369.56 -1.96 -1.96 75.66

C208-15 2 300.55 2 300.55 4.15 2 300.55 0.00 0.00 73.49

R102-15 5 419.64 5 419.64 7200.00 5 413.46 -1.50 -1.50 30.54

R105-15 4 336.15 4 336.15 7200.00 4 339.88 1.10 1.10 27.98

R202-15 2 358.00 2 358.00 7200.00 2 358.22 0.06 0.06 210.09

R209-15 2 293.20 2 293.20 185.33 2 293.20 0.00 0.00 126.17

RC103-15 3 397.67 3 397.67 7200.00 4 394.65 -0.77 -0.77 24.43

RC108-15 2 370.25 2 370.25 7200.00 3 375.88 1.50 1.50 31.88

RC202-15 2 394.39 2 394.39 1126.00 2 394.39 0.00 0.00 141.13

RC204-15 2 310.58 2 310.58 7200.00 2 310.58 0.00 0.00 275.32

Average 1517.82 0.04 -0.05 40.16

Considering the FR and PR schemes, Gurobi found optimal solutions for all small instances

containing 5 or 10 customers, since they finished within the prescribed runtime limit of 7200

seconds. However, as expected, the runtime increases as the number of customers increase; while

the average runtime for instances with 5 and 10 customers is 0.06 seconds and 52.1 seconds, the

average runtime already increases significantly for the case of 15 customers; 4501.33 seconds.
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For the latter instances, 7 out of 12 solutions ran up until the time limit, suggesting that we

found upper bounds and not necessarily optimal solutions in the give time limit.

The results for ALNS-SP show that our procedure is effective for solving small instances

with a relatively shorter average runtime - only 40.16 seconds relative to the 1517.82 seconds for

Gurobi. Note that ∆Gurobi % and ∆FR % indicate the percentage deviation of the total distance

found by the ALNS solution from the PR Gurobi and FR optimal solution.

For most of the cases, ALNS-SP was able to identify the same objective values as the FR

optimal and PR Gurobi solutions. Given certain 15-customer instances for which Gurobi ran

until the time limit (C103-15, R102-15, RC103-15), ALNS-SP provided a lower but not necessar-

ily optimal upper bound on the objective values. However, for four instances such as RC105-5,

R102-10, R102-15 and RC108-15, ALNS-SP provided slightly worse solutions, indicating that

ALNS was perhaps trapped in a local optimum. Although the SA criterion was implemented to

reduce the risk of this occurrence, it is possible that it fails to find the best solutions for certain

instances. For the remaining 88.89% instances, the criterion succeeded in finding the global

optimum solutions or lower upper bounds, depending on the instances under consideration.

On average, ALNS-SP provides a 0.05% improvement on FR optimal, indicating the benefit

of adopting the PR scheme, which yields lower objective values on average than the FR scheme.

For the case of PR Gurobi, ALNS-SP performs 0.04% worse on average. However, the trade-off

with a 97.37% reduction in average computational time highlights the advantage of employing

ALNS-SP. Lastly, note that FR optimal and PR Gurobi have the same number of vehicles;

ALNS-SP manages to reduce the number of vehicles used for one instance (C208-5) and also

increase the number of vehicles used in two cases (C103-15, RC103-15) at the benefit of lowering

the objective value.

5.2.2 Numerical results for large-size instances

When studying large instances, in addition to free PR, we implement ALNS-SP for different

recharging strategies, such as FR and PR where the recharge amount is fixed at certain pro-

portions of the battery capacity; tested for the purpose of comparison. Table 9 (Appendix B)

shows the results for the 56 instances with 100 customers for the different strategies, where the

FR results are treated as the benchmark which the four PR policies are compared to, through

a percentage deviation in total distance travelled by the EVs. Note that ‘q free’ permits PR at

any battery level, while ‘q = 0.3’, ‘q = 0.4’, and ‘q = 0.5’ imply that PR must be performed at

30%, 40% and 50% of the battery capacity, respectively.

As hypothesised by Keskin and Çatay (2016), the PR strategy has benefits over the FR

scheme; Table 9 (Appendix B) denotes that on average, adopting PR (q free) results in 1.69%

lower distance travelled. For the fixed PR cases of q = 0.3, q = 0.4, and q = 0.5, the improvements

were poorer at 0.64%, 0.79% and 0.62%, respectively. These results can be visualised by the

column chart in Figure 3, which demonstrates the average percentage improvement in objective

for each set of 100 customer instances (Section 5.1) contributed by various recharging policies

relative to the FR policy. The performance of each policy in the improvement of the objective

value can be seen below 0%, since they reduce the objective value. Policies with bars above 0%

depict an increase in the objective value.
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Figure 3: Column chart demonstrating the average percentage improvement in objective value per group
of instances, provided by various recharging policies relative to the full recharge policy

Figure 3 showcases that the effect of the recharging policy under question varies across

instances. Policies PR (q = 0.3), PR (q = 0.4) and PR (q = 0.5) have a similar performance

trend across all groups. For groups c1, c2 and r1, PR (q = 0.4) outperforms the other two

policies, but dominantly provides worse objective values relative to the other two policies for

groups r2 and rc2. PR (q = 0.3) and PR (q = 0.5) outperform PR (q = 0.4) in the case of rc1

by further reducing the objective value, and also outperform PR (q = 0.4) for the r2 and rc2

instances by providing a lower increase in the objective value.

Conversely, the PR (q free) appears to outperform the other policies by demonstrating

substantial negative contributions for each group of instances, indicating that allowing free

PR can significantly reduce the objective value on average. There are two cases where this

policy contributes positively to increasing the objective value, minimally in r201 by 0.07% and

dominantly in rc206 by 1.33%, as shown in Table 9 (Appendix B). Nonetheless, overall, free PR

can be concluded to be the best recharging policy when considering ALNS-SP.

5.3 Numerical results for ALNS with Labeling Algorithm

Concerning the labeling algorithm in the ALNS-SP framework, we consider the small-size in-

stances to test for the most effective recharging policy under the labeling algorithm, and secondly

for evaluating whether the ALNS-SP with or without labeling algorithm is better, both in terms

of objective values and computation times. Firstly, we consider the objective values across all

policies, as shown below in Table 3. FR, PR (q = 0.4), PR (q = 0.6), PR (q = 0.8) and PR

(2 customers) all pertain to ALNS-SP with the labeling algorithm, while ALNS-SP PR refers to

the standard ALNS-SP with free recharge quantity introduced in Section 5.2.2.
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Table 3: Comparison of results for different recharge strategies under ALNS with Labeling
Algorithm against the ALNS-SP free PR

Instance ALNS-SP PR FR PR (q = 0.4) PR (q = 0.6) PR (q = 0.8) PR (2 customers)

#Veh TD #Veh TD ∆% #Veh TD ∆% #Veh TD ∆% #Veh TD ∆% #Veh TD ∆%

C101-5 3 247.15 3 247.15 0.00 3 247.15 0.00 3 247.15 0.00 3 247.15 0.00 4 250.04 1.16

C103-5 3 165.67 3 165.67 0.00 3 165.67 0.00 3 165.67 0.00 3 165.67 0.00 3 165.67 0.00

C206-5 3 236.58 3 236.58 0.00 3 244.30 3.16 3 236.58 0.00 3 236.58 0.00 3 241.49 2.04

C208-5 1 158.48 1 164.34 3.57 1 199.47 20.55 1 164.34 3.57 1 164.34 3.57 1 174.82 9.35

R104-5 2 136.45 2 136.69 0.18 2 136.69 0.18 2 136.69 0.18 2 136.69 0.18 2 136.69 0.18

R105-5 2 156.08 2 156.08 0.00 3 182.92 14.67 3 182.92 14.67 2 156.08 0.00 3 168.47 7.35

R202-5 1 128.78 1 128.88 0.08 2 143.39 10.19 1 128.88 0.08 1 128.88 0.08 1 146.77 12.26

R203-5 1 179.06 1 179.06 0.00 2 208.19 13.99 1 191.61 6.55 1 179.06 0.00 1 197.99 9.56

RC105-5 3 238.05 3 238.05 0.00 3 238.05 0.00 3 238.05 0.00 3 238.05 0.00 3 238.05 0.00

RC108-5 2 253.93 2 253.93 0.00 2 264.92 4.15 2 253.93 0.00 2 253.93 0.00 2 253.93 0.00

RC204-5 1 176.39 2 185.16 4.73 2 185.44 4.88 2 185.16 4.73 2 185.16 4.73 2 185.16 4.73

RC208-5 1 167.98 1 167.98 0.00 1 182.79 8.10 1 167.98 0.00 1 167.98 0.00 1 174.38 3.67

C101-10 4 383.56 4 399.31 3.95 4 409.65 6.37 4 399.31 3.95 4 399.31 3.95 3 401.97 4.58

C104-10 2 273.93 2 273.93 0.00 2 300.50 8.84 2 276.09 0.78 2 273.93 0.00 2 308.51 11.21

C202-10 2 243.20 2 243.20 0.00 2 250.88 3.06 2 243.21 0.00 2 243.21 0.00 3 270.05 9.94

C205-10 2 228.28 2 228.28 0.00 2 228.91 0.28 2 228.91 0.28 2 228.28 0.00 2 234.52 2.66

R102-10 4 258.03 3 249.19 -3.55 3 255.88 -0.84 3 255.88 -0.84 3 249.19 -3.55 4 262.92 1.86

R103-10 3 202.85 3 202.85 0.00 3 202.85 0.00 3 202.85 0.00 3 202.85 0.00 3 203.60 0.37

R201-10 3 217.68 3 217.68 0.00 3 227.41 4.28 3 224.54 3.05 3 217.68 0.00 4 239.99 9.30

R203-10 1 218.21 1 222.64 1.99 - - - 1 235.15 7.20 1 222.64 1.99 2 263.87 17.31

RC102-10 4 423.51 4 423.51 0.00 5 437.59 3.22 4 423.51 0.00 4 423.51 0.00 5 436.05 2.88

RC108-10 3 345.11 3 347.90 0.80 4 395.45 12.73 3 352.09 1.98 3 347.90 0.80 3 347.90 0.80

RC201-10 3 310.06 3 310.06 0.00 3 311.14 0.35 3 310.06 0.00 3 310.06 0.00 4 341.65 9.25

RC205-10 2 325.98 2 325.98 0.00 3 355.00 8.17 2 337.89 3.53 2 332.99 2.11 3 370.51 12.02

C103-15 4 369.32 4 371.70 0.64 4 371.70 0.64 4 371.70 0.64 4 371.70 0.64 4 371.70 0.64

C106-15 3 275.13 3 275.13 0.00 4 327.19 15.91 3 281.82 2.37 3 275.13 0.00 4 320.37 14.12

C202-15 3 369.56 3 369.56 0.00 4 398.22 7.20 3 376.79 1.92 3 369.56 0.00 4 428.36 13.73

C208-15 2 300.55 2 300.55 0.00 3 325.75 7.74 2 308.45 2.56 2 300.55 0.00 3 370.46 18.87

R102-15 5 413.46 5 413.93 0.11 6 438.88 5.79 5 420.10 1.58 6 419.64 1.47 6 432.96 4.50

R105-15 4 339.88 4 336.15 -1.11 4 340.17 0.09 4 336.15 -1.11 4 336.15 -1.11 4 352.39 3.55

R202-15 2 358.22 3 359.08 0.24 3 382.93 6.45 3 383.58 6.61 3 359.08 0.24 3 411.57 12.96

R209-15 2 293.20 2 307.68 4.71 4 390.22 24.86 2 332.79 11.90 3 316.75 7.43 3 380.75 22.99

RC103-15 4 394.65 4 394.65 0.00 4 400.10 1.36 4 394.65 0.00 4 394.65 0.00 5 401.56 1.72

RC108-15 3 375.88 3 370.25 -1.52 5 471.77 20.32 3 387.93 3.10 3 370.25 -1.52 5 458.15 17.96

RC202-15 2 394.39 3 397.20 0.71 3 401.79 1.84 2 394.39 0.00 3 397.20 0.71 4 436.47 9.64

RC204-15 2 310.58 2 310.58 0.00 2 319.41 2.77 2 310.58 0.00 2 310.58 0.00 2 367.60 15.51

Average 0.43 6.32 2.2 0.6 7.46

From Table 3 we observe that different recharging policies have significantly different implic-

ations for their effect on the total distance travelled by EVs. FR appears to provide relatively

similar distances as the ALNS-SP, only increasing the objective values by 0.43% on average.

The next best policy is that of fixed PR at q = 0.8, only worsening the objective value by 0.6%

on average. PR (q = 0.6), PR (q = 0.4) and PR (2 customers) perform 2.2%, 6.32% and 7.46%

worse on average than ALNS-SP PR. Moreover, instance R203-10 was infeasible with PR (q

= 0.4), implying that this policy results in insufficient battery levels for EVs to successfully

complete their routes.

The overall trend observed in the performance of fixed recharging policies is as follows: as

the fixed recharge amount decreases, the average deviation of the objective values from the

ALNS-SP increases. This indicates contrasting results to the standard ALNS with SI and SR

operators, as seen in Section 5.2.2, where FR was the worst-performing policy. One possible

explanation for this varying policy performance is the dominance rules in the labeling algorithm,

which prioritise labels with higher battery SoC and earlier arrival times. Full recharge allows

for higher SoC when leaving a CS, such that the vehicle can travel longer distances and cover

more customers without requiring another recharge. Therefore, from the policies we tested for

the labeling algorithm, implementing FR closely mimics the effect of free PR under the standard
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ALNS-SP, through ensuring sufficient battery levels across routes and thereby achieving the

most similar objective values.

We now study the average runtimes per group of instances for both types of algorithms under

different recharging policies, provided in Table 10 (Appendix C) and visualised in Figure 4a.

We also illustrate the average objective values per group of instances under different recharging

policies for the labeling algorithm relative to the ALNS-SP PR, in Figure 4b, facilitating an

evaluation of the models based on both runtime and objective values.
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Figure 4: Comparison of average objective values and computational times for various recharging policies
and instance sizes

Figure 4a showcases that the computational time increases with the number of customers.

The C15 instances consistently exhibit the highest computational times across all recharging

policies, followed by C10 and C5 instances. This trend demonstrates the increased complexity

and computational effort required to handle larger customer groups, with PR (q = 0.4) showcas-

ing the worst runtimes and ALNS-SP PR denoting the best runtimes across all instances, with

a remarkably lower average runtime of 40.16 seconds (Table 2). This highlights the efficiency of

the ALNS-SP approach in managing computational time. The second and third best runtimes,

as seen in Table 10 (Appendix C), are attributed to PR (2 customers) with an average runtime

of 1075.83 seconds, followed by FR at 1344.14 seconds.

When considering objective values, PR (2 customers) with the second-best runtime performs

the worst relative to the standard ALNS-SP across all instance groups, as seen in Figure 4b.

On the other hand, the FR policy managed to have the third-best computational time and

demonstrated distances comparable to those of the ALNS-SP PR. Therefore, for ALNS with

the labeling algorithm, FR policy appears to provide the best trade-off between runtime and

objective value.

Nonetheless, on average, the FR policy performs 0.43% worse than ALNS-SP in terms ob-

jective value, and is approximately 32 times slower than ALNS-SP’s average runtime. Therefore,

we will proceed with our standard setup of ALNS-SP with customer and station destroy-repair

operators, for exploring the effects of linear versus non-linear recharging, as well as multiple

recharging technologies.
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5.4 Linear versus Non-Linear Recharging

5.4.1 Recharging Functions

In the non-linear scenario, we utilise the recharging function presented by Montoya et al. (2017),

as mentioned in Section 3.1. For the case of an EV with a battery capacity of 16 kWh and

constant recharge rate of 3 min/kWh, we considered three non-linear recharging functions.

The first non-linear recharging function was shown in Figure 1, with breakpoints at 0%, 85%,

95% and 100% of the battery capacity, as suggested by Montoya et al. (2017). To examine

whether non-linearity in recharging functions has any effect on objective values, we consider

two additional recharging functions with additional breakpoints at 75% and 60% of the battery

capacity respectively, as shown in Figure 5 below.
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Figure 5: Other types of non-linear recharging functions considered for analysis

Figure 5a displays breakpoints at (0, 0), (30, 12), (37.2, 13.6), (46.2, 15.2) and (60.6, 16);

at 0%, 75%, 85%, 95% and 100% of the battery capacity. Figure 5b illustrates breakpoints at

(0, 0), (23.4, 9.6), (37.2, 13.6), (46.2, 15.2) and (60.6, 16); at 0%, 60%, 85%, 95% and 100% of

the battery capacity. Given a constant recharge rate (3 min/kWh), we can calculate the slopes

(recharging rates) of the different segments within the piecewise-linear function and scale them

for different instances based on the varying battery capacities. Table 4 illustrates the scaling

faction for non-linear recharging rates at various breakpoints, given a linear recharging rate r.

Table 4: Recharging rates at various segments of the piecewise-linear recharging functions

Non-linear functions Non-linear recharging segments used

0%-60% 60%-85% 0%-75% 75%-85% 0%-85% 85%-95% 95%-100%

Function 1 - - - - 0.91*r 1.875*r 6*r

Function 2 - - 0.83*r 1.5*r - 1.875*r 6*r

Function 3 0.81*r 1.15*r - - - 1.875*r 6*r

5.4.2 Results for linear versus non-linear recharging

We now evaluate the effect of linear against non-linear recharging on the objective values, as

shown below in Table 5.
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Table 5: Comparison of results under linear and non-linear recharging rates

Instance Linear Non-linear: 85%-100% Non-linear: 75%-100% Non-linear: 60%-100%

#Veh TD #Veh TD ∆% #Veh TD ∆% #Veh TD ∆%

C101-5 3 247.15 3 247.15 0.00 3 247.15 0.00 3 247.15 0.00

C103-5 3 165.67 3 165.67 0.00 3 165.67 0.00 3 165.67 0.00

C206-5 3 236.58 3 236.58 0.00 3 236.58 0.00 3 236.58 0.00

C208-5 1 158.48 1 158.48 0.00 1 158.48 0.00 1 158.48 0.00

R104-5 2 136.45 2 136.45 0.00 2 136.69 0.18 2 136.69 0.18

R105-5 2 156.08 2 156.08 0.00 2 156.08 0.00 2 156.08 0.00

R202-5 1 128.78 1 128.78 0.00 1 128.78 0.00 1 128.78 0.00

R203-5 1 179.06 1 179.06 0.00 1 179.06 0.00 1 179.06 0.00

RC105-5 3 238.05 3 238.05 0.00 3 238.05 0.00 3 238.05 0.00

RC108-5 2 253.93 2 253.93 0.00 2 253.93 0.00 2 253.93 0.00

RC204-5 1 176.39 1 176.39 0.00 1 176.39 0.00 1 176.39 0.00

RC208-5 1 167.98 1 167.98 0.00 1 167.98 0.00 1 167.98 0.00

C101-10 4 383.56 3 393.56 2.54 3 393.56 2.54 3 393.56 2.54

C104-10 2 273.93 2 273.93 0.00 2 273.93 0.00 2 273.93 0.00

C202-10 2 243.20 2 243.20 0.00 2 243.20 0.00 2 243.20 0.00

C205-10 2 228.28 2 228.28 0.00 2 228.28 0.00 2 228.28 0.00

R102-10 4 258.03 4 262.93 1.86 4 262.93 1.86 4 262.93 1.86

R103-10 3 202.85 3 202.85 0.00 3 202.85 0.00 3 202.85 0.00

R201-10 3 217.68 3 217.68 0.00 3 216.60 -0.50 3 217.68 0.00

R203-10 1 218.21 1 218.21 0.00 1 218.21 0.00 1 218.21 0.00

RC102-10 4 423.51 4 423.51 0.00 4 423.51 0.00 4 423.51 0.00

RC108-10 3 345.11 3 345.93 0.24 3 345.93 0.24 3 345.93 0.24

RC201-10 3 310.06 3 310.06 0.00 3 310.06 0.00 3 310.06 0.00

RC205-10 2 325.98 2 325.98 0.00 2 325.98 0.00 2 325.98 0.00

C103-15 4 369.32 4 369.45 0.04 4 369.45 0.04 4 369.45 0.04

C106-15 3 275.13 3 275.13 0.00 3 275.13 0.00 3 275.13 0.00

C202-15 3 369.56 3 369.56 0.00 3 369.56 0.00 - - -

C208-15 2 300.55 2 300.55 0.00 2 300.55 0.00 2 300.55 0.00

R102-15 5 413.46 5 413.46 0.00 5 413.46 0.00 5 412.78 -0.16

R105-15 4 339.88 4 336.15 -1.11 4 337.36 -0.75 4 336.15 -1.11

R202-15 2 358.22 2 358.22 0.00 2 358.22 0.00 3 359.08 0.24

R209-15 2 293.20 2 293.20 0.00 2 293.20 0.00 2 293.20 0.00

RC103-15 4 394.65 4 394.65 0.00 4 394.65 0.00 4 394.65 0.00

RC108-15 3 375.88 3 378.36 0.65 3 378.36 0.65 3 378.36 0.65

RC202-15 2 394.39 2 394.39 0.00 2 394.39 0.00 2 394.39 0.00

RC204-15 2 310.58 2 310.58 0.00 2 310.58 0.00 2 310.58 0.00

Average 0.12 0.12 0.13

The results from implementing non-linear recharging functions show relatively similar results

to those from the linear recharging function; on average, they differ by only 0.12% - 0.13%.

Focusing on individual instances, the first and third non-linear recharging functions provide the

largest improvement in objective value for R105-15, at 1.11%.
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(a) Linear recharging function (b) Non-linear recharging function

Figure 6: Comparison of routes with different recharging functions for R105-15

Upon inspecting the routes for R105-15 in Figure 6, we infer that in the non-linear case,

route 2 manages to incorporate another customer C28 on the route who was not visited on route

2 in the linear case. This is because in the non-linear case, the EV does not need to stop at

both stations S3 and S1 to recharge. Instead, it only needs to stop at S3 to top up its battery

and it has sufficient time to do so, because to recharge until 95% of the battery capacity, the

non-linear recharge rate is quicker than the linear rate (Figure 5). Hence, this enables the EV

to meet the time window of customer C28; these changes reduce the overall solution cost for

this instance. On the contrary, all non-linear recharging functions provide the worst increase in

objective value, 2.54%, than the linear case for C101-10. The non-linear case can accommodate

all customers in 3 instead of 4 vehicles used by the linear case, again due to the quicker recharge

rate until 95% of the battery capacity. However, in this case reducing the number of vehicles

provides a higher solution cost.

Overall, despite these case-by-case differences between linear and non-linear recharging func-

tions, the average effect across all instances is relatively small. This can be attributed to the

fact that the critical non-linear recharging segment of 95% - 100% battery capacity, which has a

substantially slower recharge rate than the linear rate and thus can significantly alter the routes,

is never utilised for any instance. Table 6 illustrates this finding.

Table 6: Each type of non-linear recharging segment used as a percentage of the stations visited

Functions # Stations used Non-linear recharging segments used

60%-75% 75%-85% 85%-95% 95%-100%

Function 1 104 - - 26 (25%) 0

Function 2 108 - 40 (37.04%) 0 0

Function 3 98 58 (59.18%) - 0 0

In fact, for each type of non-linear recharging function, only the initial non-linear segments

are used. For example, for non-linear recharging function 1, only 25% of station visits involve

recharging the battery to a level between 85% - 95%, and none of the visits involve charging

between 95% - 100%. Similar patterns follow for functions 2 and 3. This outcome can be

explained by the PR policy which ensures that EVs only charge as much as needed, and also

ALNS operators such as full charge station removal, which prioritises the removal of stations
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with the highest recharge amounts. Consequently, the battery levels never reach the full recharge

segment, making the non-linear recharging behaviour not significantly different from the linear

case. Therefore, we proceed with studying the effect of multiple chargers by using the standard

ALNS-SP with a linear recharge rate.

5.5 Multiple recharging technologies

All the original instances considered a single-type charger setting, where different instances had

different constant recharging rates, ranging from 0.18 to 3.47 minutes/kWh. To transition into

the setting of multiple chargers, we referred to Felipe et al. (2014), wherein they described

three recharging technologies: slow (16.67 min/kWh), medium (3 min/kWh) and fast (1.33

min/kWh). However, it is not possible to implement these rates in our case, due to the presence

of time windows for customers and the end depot - each route has a limited duration. The

above-mentioned rates make most of the instances infeasible due to extensive recharging times

violating the duration of the routes. Therefore, we limit the number of infeasible instances

to 3 (RC102-10, RC108-10, R102-15), by picking the maximum recharge rate provided in the

instances, 3.47 min/kWh, and treating this as the recharge rate for the slowest charger. Based

on this rate and according to the values from Felipe et al. (2014), we then scale the medium and

fast recharge rates to be 0.62 min/kWh and 0.28 min/kWh respectively. Furthermore, we also

use the following recharge costs presented by Felipe et al. (2014): 0.16e/kWh, 0.176e/kWh,

0.192e/kWh for slow, medium and fast technologies respectively.

Table 7 below demonstrates sensitivity analysis for the different recharging technologies

relative to the slow charger, where the slow, medium and fast chargers and denoted as 1, 2

and 3 respectively. We observe a reduction in objective value for all combinations of chargers

relative to the slow charger. The smallest reduction at 6.56% is attributed to MC = {1,2}, when
only slow and medium chargers are implemented. On the other hand, the highest reduction at

8.32% stems from MC = 3; by only using the fast charger. To illustrate the benefits of using the

fast charger relative to the slow charger, we focus on instance RC108-5 which had the largest

decrease in objective value at 55.24%. Figure 7 below showcases that the vehicle following route

1 in the fast charger case is able to combine routes 2, 3 and 4 from the slow charger case. This

is because due to faster recharging times, the EV has freed up time which it can use to visit

more customers on the route, thereby halving the number of EVs required to cover the same set

of customers.

However, a counter-intuitive finding is that even though MC = {1,2,3} offers a larger feasible

region for ALNS than just MC = 3, restricting the availability of chargers to MC = 3 reduces

the objective value by 0.56% more than if all technologies were available. It could be the case

that the fast charger is indeed most cost-effective compared to the slow and medium chargers.

However, due to the inclusion of slow and medium chargers, ALNS may be getting trapped

in worse solutions involving these technologies, indicating the suboptimality of our ALNS ap-

proach for solving EVRPTW-NLPR-MC. Therefore, we can conclude that using multiple charger

technologies does have a substantial effect on objective value, but additional destroy-repair op-

erators specific to the case of multiple chargers may need to be added to ALNS to improve its

performance in this case.
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Table 7: Sensitivity analysis for different recharging technologies relative to the slow charger

Instance MC = 1 MC = 2 MC = 3 MC = {1,2} MC = {1,3} MC = {2,3} MC = {1,2,3}

#Veh TC #Veh TC ∆% #Veh TC ∆% #Veh TC ∆% #Veh TC ∆% #Veh TC ∆% #Veh TC ∆%

C101-5 3 247.15 3 247.15 0.00 3 247.15 0.00 3 247.15 0.00 3 247.15 0.00 3 247.15 0.00 3 247.15 0.00

C103-5 3 165.67 3 165.67 0.00 3 165.67 0.00 3 165.67 0.00 3 165.67 0.00 3 165.67 0.00 3 165.67 0.00

C206-5 3 236.58 2 236.58 0.00 2 236.21 -0.16 3 236.58 0.00 3 236.58 0.00 2 236.21 -0.16 3 236.58 0.00

C208-5 1 158.48 1 158.48 0.00 1 158.48 0.00 1 158.48 0.00 1 158.48 0.00 1 158.48 0.00 1 158.48 0.00

R104-5 2 136.69 2 136.69 0.00 2 136.69 0.00 2 136.69 0.00 2 136.69 0.00 2 136.69 0.00 2 136.69 0.00

R105-5 3 182.92 2 156.08 -17.19 2 156.08 -17.19 2 156.08 -17.19 2 156.08 -17.19 2 156.08 -17.19 2 156.08 -17.19

R202-5 2 142.65 1 128.78 -10.78 1 128.78 -10.78 2 142.65 0.00 1 128.88 -10.69 1 128.78 -10.78 1 128.88 -10.69

R203-5 2 195.63 1 179.06 -9.26 1 179.06 -9.26 1 179.06 -9.26 1 179.06 -9.26 1 179.06 -9.26 1 179.06 -9.26

RC105-5 3 238.05 3 238.05 0.00 3 238.05 0.00 3 238.05 0.00 3 238.05 0.00 3 238.05 0.00 3 238.05 0.00

RC108-5 4 394.21 2 253.93 -55.24 2 253.93 -55.24 3 316.51 -24.55 2 262.27 -50.31 2 253.93 -55.24 2 262.27 -50.31

RC204-5 1 179.16 1 176.39 -1.57 1 176.39 -1.57 1 176.39 -1.57 1 176.39 -1.57 1 176.39 -1.57 1 176.39 -1.57

RC208-5 1 167.98 1 167.98 0.00 1 167.98 0.00 1 167.98 0.00 1 167.98 0.00 1 167.98 0.00 1 167.98 0.00

C101-10 4 386.76 3 378.01 -2.31 3 378.01 -2.31 3 378.01 -2.31 3 378.01 -2.31 3 378.01 -2.31 3 378.01 -2.31

C104-10 2 273.93 2 266.16 -2.92 1 257.66 -6.31 2 273.93 0.00 2 273.93 0.00 2 266.16 -2.92 2 273.93 0.00

C202-10 2 243.20 2 243.20 0.00 2 243.20 0.00 2 243.20 0.00 2 243.20 0.00 2 243.20 0.00 2 243.20 0.00

C205-10 2 228.28 2 228.28 0.00 2 228.28 0.00 2 228.28 0.00 2 228.28 0.00 2 228.28 0.00 2 228.28 0.00

R102-10 6 361.49 4 262.92 -37.49 4 262.92 -37.49 4 262.92 -37.49 4 262.92 -37.49 4 262.92 -37.49 4 262.92 -37.49

R103-10 3 202.85 3 202.85 0.00 3 202.85 0.00 3 202.85 0.00 3 202.85 0.00 3 202.85 0.00 3 202.85 0.00

R201-10 3 227.28 3 217.68 -4.41 3 217.68 -4.41 3 216.60 -4.93 3 216.60 -4.93 3 217.68 -4.41 3 217.68 -4.41

R203-10 2 232.68 1 218.21 -6.63 1 218.21 -6.63 1 222.64 -4.51 1 218.21 -6.63 1 218.21 -6.63 1 220.53 -5.51

RC102-10 - - 5 436.05 - 4 412.93 - 5 436.05 - 4 412.93 - 4 412.93 - 4 412.93 -

RC108-10 - - 3 345.93 - 3 345.93 - 3 345.93 - 3 345.93 - 3 345.93 - 3 345.93 -

RC201-10 3 310.06 3 310.06 0.00 3 310.06 0.00 3 310.06 0.00 3 310.06 0.00 3 310.06 0.00 3 310.06 0.00

RC205-10 3 350.19 2 325.98 -7.43 2 325.98 -7.43 2 325.98 -7.43 2 325.98 -7.43 2 325.98 -7.43 2 325.98 -7.43

C103-15 4 369.32 3 348.45 -5.99 3 348.53 -5.97 3 350.01 -5.52 3 350.02 -5.52 3 348.53 -5.97 3 350.10 -5.49

C106-15 3 275.13 3 271.21 -1.45 3 271.21 -1.45 3 271.21 -1.45 3 271.21 -1.45 3 271.21 -1.45 3 271.21 -1.45

C202-15 3 369.56 3 369.56 0.00 3 369.56 0.00 3 369.56 0.00 3 369.56 0.00 3 369.56 0.00 3 369.56 0.00

C208-15 2 300.41 2 300.55 0.05 2 300.55 0.05 2 300.55 0.05 2 300.55 0.05 2 300.55 0.05 2 300.55 0.05

R102-15 - - 5 413.46 - 5 412.78 - 5 412.78 - 5 413.46 - 5 413.46 - 5 413.46 -

R105-15 7 443.03 4 338.54 -30.87 4 336.94 -31.49 4 338.54 -30.87 4 336.15 -31.80 4 337.36 -31.33 4 339.88 -30.35

R202-15 3 361.14 2 358.22 -0.81 3 359.08 -0.57 3 360.16 -0.27 3 359.08 -0.57 2 358.22 -0.81 3 360.16 -0.27

R209-15 3 327.83 2 293.20 -11.81 2 293.20 -11.81 2 301.30 -8.80 2 301.30 -8.80 2 293.20 -11.81 2 301.30 -8.80

RC103-15 5 442.85 4 394.65 -12.21 4 393.39 -12.57 4 394.65 -12.21 4 393.39 -12.57 4 394.65 -12.21 4 394.65 -12.21

RC108-15 6 564.77 3 386.58 -46.09 3 378.23 -49.32 3 386.58 -46.09 3 378.23 -49.32 3 378.23 -49.32 3 378.23 -49.32

RC202-15 3 405.44 2 394.39 -2.80 2 394.39 -2.80 3 397.20 -2.08 3 397.20 -2.08 2 394.39 -2.80 3 397.20 -2.08

RC204-15 2 310.58 2 310.58 0.00 2 310.58 0.00 2 310.58 0.00 2 310.58 0.00 2 310.58 0.00 2 310.58 0.00

Average -8.10 -8.32 -6.56 -7.87 -8.21 -7.76

(a) Slow charger (b) Fast charger

Figure 7: Comparison of routes with different chargers for RC108-5
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6 Conclusion

In this paper, we introduced the electric vehicle routing problem with time windows, non-linear

partial recharging and multiple chargers (EVRPTW-NLPR-MC). We proposed a matheuristic to

solve this problem, which combines an adaptive large neighbourhood search with a set partition-

ing formulation (ALNS-SP). Additionally, we investigated an alternative method by introducing

a labeling algorithm for station insertion within the framework of ALNS-SP, thereby replacing

the station destroy-repair operators. From a modelling perspective, we focused incorporating

non-linear recharging functions to estimate recharging times more realistically, and also inspec-

ted the effect of using multiple charger technologies on the solution cost. We performed a

computational study utilising the instances generated by (Schneider et al., 2014) to evaluate

the following: the performance of ALNS versus ALNS-SP, and the performance of the standard

versus alternative ALNS-SP with the labeling algorithm. We then modified these instances by

adjusting the recharging rates based on the non-linear recharging function specification as well

as multiple chargers. Finally, we evaluated ALNS-SP under two scenarios: linear and non-linear

recharging, and then conducted sensitivity analysis for multiple chargers.

Firstly, we observed that ALNS-SP always provides the same or lower objective value as

ALNS at minimal additional computation time. Hence, averaging an improvement in objective

value by 0.53%, and an increase in average runtime by 0.25 seconds, we conclude that ALNS-SP

outperforms ALNS. Moreover, ALNS-SP reduced the number of vehicles used for one instance,

and increased the number of vehicles used for two instances to achieve a lower objective value.

Secondly, the labeling algorithm was successfully implemented for 5 different recharging policies

observed in literature. We found that the best recharging policy for the labeling algorithm was full

recharge (FR), contrary to ALNS-SP which implemented partial recharge (PR). We believe that

this may be due to the design of the dominance rules within the labeling algorithm, prioritising

labels with higher arrival battery levels. Overall, the standard ALNS-SP outperformed ALNS-

SP with labeling algorithm and FR policy, with 0.43% lower objective value on average and 32

times faster computational time.

Furthermore, we find that non-linear recharging provides very similar objective values to

linear recharging, differing only by 0.12% on average. An investigation of the battery recharge

quantities at stations showed that the quantities never hit 95% - 100% battery capacity for

any instance. This can be explained by the PR policy ensuring that EVs do not charge more

than necessary, and also the ALNS station operators, such as full charge station removal, which

removes stations with the highest recharge quantities. Since only this critical 95% - 100% battery

segment had a substantially slower recharge rate than the linear rate and was never utilised,

we conclude that for our set-up, non-linear recharging is not significantly different than the

linear recharging case. Proceeding with ALNS-SP and linear recharging, our sensitivity analysis

for multiple chargers showed that introducing these different technologies does indeed affect

the solution cost. Fast chargers are the dominant technology, since they reduce the objective

value by 8.32% on average, despite being the most expensive technology. This outcome can be

explained by the fact that quicker recharging times allow EVs to service more customers on

the route, thereby reducing the number of vehicles used and also the total cost of the solution.

However, there is on average 0.56% difference in cost savings when using fast chargers versus
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all three chargers. Since the feasible region provided by fast chargers is contained within the

feasible region for all three chargers, this indicates the suboptimality of our ALNS-SP for solving

the multiple chargers case.

Therefore, directions for future research from a methodological perspective include improving

the performance of ALNS-SP for multiple chargers, by incorporating operators specific to this

case, such that even if all three technologies are available, the fast charger should always be used if

it is indeed the optimal recharging technology. Secondly, the labeling algorithm showed potential

through achieving relatively similar objective values to the standard ALNS-SP; hence, one could

investigate improving the computational time of the algorithm. This could be executed through

creating labels more efficiently, such as by generating bidirectional labels simultaneously from

both the start and end of the route. One could also modify the labeling algorithm to study the

effect of combining various recharge policies within label creation on the solution cost. Lastly, in

this study we explore electric vehicles with a constant rate of energy consumption. Hence, one

might consider extending this study to a heterogeneous fleet case with a more realistic model

for energy consumption which includes traffic congestion, waiting times, vehicle load and vehicle

speed.
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A ALNS versus ALNS-SP

Table 8: Comparison of results obtained with ALNS and ALNS-SP on the small-size instances.

Instance ALNS ALNS-SP

#Veh TD Time (sec) #Veh TD Time (sec) ∆%

C101-5 3 247.15 4.19 3 247.15 4.35 0.00

C103-5 3 165.67 5.17 3 165.67 5.30 0.00

C206-5 3 236.58 7.38 3 236.58 7.47 0.00

C208-5 1 158.48 9.39 1 158.48 9.48 0.00

R104-5 2 136.69 3.52 2 136.45 3.59 -0.18

R105-5 2 156.08 4.05 2 156.08 4.12 0.00

R202-5 1 128.78 6.96 1 128.78 7.02 0.00

R203-5 1 179.06 10.26 1 179.06 10.31 0.00

RC105-5 3 238.05 4.47 3 238.05 4.54 0.00

RC108-5 2 253.93 3.71 2 253.93 3.80 0.00

RC204-5 1 176.39 9.34 1 176.39 9.40 0.00

RC208-5 1 167.98 5.00 1 167.98 5.07 0.00

C101-10 4 393.56 16.83 4 383.56 17.26 -2.61

C104-10 2 273.24 19.11 2 273.93 19.38 0.25

C202-10 2 243.20 34.04 2 243.20 34.25 0.00

C205-10 2 228.28 16.05 2 228.28 16.28 0.00

R102-10 4 262.92 9.51 4 258.03 9.66 -1.90

R103-10 3 202.85 10.45 3 202.85 10.69 0.00

R201-10 3 228.36 42.51 3 217.68 42.76 -4.90

R203-10 1 218.21 30.25 1 218.21 30.33 0.00

RC102-10 4 423.51 10.43 4 423.51 10.64 0.00

RC108-10 3 345.11 12.92 3 345.11 13.12 0.00

RC201-10 3 310.06 37.64 3 310.06 37.85 0.00

RC205-10 2 325.98 32.84 2 325.98 33.03 0.00

C103-15 4 369.32 48.73 4 369.32 49.48 0.00

C106-15 3 275.13 29.59 3 275.13 30.06 0.00

C202-15 3 369.56 75.20 3 369.56 75.66 0.00

C208-15 2 300.55 73.06 2 300.55 73.49 0.00

R102-15 5 423.46 30.15 5 413.46 30.54 -2.42

R105-15 4 344.16 27.61 4 339.88 27.98 -1.26

R202-15 2 361.10 209.59 2 358.22 210.09 -0.80

R209-15 2 293.20 125.78 2 293.20 126.17 0.00

RC103-15 4 394.65 24.02 4 394.65 24.43 0.00

RC108-15 3 395.71 31.48 3 375.88 31.88 -5.27

RC202-15 2 394.39 140.63 2 394.39 141.13 0.00

RC204-15 2 310.58 274.84 2 310.58 275.32 0.00

Average 39.91 40.16 -0.53

33



B Results for large-size instances under different recharge strategies

Table 9: EVRPTW results for different recharge strategies

Instance FR PR (q free) PR (q = 0.3) PR (q = 0.4) PR (q = 0.5)

#Veh TD #Veh TD ∆% % #Veh TD ∆% % #Veh TD ∆% % #Veh TD ∆% %

c101 13 1090.17 13 1086.26 -0.36 13 1080.98 -0.85 13 1082.48 -0.71 13 1090.17 0

c102 12 1058.27 12 1035.08 -2.24 12 1037.72 -1.98 12 1035.89 -2.16 12 1045.20 -1.25

c103 12 1028.10 11 1010.10 - 11 1012.91 -1.50 11 1035.69 - 11 1038.99 -

c104 11 1024.66 11 958.25 -6.93 11 961.58 -6.56 11 970.41 -5.59 11 965.47 -6.13

c105 12 1071.59 12 1034.25 -3.61 12 1048.83 -2.17 12 1048.31 -2.22 12 1062.13 -0.89

c106 12 1081.95 12 1048.71 -3.17 12 1063.35 -1.75 12 1060.84 -1.99 12 1071.03 -1.02

c107 13 1035.67 12 1030.68 - 12 1020.26 -1.51 12 1018.76 -1.66 12 1018.86 -1.65

c108 13 1044.86 12 1043.59 - 11 999.99 - 12 1033.29 -1.12 12 1030.13 -1.43

c109 12 1164.07 12 1035.28 -12.44 12 1079.24 -7.86 12 1039.53 -11.98 12 1041.39 -11.78

c201 7 762.19 7 744.69 -2.35 7 760.44 -0.23 7 760.44 -0.23 7 758.17 -0.53

c202 6 751.29 6 733.97 -2.36 6 746.96 -0.58 6 746.96 -0.58 6 747.26 -0.54

c203 5 728.52 5 711.72 -2.36 5 724.32 -0.58 5 724.32 -0.58 5 724.17 -0.60

c204 7 775.25 7 767.50 -1.01 7 774.48 -0.10 7 775.25 0.00 7 775.25 0.00

c205 7 764.48 7 752.66 -1.57 7 761.28 -0.42 7 753.77 -1.42 7 760.98 -0.46

c206 7 765.78 7 755.58 -1.35 7 769.32 0.46 7 757.52 -1.09 7 765.78 0.00

c207 6 769.05 6 758.81 -1.35 6 772.61 0.46 6 769.05 0.00 6 769.05 0.00

c208 7 760.57 7 750.44 -1.35 7 756.64 -0.52 7 756.64 -0.52 7 760.57 0.00

r101 19 1639.38 19 1623.47 -0.98 19 1598.46 -2.56 19 1617.70 -1.34 19 1639.87 0.03

r102 18 1483.72 18 1423.64 -4.22 18 1438.83 -3.12 18 1439.24 -3.09 18 1437.15 -3.24

r103 15 1292.87 15 1247.34 -3.65 14 1245.67 - 15 1248.42 -3.56 15 1265.16 -2.19

r104 13 1070.00 12 1079.31 - 12 1139.57 - 12 1067.44 -0.24 12 1064.04 -0.56

r105 16 1397.94 16 1386.98 -0.79 16 1396.54 -0.10 16 1395.01 -0.21 16 1411.77 0.98

r106 16 1301.48 15 1303.88 - 15 1313.17 0.89 15 1323.58 1.67 15 1311.45 0.76

r107 13 1195.59 13 1165.41 -2.59 13 1180.02 -1.32 13 1177.46 -1.54 13 1180.37 -1.29

r108 12 1098.64 12 1078.26 -1.89 12 1093.17 -0.50 12 1091.54 -0.65 12 1095.35 -0.30

r109 14 1257.05 14 1239.45 -1.42 14 1235.79 -1.72 14 1247.32 -0.78 14 1236.40 -1.67

r110 14 1165.61 13 1163.01 - 13 1113.59 - 13 1163.52 -0.18 13 1160.04 -0.48

r111 14 1173.95 14 1149.35 -2.14 14 1167.64 -0.54 14 1159.11 -1.28 14 1165.67 -0.71

r112 12 1085.62 12 1063.71 -2.06 12 1081.84 -0.35 12 1052.06 -3.19 12 1084.65 -0.09

r201 11 1185.82 11 1186.65 0.07 11 1187.36 0.13 11 1196.23 0.87 11 1183.81 -0.17

r202 9 1081.53 9 1081.53 0.00 9 1084.02 0.23 9 1083.91 0.22 9 1084.78 0.30

r203 7 924.88 7 924.88 0.00 7 925.99 0.12 7 927.01 0.23 7 925.07 0.02

r204 4 753.02 4 753.02 0.00 4 732.59 - 4 735.29 - 4 773.04 2.59

r205 7 1037.24 7 1037.24 0.00 7 1041.61 0.42 7 1047.51 0.98 7 1040.57 0.32

r206 9 1007.08 9 1007.08 0.00 9 1019.72 1.24 9 1021.90 1.45 9 1010.31 0.32

r207 6 851.71 6 850.94 -0.09 6 854.18 0.29 7 811.63 - 6 854.10 0.28

r208 5 757.33 5 757.33 0.00 5 762.67 0.70 5 758.09 0.10 5 758.77 0.19

r209 7 951.24 7 947.92 -0.35 7 952.19 0.10 7 952.19 0.10 7 951.71 0.05

r210 7 927.48 7 926.37 -0.12 7 936.28 0.94 7 935.62 0.87 7 935.43 0.85

r211 6 835.21 5 830.52 - 5 835.21 0.00 5 842.54 0.87 5 841.52 0.75

rc101 17 1780.70 17 1731.02 -2.87 16 1835.79 - 17 1742.37 -2.20 17 1755.25 -1.45

rc102 17 1572.33 16 1575.39 - 16 1877.04 - 16 1865.04 - 16 1868.04 -

rc103 3 1428.64 3 1405.45 -1.65 3 1428.64 0.00 3 1422.24 -0.45 3 1421.53 -0.50

rc104 3 1286.36 3 1255.11 -2.49 3 1286.36 0.00 3 1283.15 -0.25 3 1278.56 -0.61

rc105 6 1536.43 6 1521.07 -1.01 6 1531.84 -0.30 6 1530.31 -0.40 6 1532.30 -0.27

rc106 16 1490.37 15 1493.57 - 15 1519.04 - 15 1534.04 - 15 1498.79 -

rc107 13 1343.57 13 1321.76 -1.65 13 1333.43 -0.76 13 1326.06 -1.32 13 1322.02 -1.63

rc108 5 1287.18 5 1259.72 -2.18 5 1261.70 -2.02 5 1316.94 2.26 5 1287.95 0.06

rc201 10 1320.78 10 1320.78 0.00 10 1335.47 1.10 10 1336.15 1.15 10 1329.29 0.64

rc202 10 1225.13 10 1183.36 -3.53 11 1224.56 - 10 1228.26 - 10 1218.74 -

rc203 8 1001.34 8 1001.34 0.00 8 1021.67 1.99 8 1022.82 2.10 8 1015.45 1.39

rc204 7 904.16 7 904.16 0.00 7 903.80 -0.04 7 911.08 0.76 7 902.81 -0.15

rc205 9 1171.18 9 1155.81 -1.33 9 1169.43 -0.15 9 1147.34 - 9 1153.93 -

rc206 8 1127.81 8 1130.98 0.28 8 1126.12 -0.15 8 1128.72 0.08 8 1129.51 0.15

rc207 7 984.95 7 983.97 -0.10 7 987.13 0.22 7 982.50 -0.25 7 983.48 -0.15

rc208 7 875.04 7 873.29 -0.20 7 882.89 0.89 7 877.76 0.31 7 879.88 0.55

Average -1.69 -0.64 -0.79 -0.62
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C Results for ALNS with Labeling Algorithm

Table 10: Comparison of runtimes for different recharge strategies under ALNS with Labeling
Algorithm

Instance FR PR (q = 0.4) PR (q = 0.6) PR (q = 0.8) PR (2 customers)

#Veh TD Time (sec) #Veh TD Time (sec) #Veh TD Time (sec) #Veh TD Time (sec) #Veh TD Time (sec)

C101-5 3 247.15 42.02 3 247.15 30.05 3 247.15 59.04 3 247.15 48.15 4 250.04 4.62

C103-5 2 165.67 70.36 2 165.67 102.09 2 165.67 76.24 2 165.67 61.35 3 165.67 31.12

C206-5 2 221.97 423.37 3 244.30 119.97 3 236.58 528.55 2 221.97 593.60 2 226.89 292.73

C208-5 1 164.34 174.87 2 189.06 703.64 1 164.34 238.01 1 164.34 166.13 1 174.82 22.57

R104-5 2 136.69 6.06 2 136.69 39.27 2 136.69 8.29 2 136.69 10.33 2 136.69 7.10

R105-5 2 156.08 6.34 3 182.92 36.12 3 182.92 14.24 2 156.08 12.85 3 165.40 44.78

R202-5 1 128.88 497.73 2 143.39 912.98 1 128.88 493.93 1 128.88 638.32 2 143.04 193.28

R203-5 1 179.06 850.38 2 208.19 467.37 1 191.61 607.33 1 179.06 690.97 1 197.99 265.26

RC105-5 3 238.05 22.08 3 238.05 94.98 3 238.05 15.16 3 238.05 17.87 3 238.05 4.02

RC108-5 2 253.93 21.35 2 264.92 262.67 2 253.93 24.32 2 253.93 33.84 2 253.93 10.54

RC204-5 2 176.00 381.07 2 185.44 965.09 2 185.16 387.54 2 176.00 478.36 2 175.99 80.47

RC208-5 1 167.98 469.54 1 182.79 863.50 1 167.98 346.53 1 167.98 618.31 1 174.38 130.30

C101-10 4 385.78 112.42 4 409.65 652.65 4 385.78 187.04 4 385.78 151.93 4 397.56 25.33

C104-10 2 273.93 261.24 2 300.50 2018.68 2 276.09 963.02 2 271.20 578.53 2 308.51 213.83

C202-10 2 242.09 2782.09 2 245.46 4949.99 2 243.21 2561.92 2 242.09 3012.46 3 270.06 771.55

C205-10 2 228.28 468.65 2 228.91 967.41 2 228.90 570.67 2 228.28 478.69 2 234.52 197.79

R102-10 3 249.19 70.45 3 255.88 299.99 3 255.88 83.51 3 249.19 67.45 4 262.49 24.12

R103-10 3 191.33 73.40 3 196.26 527.79 3 193.69 108.64 3 193.69 71.40 3 199.62 23.42

R201-10 3 211.50 1783.21 3 227.41 4661.91 3 218.37 1517.21 3 210.81 1983.05 3 239.07 247.23

R203-10 1 222.64 2605.33 1 245.46 3278.13 1 235.15 2278.96 1 222.64 2835.23 2 253.36 4363.10

RC102-10 4 423.44 12.26 4 433.29 60.12 4 423.51 20.72 4 423.44 18.36 5 434.52 8.52

RC108-10 3 347.90 23.43 3 368.11 190.39 3 352.09 45.36 3 347.90 28.52 3 347.89 27.93

RC201-10 3 305.41 2758.73 3 310.98 4429.76 3 309.99 2146.96 3 305.41 2652.90 4 341.65 669.11

RC205-10 2 330.00 923.46 2 354.32 983.21 2 337.89 753.17 2 333.00 947.78 3 368.72 299.75

C103-15 4 361.86 573.65 4 368.11 974.63 4 361.86 897.42 4 363.86 673.78 4 369.32 411.97

C106-15 3 271.21 138.51 4 313.95 431.53 3 271.21 199.62 3 275.19 338.54 4 313.17 90.99

C202-15 3 367.60 2367.61 4 398.22 3369.21 3 376.79 2244.05 3 369.30 2567.62 4 418.91 2519.47

C208-15 3 298.85 2487.46 3 325.75 3432.21 2 308.45 1596.93 3 299.87 2697.23 3 356.03 813.31

R102-15 5 394.64 177.01 6 438.88 478.37 6 416.12 229.18 6 409.96 285.04 6 431.08 111.04

R105-15 4 336.15 172.67 4 340.17 479.65 4 336.15 223.08 4 336.15 271.45 4 352.39 141.35

R202-15 3 356.84 9223.20 3 381.43 10253.31 3 376.59 9777.56 3 359.08 9203.27 3 411.57 11537.38

R209-15 3 296.41 8700.82 3 312.79 9451.67 3 309.10 9806.53 3 296.42 8975.20 4 351.86 5521.99

RC103-15 4 388.64 38.55 4 399.64 97.32 4 388.64 76.86 4 388.64 78.54 5 395.22 54.26

RC108-15 3 370.25 94.44 3 382.27 195.49 3 387.93 224.87 3 370.25 94.44 5 445.73 60.40

RC202-15 3 397.14 3580.08 3 398.41 4381.19 2 394.39 4119.83 2 394.39 3780.28 4 435.96 2474.04

RC204-15 2 309.72 5995.33 2 312.12 6135.37 2 310.58 7004.20 2 309.72 5921.43 2 365.14 7035.26

Average 1344.14 1869.38 1401.01 1418.98 1075.83
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D Programming code

The ALNS-SP matheuristic with and without labelling algorithm was implemented in Java,

involving the following Java classes:

D.1 Fundamental classes:

1. Customer: This class represents a customer vertex in a given route; hence it is an object of

the Route class. It implements the Vertex interface and describes various properties such

as location, demand, time windows, service time, and levels of cargo and battery of the

EV when arriving and leaving this customer vertex. Depot and Station classes operate

in the same manner.

2. CustomerZoneAssignment: This class assigns objects from the Customer class to different

zones based on their coordinates. It does so by viewing the entire area covered by all

customers, diving it into a grid and then assigning each customer to a specific zone in the

grid. The Zone class represents a zone containing a collection of customers.

3. Instance: This class contains all the relevant data points for the VRP problem, by parsing

the input file and initialising customers, stations, depots and their copies. It also tracks

the assignment of customers to different zones based on their location.

4. Route: This class handles the routing of a vehicle, managing the insertion and removal

of customers and stations and correctly updating the battery levels, cargo load and time

windows associated with these operations. It also keeps a track of state variables such at

the current battery level of the vehicle, the total distance travelled on the route / total cost

accumulated so far. Lastly, Route contains an additional constructor for creating route

copies, such that routes from ALNS can be stored and post-processed with SP in Gurobi.

D.2 Classes for constructing a solution:

1. InitialSolution: This class constructs the initial solution for ALNS by firstly initialising

a Route object with the customer closest to the depot and the adding customers based on

cheapest feasible insertions such that time windows are respected. Moreover, it also adds

stations based on the GreedyStationInsertion class in case a customer insertion causes

negative battery levels. If the customer cannot be added in the route, they are placed in

a new route.

2. ALNS: This class implements a metaheuristic algorithm for solving EVRPTW-PR, by dy-

namically selecting destroy-repair operator for customers and stations based on adaptive

weights, and accepting solutions based on the SA criteria.

3. GurobiSP: Provides the MIP model set partitioning, to process the solutions from ALNS

and search for a lower objective value through combining routes from across different

solutions. It outputs the objective value, runtime and solution routes for a given instance.
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4. Gurobi: Provides the MIP model for partial and full recharging cases, to solve the smaller

instances to optimality (or until the runtime limit is reached). It outputs the objective

value, runtime and solution routes for a given instance.

D.3 Destroy-repair operator classes for ALNS:

1. Customer removal operator classes: These set of classes handle the removal of cus-

tomers, check for and remove any associated charging stations, as well as empty routes

from the solution. RandomCustomerRemoval randomly selects and removes customers from

a given solution; the number of customers to be removed is simulated randomly from a

uniform distribution. WorstDistanceCustomerRemoval removes customers based on their

distance costs, and WorstTimeRemoval removes customers based on how close they are

served to their starting time. ShawRemoval removes customer based on how similar they

are in terms of time windows, demand levels and their proximity. TimeBasedRemoval,

DemandBasedRemoval and ProximityBasedRemoval replicate ShawRemoval with varying

values for the Shaw parameters. ZoneRemoval removes customers if they are present within

a randomly selected zone. GreedyRouteRemoval implements a heuristic for destroying an

existing solution by removing routes in a greedy manner, such that it removes the routes

that serve the fewest customers; aiming to incorporate the customers from the removal list

into the other existing routes. RandomRouteRemoval applies the same logic, but removes

routes in a random manner, where the number of routes to be removed is drawn from a

bounded uniform distribution.

2. Customer insertion operator classes: These classes implement various insertion heur-

istics for customers, such that customers in the removal list (resulting from a previous

destroy operation) can be re-inserted back into the routes in a manner which minimises

some criteria. For GreedyCustomerInsertion customers were inserted into the existing

solution in greedy manner, such that the additional distance incurred by the insertions

are minimised. Regret2CustomerInsertion and Regret3CustomerInsertion utilise the

Regret-2 and Regret-3 criteria, while TimeBasedCustomerInsertion prioritises minimising

the increase in route duration when inserting customers. Lastly, ZoneInsertionCustomer

reinserts customers only into a subset of routes, determined by selecting a zone randomly

and picking routes which cover customers present in that zone.

3. Station removal operator classes: These classes implement station removal oper-

ators which destroy the previous solution by removing charging stations based on cer-

tain criteria. The number of stations to be removed is decided based on a random

draw from a uniform distribution. RandomStationRemoval randomly removes a subset

of stations. WorstDistanceStationRemoval removes stations based on distance costs,

and WorstChargeStationRemoval removes stations based on the battery level when ar-

riving at a station, such that highest battery arrival stations are removed first. For

FullChargeStationRemoval, the class removes stations based on the amount of battery

that is recharged at the station, prioritising the removal of highest recharge quantity sta-

tions.
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4. Station insertion operator classes: These class are required to insert the best feasible

charging station into a route whenever there is a vertex with a negative battery level.

GreedyStationInsertion attempts to insert the best station preferably at arc prior to

that vertex, else it also considers the preceding arcs if station insertion is infeasible. It does

so until there is no negative battery customer left. Else, the insertion is declared infeasible.

GreedyStationInsertionComparison functions similarly, but it prefers to add the best

station to the arc or two arcs prior to the negative battery vertex; whichever is cheaper.

Else, it implements greedy station insertion on preceding arcs. BestStationInsertion

finds the cheapest station that can be inserted feasibly before a negative battery customer

by considering all previous arcs until a depot / station is encountered. Note that these

classes consider one Route object at a time. Therefore, we adapt these classes for ALNS by

creating GreedyStationInsertionALNS, GreedyStationInsertionComparisonALNS and

BestStationInsertionALNS, where the corresponding station insertion operators are im-

plemented in an iterative manner for all Route objects within a solution.

D.4 Labeling algorithm:

1. LabellingAlgorithm: This class implements a labeling algorithm for inserting charging

stations into a route to ensure that the battery constraints are met. It does so by iteratively

building a series of labels and applying rules to check if they are valid or have been

dominated. It then picks the least cost label at the end depot and builds the final route

by following the arcs back to the start depot, including adding stations on the route.
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E List of abbreviations

Table 11: Abbreviations and Full Descriptions

Abbreviation Full Description

GHG Greenhouse gas
ICEV Internal combustion engine vehicles
EV Electric vehicle
EVRP Electric Vehicle Routing Problem
GVRP Green Vehicle Routing Problem
EVRPTW Electric Vehicle Routing Problem with Time Windows
FR Full recharging
PR Partial recharging
NL Non-linear
EVRPTW-PR Electric Vehicle Routing Problem with Time Windows and Partial

Recharging
EVRPTW-NLPR-MC Electric Vehicle Routing Problem with Time Windows, Non-linear

Partial Recharging and Multiple Chargers
MILP Mixed-integer linear program
ALNS Adaptive Large Neighbourhood Search
SP Set partitioning
ALNS-SP Adaptive Large Neighbourhood Search with Set Partitioning
RVRP Recharging Vehicle Routing Problem
SoC State of Charge
CS Charging station
TS Tabu Search
VNS Variable Neighborhood Search
SA Simulated annealing
EVRP-NL Electric Vehicle Routing Problem with Non-linear recharging
EVRPTW-NL Electric Vehicle Routing Problem with Time Windows and

Non-linear recharging
CR Customer Removal
CI Customer Insertion
SR Station Removal
SI Station Insertion
RRR Random Route Removal
GRR Greedy Route Removal
C Clustered
R Randomly distributed
RC Clustered and randomly distributed
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