
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis International Econometrics and Operation Research

Method Review on Partially Charging Electric Vehicle

Routing Problem with Time Windows and Study on

Additive Uncertainty to Travel Time

Xiaojing Lu (595182)

Supervisor: Bart van Rossum

Second assessor: Ece Karakoyun

Date final version: 1st July 2024

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.

Abstract

This paper explores the Electric Vehicle Routing Problem with Time Windows and Par-

tial Recharge Strategies (EVRPTW-PR) by replicating Mixed Integer Linear Programming

(MILP) and examining the Adaptive Large Neighborhood Search (ALNS) algorithm pro-

posed by Keskin and Çatay (2016). We critically assess the suggested algorithm, enhancing it

with additional details, and introduce new algorithms to address potential issues encountered

during the heuristic process. Simultaneously, we conduct an analysis of the robustness of the

ALNS solution by integrating stochastic travel times into the model. This research provides

valuable insights into the performance and resilience of routing solutions under conditions of

travel time uncertainty.

1 Introduction

With the development of artificial intelligence and car manufacturing, autonomous electric

vehicles have gained significant attention. The environmental benefits of replacing conventional

fuel vehicles with electric ones, combined with the integration of advanced AI technology, cap-

tivate public interest. A prime example of an autonomous vehicle is the Line 500 Park Shuttle in

Rotterdam, operating near the metro and bus station of Kralingse Zoom (Picture in Appendix).

This shuttle emphasizes both convenience and safety, equipped with sensors that continuously

monitor the dynamic environment, ensuring it understands its surroundings at all times. Despite

following a specific path, the shuttle’s mechanism is designed to stop rather than avoid when

encountering unexpected obstacles, such as a nearby car or even a pigeon. Occasionally, the

shuttle may suspend operations for up to five minutes due to unforeseen circumstances, causing

delays for passengers waiting at the next stop. This scenario inspires an extension to the work

by Keskin and Çatay (2016), where all travel times between any pair of different locations are

assumed to be predefined and constant before the routing optimization, based on the design of

objective function or research directions.

Nevertheless, quite a few authors have explored the research direction of considering travel

time uncertainty in the context of the electric vehicle routing problem with time windows and

partial charging. In practical scenarios, it is frequently challenging to ensure that scheduled

deliveries or services adhere precisely to their timetables, primarily due to delays induced by

stochastic factors. In certain sectors, the ability to accommodate a broad range of contingencies

is particularly critical. Examples include the transplantation of organs, production lines in high-

throughput manufacturing settings, and the delivery of high-value items, where delays can incur

significant costs.

This paper focuses on replication of MILP and ALNS algorithm, attempting to solve the

problems based on the current benchmarks, as well as conducts a review on the two methods

proposed by Keskin and Çatay (2016), adding more details and suggesting solutions to prac-

tical potential issues that may appear in replication process. Drawing upon limited existing

research on stochastic travel time for EVRPTW-PR, this paper spares space for the impact of

additive stochastic variations to predefined planned travel times. Specifically, it examines how

fluctuations in travel time influence the feasibility of solutions generated by Adaptive Large

Neighborhood Search (ALNS). This study aims to provide a deeper understanding of the extent

1

to which travel time variability can affect the robustness and reliability of these optimization

methodologies in logistical planning, and hopefully contributes to sectors where punctuality is

critically valued.

For the structure of this paper, Section 3 provides a comprehensive problem description

of EVRPTW-PR; Section 4 and 5 review MILP and ALNS methods respectively, suggesting

details and new elementary algorithms to address potential issue; Section 6 demonstrates the

replication results and Section 7 mainly concerns the travel time stochasticity.

2 Literature

As pioneers in exploring the electric vehicle routing problem with time windows and charging

stations (EVRPTW), Schneider, Stenger and Goeke (2014) developed a Mixed Integer Pro-

gramming (MIP) model capable of solving a basic EVRPTW to optimality. Building on this

work, Keskin and Çatay (2016) introduced partial charging (EVRPTW-PR) as a strategy to

relax the full charging requirement and improve solutions derived from the EVRPTW. Follow-

ing their contributions, numerous studies have expanded on Keskin and Çatay (2016)’s work.

For example, Keskin, Çatay and Laporte (2021) proposed a simulation-based heuristic to solve

EVRPTW-PR with stochastic waiting times at recharging stations. Cortés-Murcia, Prodhon

and Afsar (2019) identified satellite customers with stricter service time requirements, complic-

ating the routing schedule. Froger, Jabali, Mendoza and Laporte (2022) considered the finite

capacity of charging stations, while Dönmez, Koç and Altıparmak (2022) examined a mixed

fleet comprising both electric and fuel vehicles. Additionally, S. Zhang, Chen and Zhang (2019)

assumed that customer demand is positively stochastic, adding another layer of complexity to

the problem.

In 2003, Foster et al. (2003) conducted a seminal study on the vehicle routing problem (VRP)

with stochastic travel times, identifying traffic jams as a primary source of contingency. Taş,

Dellaert, Van Woensel and De Kok (2013), which explores VRP with soft time windows and

associated service costs. Further developments by Taş, Dellaert, van Woensel and De Kok (2014)

consider time-dependent vehicle routing, while Miranda and Conceição (2016) focuses on hard

time windows. The comprehensive review by Li, Tian and Leung (2010) synthesizes models

and algorithms pertinent to stochastic travel time VRP. Additionally, both Hashemi Doulabi,

Pesant and Rousseau (2020) and J. Zhang, Lam and Chen (2013) examine the trade-offs between

cost and customer service, specifically within the healthcare sector. This evolving body of work

highlights the growing complexity and relevance of addressing stochastic elements in vehicle

routing to enhance logistical efficiency and service reliability.

The literature cited above offers a wealth of knowledge and significant insights into the

modeling and problem-solving aspects of stochastic travel times. This foundational work is

crucial for advancing the research presented in this paper, particularly concerning EVRPTW-

PR under stochastic conditions.

2

3 Problem Description

Fundamentally, the EVRPTW-PR is a variant of the Vehicle Routing Problem (VRP) with

additional requirements and constraints imposed by customer demands, vehicle capacity for

carrying a certain amount of cargo, and the energy charge level of Electric Vehicles (EVs).

Delivery is performed by EVs, where energy consumption is assumed to be linearly dependent

on the traveling distance. Additionally, for preliminary convenience, it is assumed that the

charging rate of EVs at each station is also linear, while being dependent on time up to full

energy level. Furthermore, all stations are homogeneous except for their different locations in

the graph, and all EVs are also assumed to be homogeneous, sharing the same cargo capacity,

energy capacity, and traveling rate. This is so called homogeneous fleet.

Starting from the basic setup of VRP, in EVRPTW-PR there is also one depot serving

as both the starting and ending point, where all EVs depart and return. Each customer in

the graph has a specific time window during which an arriving EV can offer service. Arrival

outside this time window is considered invalid, but the service time may exceed the end of the

window. If an EV arrives earlier than the start of the window, it should wait until the window

opens. Inheriting from VRP, EVRPTW-PR ensures that each customer can only be served

once, distinctively unlike charging stations, which each EV can visit multiple times without any

additional constraints, as long as it is traveling within the time limit of the entire route. To

summarize, intuitively the necessary conditions for model formulation can be listed as the bullet

points showing below:

• Only one depot, serving as both the starting and ending node, starting from time 0 and

ending at the time limit of the graph

• Homogeneous electric vehicles, sharing same cargo capacity, energy capacity, speed, en-

ergy consuming rate linearly dependent on distance, and energy charging rate linearly

dependent on time; having no customer preference

• Homogeneous stations, offering partially charging service, having infinite capacity for en-

ergy charging, same energy charging rate and no vehicle preference, starting from time 0

and ending at the time limit of the graph

• Customers, having personal demand, specific time window for accepting service and dif-

ferent service duration, no preference for any EV

• EVs starting from depot and stop working as long as they back to the depot

• Customer being only visited once while stations any times if possible

As mentioned by Schneider et al. (2014), due to the high acquisition cost of electric vehicles,

our primary objective is to minimize the number of EVs. The secondary objective is to minimize

the total traveled distance after the EVs have fulfilled all customer requests. This objective

hierarchy and strategy fundamentally impacts the Mixed Integer Linear Programming (MILP)

formulation and ALNS algorithm design.

3

4 Mixed Integer Linear Programming

MILP is a powerful tool for explicitly finding the optimal solution, if one exists. Considering

Section 3, the MILP model formulation starts as follows. We directly quote the mathematical

notations and problem formulation defined by Keskin and Çatay (2016) where the prototype

was introduced by Schneider et al. (2014). Let V = {1, . . . , N} be the set of customers and F be

the set of recharging stations. Denote set F ′ containing dummy nodes standing for each visit at

a recharging station. Nodes 0 and N +1 represent the start and end of the depot. Let V ′ be the

set of nodes where V ′ = V ∪ F ′. For convenience to express a union including either or both of

the depot nodes, a set is indexed with 0 or N +1. Hence, F ′
0 = F ′ ∪{0}, V ′

0 = V ′ ∪{0}, V ′
N+1 =

V ′ ∪ {N + 1} and V ′
0,N+1 = V ′ ∪ {0} ∪ {N + 1}. We can now define the problem on a complete

directed graph G = (V ′
0,N+1, A), where the set of arcs is A = {(i, j) | i, j ∈ V ′

0,N+1, i ̸= j}. Each
arc (i, j) ∈ A with a distance dij and travel time tij . Energy consumption rate is h, with each

traveled arc consuming h · dij of the remaining battery. qi and si denote demand and service

duration for customer i ∈ V with a time window [ei, li]. All EVs have a cargo capacity C and

a battery capacity Q. At a recharging station, the battery is charged at a rate of g. Decision

variables τi, ui, and yi keep track of the service start time, remaining cargo, and battery state

of charge upon arrival at a node i ∈ V ′
0,N+1, respectively. The binary decision variable xij

represents the selection of arc (i, j). EVRPTW-PR allows for partial recharges by introducing

another state decision variable Yi, representing the battery state of charge upon departure from

recharge station i ∈ F ′. Thanks to Yi, the partial charge at a station can be quantified. See

Appendix B for the list of parameters and decision variables defined in this MILP model. The

complete model formulation is demonstrated in Appendix C. The final model comprises four sets

of constraints that define the feasible area within which we can search for an optimal solution,

if one exists. These include inflow and outflow, time window, cargo, and energy constraints.

4.1 Inflow and Outflow

∑
j∈V ′

N+1,i ̸=j

xij = 1 ∀i ∈ V (1)

∑
j∈V ′

N+1,i ̸=j

xij ≤ 1 ∀i ∈ F ′ (2)

∑
i∈V ′

0 ,i ̸=j

xij −
∑

i∈V ′
N+1,i ̸=j

xji = 0 ∀j ∈ V ′ (3)

xij ∈ {0, 1} ∀i ∈ V ′
0 , ∀j ∈ V ′

N+1, i ̸= j (4)

Constraints 1 and 2 respectively define the outflow for customers and recharging stations, while

constraint 3 ensures the equality of inflow and outflow for each node in the graph, except for

the starting and ending points at the depot. For a customer, who can only be visited once,

there must be exactly one inflow from the previous node. Since this customer cannot be an

endpoint, there must also be a successor node. This situation is addressed by the combination

of constraints 1 and 3. Slightly differently, considering the dummies for stations, since an EV

can choose whether or not to visit these dummy stations, the outflow or inflow incident to a

4

station may be less than one. Nevertheless, there should also be equality between inflow and

outflow at a station, thus constraints 2 and 3 ensure the validity of station flow. Due to these

constraints features, a route starting from the depot has to and will end at the depot, leading

to the equality between outflow of depot start and inflow of depot end, which is also beneficial

for quantifying the number of vehicles. The alternative to formulate this part is using the inflow

constraints. ∑
j∈Vn+1,i ̸=j

xij = 1 ∀i ∈ V

∑
j∈Vn+1,i ̸=j

xij ≤ 1 ∀i ∈ F ′
Equivalent−−−−−−−−−−−−→

∑
i∈Vn+1,i ̸=j

xij = 1 ∀j ∈ V

∑
i∈Vn+1,i ̸=j

xij ≤ 1 ∀j ∈ F ′

4.2 Time, Cargo and Energy

τi + (tij + sj)xij − l0(1− xij) ≤ τj ∀i ∈ V0,∀j ∈ V ′
N+1, i ̸= j (1)

τi + tijxij + g(Yi − yi)− (l0 + gQ)(1− xij) ≤ τj ∀i ∈ F ′, ∀j ∈ V ′
N+1, i ̸= j (2)

0 ≤ uj ≤ ui − qixij + C(1− xij) ∀i ∈ V ′
0 ,∀j ∈ V ′

N+1, i ̸= j (3)

0 ≤ yj ≤ yi − (h · dijxij) +Q(1− xij) ∀i ∈ V,∀j ∈ V ′
N+1, i ̸= j (4)

0 ≤ yj ≤ Yi − (h · dijxij) +Q(1− xij) ∀i ∈ F ′, ∀j ∈ V ′
N+1, i ̸= j (5)

For time, cargo, and energy level constraints, they all utilize inequalities to ensure the correct

connection during the transfer from one node to the next. For example, if the arc (i, j) is

chosen, nodes i and j are related such that cargo is non-increasing, arrival time is increasing,

and energy changes depending on the type of the two nodes. When (i, j) is not chosen, another

threshold is triggered, requiring that the current cargo, time, or energy level must be lower than

the maximum values defined in the graph. This ensures the constraints are either satisfied or

effectively relaxed. Since the relationship between two consecutive nodes involves inequalities,

the decreases in cargo and energy and the increases in arrival time are not accurately subtracted

from the previous node states. Conversely, the state of available cargo space and energy will

drop more than they should in reality, while arrival time will pass more than it should. These

can be interpreted as ”resource control” for cargo and energy, and as waiting period with respect

to time, assuming for each customer, the demand may become more, the traveling time may

increase and more energy is required to go there. In other words, if under resource control the

route remains still feasible, then it must also be feasible in reality when all resources are available

and every action is performed immediately. This explanation validates the constraints modeling

and highlights the inconsistencies happening in cargo, time, or energy states when analyzing the

values of decision variables in a feasible solution.

4.3 Objective Functions

The primary objective is to minimize the number of EVs, while Keskin and Çatay (2016) and

Schneider et al. (2014) do not provide an explanation on how to initially achieve the minimum

number of EVs. In this section, we suggest three strategies for attaining the minimum vehicle

5

count and achieving the minimum total travel distance with the fewest vehicles.

4.3.1 Minimal Vehicles Objective Function

min
∑
j∈V ′

x0j

The first strategy concerns the change of objective function to minimize the number of routes

using identical constraints to solve the problem under the fewest vehicle condition. Since for

each route there is only one EV performing service to the customers throughout the path,

minimizing the outflow of the starting depot is equivalent to minimizing the number of EVs

running in the graph. Based on this fact, the objective function
∑

j∈V ′ x0j can also be converted

to
∑

i∈V ′ xi(N+1), where 0 and N + 1 represent depot start and depot end, respectively, since

the outflow of depot start and inflow of depot end are equal. Note that theoretically, a route

could start from the depot and then immediately return to it. However, in practice, this is not

meaningful and, for the sake of optimization, such route arrangement will never occur due to

an infinitely high cost margin. Denote ω as the minimum number of EVs found by the model.

Then, a new constraint can be added to the original formulation to restrict the number of EVs

used.
∑

j∈V ′ x0j = ω can also be transformed to
∑

i∈V ′ xi(N+1) = ω

4.3.2 Additive Route Cost

The additive route cost strategy includes the acquisition cost of each vehicle running on a route,

which can be also interpreted as operational cost of opening a new route. Instead of performing

MILP model optimization twice to get the minimal number of operated EVs first, this method

can solve the problem to optimality with the fewest number of EVs. Define the cost of each

vehicle or opening route as c; then the new mixed objective function is illustrated as follows.

min
∑

i∈V ′
0 ,j∈V ′

N+1,i ̸=j

dijxij + c
∑
j∈V ′

x0j (1)

Since the optimizer considers both the route cost and total distance, we should prioritize the cost

part by assigning a relatively large value to the cost scalar c to ensure the optimization process

concentrates on minimizing the number of routes first. Theoretically, c should be greater than

the total traveled distance or, better, of a greater magnitude. This procedure can be done by

first estimating the total distance, taking the average distance d̄ between two nodes, and then

multiplying this average value by the number of customers and dummy stations |V ′| to get the

primarily estimated total traveled distance d̄|V ′|.

4.3.3 Iterative Feasibility Check

In contrast to the minimal vehicles objective function method, which relies on an additional op-

timization model to find the minimum number of vehicles, using an iterative feasibility check can

be more efficient in some instances. Before optimization, we add the constraint
∑

j∈V ′ x0j = 1

into the original model and run it. If there is no feasible solution, we increase the value by 1

6

until a feasible solution is found. This is the forward iteration of the feasibility check. In some

cases, backward iteration of the feasibility check could also be used, where initially we solve the

problem without any EVs number constraint to get a feasible solution. Calculate the number

of routes, reduce the number by 1 and add it as constraint into the program until infeasibility

occurs, but it may be more time-consuming since infeasibility is typically easier to identify than

solving a programming model to optimality. The pseudo code is shown as follows.

Algorithm 1 Forward Iteration Feasibility Check

1: Start a new MILP model
2: Set ω as the number of routes
3: Assign ω = 1
4: Add ω = 1 into the model and update
5: while no feasible solution found do
6: ω += 1
7: Update the model
8: end while
9: return ω =0

4.4 Formulation Details

4.4.1 Subtour Elimination

As we can see from the MILP model, when defining a parameter or decision variable involving

two nodes, it is explicitly specified that i ̸= j. This not only means that a directed arc or

related parameter is meaningful when it points from one node to another distinct location,

but it also theoretically helps eliminate self-to-self subtours in EVRPTW-PR. Moreover, the

arrival time decision variable and time window constraints automatically eliminate subtours

among customers and dummy stations. This can be shown using the contradiction cycle below.

Assume that C1 as a customer is the starting point of this route, then denote the arrival time

as τ1, τ2 and τ3 corresponding respectively to C1, C2 and C3, where τ1 ≤ τ2 ≤ τ3. However as

C1 is also the successor of C3, then there must be τ3 ≤ τ1, which contradicts the assumption

that C1 is the starting point. The whole proof could be completed by mathematical induction

to the global graph.

C1

C2

C3

Figure 1: Contradiction Cycle Subtour

7

4.4.2 Dummies of Stations

Dummies of stations are useful in MILP modeling as they help avoid inner cycles in a route.

In theory, we can and should set the number of dummies as high as possible, since it cannot

be predicted how many times each station will be visited in the optimal solution. However,

because the VRP is an NP-hard problem with a time complexity of O(nk), where n is the

number of nodes in the graph and k is a positive scalar, setting a large number of dummies

for each station will increase the running time polynomially in the worst case. Faced with

this situation, making number of dummies as a parameter to tune seems viable. The other

tip for MILP model formulation is that when creating binary decision variables xij , we could

choose either to not generate such binary variables, or to set the distance as infinity between

two dummies of a same station. One reason is that this formulation effectively decreases the

total number of arcs in a graph, leading to a reduction in complexity. Additionally, setting

no arcs between dummies of the same station prevents cross-travel between them, as shown in

Figure 2 where D1 ∈ F ′ and D2 ∈ F ′ are dummies of station S0 ∈ F . Cross-travel—traveling

consecutively between dummies of a station—is inefficient and increases the complexity of the

feasible area search. Furthermore, cross-travel is equivalent to, and can be replaced by, visiting

only one of the dummies. By doing this, the final solution output is easier to explain. Note that

the cross-travel does not impact the optimal solution, only the value assignment of the decision

variables.

S0 D1 D2

Figure 2: Dummies Cross-Travel

4.4.3 Optimization

It can be observed that at the depot, there are also decision variables τi, ui, yi and Yi to track

arrival time, remaining cargo capacity, arrival energy level, and departure energy level. The

state variables at the depot can be interpreted as shared variables for all homogeneous EVs in

the graph, meaning that when they arrive at or depart from the depot, their states in these four

aspects are the same. This is achieved through resource control and waiting time, as mentioned

in Section 4.2, combined with the fact that there is no cost for changes in time, cargo, or energy

level. Based on this, the optimizer tends to set the decision variables as far as possible from one

limit to another bound. This is why, in an optimal solution obtained by the Gurobi Optimizer,

the departure energy at the depot is always fully equal to Q and arrival energy finally back is

zero. This is useful later in the ALNS algorithm when defining a feasibility checker using the

MILP model.

5 Adaptive Large Neighbourhood Search

Although current optimizers in the business market are powerful enough to derive optimal

solutions based on the EVRPTW-PR model, this VRP variant remains an NP-hard problem.

8

This means that as the number of nodes in the graph increases, the solving time will increase

polynomially. For this reason, the MILP model is considered a tentative approach to finding

a good solution. Additionally, MILP model optimization will become more complex given the

preference of fewer EVs in the routes operation. For the purpose of achieving a relatively good

solution in a short time, Adaptive Large Neighbourhood Search (ALNS) was first introduced by

Ropke and Pisinger (2006) on the foundation of Large Neighbourhood Search (LNS) innovated

from the work of Shaw (1998).

The proposed ALNS heuristic includes four algorithm classes: Customer Removal (CR),

Customer Insertion (CI), Station Removal (SR), and Station Insertion (SI). After constructing

an initial feasible solution, the ALNS iteratively improves it until a stopping condition is met,

normally using an iteration limit. At each iteration, the current feasible solution is partially

destroyed by removing customers, stations, or both (a pair of customer and station connected

to each other), and repaired by heuristically inserting them into existing or new routes.

Algorithms are dynamically selected based on adaptive weights w and scores π, which are

updated according to their performance. Scores increase by σ1 for new best solutions, σ2 for

improvements, and σ3 if accepted via simulated annealing. Weights are updated using wa
s+1 =

wa
s (1 − ρ) + ρπa/θa, where ρ is the roulette parameter, θa is usage count, and πa is the score.

Probabilities for the next segment are calculated as P a
s+1 =

wa
s+1∑m

n=1 w
n
s+1

.

The simulated annealing approach accepts a new solution if it has fewer vehicles or a shorter

total distance. If the number of vehicles is equal but the distance is longer, the solution is

accepted with probability e−
(fnew−fcurrent)

T , where T is the temperature, initially set to Tinit and

decreased by T = T × ϵ, where ϵ ∈ (0, 1) serves as a decay factor. Tinit is based on a control

parameter µ to ensure a solution µ% worse than the initial is accepted with 50% probability.

Based on this, formula for computing Tinit is as follow, where log is natural.

T =
0.01 · µ · fcurrent

log(2)

Since the elementary ALNS algorithms and operators are comprehensively described in the work

of Keskin and Çatay (2016), this paper will not cover those details. Instead, it introduces new

algorithms to address potential issues. Additionally, reviews and observations of the ALNS

procedure proposed by Keskin and Çatay (2016) are provided. See Section 5.4 for more details.

5.1 MILP Feasibility Checker

In heuristic processes, the feasibility check is crucial as it effectively filters out infeasible solutions,

allowing focus on identifying the best feasible heuristic solution. In the context of EVRPTW-

PR, there are four key constraints discussed in Section 4.2: time, energy, cargo, and flow. During

the heuristic process, each customer is inserted into a route once, ensuring flow constraints are

met. However, as cargo demand for each customer is predefined, cargo capacity becomes the

most stringent constraint. After serving a certain number of customers, no additional customers

can be added if the remaining cargo capacity cannot meet the total demand.

Unlike cargo constraints, time and energy constraints offer a broader plane for feasible com-

bination searches. Typically, time and energy feasibility checks are conducted independently

9

to assess extremities in scenarios. For time, we assume an EV bypasses stations without char-

ging, maximizing available travel time to its limits. If this relaxed scenario fails to meet time

constraints, no less relaxed configuration will either. For energy, assuming time constraints are

met, we focus solely on distance, arrival energy, and departure energy. An EV is assumed to

charge to full capacity at each station regardless of time. If this approach fails to satisfy energy

constraints, then the current route configuration is deemed infeasible. Based on this extreme

case check, we define the two checkers Greedy Time and Greedy Energy.

It is all good if Greedy Time and Energy could validate the infeasibility of a route, however,

the dilemma occurs when both of them signal that this route set is feasible in extreme scenario,

since the time and energy extreme feasibility will not necessarily ensure the actual feasibility, as

an example shown below.

D S1 C1 C2 S2 C3 D

For green customer C3 and red station S2, imagine Greedy Time and Greedy Energy both

endorse their own feasibility on this route, while for Greedy time the arrival time on C3 is just

the end of time window and the charging duration at S2 is 0. This route is eventually highly

probably infeasible since the EV will spend time charging at S2.

To address this challenge, we propose using an Adapted MILP as the time-energy feasibility

checker. In this context, the MILP is employed solely to verify the feasibility of constraints

interacting with each other. As mentioned, the cargo constraints are straightforward to check,

and the flow constraint is automatically satisfied due to the heuristic approach. The Adapted

MILP checker includes only the original time and energy constraints, with the objective func-

tion set to zero. This strategy allows the MILP model to focus solely on feasibility without

optimization, as the optimal objective is already predetermined. The Adapted MILP is highly

accurate, considering all time and energy constraints simultaneously, and efficient, as all decision

variables are continuous. Therefore, this Adapted MILP check essentially functions as a linear

programming model, avoiding the flaw generated by Greedy Time and Energy. See Adapted

MILP in Appendix D.

5.2 Greedy Station Insertion - Station Negative

Explicitly defined by Keskin and Çatay (2016), Greedy Station Insertion (GSI) identifies the

first customer in the route where an EV arrives with a negative battery level. It then inserts the

”best” station (the one that minimally increases the distance) on the arc between that customer

and the previous one. If this insertion is not possible, earlier arcs are similarly attempted.

However, this algorithm will ignore some potentially complicated insertion problems. Consider

the graph below.

D C1 C2 S2 C3 D
neg neg

10

By utilizing Greedy Energy checker, we can have a brief overview of the location where the

negative battery level occurs. In the graph it assumed that C3 is the first customer at which

the running EV arrives with a negative energy level. Confronting this situation, Greedy Station

Insertion (GSI) does not function properly to tackle this challenge. Firstly, the arrival energy

at S2 is already negative before the vehicle reaching customer C3, which causes infeasibility

starting from the station. Secondly, GSI only concerns the station insertion between customers,

while neglecting any possible insertion between a station and a customer.

Instead of finding the first customer with negative battery level, we propose to change to

the first negative node, could either be a station or customer. This is so called Greedy Station

Insertion - Station Negative (GSI-SN). After this insertion, the route is more likely to be repaired

since we consider every previous arc between two nodes, not only between two customers.

D C1 C2 S3 S2 C3 D

Algorithm 2 Find Minimum Cost Route with Station Insertion

0: Find the first negative node index j
0: for each station s in all stations do
0: for k = 0 to j − 1 do
0: if insertion of s in (j − k − 1, j) is feasible then
0: Find the minimum cost route return route
0: else
0: Continue
0: end if
0: end for
0: end for
0: return the previous route =0

5.3 Supplement Station Insertion - Multiple Stations

The other flaw of the SI algorithms proposed in the paper by Keskin and Çatay (2016) is that

they only consider inserting one station into the current route per iteration. If this fails to

repair the route, we revert to the previous feasible solution and start the next iteration. During

the ALNS heuristic procedure, this won’t impact the process significantly since we can always

return to a feasible solution. However, this will greatly affect the creation of the initial solution.

Consider customer C65 from instance R103 21. According to Ropke and Pisinger (2006), the

motivation to include Regret-k for CI is that Greedy Customer Insertion will leave the ”hard”

customers to the end, given that they have high distance cost from other customers and basically

impossible to be inserted into a route to still maintain feasible. They are really outsiders in the

graph. From the suggested initial solution create process, Greedy Customer Insertion based on

the distance cost is applied. Below is the example of C65.

D DC65

11

D DC65 S

D DS C65

This is the iteration visualization of GSI-SN, inserting only one station to the first route in

different arcs, attempting to make it feasible. Unfortunately, all current SI algorithms will fail

due to their feature that for each iteration they only insert one station to see if the route becomes

feasible, and return to the previous solution if they fail.

For solving this issue, we propose Supplement Station Insertion (SSI) which iteratively inserts

multiple stations one by one to the current route until the route becomes feasible or the count

threshold is triggered. The mechanism of SSI is simple: every time it inserts one station and

keep the current infeasible route and continue to insert. Theoretically this algorithm is way

more useful in initial solution search since it can repair any destroyed route. Given the situation

that if SSI is not employed, C65 will be left in the removal list forever and there is always a

preliminary route frame [Depot,Depot] in the iteration waiting for any possible customer or

station insertion. The route is repaired by SSI. C65 customer is particular as it requires two

stations charging for an EV instead of only one station for this route.

D DS1 C65 S2

Algorithm 3 Supplement Station Insertion

0: Route
0: Count← 0, Threshold← N
0: Find the first negative node j
0: New Route← infeasible
0: while New Route is infeasible do
0: Count← Count+ 1
0: if Count = Threshold then return Route
0: end if
0: New Route← GSI-SN(Route)
0: end whilereturn ω =0

5.4 Reviews and Observations

• Although this paper uses the tuning parameters proposed by Keskin and Çatay (2016), we

do not suggest to tune the parameters since this can be viewed as manipulation of data

or data mining, which helps find a particular pattern to get a better solution on the data

sets provided. This would lead to overfitting and losing generalization for other instances.

12

• In each iteration, a feasible solution is destroyed and repaired. If the new solution becomes

infeasible, we revert to the previous feasible solution. Thus, each iteration, including the

initial one, must maintain feasibility.

• The algorithms (operators) weights are updated solely after a specific segment, which

means that for each iteration within the segment, we only calculate the scores and count

the numbers one algorithm is called.

• Simulated annealing approach can be viewed as a tool to include stochasticity, in order to

jump out of maybe the current local minimum area to the other feasible searching areas.

• For zone removal, this paper suggests to divide the whole graph into a grid with equal

squares based on the range of X-axis and Y-axis. Given the zone number parameter

proposed by Keskin and Çatay (2016), the grid is a 5 × 5 area with 25 squares. And

this algorithm tends to remove all customers in the zone randomly selected instead of γ

customers.

• Remove Customer with Preceding Station and Remove Customer with Succeeding Station

serve as filter to process the destroy route by checking there is preceding or succeeding

charging stations. These two filters work independently. For example, denote X as as

basic CI, then there are three to be selected in each iteration or fewer according to the

optimization process preference: X, X −RCwPS and X −RCwSS.

• When performing CI algorithms that involve ordering the selection cost, customers are

removed one by one. This means that for each removal, the order is recalculated based

on the remaining selections. The algorithm performs each removal iteratively rather than

ordering and removing all at once. This is applied to all ordering customer removal al-

gorithms.

• Shuffling the order of the removal list in the process of initial solution heuristic will not

change the result if any greedy CI algorithm is applied all the way.

6 Computational Results

Here we quote the data description from the paper of Schneider et al. (2014). This data set

includes 56 large instances with 100 customers and 21 recharging stations and 36 smaller in-

stances derived from the larger ones with 5, 10, and 15 customers, categorized into three classes

based on customer distribution: clustered, random, and a mix of both. For the large instances,

recharging stations are strategically placed—one at the depot and others randomly, ensuring

all customers are reachable with at most two recharging stops. Small instances are created by

selecting customers randomly from the large instances to form new, smaller instances.

For MILP solver, Gurobi Optimizer version 11.0.2 build v11.0.2rc0 (win64 - Windows 10.0

(19045.2)). CPU model: Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz. Thread count: 4

physical cores, 8 logical processors, using up to 8 threads. For ALNS the programming language

is Python, version 3.11 in virtual environment.

13

For the hyper parameters defined in ALNS, we directly applied the fine-tuned parameters

by Keskin and Çatay (2016) which yields the smallest result variance. For more details of the

parameters, see paper of Keskin and Çatay (2016). In the meantime, due to the inefficient

running of the program for C100 instances and to maintain consistency across all instances, we

have set the iteration parameters as follows: N = 2500, NC = 200, NS = 400, NRR = 200, NSR

= 100, nRR = 50.

6.1 Small Instances

As we can observe from Table 1, all objective values derived from the MILP are smaller than

those obtained by ALNS, for three main reasons. First, the objective function of the MILP

is solely set to minimize the total travel distance, disregarding the total number of vehicles.

This effectively relaxes the constraints on limited vehicle numbers. Second, the MILP model

is capable of solving the problem to optimality, given sufficient time, denoting the objective

value obtained by MILP as f∗ and f by ALNS. Theoretically there is f∗ ≤ f . Third, due

to computational limitations, we have set the maximum number of iterations to 2500. This

constraint hinders the optimizer’s ability to converge to a global minimum, potentially trapping

it in local minima or providing insufficient iterations to reach the global optimum. This could

explain the high average difference ratio between the two methods. Another observation is that

the solving time for MILP, with a few exceptions, is significantly better than that for ALNS.

This discrepancy is likely due to differences in data structure, programming language, algorithm

selection, and coding complexity. Further investigations are warranted to explore these aspects.

6.2 Large Instances

Due to computation capacity, the feasible solutions presented in Table 2 for ALNS derived by

this paper are initial solutions. This explains the huge gap between the total travel distances

for ALNS and ALNS reference provided by Keskin and Çatay (2016). In terms of number of

vehicles, they do not differ much since route removal algorithms iteratively attempt to reduce

the total number of routes.

7 Travel Time Uncertainty

In the replication of MILP and ALNS, we assume a perfect world where all EVs are homogeneous

and all predefined parameters remain fixed throughout the entire traveling process until reaching

the time limit. These assumptions simplify modeling and problem-solving by eliminating any

uncertainty or stochastic random events occurring during service, travel, and charging. In

reality, with high-quality regulation control, process monitoring, and service quality assurance,

the charging and service offerings are industrially efficient and adhere strictly to automated

processes and norms, making the charging and service requirements as accurate as possible.

Furthermore, the time window is planned or decided before routing begins and is a range,

14

Table 1: Detailed Comparison of MILP and ALNS Solutions
MILP ALNS ALNS Reference

N T V t T V t r T V t

c101C5 247.15 3 0.13 257.75 2 11.39 0.04 257.75 2 0.03

c103C5 165.67 3 0.05 175.37 1 31.88 0.06 175.37 1 0.05

c206C5 236.58 4 0.34 242.56 1 27.43 0.02 242.56 1 0.07

c208C5 158.48 2 0.59 158.48 1 13.25 0 158.48 1 0.06

r104C5 136.69 2 0.1 167.06 2 9.65 0.18 136.69 2 0.04

r105C5 156.08 2 0.08 168.47 2 12.45 0.07 156.08 2 0.04

r202C5 128.78 1 0.11 128.78 1 13.57 0 128.78 1 0.08

r203C5 179.06 1 0.24 179.06 1 58.86 0 179.06 1 0.1

rc105C5 233.77 3 0.53 241.89 3 16.04 0.03 233.77 2 0.03

rc108C5 253.93 2 1.63 316.51 3 25.33 0.2 253.93 2 0.04

rc204C5 176.39 2 0.53 176.39 1 56.65 0 176.39 1 0.08

rc208C5 167.98 1 0.51 167.98 1 64.14 0 167.98 1 0.07

c101C10 388.25 4 5.26 395.57 3 367.15 0.02 388.25 3 0.1

c104C10 273.93 2 2.92 306.45 2 1690.42 0.11 273.93 2 0.17

c202C10 243.2 2 0.78 301.62 2 1380.79 0.19 304.06 1 0.2

c205C10 228.28 2 0.25 258.66 2 437.75 0.12 228.28 2 0.16

r102C10 249.19 3 1.54 308.82 4 234.73 0.19 249.19 3 0.11

r103C10 202.85 3 15.44 209.47 2 264.76 0.03 206.12 2 0.17

r201C10 217.68 3 1.04 241.51 1 673.93 0.1 241.51 1 0.21

r203C10 218.21 1 2.92 218.21 1 1635.43 0 218.21 1 0.62

rc102C10 423.51 4 1.4 447.1 4 235.38 0.05 423.51 4 0.09

rc108C10 345.93 3 2.08 384.72 3 348.97 0.1 345.93 3 0.09

rc201C10 310.06 4 0.48 412.86 1 590.04 0.25 412.86 1 0.17

rc205C10 325.98 3 0.9 399.97 2 620.77 0.18 325.98 2 0.19

c103C15 348.46 3 451.01 379.16 3 840.4 0.08 348.46 3 0.23

c106C15 275.13 3 2.18 367.41 3 439.52 0.25 275.13 3 0.15

c202C15 369.56 3 32.97 505.59 3 1535.46 0.27 383.62 2 0.29

c208C15 300.55 2 5.04 305.8 2 802.58 0.02 300.55 2 0.26

r102C15 412.78 6 3600.06 480.29 6 154.51 0.14 412.78 5 0.12

r105C15 336.15 6 46.98 347.88 4 132.29 0.03 336.15 4 0.09

r202C15 358 2 794.95 386.86 2 1548.07 0.07 358 2 0.51

r209C15 293.2 2 37.71 344.31 2 1466.09 0.15 313.24 1 0.92

rc103C15 397.67 4 2107.72 486.94 5 167.91 0.18 397.67 4 0.12

rc108C15 370.25 3 3507.98 440.16 4 206.21 0.16 370.25 3 0.15

rc202C15 394.39 2 14.35 556.15 2 1218.88 0.29 394.39 2 0.31

rc204C15 310.58 2 3600.06 428.22 3 2980.26 0.27 382.22 1 1.35

Average 273.18 2.72 395.58 313.72 2.36 564.25 0.11 282.14 2.06 0.21

15

Table 2: Detailed Comparison of ALNS Large Instances
name ALNS ALNS ref name ALNS ALNS ref
c101 21 1780.92 15 1051.23 12 r112 21 1648.49 15 1017.31 11

c102 21 1547.25 13 1034.24 11 r201 21 1816.75 4 1266.06 3

c103 21 1619.92 14 973.39 10 r202 21 1696.93 4 1052.32 3

c104 21 1326.28 12 886.72 10 r203 21 1414.23 4 895.54 3

c105 21 1684.67 14 1037.78 11 r204 21 1235.69 3 780.14 2

c106 21 1544.70 13 1024.18 11 r205 21 1636.56 4 987.36 3

c107 21 1794.43 14 1058.11 10 r206 21 1637.27 4 922.70 3

c108 21 1764.57 14 1033.50 10 r207 21 1317.25 3 846.59 2

c109 21 1628.75 13 960.03 10 r208 21 1079.84 3 736.12 2

c201 21 1043.62 5 629.95 4 r209 21 1653.61 4 868.95 3

c202 21 1237.39 6 629.95 4 r210 21 1395.12 4 843.36 3

c203 21 1308.16 5 629.95 4 r211 21 1313.18 3 862.56 2

c204 21 1199.25 4 629.95 4 rc101 21 2288.36 19 1684.84 16

c205 21 1427.20 6 629.95 4 rc102 21 2127.49 18 1155.50 14

c206 21 1401.23 5 629.95 4 rc103 21 2195.65 17 1329.58 13

c207 21 1569.17 6 629.95 4 rc104 21 1932.38 15 1202.93 11

c208 21 1362.52 6 629.95 4 rc105 21 2146.69 18 1458.49 14

r101 21 2175.54 22 1661.33 18 rc106 21 2047.74 17 1422.96 13

r102 21 2082.61 21 1461.48 16 rc107 21 2142.89 17 1261.03 12

r103 21 1827.28 18 1262.75 13 rc108 21 2056.34 16 1185.68 11

r104 21 1683.60 16 1078.99 11 rc201 21 2363.89 5 1446.84 4

r105 21 1890.51 18 1373.94 15 rc202 21 2179.41 4 1416.96 3

r106 21 1903.29 18 1310.46 13 rc203 21 1871.58 4 1069.27 3

r107 21 1482.86 14 1118.91 12 rc204 21 1646.77 4 887.76 3

r108 21 1712.44 16 1031.14 11 rc205 21 1991.29 5 1262.22 3

r109 21 1837.58 17 1201.04 13 rc206 21 2027.16 4 1213.89 3

r110 21 1703.75 15 1112.80 11 rc207 21 1811.71 4 993.49 3

r111 21 1682.62 15 1084.13 12 rc208 21 1552.28 4 839.71 3

16

providing a buffer for some arrival delays. However, travel time is significantly, frequently and

unexpectedly impacted by uncertainty due to the dynamic environment of the route and other

agents involved. Without ideal regulation and monitoring of the travel process, and considering

the high costs associated with managing travel uncertainty—such as building exclusive private

routes for EVs or imposing impractical restrictions on other agents—controlling stochasticity in

travel time is impractical.

Based on this reality, this paper analyzes the robustness of ALNS, testing the stability of

a predefined scheduling plan in the face of stochasticity in the routing process. We adopt the

mathematical notation as defined in the works of (Schneider et al., 2014) and (Keskin & Çatay,

2016). We denote t
′
ij , a random variable, as the actual travel time between location i and

j, where i ̸= j. For clarity and further definition, we introduce another random variable, ϵ,

representing the stochastic component added to the predefined constant travel time tij between

locations i and j. The relationship is described as follows:

t
′
ij = tij + ϵ (2)

ϵ ∼ Fϵ (3)

In typical analyses, it is common to assume that the stochastic variable ϵ, which repres-

ents travel time variability, follows a normal distribution with parameters mean µ = 0 and

standard deviation σ. This assumption is logical under conventional traffic conditions where no

extraordinary events influence driving times.

7.1 Upper Bound

Given the assumption that the uncertainty in travel times is additive, a brutal strategy for

managing this uncertainty involves fitting a distribution to the observed data of travel time

variances. Once the appropriate distribution is identified, the corresponding quantile at a spe-

cified confidence level can be added to the planned travel times. This adjusted figure represents

the worst-case scenario within the bounds of the chosen confidence level. This approach ensures

that we can estimate, with a defined probability, the likelihood that delivery to each customer

will occur within their designated time windows. Concurrently, this method aims to minimize

the total travel distance, thus optimizing the route efficiency under the constraints of uncertainty

and service time requirements. This strategy allows for the balancing of reliability in meeting

time windows with the goal of maintaining route compactness and efficiency. For example, we

can replace the original travel time in the MIP formulation with t
′
ij .

τi + (t
′
ij + si)xij − l0(1− xij) ≤ τj ∀i ∈ V0,∀j ∈ Vn+1, i ̸= j (1)

τi + t
′
ijxij + g(Yi − yi)− (l0 + gQ)(1− xij) ≤ τj ∀i ∈ F ′, ∀j ∈ Vn+1, i ̸= j (2)

While this intuitive method presents significant drawbacks, it assumes uncertainty in every arc

between locations i and j, substantially affecting the normal and practical operations of electric

vehicles (EVs). More critically, since time stochasticity is factored in while the personal time

17

windows for the clients remain unchanged, adding a high quantile of time stochasticity to the

planned travel time may effectively bypass some customer time windows. This approach could

lead to scenarios where we inadvertently overlook certain customers in the network, which is

particularly problematic in sensitive areas such as healthcare. Therefore, a more appropriate

method for evaluating time stochasticity needs to be considered.

7.2 Parameter Estimation

As normal distribution is applied to simulate the additive time stochasticity, it is crucial to

get the mean and standard deviation of the time stochastic factor ϵ. Denote µ as the mean

and σ as the standard deviation, where ϵ follows a normal distribution. Since the underlying

distribution for this times stochastic factor is normal, the good features are that the sample mean

is Maximum Likelihood Estimator (MLE), which is unbiased and consistent when the sample

size converges to infinity; the sample variance is also an MLE given the estimation formula,

being consistent and convergent to the population variance when sample size is increasing. The

length of the time window is crucial for deciding whether an arrival delay would affect much

or not the feasibility of the whole route, since the higher the value of the time window length,

the more buffer it provides for the service delay. Under this context, we propose the variance of

time window as the variance of the stochastic factor.

ϵ ∼ N (µ, σ2), t̄ =
1

N

∑
i ̸=j

tij , σ̂2 =
1

n

∑
i

((li − ei))− ¯(l − e))2

where N is the cardinality of the arcs set, n is the number of customers. The estimated distri-

bution of ϵ is

ϵ ∼ N (t̄, σ̂2)

Note that ϵ is a distributional estimator of the travel time between two locations, it is, in

theory, not a proper stochastic factor for simulating the delay or earlier arrival at a customer or

station, since it is not practical to assume when an emergency, accident or something unforeseen

occurring during the travel, the time stably changes on the base of a positive sample mean plus

the stochasticity derived from the variance. Facing this to better simulate the stochastic process,

we denote the additive time stochastic factor ϵ′ as the term to introduce uncertainty.

ϵ′ ∼ N (0, σ̂2)

7.3 Simulation Methodology

t
′
ij = tij + ϵ′(t

′
ij ≥ 0) (4)

This equation serves as the data processing formula by adding the stochastic time factor. For

this factor, its distribution is normal with a mean of zero, so in the process of drawing a sample,

both negative and positive values can appear. In practice, positive values added to travel time

indicate delays caused by stochastic events hindering punctual arrival. Conversely, negative

values can be interpreted as the EV speeding up due to an emergency request or other reasons.

18

And since the negative traveling time does not make sense, we only keep the stochastic travel

time if it is non-negative Since normality is generated for each directed arc’s traveling time, we

have t′ij ̸= t′ji This makes sense because the different stochasticities between moving from A to

B and moving from B to A should be taken into consideration. Typically, (i, j) and (j, i) do not

share the same source of uncertainty, neither the same additive stochasticity.

As mentioned before, it is unrealistic to add stochasticity to each arc since uncertainty

occurs sporadically. However, because we cannot determine the distribution of the dynamic

environment, we should set specific parameters when adding stochasticity to travel time. The

objective is to simulate ”accidental” events occurring in the routing process. Set p as the

probability parameter to determine for each directed arc how likely an uncertainty will appear,

and if it appears, the time factor is added to the fixed traveling time. By testing the robustness of

the ALNS solution derived from all predefined parameters, Monte Carlo simulation is suggested

here to give a feasibility ratio as the performance metrics.

7.4 Computational Results

We propose three pairs of p and n, (0.1, 1), (0.05, 0.5), (0.01, 0.1) which denote the probabil-

ity that an event occurs for any arc during the routing process, and adjustment multiplier to

standard deviation scaling how much affection the uncertainty would bring to the travel time.

The N represents the number of iterations in the Monte Carlo simulation is set to 1000. As

seen in Table 3 which demonstrates all types of tendency by representative instances, generally

speaking, when the probability and affection scale decrease, the feasibility rate tends to increase,

while for some instances, no matter how the pair of parameters is, they remain the same value

of 1 or 0, showing different sensitivity to the stochasticity added to the travel time. It suggests

that we may rearrange the scheduling of those instances which are more sensitive to small un-

certainty as the customer visit plan is made too intensive, as well as considering the trade-off

between the cost of opening new routes and utility to deliver on time.

8 Conclusion

This paper replicates the work done by Keskin and Çatay (2016), concentrating on MILP and

ALNS heuristic methods in order to achieve good quality feasible solutions to the benchmark

instances. Comparisons made between MILP and ALNS result illustrate that the two methods

own different advantages facing various instances - MILP derives the solution accurately and

quickly given the data size being relatively small and ALNS outperforms MILP instead to provide

a feasible solution iteratively on large data set. Meanwhile, reviews on the ALNS algorithms

are done with new algorithms proposed to address potential issues during the process of ALNS

solution search. Finally the current paper conducts an investigation on the stochastic elements

added to the traveling time, studying how to simulate the time uncertainty and proposing that

rescheduling or further investigation should be performed on the instances which are sensitive

to traveling time stochasticity. Further researches on new more efficient algorithms of ALNS

and traveling time stochasticity simulation are needed for future practical purpose.

19

Table 3: Feasibility Results
heightName 0.1 and 1 0.05 and 0.5 0.01 and 0.1

c101C5 0.366 0.98 1

c103C5 0.005 0.015 0.077

c206C5 0.047 0.089 1

c208C5 1 1 1

c101C10 0.221 0.923 1

c104C10 0 0.002 0.358

c202C10 0 0.003 0.082

c205C10 1 1 1

c103C15 0 0.001 0.083

c106C15 0 0.001 0.413

c202C15 0.001 0.001 0.001

c208C15 1 1 1

c101 21 0 0.011 0.533

c108 21 0 0 0.103

c202 21 0 0 0.002

c203 21 0 0 0

c204 21 0 0 0

c205 21 1 1 1

c206 21 0 0 0.016

c207 21 0 0 0.001

c208 21 1 1 1

r101 21 1 1 1

r206 21 0 0 0

r207 21 0 0 0

20

References

Cortés-Murcia, D. L., Prodhon, C. & Afsar, H. M. (2019). The electric vehicle routing problem

with time windows, partial recharges and satellite customers. Transportation Research

Part E: Logistics and Transportation Review , 130 , 184–206.

Dönmez, S., Koç, Ç. & Altıparmak, F. (2022). The mixed fleet vehicle routing problem with

partial recharging by multiple chargers: Mathematical model and adaptive large neighbor-

hood search. Transportation Research Part E: Logistics and Transportation Review , 167 ,

102917.

Foster, G., Gandrabur, S., Langlais, P., Plamondon, P., Russell, G. & Simard, M. (2003).

Statistical machine translation: Rapid development with limited resources. In Proceedings

of MT Summit IX (pp. 110–119). New Orleans, USA.

Froger, A., Jabali, O., Mendoza, J. E. & Laporte, G. (2022). The electric vehicle routing problem

with capacitated charging stations. Transportation Science, 56 (2), 460–482.

Hashemi Doulabi, H., Pesant, G. & Rousseau, L.-M. (2020). Vehicle routing problems with

synchronized visits and stochastic travel and service times: Applications in healthcare.

Transportation Science, 54 (4), 1053–1072.

Keskin, M. & Çatay, B. (2016). Partial recharge strategies for the electric vehicle routing

problem with time windows. Transportation research part C: emerging technologies, 65 ,

111–127.

Keskin, M., Çatay, B. & Laporte, G. (2021). A simulation-based heuristic for the electric vehicle

routing problem with time windows and stochastic waiting times at recharging stations.

Computers & Operations Research, 125 , 105060.

Li, X., Tian, P. & Leung, S. C. (2010). Vehicle routing problems with time windows and

stochastic travel and service times: Models and algorithm. International Journal of Pro-

duction Economics, 125 (1), 137–145.

Miranda, D. M. & Conceição, S. V. (2016). The vehicle routing problem with hard time windows

and stochastic travel and service time. Expert Systems with Applications, 64 , 104–116.

Ropke, S. & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the pickup

and delivery problem with time windows. Transportation science, 40 (4), 455–472.

Schneider, M., Stenger, A. & Goeke, D. (2014). The electric vehicle-routing problem with time

windows and recharging stations. Transportation science, 48 (4), 500–520.

Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle

routing problems. In International conference on principles and practice of constraint

programming (pp. 417–431).

Taş, D., Dellaert, N., Van Woensel, T. & De Kok, T. (2013). Vehicle routing problem with

stochastic travel times including soft time windows and service costs. Computers & Oper-

ations Research, 40 (1), 214–224.

Taş, D., Dellaert, N., van Woensel, T. & De Kok, T. (2014). The time-dependent vehicle routing

problem with soft time windows and stochastic travel times. Transportation Research Part

C: Emerging Technologies, 48 , 66–83.

Zhang, J., Lam, W. H. & Chen, B. Y. (2013). A stochastic vehicle routing problem with travel

time uncertainty: trade-off between cost and customer service. Networks and Spatial

21

Economics, 13 , 471–496.

Zhang, S., Chen, M. & Zhang, W. (2019). A novel location-routing problem in electric vehicle

transportation with stochastic demands. Journal of Cleaner Production, 221 , 567–581.

22

A Abbreviations

• AI: Artificial Intelligence

• ALNS: Adaptive Large Neighborhood Search

• CI: Customer Insertion

• CR: Customer Removal

• EV: Electric Vehicle

• EVRPTW-PR: Electric Vehicle Routing Problem with Time Windows and Partial Rechar-

ging

• GSI: Greedy Station Insertion

• GSI-SN: Greedy Station Insertion - Station Negative

• LNS: Large Neighborhood Search

• MILP: Mixed Integer Linear Programming

• MIP: Mixed Integer Programming

• RCwPS: Remove Customer with Proceeding Station

• RCwSS: Remove Customer with Succeeding

• SI: Station Insertion

• SR: Station Removal

• SSI: Supplement Station Insertion Station

• VRP: Vechile Routing Problem

23

B MILP Parameters

Variable Parameter Definitions of the EVRPTW-PR MILP

Model

0, N + 1 Depot instances

F ′ Set of visits to recharging stations, dummy vertices of set of

recharging stations F

F ′
0 Set of recharging visits including depot instance 0

V Set of customers V = {1, . . . , N}
V0 Set of customers including depot instance 0

V ′ Set of customer vertices including visits to recharging sta-

tions, V ′ = V ∪ F ′

V ′
0 Set of customers and recharging visits including depot in-

stance 0: V ′
0 = V ′ ∪ {0}

V ′
N+1 Set of customers and recharging visits including depot in-

stance N + 1 : V ′
N+1 = V ′ ∪ {N + 1}

V ′
0,N+1 Set of customers and recharging visits including depot in-

stances 0 and N + 1 : V ′
0,N+1 = V ′ ∪ {0} ∪ {N + 1}

dij Distance between vertices i and j

tij Travel time between vertices i and j

C Vehicle capacity

g Recharging rate

h Charge consumption rate

Q Battery capacity

qi Demand of vertex i, 0 if i /∈ V

ei Earliest start of service at vertex i

li Latest start of service at vertex i

si Service time at vertex i (s0, sN+1 = 0)

τi Decision variable specifying the time of arrival at vertex i

ui Decision variable specifying the remaining cargo on arrival at

vertex i

yi Decision variable specifying the remaining battery capacity

on arrival at vertex i

Yi Decision variable specifying the remaining battery capacity

on departure at vertex i

xij Binary decision variable indicating if arc (i, j) is traveled

24

C MILP Full Model

min
∑

i∈V ′
0 ,j∈V ′

N+1,i ̸=j

dijxij (1)

subject to ∑
j∈V ′

N+1,i ̸=j

xij = 1 ∀i ∈ V (2)

∑
j∈V ′

N+1,i ̸=j

xij ≤ 1 ∀i ∈ F ′ (3)

∑
i∈V ′

0 ,i ̸=j

xij −
∑

i∈V ′
N+1,i ̸=j

xji = 0 ∀j ∈ V ′ (4)

τi + (tij + sj)xij − l0(1− xij) ≤ τj ∀i ∈ V0,∀j ∈ V ′
N+1, i ̸= j (5)

τi + tijxij + g(Yi − yi)− (l0 + gQ)(1− xij) ≤ τj ∀i ∈ F ′, ∀j ∈ V ′
N+1, i ̸= j (6)

ej ≤ τj ≤ lj ∀j ∈ V ′
0,N+1 (7)

0 ≤ uj ≤ ui − qixij + C(1− xij) ∀i ∈ V ′
0 ,∀j ∈ V ′

N+1, i ̸= j (8)

0 ≤ u0 ≤ C (9)

0 ≤ yj ≤ yi − (h · dijxij) +Q(1− xij) ∀i ∈ V,∀j ∈ V ′
N+1, i ̸= j (10)

0 ≤ yj ≤ Yi − (h · dijxij) +Q(1− xij) ∀i ∈ F ′, ∀j ∈ V ′
N+1, i ̸= j (11)

yi ≤ Yi ≤ Q ∀i ∈ F ′
0 (12)

xij ∈ {0, 1} ∀i ∈ V ′
0 ,∀j ∈ V ′

N+1, i ̸= j (13)

D Adapted MILP Feasibility Checker

0 (1)

subject to

τi + (tij + sj)xij − l0(1− xij) ≤ τj ∀i ∈ V0, ∀j ∈ V ′
N+1, i ̸= j (5)

τi + tijxij + g(Yi − yi)− (l0 + gQ)(1− xij) ≤ τj ∀i ∈ F ′,∀j ∈ V ′
N+1, i ̸= j (6)

ej ≤ τj ≤ lj ∀j ∈ V ′
0,N+1 (7)

0 ≤ yj ≤ yi − (h · dijxij) +Q(1− xij) ∀i ∈ V,∀j ∈ V ′
N+1, i ̸= j (10)

0 ≤ yj ≤ Yi − (h · dijxij) +Q(1− xij) ∀i ∈ F ′,∀j ∈ V ′
N+1, i ̸= j (11)

yi ≤ Yi ≤ Q ∀i ∈ F ′
0 (12)

(5)

25

E Images

Figure 3: https://www.transdev.nl/nl/onze-routes/vervoersgebieden/parkshuttle-rivium

Figure 4: https://corporate.ret.nl/nieuws/aanpassingen-dienstregeling-bus-vanaf-30-januari

26

