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Abstract

Accurate GDP nowcasts are important to improve decision making. This paper inves-

tigates whether existing mixed frequency nowcasting methods can be improved by using a

Gaussian process as underlying model. Furthermore, this paper researches whether using an

outlier adjusted stochastic volatility (SVO) specification is useful to further improve nowcasts

in this setting. We find that a Gaussian process does not lead to improved point nowcasts

of GDP growth. Moreover, adding an SVO covariance matrix further deteriorates the per-

formance of the point nowcasts. A Gaussian process does improve the full nowcasted GDP

distribution when facing samples including economic turmoil. Using an SVO specification

further improves the nowcasted distribution of GDP growth in crisis times. However, as

both models lead to worse distributional nowcasts when excluding Covid from our sample,

the Gaussian process, both with and without outlier adjusted stochastic volatility, fails to

improve existing models.

1 Introduction

Every quarter, estimates of GDP growth are released all over the world. However, these figures

are published with a delay. For example, the GDP growth figures of the first quarter of 2024,

which ended on the 31st of March, are only published far into the second quarter of 2024. For

reference, this GDP growth figure was released on the 7th of June for the EU, and 30th of May

for the US. Hence, looking at actual growth figures leads to a large delay in decision making

based on GDP growth data. It is thus important to obtain accurate estimates of GDP growth

at an earlier time.

Therefore, this paper introduces two GDP growth nowcasting models. I construct a mixed

frequency Gaussian vector autoregressive process (MF-GVARP) model, both with and without

an outlier adjusted stochastic volatility (SVO) covariance matrix. The nowcasting performance

of these two models is compared against the performance of the mixed frequency Bayesian vector

autoregressive trees model and mixed frequency vector autoregression model as used by Huber,

Koop, Onorante, Pfarrhofer, and Schreiner (2023). This paper uses the models to make nowcasts

of GDP growth for four European countries for two samples: one ranging until Q4-2019, and

one sample including Covid-19 observations ranging until Q2-2020.

GDP nowcasting is a widely debated topic in academic literature. Schorfheide and Song

(2015) construct a mixed frequency vector autoregression (MF-VAR) model, which uses data

from monthly and quarterly frequencies to make nowcasts for the low-frequency (quarterly)

variables. When producing nowcasts for several macro-economic variables, including GDP, they

find that including monthly data from within the quarter that is nowcasted improves nowcasting

performance.

Furthermore, Huber et al. (2023) take inspiration from the MF-VAR model introduced by

Schorfheide and Song (2015) and find that using a mixed frequency Bayesian additive vector

autoregressive trees (MF-BAVART) model improves nowcasting performance when compared to

an often used MF-VAR model. This improvement is especially large when looking at the volatile

COVID-19 period. In the MF-BAVART model, Huber et al. (2023) use the model developed by

Chipman, George, and McCulloch (2010) in a mixed frequency framework, and argue that the

improvement this model introduces can partially be attributed to trees being useful in handling
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outliers in volatile periods. However, the motivation of the use of Bayesian additive regression

trees (BART) over other models in the mixed frequency framework is not immediately clear.

Also, Huber et al. (2023) assume a constant covariance matrix, even though the volatility of

GDP growth is not constant over time. Therefore, this paper proposes to use a different model in

the mixed frequency framework, and suggests to use a different, time-varying, covariance matrix,

resulting in the MF-GVARP and MF-GVARP-SVO models. The following two paragraphs will

outline the motivation for the specification of these two models.

First of all, Hauzenberger, Marcellino, Pfarrhofer, and Stelzer (2024) combine a mixed data

sampling (MIDAS) model with a Gaussian process prior. They also specify two alternative

priors: a restricted linear version of this MIDAS model and a Bayesian additive regression trees

(BART) prior. The BART specification they use is similar to the BART model used by Huber et

al. (2023). They find that using a Gaussian process in the MIDAS framework outperforms other

models when nowcasting GDP, noteably also the BART model considered. This outperformance

is present in the whole sample they consider, as well as in the subsamples excluding Covid-19

observations, and only the Covid-19 period. Even though the Gaussian process will be less

suited for handling outliers, this gives rise to the idea of replacing the BART specification used

in the nowcasting framework of Huber et al. (2023) by the Gaussian process model used in the

MIDAS specification of Hauzenberger et al. (2024).

Secondly, Carriero, Clark, Marcellino, and Mertens (2022) find that adding an outlier ad-

justed stochastic volatility specification to a Bayesian vector autoregression (BVAR) model,

improves the forecasting performance for many macroeconomic variables. This is mainly at-

tributed to the better ability to handle large outliers in the data. Furthermore, the stochastic

volatility in the covariance matrix will allow for time varying volatility in the model. The re-

search by Carriero et al. (2022) handles forecasting, and different macroeconomic data than

GDP growth. However, due to the relatively close relation between nowcasting and forecasting,

and the wide variety of macroeconomic variables for which their model worked, the specification

outlined by Carriero et al. (2022) is worth pursuing in a GDP nowcasting setting. Therefore, this

paper will use the covariance matrix of Carriero et al. (2022) in combination with the Gaussian

process prior to enhance the ability of the model to handle outliers.

When considering the societal relevance of accurate GDP growth nowcasts, one should con-

sider that GDP growth figures affect many aspects of everyday life. For example, higher GDP

growth typically coincides with a lot of job opportunities and increasing salaries, whereas nega-

tive GDP growth oftentimes coincides with more economic uncertainty and higher unemployment

(Tumanoska, 2020). Therefore, GDP growth figures affect most working people. Moreover, busi-

ness managers and entrepreneurs adjust business plans based on economic outlooks. As higher

or lower GDP growth directly impacts economic activity and thus sales, GDP growth figures

affect investment decisions by firms (Farooq, Ahmed, & Khan, 2021). Similarly, finance profes-

sionals are affected by the state of the economy, as they need to decide which loans to hand out

or which companies to invest in. These decisions are heavily influenced by GDP growth figures.

Lastly, in order to smooth the business cycle, politicians need to take policy measures to ensure

that the economy does not overheat in times of economic prosperity, while also ensuring a soft

landing when crises emerge. It is thus important for policy makers to have an accurate GDP

2



growth figure, as this will enable them to take well substantiated policy measures.

This paper examines whether using a Gaussian process prior distribution in the framework

of Huber et al. (2023) leads to improved GDP nowcasts. Secondly, we add an outlier adjusted

stochastic volatility covariance matrix to test if this improves the performance of a mixed fre-

quency model with a Gaussian process prior. Both the point nowcasts, as well as the entire

nowcasted density are compared by using the root mean squared error, cumulative log predic-

tive score, and the transformed probability integral transform. I find that using a Gaussian

process in the mixed frequency framework results in worse point nowcasts when compared to

the MF-BAVART and MF-VAR models. However, if we include the Covid-19 observations in the

data, the MF-GVARP model outperforms the MF-BAVART and MF-VAR models based on the

entire distribution of the nowcasted GDP growth. Furthermore, the MF-GVARP-SVO model

produces point nowcasts that perform substantially worse than the MF-GVARP model for both

samples under consideration in this paper. Therefore, adding an outlier adjusted stochastic

volatility covariance matrix does not improve the performance of the model.

The rest of this paper is structured as follows. Section 2 describes the data used in the

research. Section 3 introduces the models used to nowcast GDP growth, as wel as the estimation

methods used to estimate these models. This section also outlines several evaluation metrics

that are used to compare the nowcasting performance of the models. Section 4 describes and

discusses the result of the research, Section 5 discusses the economic interpretation of the results,

after which Section 6 concludes the paper.

2 Data

This section discusses the data used in this paper. The chosen dataset is exactly the same as the

data used by Huber et al. (2023). This dataset consists of data on 4 countries: France, Germany,

Italy, and Spain. The set contains quarterly GDP growth data, as well as data on 5 monthly

macroeconomic variables, spanning a period from April/Q2 2005 until June/Q2 2020. The data

is log-differenced if the variable is expressed to be a growth rate. More precisely, the following

data is used in the research. GDP growth is obtained from the OECD real time database. The

growth rate of the economic sentiment indicator (ESI) is provided by the European Commission.

Industrial production growth (IP) is obtained from the OECD real time database. The growth

rate of the purchasing managers’ index (PMI) is obtained from Markit. The growth rate of

monthly car registrations (CAR) is obtained from the European Automobile Manufacturers

Association, and the 1-year ahead bond yields (I) are obtained from Macrobond. GDP growth

and bond yield data are expressed in percentage terms, whereas the other variables are expressed

in decimal values. The range of values these variables take on over time differs. Therefore,

to ensure the models do not over- or under-estimate the effect of these variables, all data is

standardized in all models.

Table 1 shows the summary statistics for all variables under consideration for all countries.

The table shows that the different variables take on differing ranges of values. For example, the

total range of values of the GDP growth in Germany is 12.843, whereas this is only 0.328 for

the ESI. For some differences, this is explained by the difference in scaling, (such as bond yields

against PMI). However, for other variables, this difference arises due to a different underlying
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economic dynamic. For example, because new cars are typically a luxury good, the registrations

of these vehicles differ more with economic conditions than the industrial production. Further-

more, besides different ranges and variances, the other characteristics of the variables also differ

substantially. Note that some variables have a positive mean (and median), such as bond yields,

whereas others have a negative mean (but not median), such as the change in car registrations.

This difference is due to economic conditions and market trends which affect the variables differ-

ently. For example, bond yields have a positive mean because bond yields are never negative in

normal economic circumstances, whereas GDP growth has a negative average for most countries

in the sample, as the COVID-19 observations push the mean growth downwards (note that the

median values are positive, as the economy typically grows steadily over time, with periods of

crisis alternating the periods of growth). The standard deviation of the variables also differs a

lot, with variables with larger ranges having higher standard deviations.

Lastly, the skewness and kurtosis that characterise the variables are very different. The

bond yields have a positive skewness, but small kurtosis for all countries, indicating that the

distribution does not have fat tails, but is skewed to the right. This makes sense for bond yields

as they are typically not below zero. The other variables have a negative skewness in most

countries, and a large positive kurtosis. This indicates that most variables under consideration

have a distribution with a high peak and fat tails that is skewed to the left. This can be explained

by the presence of 2 crises in our sample, the Covid-19 period, and the financial crisis of 2008.

These periods cause the overall data to have a few large negative values. However, there are no

large positive values, as large positive growth rates for macroeconomic data occur only rarely,

and if they do occur, they typically occur in countries with exceptionally high growth for a

period of time, and not just a few observations (such as post world war 2 Germany). These

high growth observations would therefore not be outlying values in the same way as the crisis

observations are, and are in any case not present in the sample. The high peak and fat tails

can be explained by the underlying characteristic of the macroeconomic variables. Typically,

the macroeconomic environment is relatively stable, leading to a distribution with a high peak.

However, when instability arises, for instance during crisis times, a few large negative values

occur, leading to a fatter left tail (high kurtosis and negative skewness). Following these crises,

typically a few observations of positive growth occur, but these are observations are smaller than

the crisis shrinkage. This leads to a fatter right tail as well (but this is not enough to balance

the skewness).
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Country Variable Mean St. Deviation Skewness Kurtosis Minimum Maximum Percentile 25 Median Percentile 75

Germany
Industrial Production 0.000 0.025 -4.326 40.220 -0.226 0.092 -0.008 0.002 0.010
Economic Sentiment Index -0.001 0.027 -4.061 37.604 -0.244 0.084 -0.008 0.001 0.011
Car Registrations -0.002 0.090 -1.874 15.369 -0.496 0.347 -0.018 0.006 0.025
Purchasing Mangers Index 0.000 0.039 -1.420 22.579 -0.285 0.185 -0.015 0.002 0.015
Bond Yields 1.381 1.647 0.951 2.728 -0.356 5.393 -0.057 0.604 2.158
GDP 0.155 1.706 -4.627 28.473 -10.638 2.205 0.074 0.482 0.827

Spain
Industrial Production -0.002 0.027 -5.069 57.352 -0.258 0.141 -0.005 0.001 0.005
Economic Sentiment Index -0.001 0.032 -4.393 43.823 -0.304 0.104 -0.011 0.001 0.014
Car Registrations -0.004 0.253 -0.400 51.629 -2.057 2.065 -0.034 0.004 0.035
Purchasing Managers Index 0.000 0.039 -1.420 22.579 -0.285 0.185 -0.015 0.002 0.015
Bond Yields 1.381 1.647 0.951 2.728 -0.356 5.393 -0.057 0.604 2.158
GDP -0.148 2.827 -6.309 45.163 -20.437 1.141 -0.055 0.419 0.855

France
Industrial Production -0.001 0.030 -2.717 37.240 -0.235 0.182 -0.011 0.000 0.010
Economic Sentiment Index -0.002 0.038 -5.224 53.354 -0.377 0.135 -0.013 0.002 0.013
Car Registrations 0.000 0.181 1.167 49.486 -1.276 1.579 -0.027 0.002 0.029
Purchasing Managers Index 0.000 0.039 -1.420 22.579 -0.285 0.185 -0.015 0.002 0.015
Bond Yields 1.381 1.647 0.951 2.728 -0.356 5.393 -0.057 0.604 2.158
GDP -0.073 2.147 -5.861 39.262 -14.868 1.031 0.038 0.247 0.651

Italy
Industrial Production -0.002 0.043 -0.329 49.853 -0.335 0.351 -0.011 0.002 0.009
Economic Sentiment Index 0.000 0.031 -1.199 11.636 -0.191 0.122 -0.012 0.000 0.016
Car Registrations -0.002 0.311 3.475 70.994 -1.902 3.140 -0.028 -0.002 0.028
Purchasing Managers Index 0.000 0.039 -1.420 22.579 -0.285 0.185 -0.015 0.002 0.015
Bond Yields 1.381 1.647 0.951 2.728 -0.356 5.393 -0.057 0.604 2.158
GDP -0.309 1.949 -5.196 33.277 -13.191 1.167 -0.229 0.142 0.379

Table 1: Summary Statistics

The table shows the summary statistics for all variables under consideration for all countries in the sample. The sample ranges from April/Q2
2005 until June Q2/2020. GDP growth and bond yields are in percentages, the other variables are expressed in decimal values.

5



The final part of this section describes characteristics of GDP growth that are used in this

paper to motivate the choice of the models. Figures 1a and 1b show the GDP growth and GDP

growth volatility of the countries in the sample. The GDP growth volatility displayed is the

4-quarter rolling volatility of GDP growth. The figures show that GDP growth and the GDP

growth volatility display a positive correlation among the countries. This is to be expected, as

the countries are all part of the same economic and political regions, and are therefore subject to

similar macroeconomic shocks. For example, because of the interconnectedness of the countries,

we expect the German economy to react in a similar way to an oil price shock as the French

economy. Also, the countries are expected to experience similar shocks at the same moment in

time. Furthermore, Figure 1b clearly shows periods with relatively stable and low volatility, as

well as periods with relatively high volatility. GDP growth volatility is therefore not stable over

time, but fluctuates substantially. The periods of low and stable volatility are noticeably periods

with relatively stable macroeconomic conditions, namely the 2010s and, to a lesser extent, the

period before the financial crisis. The two high volatility periods are the periods surrounding

the financial crisis of 2008 and the Covid-19 crisis in 2020. Comparing the graph with GDP

growth volatility to the graph with GDP growth, the figures clearly show that the periods of

high volatility are caused by large negative spikes in GDP growth, whereas low volatility periods

coincide with small positive but stable GDP growth numbers. These high volatility periods can

therefore be described by crisis periods, and are notably caused by a few crisis observations.

(a) GDP Growth (b) GDP Growth Volatility

Figure 1: GDP Growth and 12 Month Rolling Volatility of GDP Growth for Germany (DE),
Spain (ES), France (FR) and Italy (IT) Using Data From Q2-2005 Until Q2-2020.

3 Methodology

This section explains the methods that are used to nowcast GDP growth. The time of observation

of a variable is denoted as t for t ∈ (1, .., T ). The latent states of the variable observed at

quarterly frequency (GDP growth) are denoted as yq,t, with q denoting the quarter, and t being

the month under consideration. The variables observed at monthly frequency are denoted as

yw,t, and the entire vector of variables at time t is denoted as yt = (y′q,t, y
′
w,t)

′. Note that the

variable under consideration is denoted by m, ∀m ∈ (1, ..,M), for which p = 5 lags are added in
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the models. Xt = (y′t−1, ..., y
′
t−p)

′ is a Q(=Mp)-dimensional vector containing all the variables

under consideration, as well as their lags at time T . Lastly, X = (X1, .., XT )
′ is the TxQ matrix

containing all the data including the lagged values, and Y = (y1, .., yT )
′ is the TxM matrix

containing all data on the variables.

The framework used for GDP nowcasting in this paper closely follows the framework as

outlined by Huber et al. (2023). First of all, monthly and quarterly GDP growth rates have the

relation indicated in Equation 1, where the right hand side of the equation is scaled s.t. the

scales of the monthly and quarterly growth rates are comparable (Huber et al., 2023). Therefore,

this equation will be used to convert monthly estimates of GDP growth to quarterly estimates

that can be compared to the actual released GDP growth figures.

yQ,t =
1

9
yq,t +

2

9
yq,t−1 +

1

3
yq,t−2 +

2

9
yq,t−3 +

1

9
yq,t−4 (1)

In this paper, all models are vector autoregressive models. We assume that our vector of time

series data, yt, follows the process as outlined in Equation 2, where F (Xt) = (f1(Xt), ..., fM (Xt))
′

is a vector of functions that map the covariates to each of the dependent variables, and Σt is

the covariance matrix of the system.

yt = F (Xt) + ϵt, ϵt ∼ N (0,Σt) (2)

This paper proposes 3 specifications of the function fm(Xt), and two ways to define the covari-

ance matrix Σt. First of all, Section 3.1 will implement Bayesian additive regression trees, to

obtain the MF-BAVART model as introduced by Huber et al. (2023). Secondly, Section 3.2 will

introduce a Gaussian process which takes inspiration from Hauzenberger et al. (2024), to get

a mixed frequency Gaussian vector autoregressive process. This section will also introduce a

second version of the covariance matrix, one with an outlier adjusted stochastic volatility speci-

fication. Finally, Section 3.3 outlines a linear model to obtain a simpler mixed frequency vector

autoregression model (MF-VAR), as used more frequently in macro-economic nowcasting. The

other subsections will discuss the estimation of the models, as well as evaluation metrics used

to evaluate the nowcasting performance of the models.

3.1 Mixed Frequency Bayesian Additive Vector Autoregressive Trees

In this section, the mixed-frequency Bayesian additive vector autoregressive trees (MF-BAVART)

model is explained. This model closely follows the MF-BAVART model as introduced by Huber

et al. (2023). First of all, the covariance matrix in Equation 2 is constant in this case, Σt = Σ.

Furthermore, every fm(Xt) is assumed to be a BART model as specified in Equations 3 and 4.

fm(Xt) ≈
S∑

s=1

gms(Xt|τms, µms), (3)

g(X|τ, µ) =
b∑

r=1

µr1(X ∈ Ar) (4)
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Here, S denotes the number of trees in the model, which is set to 250 in this paper. µms

denotes the terminal nodes of tree ms, and τms denotes the tree structure of tree ms. I is the

indicator function, and Ar indicates the r
th partition set of the tree. When considering a simple

example of a single tree g(X|τ, µ), this might look as follows.

GDP

IPt−1 < 0.01

ESIt−4 < 0.02

0.5 1.5

It < 3

3 1

GDPt−2 > 1

PMIt > 0.025

-1 2

3

In a tree model, predictions are made by classifying a dependent variable along the tree, and

assigning the appropriate value of the partition set to the observation. In this example, GDP

growth is classified according to the variables described in the tree. Therefore, the actual values

of the variables will decide which branch of the tree is chosen at every step, and which terminal

node is chosen as prediction of GDP growth. In this example, the tree has the following terminal

nodes [−1, 0.5, 1, 1.5, 2, 3]. In an actual BART model, many such trees are obtained, which are

added to acquire the desired model. Using a BART model has several advantages when modeling

data that has nonlinear properties, such as samples that include crisis data. The BART model

enables the system to handle outliers, as the outliers can be absorbed by either different branches

of a tree, or different trees altogether (Huber et al., 2023). However, because of the great

flexibility the BART model offers, issues regarding overfitting on the training data might arise.

This can arise as creating separate branches or trees for every observation might create very low

training errors, but leads to poor predicting performance. Therefore, regularization priors need

to be imposed on the structure of the trees, in order to reduce overfitting, while at the same

time attempting to keep the flexibility offered by the model.

Equations 5 and 6 are priors imposed on the tree structure to simplify the rest of the

prior specification. These priors impose the tree structure (τms, µms), and the terminal node

parameters to be independent of each other.

p((τm1, µm1), .., (τms, µms)) =
∏
s

p(µms|τms)p(τms), (5)

p(µms|τms) =
∏
i

µi,ms|τms) (6)

Because Equation 5 and 6 impose independence between the different tree structure and the

terminal nodes, all that is left is specifying separate priors for the the tree generating process,

the terminal nodes, and the covariance matrix. Therefore, what follows in this section is a

description of these priors. Firstly, similarly to Huber et al. (2023), formula 7 specifies the prior

for the tree generating process, namely the probability that a node is not a terminal node. This

prior therefore limits the degree of overfitting and keeps the trees simple. The prior is specified

as follows:

8



α(1 + n)−β, α ∈ (0, 1), β > 0, (7)

where α and β are scalar parameters that specify the penalty used to control the complexity of

the tree structures. Note that lower values of α, and higher values for β lead to less complex

trees. Similarly to Huber et al. (2023), this paper chooses the values α = 0.95, and β = 2.

These values are chosen as they are shown to perform well in a wide variety of estimation

problems. Furthermore, the threshold, that is used when determining which branch along the

tree is taken when making predictions should be specified. This threshold is chosen to take a

uniform distribution over the possible values of the independent variable under consideration.

Similarly, the variable chosen in the splitting rule is chosen randomly from the columns of X.

The prior for the terminal nodes is chosen similarly to Huber et al. (2023), and is specified

as follows

µi,ms|τms ∼ N (0, σ2
µm), (8)

σµm =
1

2γ
√
S
, (9)

with µi,ms indicating the ith terminal node of tree ms, γ being a positive constant set equal to

2, and S the number of trees. This prior specification leads to a wider prior variance when the

range of values of the variable under consideration is larger. This should help the model return

wider predictive distributions when facing outliers, as outliers will cause a larger prior variance,

and thus a less restrictive prior. Furthermore, an increase in the number of trees or the value

for γ decreases the prior variance, and thus leads to a more restrictive prior. It is desirable for

an increasing number of trees to result in a more restrictive prior, as increasing the number of

trees increases the flexibility of the model. To limit the degree of overfitting, the prior variance

should therefore be more restrictive in these instances. Note that the value of γ implies that the

range the dependent variable takes on is a 95% confidence interval for the conditional mean of

the prior distribution (Huber et al., 2023).

Lastly, the prior that handles the covariance matrix will be discussed. First of all, the

variance-covariance matrix Σ is decomposed to enable the specification of separate priors for the

variances and covariances. This decomposition is defined as Σ = QHQ′. Q is a lower triangular

matrix of covariances and H is a diagonal matrix of variances, diag(σ2
1, ..σ

2
M ). The variances are

sampled from an inverse Chi-square distribution, to restrict the flexibility of the model. The

Chi-square distribution used is the same as specified by Huber et al. (2023). Furthermore, a

horsehoe prior is imposed on the matrix Q. Let qmz be the (m, z) element of matrix Q, with

z<m. A horseshoe prior is imposed on every element qmz, thus imposing the horseshoe prior on

every element below the diagonal.

qmz|τmz, λ ∼ N (0, τ2mzλ
2), τmz, λ ∼ C+(0, 1) (10)

Equation 10 specifies the horseshoe prior, as introduced in Carvalho, Polson, and Scott (2010),
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and C+(0, 1) is used to denote a half-cauchy distribution. λ is a scalar that serves as a common

factor to regularize the covariances, whereas τm,z also regularizes the covariances, but can differ

across elements.

The horseshoe prior is a shrinkage approach, which functions as a way to reduce the di-

mensionality of a large estimation problem. This prior has two main characteristics. The first

important characteristic is the ability to not shrink strong signals too heavily, which is made

possible due to the half-cauchy distribution. At the same time, the horseshoe prior heavily

shrinks the coefficients that are close to zero. These two properties enable the prior to reduce

the dimensionality of large estimation problems. Note that another shrinkage method, such as a

discrete mixture method or other shrinkage priors, could have been chosen. However, due to the

desirable properties of the horseshoe prior and the possible issues that can arise with discrete

mixture methods, which include the size of the set of solutions, the horseshoe prior is chosen in

this paper (Carvalho et al., 2010).

3.2 Mixed Frequency Gaussian Vector Autoregressive Process

Huber et al. (2023) use a BART model as underlying model for the mixed frequency nowcasting

process. The motivation of this BART model mostly relates to its ability to handle outliers, and

therefore its suitability for data samples including crisis observations. However, Hauzenberger

et al. (2024) introduce a framework for MIDAS models that incorporates a prior on the process.

Specifically, BART and Gaussian process (GP) priors are tested against a linear model with

a horseshoe prior imposed on the coefficients of the model. In their research, the GP prior

outperforms the BART prior in all samples, including the sample of Covid-19 data, with a more

pronounced outperformance in the sample preceding COVID-19.

This result inspires this paper to use a Gaussian process instead of a BART model in the

mixed frequency framework. Therefore, this section outlines a Gaussian process used to create

a mixed frequency Gaussian vector autoregressive process (MF-GVARP) model, taking strong

inspiration from Huber et al. (2023), as well as Hauzenberger et al. (2024). Secondly, this

section outlines an outlier adjusted stochastic volatility (SVO) covariance matrix that is used in

the MF-GVARP model to create the MF-GVARP-SVO model.

The MFGVARP model assumes every model fm(Xt) in Equation 2 to be a Gaussian process.

A Gaussian process is a non-parametric regression method that assumes the target variable to

be represented by a draw from a multivariate normal (Gaussian) distribution. The entire process

can be specified by the mean and covariance function of the multivariate normal distribution.

Therefore, every fm(Xt) can be defined as in Equation 11 (Ebden, 2015).

fm(Xt) ∼ GP(0,K(Xt, X
′
t), (11)

This paper chooses the mean function to be zero, and the covariance function K to be a

radial basis kernel function. Using the full data matrices X and Y (as is done in Equation 4),

Equation 11 takes the form of Equation 12.
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fm ∼ N (0,K(X,X ′)) (12)

The kernel function determines the covariance of the observations, and thus imposes the sim-

ilarity between the data at time t1 and t2, where similarly to Hauzenberger et al. (2024), the

(t1, t2) element of k(X,X ′) is given by k(xt1, xt2). This paper uses a radial basis function, which

is given by k(xt1, xt2) = exp(−ϕ||xt1 − xt2||2). Caputo, Sim, Furesjö, and Smola (2002) find

that setting ϕ equal to any number between the 10% and 90% quantiles of ||Xt − X ′
t|| results

in optimal predictive performance of the model. Therefore, ϕ is chosen to be the mean value

of these 10% and 90% quantiles (Karatzoglou, Smola, Hornik, & Zeileis, 2004). The covariance

matrix used in the MF-GVARP model is the same as used for the MF-BAVART model, and is

described in Section 3.1.

After specifying the MF-GVARP model, there is a final point that stays unaddressed. The

main argument Huber et al. (2023) suggest in favour of their BART specification, is its ability

to handle outliers. This stays unaddressed in the current GP specification, as argued by Li, Li,

and Shao (2021) among others. Furthermore, as we have seen in section 2, the volatility of GDP

growth is not actually constant over time. Therefore, we introduce a covariance matrix that is

time-varying and improves the model’s ability to handle outliers. Carriero et al. (2022) introduce

a covariance matrix with a stochastic volatility specification and an outlier correction, which they

find to insulate forecasts from outlying values. This specification also ensures that the covariance

matrix is time-varying. The outlier adjusted stochastic volatility (SVO) covariance matrix will be

used in this paper as a covariance matrix for the MF-GVARP model, creating the MF-GVARP-

SVO model. From the specifications considered in the paper by Carriero et al. (2022), the SVO

specification has been chosen, as this is argued to be especially adequate for data containing

rare events that double volatility, which is present in the GDP data (see Figures 1a and 1b).

Therefore, the covariance matrix of Equation 2 will be specified as: Σt = QBtΩtB
′
tQ

′. Here, Q

determines the covariance, similarly to Q in section 3.1, with Q being a lower triangular matrix,

with all diagonal elements equal to 1, and the off-diagonal nonzero elements of Q following a

horseshoe prior as specified in Equation 10. Contrary to Section 3.1, Ωt is a time-varying diagonal

matrix, with every diagonal element following a stochastic volatility specification as specified by

Huber et al. (2023) and Kastner (2016). Therefore, the mth diagonal element corresponding to

the mth variable follows Equations 13 - 18.

σ2
m,t-sv = σ2

m,t + exp(ηt), (13)

ηt = µ+ ϕ(ηt−1 − µ) + σ2
ηt, (14)

η0 = N (µ,
σ2
η

1− ϕ2
), (15)

µ ∼ N (0, 10), (16)

ϕ ∼ β(5, 1.5), (17)

σ2
η ∼ γ(0.5, 10) (18)

11



In this case, the variances in Ωt are time-varying. This time-varying property of the covari-

ance matrix is motivated in section 2, where the volatility of GDP growth is found to fluctuate

over time. The specifics of the stochastic volatility process are obtained from Kastner (2016).

Here, the volatility is assumed to consist of two components, a component that is similar to

the variance component of the MF-BAVART model in section 3.1, and an unobserved time-

varying variance component. The logarithm of this unobserved component is assumed to follow

a first-order autoregressive process over time. Priors are set on each of the parameters of the

autoregressive process as specified in Equations 15 - 18.

Lastly, Bt is a diagonal matrix, which is introduced to improve the model performance in

the presence of outliers. The element of B corresponding to the mth variable at time t is defined

as

bm,t =

{
1, with probability 1− pm

U(2, 20), with probability pm
(19)

with pm being sampled from a β(1, 1) prior. This matrix increases the variance of the mth

variable with probability pm. This specification should help insulate the Gaussian process from

placing too much weight on extreme observations, and thus increase nowcasting performance,

especially in samples where outlying observations distort model performance. The β(1, 1) prior

is chosen as a generalisation of the β prior used by Carriero et al. (2022). However, as this

β(1, 1) distribution is essentially a uniform distribution on the range [0,1], the prior is not that

restrictive. Therefore, the model could give nowcasted distributions that are too wide with this

specification, in which case a different prior could be more suitable. This paper leaves this topic

up to further research.

3.3 Mixed Frequency Vector Autoregression

As a third model, this section introduces a Mixed Frequency Vector Autoregression (MV-VAR)

model, similar to the model used by Huber et al. (2023), that draws inspiration from Schorfheide

and Song (2015). This model is created by imposing every Fm(Xt) in Equation 4 to be a linear

model, such that

Fm(Xt) = EXT . (20)

The horseshoe prior from Equation 10 is imposed on vec(E) as a regularization. The priors

imposed on the covariance matrix Σ are the same as used in 3.1. Therefore, the only difference

between the MF-VAR and MF-BAVART model is the specification of fm(Xt), which is linear in

the MF-VAR case, and nonparametric in the MF-BAVART model.

3.4 Estimation

All three models outlined in sections 3.1, 3.2 and 3.3 will be estimated using the framework

described in Huber et al. (2023). The estimation procedure consists of several steps, that are

very similar for the models under consideration in this paper. The main difference will be

in the steps concerning the underlying model (BART, GP or a linear model), and the covari-
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ance parameters (with or without outlier adjusted stochastic volatility specification). Firstly

we describe the overall estimation framework, as outlined by Huber et al. (2023), as well as

the posterior used to draw from the horseshoe prior. The estimation is done using a Markov

Chain Monte Carlo (MCMC) algorithm, specifically a Metropolis within gibbs sampler. The

overall estimation framework consists of an MCMC algorithm that samples from the conditional

posterior distributions of the models and updates all variables accordingly in each iteration of

the process. In every iteration, the following steps are executed.

First of all the model (BART, GP or a linear model) is simulated, as explained in Sections

3.4.2, 3.4.3 and 3.3. As a second step, the covariance matrix is constructed. Next, the latent

states obtained from the estimated models are simulated using forward filtering backwards sam-

pling (FFBS). If we want to make predictions, we finally draw from the predictive distribution.

At every iteration, all the relevant parameters are updated as described in the previous subsec-

tions. The estimation of the models and the method used to obtain the covariance matrices are

explained in the following sections. Section 3.4.1 describes the estimation of the horseshoe prior,

as well as the latent states and the predictive distribution. Section 3.4.2 describes the estimation

of the Gaussian process defined in Section 3.2, and Section 3.4.3 describes the estimation of the

MF-BAVART model as described in Section 3.1. Note that in this section, we denote vt the

variable under consideration at time t, with v = (v1, ..vT ).

3.4.1 Latent States and Horse Shoe Prior

This section outlines common steps of the estimation processes, namely the estimation of the

horseshoe prior, the latent state drawing, and the generation of forecasts. Draws for the horse

shoe prior on the covariance matrix and the E matrix in Equation 20 are obtained as follows.

Let Q denote the matrix on which the horse shoe prior is imposed. qm is sampled from a

multivariate Gaussian posterior, that is specified as in Huber et al. (2023).

qm|Ξ ∼ N (um,Ωm), (21)

Ωm = (Z ′
mZm + V −1

m )−1, (22)

um = ΩmZ ′
mỸm. (23)

Here, Ỹm = Ym − fm(X), and the auxiliary parameters are obtained as follows.

τ2mi|Ξ ∼ G−1(1,
1

wmi
+

q2mi

2λ2
,∀i ∈ (1, .., j − 1), (24)

λ2|Ξ ∼ G−1(
M(M − 1) + 2

4
,
1

ζ
+

1

2

∑
i

∑
m

(
q2mi

τ2mi

)), (25)

wmi|Ξ ∼ G−1(1, 1 + τ−2
mi ), (26)

ζ|Ξ ∼ G−1(1, 1 +
1

λ2
). (27)

Because of the highly nonlinear nature of the nonparametric MF-BAVART and MF-GVARP

models, using simple FFBS methods is not appropriate to draw the latent states of quarterly

GDP growth. Therefore, similar to Huber et al. (2023), a linear approximation is used. To
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produce this linear approximation, the matrix X is projected on F, Õ = X+F , where + is used

to denote the Moore-Penrose inverse. Õ is used to create a linear approximation of the model,

using

yt = Õ′Xt + ϵt (28)

This linear approximation of yt has Gaussian shocks. Therefore, standard FFBS algorithms can

be used to approximate the latent states of GDP growth.

Lastly, forecasts are made similarly to Huber et al. (2023), by directly sampling from the

predictive distribution

yt+1|Ξ, Y = N(f(Xt+1),Σ). (29)

Draws from Equation 29 are draws of the distribution of latent monthly GDP growth percent-

ages. These values are then transformed into quarterly GDP growth nowcasts using Equation 1.

The quarterly predictions are stored in every iteration of the model. These quarterly predictions

are then used as a distribution for the nowcast of GDP for the quarter under consideration.

3.4.2 Gaussian Process Estimation

A Gaussian process specifies the data to follow a multivariate normal distribution with a specified

mean and covariance function. Therefore, a closed form solution for the posterior distribution can

be derived. The model is subsequently fitted with maximum likelihood estimation to maximize

the probability of the posterior likelihood function. 1 If we assume that the target variable is

observed with some noise, then the observed value is denoted as s(Xt). If in addition we assume

this noise to be Gaussian with mean zero, the posterior distribution is specified as follows.

p(Y |s) =
∏
t

(p(Yt − s(Xt))
1√

(2π)Tdet(K)
exp(

1

2
s′K−1s) (30)

Here, K is the kernel matrix as defined in section 3.2. Substituting s = Kl, with l being a linear

combination of the matrix K, results in the likelihood of Equation 31.

ln(p(v|Y ) = − 1

2σ2
||Y −Kv||2 − 1

2
v′Kv + c (31)

Maximizing this likelihood w.r.t l results in the linear combination l = (K+σ2I)−1v, which can

be used to predict and sample from the model, via vt = K(Xt, X
′
t)l. Note that every iteration of

the implemented MCMC algorithm samples from the estimated Gaussian process, as explained

in Section 3.4. (Karatzoglou et al., 2004).

The final part of this section will explain the estimation of the outlier adjusted stochastic

volatility covariance matrix of the MF-GVARP-SVO model. In order to specify this estimation

process, it is important to note that two parts change relative to the specification used in

the MF-BAVART model by Huber et al. (2023). Namely, the volatility of the variables, as

defined in H, becomes time-varying using a stochastic volatility specification. Furthermore, a

1The Gaussian process will be fitted with an the kernlab R package
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diagonal matrix Bt is added to improve the models ability to work with outliers in the data.

The Bt matrix is obtained relatively simply, by sampling from the distributions as specified in

Section 3.2. The stochastic volatily estimation is more involved, because a closed form posterior

distribution can not be derived. Therefore, a Metropolis-Hastings algorithm is used to simulate

the posterior.2 The idea behind this technique is to draw from the prior distributions of µ, ϕ, and

σ2
ηt, as defined in Equation 13, to simulate the posterior distribution. The prior distribution, as

well as the distribution of the dependent and independent variables can be combined to obtain

the posterior distribution of the latent log-variances ηt. This combination is made with the

idea of Bayesian statistics in mind, namely that the posterior distribution of the parameter

vector ξ can be denoted as p(ξ|x, v) = p(x,y|ξ)
p(x,y) ∝ p(x, v|ξ)p(ξ). The distribution p(x, y) can

not be easily calculated. However, the algorithm used ensures that this probability cancels out

in the estimation process, and thus only the distribution p(x, v|ξ)p(ξ) specifies the posterior

distribution. The distribution of the latent states of volatility is estimated in every iteration

and used to estimate these latent states, and obtain estimates of the volatilities in H.

3.4.3 MF-BAVART Estimation

A Bayesian Additive Regression Tree (BART) is estimated similarly to Huber et al. (2023), using

the framework outlined by Chipman et al. (2010). The estimation of the BART uses two steps,

the estimation of the trees, and the estimation of the terminal nodes. Firstly, using Equation

32, the tree structures can be sampled independently from the terminal nodes.3

p(τmz|Rmz, qm, Zm, σm) ∝ p(τmz)

∫
p(Rmz|µmz, τmz, qm, Zm, σm)p(µmz|τmz, qm, σm)dµmz (32)

Here Rmz is is a vector of residual values that is dependent on previously fitted trees, Rmz =

Ym−
∑

w ̸=d gmw(X|τmw, µmw)−Zmqm. Similarly to Huber et al. (2023), Zm = (Z1m, .., ZmT ) is

a vector containing the shocks of the previously estimated trees. σm and qm are the prior values

drawn from the horseshoe prior and variance matrix as specified in Section 3.4.1.

The tree structures are estimated by drawing from Equation 32, which is done with a

Metropolis-Hastings algorithm. In this algorithm, a candidate tree is drawn from the poste-

rior distribution in Equation 32, and is accepted with a certain probability. After estimating

the tree structures using Equation 32, the terminal nodes are drawn from a multivariate normal

distribution, derived from Equations 8 and 9.

3.5 Evaluation Metrics

To compare the performance of the different models, several performance metrics are used.

This paper uses the root mean squared error to evaluate point nowcasts, and the cumulative

log predictive score and probability integral transform to evaluate the entire predictive density

of the nowcasts provided by the models. The following subsection highlights the performance

metrics used. In this section, ˆyQ,c denotes the GDP growth nowcast of quarter Q made at time

2Note that the R package stochvol is used to implement the stochastic volatility specification, and obtain the
latent states of the variance process.

3The dbarts package in R is used to estimate the BART model.
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c, ∀c ∈ (1, .., C), where C is the total amount of nowcasts made. Similarly, yQ,c is the actual

value of GDP growth corresponding to the nowcast.

3.5.1 Root Mean Squared Error

The root mean squared error (RMSE) will be used to compare the performance of the point

nowcasts of the different models. The RMSE is calculated as follows:

RMSE =

√√√√ C∑
c=1

(yQ,c − ŷQ,c)2, (33)

where C is the amount of nowcasts in the test sample. The RMSE is taken instead of a mean

squared error to obtain a metric that has the same scale as the nowcasts, which eases inter-

pretability. Note that lower values of the RMSE are preferred.

3.5.2 Cumulative Log Predictive Score

Cumulative log predictive scores (LPS) are used to compare the entire nowcasted distribution

of GDP growth of different models. The LPS are computed as

LPS =

C∑
c=1

log(ϕ(xc)), (34)

where ϕ denotes a normal distribution with a mean and standard deviation equal to the mean

and standard deviation of the vector of nowcasted GDP growths at time c. Here, the vector of

nowcasted GDP growth is meant to be the list of nowcasts at time c, obtained by storing the

nowcasts made at every iteration of the MCMC sampler, as described in section 3.4. Larger

values for the LPS are preferred, as smaller values indicate worse nowcasting performance.

3.5.3 Transformed Probability Integral Transform

To compare the absolute nowcasting performance of the models, transformed probability integral

transforms (PIT) will be used. Similarly to Huber et al. (2023) and Clark (2011), these values

are obtained as follows. First, the probability integral transform (PITstandard) is obtained using

Equation 35.

PITstandard =
#(nowcasts < actual GDP Growth)

#nowcasts
(35)

Here, the nowcasts are the list of nowcasts obtained from storing the nowcasts made in every

iteration of the MCMC sampler. Therefore, Equation 35 uses an approximation of the empirical

CDF of the nowcast made at time t, to approximate the value of the empirical CDF evaluated

at the actual (realised) value of GDP growth in the corresponding quarter.

To get a metric that can be used to evaluate the absolute performance of the models, the

standard PITs are transformed using Equation 36, where Φ−1 is the inverse CDF of a standard

normal distribution.
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PIT = Φ−1(PIT ) (36)

These PITs should follow a standard normal distribution (Huber et al., 2023). Therefore, the

mean (µ), variance (σ2) and a first order autoregressive coefficient (AR(1)) (as calculated by an

AR(1) process) will be presented. Perfectly calibrated models will have PITs with a variance of

1, and a mean and AR(1) coefficient of 0.

4 Results

This section discusses the results of the models introduced in Section 3. All models are estimated

with 1000 draws of the MCMC algorithm, using the first 500 draws as burn-in. The models are

used to make GDP nowcasts from Q1-2011 until Q2-2020, using an expanding window approach.

This indicates that data is added to the training set as it is made available as time passes. The

set of training data therefore grows in every time step of the estimation process. Furthermore,

data is assumed to be known directly after the end of the corresponding month or quarter,

resulting in monthly variables being added to the training set at the start of the next month,

and GDP growth of the previous quarter at the start of next quarter. Therefore, models using

data until April 2011 will have GDP growth of Q1 2011 included in the data, and observations

on all monthly variables up to and including April 2011.

The nowcasts are made as follows. To make a nowcast of the first quarter of GDP growth

in January 2011, the latent state of GDP growth in January is estimated, and the latent states

of GDP growth for February and March are forecasted, after which the GDP nowcast is made

using Equation 1. This is done similarly in February, where only the latent state of GDP growth

in March is forecasted using data until February 2011, and in March, when the latent states of

GDP growth are estimated, but no forecasts are made. Therefore, 3 estimates of GDP growth

are obtained in each quarter. One made in every month of the quarter, denoted as M/Q 1, M/Q

2 or M/Q 3. All models give density estimates of the quarterly GDP growth. If point nowcasts

are discussed, they are created by taking the median of the density estimate.

4.1 Model Performance

Table 2 shows the RMSE and LPS for the different models for every country. These metrics have

been calculated three times for every country, once for every month of the quarter. This enables

the evaluation of the models in every month of the quarter separately, namely for the first,

second, and third month respectively. Such a comparison is useful as it might be worth using

different models depending on the month of the quarter if the distinction in model performance

is substantial. The table shows these metrics for two periods. The left side of the table has a

nowcasting period running from Q1-2011 until Q4-2019. The right side of the table also includes

the Covid periods of the sample, the first and second quarter of 2020. The separation of the

data in two samples enables the comparison of the nowcasting performance of the models in

periods with and without outlying crisis observations.
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4.1.1 Pre-Covid

Table 2 clearly shows that RSMEs decrease for all models when we move further into the quarter.

This is as expected as new information is released, which is information of the same quarter as

the GDP growth nowcast made. Therefore, this additional data should hold some information

about GDP growth in the quarter. For example, if the industrial production growth is very high

in the first month of the quarter, this would indicate high economic activity in the first quarter.

The GDP growth would therefore increase in this quarter, which would be reflected in the GDP

growth nowcast.

Furthermore, when comparing the models, the table shows mixed results on the performance

of MF-BAVART against MF-VAR in the sample until Q4-2019. For Germany and Spain, the

RMSE of the MF-BAVART model is consistently lower than the MF-VAR equivalent. How-

ever, for France and Italy, this conclusion is switched, with the MF-VAR outperforming the

MF-BAVART model. When including the the MF-GVARP model in the comparison, Table 2

shows that the RMSEs of this model underperform the MF-BAVART model in all instances.

For the MF-VAR model this is less clear, with underperformance in most instances, but some

periods with lower MSPEs as well. Therefore, based on the RMSEs in the sample until 2019,

the Gaussian process does not seem to improve point nowcasts over the usage of BART. This

underperformance can be explained by the flexibility of Gaussian processes, which might lead

the model to fit too closely to the training data, which results in poorer out of sample nowcasting

performance.

When looking at the MF-GVARP-SVO model, Table 2 shows that the model has higher

RMSEs than the standard MF-GVARP model without a SVO component. Remember that the

covariance matrix in this model is defined such that an observation is given an increased variance

with probability pm. Therefore, this specification is build upon the assumption that there are

at least some outliers present in the data. However, looking at the data in the sample until

Q4-2019, there are not that many outlying observations present, especially in the nowcasting

period. Therefore, imposing this prior on the covariance matrix might increase the variance

imposed on certain variables too much, which can lead to worse nowcasting results.

Looking at the LPS values displayed in the left hand side of Table 2, consistent with Huber

et al. (2023), the MF-BAVART model seems to outperform the MF-VAR slightly. Overall, the

MF-BAVART model has higher LPS values, and the differences between the performance of the

models are larger if it is the better model of the two, apart from for France. Therefore, the

density nowcasts of the MF-BAVART model slightly outperform the MF-VAR model.

Moreover, using the MF-GVARP model results in higher LPS values for all instances com-

pared to both the MF-BAVART and MF-VAR models. Using this specification therefore seems

to result in poorer overall distributional nowcasts. This can be attributed to a too high variance

imposed in the model, which results in a posterior distribution which is too wide, assigning a

low density to the actual realised value of GDP growth. This gives rise to the idea that perhaps

a different prior on the variance σ2
m could be useful to reduce both the RMSE and increase

the LPS in samples with stable macro-economic conditions. Table 2 also shows that using the

MF-GVARP-SVO model does not results in consistently lower LPS than using the MF-GVARP

model, with roughly half of the values lower, and half higher. In this case, using the SVO co-
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variance matrix results in nowcasts that are wider than required. In economically stable times,

such as the nowcasting period under consideration here, this will result in too low probability

densities being assigned to the actual value of GDP growth, which results in a lower LPS.

4.1.2 Full Sample

Looking at the right side of Table 2, we see that including the pandemic observations clearly

leads to worse overall GDP growth nowcasts. This can be seen by the increase in RMSE and

decrease in LPS in Table 2. This worse performance is due to the last few COVID observations,

as these are the only differing data points between the left and right parts of the table. Section 2

showed that these Covid-19 observations are clearly outlying datapoints, with much lower GDP

growth numbers compared to the rest of the sample. Therefore, nowcasting models seem to have

issues with accurately predicting these datapoints.

Furthermore, when comparing the MF-BAVART and MF-VAR models, the conclusion of the

comparison between the two models based on the RMSE does not change much. There is still

no model that clearly outperforms the other based on this metric. There are some instances for

which the MF-BAVART model performs better, but this is not always the case.

Including the MF-GVARP model in the comparison, table 2 shows that the performance

of the point nowcasts of the MF-GVARP model display relative improvement compared to the

point nowcasts of the MF-VAR and MF-BAVART models when including the pandemic period.

This model outperforms the MF-BAVART model in roughly 40% of the time, and the MF-VAR

model in 50% of the time. Therefore, the flexibility of the MF-GVARP model seems to lead to

relatively improved nowcasts when including crisis observations. However, clear outperformance

of the model is not evident.

Interestingly, the MF-GVARP-SVO model still underperforms the MF-GVARP model in

this sample, indicated by higher RMSEs in most cases. This is especially evident by the RMSEs

for the first month of the quarter, caused by GDP nowcasts that are off by a large amount in

the first month of the second quarter of 2020. The model predicts GDP growth values that are

much too high for this period, due to the outlier specification of the covariance matrix.

When looking at the LPS, the worsening of the model performance is also clear for all

models when including the COVID-19 period. Again in this case, the MF-BAVART model

outperforms the MF-VAR model slightly, with the difference between the two becoming more

pronounced. The model therefore seems to have better density forecasts in the presence of large

volatility and outliers compared to the MF-VAR model. This is consistent with the conclusion

from Huber et al. (2023), and can be explained as follows. Because of the underlying BART

model in the mixed frequency framework, there are two ways this model handles outliers. The

model can either create a new tree with very few observations, or it can create a new node in a

more complicated tree. Both methods will absorb these outlying observations. Furthermore, as

these nodes of outlying observations have few observations, they add little information to the

likelihood, which is reflected in the wide variance of the distributional GDP nowcast (Huber et

al., 2023).

Furthermore, Table 2 clearly shows that the relative performance of the MF-GVARP model

compared to the MF-BAVART and MF-VAR models has improved enormously. The LPS values
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of the MF-GVARP model have increased only relatively little when including these pandemic

observations, resulting in substantial outperformance using the nowcasts until Q2-2020. This

can be explained by a wider distribution of GDP nowcasts, as will be illustrated in section 4.2.

These wider distributions will assign a higher likelihood to the outlying observations of the GDP

growth data points influenced by COVID. Therefore, the corresponding LPS will be higher.

Looking at the MF-GVARP-SVO model, contary to the RMSEs, the LPS actually show a

clear outperformance of the MF-GVARP-SVO model compared to the other models. The MF-

GVARP-SVO model has higher LPS values than the MF-GVARP model for all observations.

Therefore, the covariance specification seems to correctly shield against outlying values when

looking at the entire distribution of the GDP nowcast. This can be attributed to the prior

imposed on the covariance matrix, which can also be used to explain the worse performance

in the sample until Q4-2019. In the full sample, until Q2-2020, there are outlying observations

added to the data (the Covid period). The covariance specification of the MF-GVARP-SVO

model predicts these outliers with a probability pm. Therefore, larger variances are imposed

with probability pm. These larger variances are actually appropriate in this case, which leads to

relatively more accurate nowcasted distributions of GDP growth.

Concluding, based on the LPS, the MF-GVARP and MF-GVARP-SVO models seem to

perform better relative to the MF-BAVART and MF-VAR models in more uncertain times, e.g.

times of economic turmoil such as the COVID-19 period. Also, similarly to Huber et al. (2023),

this paper finds that the MF-BAVART model performs better than the MF-VAR model in

uncertain times. These findings can be explained by a quickly widening nowcasted GDP growth

distribution returned by the MF-GVARP and MF-GVARP-SVO models, and to a lesser extent

the MF-BAVART model, when the uncertainty of the estimate increases. For the MF-GVARP

models this is mostly due to the great flexibility of Gaussian processes. A Gaussian process

is a very flexible model, with the ability to fit to any nonlinear relationship in the data. This

results in very flexible models, with the ability to closely fit the data fed to the model. However,

this has the drawback of overfitting on the training data. Moreover, in economically stable

times, the MF-GVARP and MF-GVARP-SVO models cannot improve the MF-BAVART and

MF-VAR models, potentially caused by predicting too wide distributions. Lastly, adding a SVO

specification to the covariance matrix of the model results in worse point nowcasts. However, it

does result in a better overall distribution of the nowcasts as measured by the LPS.
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Until 2019-Q4 Until Q1-2020
MF-BAVART MF-VAR MF-GVARP MF-GVARP-SVO MF-BAVART MF-VAR MF-GVARP MF-GVARP-SVO

RMSE LPS RMSE LPS RMSE LPS RMSE LPS RMSE LPS RMSE LPS RMSE LPS RMSE LPS

Germany
M/Q 1 0.539 -33.951 0.625 -40.881 0.782*** -63.911*** 0.929*** -48.282 1.334 -59.837 2.526 -327.643 2.365 -77.192 3.277 -56.629
M/Q 2 0.521 -33.133 0.569 -42.728 0.676*** -72.382*** 0.699* -37.557 1.769 -121.416 2.186 -329.132 1.967 -110.920 1.118 -46.845
M/Q 3 0.475 -28.267 0.552* -37.309 0.568* -56.468** 0.518 -43.663 1.708 -109.601 2.136 -236.424 1.513 -81.077 1.390 -58.350
Spain
M/Q 1 0.286 -12.197 0.366** -23.110 0.311 -37.030 1.113** -76.235*** 2.237 -493.212 3.340 -555.403 3.171 -90.198 18.038 -85.621
M/Q 2 0.269 -10.248 0.342** -17.655 0.345** -27.506* 0.839*** -65.007*** 3.146 -523.810 2.543 -616.076 3.780 -301.738 2.410 -72.181
M/Q 3 0.248 -5.142 0.337** -16.206** 0.314 -28.536** 0.498*** -26.451** 2.865 -294.976 2.314 -631.698 2.828 -218.511 3.052 -64.031
Italy
M/Q 1 0.373 -10.524 0.304 -11.550 0.510* -29.275** 1.029*** -58.256*** 1.557 -221.829 1.093 -133.399 2.362 -384.997 11.201 -98.766
M/Q 2 0.367 -10.986 0.305 -10.024 0.396 -15.636 0.608** -30.523*** 2.832 -249.809 1.128 -159.560 2.210 -107.062 1.937 -103.079
M/Q 3 0.354 -10.858 0.331 -9.754 0.393 -26.437* 0.449 -21.448 1.552 -43.906 1.424 -129.908 1.927 -60.340 7.861 -59.208
France
M/Q 1 0.331 -18.678 0.312 -9.565 0.387* -30.078 0.515** -29.074 1.374 -371.846 1.413 -219.100 2.921 -160.071 21.596 -126.885
M/Q 2 0.310 -15.757 0.295 -7.541* 0.392** -46.342** 0.426** -31.042* 2.410 -481.872 2.502 -347.897 2.216 -292.631 2.016 -124.258
M/Q 3 0.302 -14.147 0.283 -5.226* 0.368** -31.518** 0.317 -17.321 2.467 -95.400 1.841 -294.039 2.092 -303.810 6.829 -123.959

Table 2: RMSE and LPS of the Different Models for Every Country and Month of Quarter

The difference in model performance is tested for every model and evaluation metric with a Diebold-Mariano test with as base the MF-BAVART
model. Significance is denoted as * for p < 0.1, ** for p < 0.05 and *** for p < 0.01.
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4.2 Posterior Interval Width

This section provides some intuition on why the MF-BAVART model outperforms the MF-VAR

model in pandemic times, and why the GVARP models outperform both the MF-BAVART and

MF-VAR models based on the LPS in the same period. The widening of the distribution of the

GDP nowcasts when uncertainty increases is illustrated using Figure 2 and 3. Figure 2 shows

scatter plots of the posterior interval width against the leverage for the nowcasts generated

by the MF-BAVART model. Similarly to Huber et al. (2023), the posterior interval width is

calculated as the difference between the 95th and 5th percentile of the nowcasts produced in the

MCMC algorithm. The leverage is calculated as diag(X(X ′X)−1X ′), where X = (x1, .., xT ),

with xt denoting he posterior mean of the latent GDP growth at time t. This leverage is scaled

to be between zero and one using Equation 37.

yscaled =
y −min(y)

max(y)−min(y)
(37)

The means for the latent GDP growth are not the same as the forecasts used in the previous

sections. Instead, X is taken to be the mean of the latent state estimates from the estimation

of the model using all available data (from Q2-2005 until Q1-2020).

Figure 2 shows a positive correlation between the leverage vector and the posterior interval

width for all countries. This indicates that the model generates a wider posterior distribution,

indicated by a wider set of possible values, if it encounters outlying observations, as indicated

by a higher leverage. This is especially visible for the pandemic observations (the red dots),

and to a lesser extent the financial crisis observations (blue dots). This indicates that part

of the improved performance of the MF-BAVART model is attributable to the ability of the

model to increase the variance of the posterior distribution in times of greater uncertainty. This

characteristic of the model is also reflected in the outperformance compared to the MF-VAR

model based on the LPS in table 2, and can be explained by the flexibility of the BART model

when facing outliers, as explained in section 4.1.

This characteristic of the MF-BAVART model increases its performance when nowcasting

GDP growth due to the nature of GDP growth processes. Figure 1a and 1b in Section 2

have shown that GDP is characterised by longer periods of relatively stable and low growth,

alternated by periods of recession, in which there are large negative GDP changes. Therefore,

a GDP nowcasting model should have the ability to shield the other nowcasts from these large

negative GDP growth spikes, while at the same time predicting these spikes as they occur.

Correctly widening the distribution when uncertainty increases (crises observations) ensures

that these negative GDP spikes are assigned a higher likelihood in the nowcasted GDP growth

distribution, which results in outperformance based on the LPS.
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(a) Germany (b) Spain

(c) France (d) Italy

Figure 2: Scatterplot of Posterior Interval Width Against the Leverage Vector for the Different
Countries for the MF-BAVART Model

The blue points indicate datapoints of the financial crisis, and the red points indicate data

from the Covid-19 period.

Furthermore, Figure 3 shows the same scatterplot of posterior interval width against leverage

for the MF-GVARP-SVO model. The figure displays the same positive correlation, indicating

that the model predicts a wider distribution GDP growth when outlying observations are en-

countered. Furthermore, the figures show that the posterior interval widths for the MF-GVARP-

SVO model are much larger (8x-30x as large) than for the MF-BAVART model, especially when

looking at the pandemic observations. This indicates that the MF-GVARP-SVO model cor-

rectly widens the distribution by a larger amount when it encounters outlying observations.

This results in the higher LPS values in Table 2, as the rare observations get higher assigned

likelihoods.

However, even for those leverages close to zero, the posterior interval widths are much higher

for the MF-GVARP-SVOmodel than for the MF-BAVARTmodel. The MF-GVARP-SVOmodel

thus generates wider distributional nowcasts even when no outliers are encountered. This is not

desired behaviour, as we want the model to nowcast a distribution that accurately discribes

the distribution of the GDP growth. Therefore, a tight distribution is desired in times where
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GDP growth can be nowcasted with greater certainty. This property of generating ’too’ wide

distributional nowcasts can result in median values that are further off, and LPS values that are

lower (as the LPS formula implies higher LPS values for distributions that assign more weight

to the actual realised value). These unnecessarily wide nowcasts may therefore be a reason for

the poorer performance of the models in the period excluding the COVID observations. These

wide nowcasts are a property that might be caused by a prior on the covariance that is not

restrictive enough.

(a) Germany (b) Spain

(c) France (d) Italy

Figure 3: Scatterplot of Posterior Interval Width Against the Leverage Vector for the Different
Countries for the MF-GVARP-SVO Model

The blue points indicate datapoints of the financial crisis, and the red points indicate data

from the Covid-19 period.

4.3 Model Calibration

Next, the PIT, as introduced in Section 3.5.3, is used to discuss the calibration of the models.

Similarly to Table 2, Table 3 shows the PIT for all models for 2 samples, namely the GDP

nowcasts until Q4-2019, and the nowcasts until Q2-2020. The table shows that the MF-VAR

and MF-BAVART models perform similarly based on these statistics. However, based on the
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means, the MF-BAVART model is calibrated worse in the sample until Q4-2019, with means

deviating more from 0 in roughly 67% of the cases. Looking at the σ2 coefficients, mixed

results are presented. Depending on the country, either of them might be calibrated very well

(coefficients close to 1), or not that well at all (coefficients deviate up to roughly 1 from 1). The

AR(1) coefficients also display mixed results. For France they are smaller for the MF-BAVART

model, but for Italy they favour the MF-VAR model.

Including the pandemic period shows a more pronounced difference between the two models.

More specifically, the calibration of the MF-VAR model gets relatively slightly better based

on the AR(1) parameters, outperforming the MF-BAVART model roughly 67% of the time.

Looking at the σ2, again the MF-VAR is better calibrated, having a variance closer to 1 in

roughly 67% of the cases. Based on the µ there is no clear difference between the two models,

with both models having values closer to 0 in roughly 50% of the cases. Therefore, it is hard to

draw conclusions on the relative performance of the models based on this table. Even though

the MF-VAR model seems slightly better calibrated, this is not consistent across all periods and

metrics.

What can be said is that the calibration of the models does not seem to change that much

when including COVID-19 observations, especially when comparing the change in calibration

to the change in RMSE and LPS. Furthermore, both the models are relatively well calibrated,

with the means in the table being close to zero and the AR(1) parameters relatively close to

zero as well in most of the cases. However, the variance of the transformed PIT is too high in

most instances, sometimes even being two times larger than expected.

Looking at the MF-GVARP model for the first sample period, Table 3 shows that this model

is calibrated slightly worse than the MF-BAVART model. The MF-GVARP model performs

slightly worse based on the means, with values deviating more from 0 in a little more than

half of the instances. Furthermore, the σ2 of the model is too high, with values deviating

substantially more from 1 than for the MF-BAVART and MF-VAR models in all cases. The

AR(1) coefficients show mixed results. Here the coefficients are closer to zero than for the

other two models under consideration in roughly half of the cases. Therefore, the model seems

calibrated slightly worse than the MF-BAVART and MF-VAR model, which is especially clear

when considering the variance of the PIT.

When looking at the MF-GVARP-SVO model, we see it performs relatively similar to the

MF-GVARP model when looking at the mean values of the PIT, with values closer to zero

in roughly half of the cases. The variances of the transformed PIT are closer to one for the

MF-GVARP-SVO model than for the MF-GVARP in all cases. Based on the AR(1) coefficients,

the MF-GVARP-SVO model performs worse, with values further from 0 than the MF-GVARP

model in most cases. Overall, the MF-GVARP-SVO model performs relatively similar compared

to the MF-GVARP model, indicating that adding the SVO specification does not improve model

calibration in this sample period. However, it is clear that the variance of the transformed PIT

is closer to one than for the MF-GVARP model.

Including the Covid observations improves the calibration of the MF-GVARP models slightly

when looking at the means. Now, the MF-GVARP model performs relatively similar to the MF-

BAVART and MF-VAR based on this statistic. However, in this period, the σ2 are still too large
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in all instances. The AR(1) coefficients give mixed results, with values that are higher than the

corresponding values of the MF-BAVART and MF-VAR models in roughly half of the instances.

The MF-GVARP-SVO model improves in calibration relative to the MF-GVARP model when

using the full sample. The mean values of the PIT are closer to zero in slightly more than 50%

of the cases, and the variances are closer to one in all but 1 instance. However, the AR(1)

coefficients still indicate worse calibration for the MF-GVARP-SVO model, with values farther

from 0 in most instances.

Therefore, based on these findings it is relatively difficult to see if the MF-GVARP model is

better calibrated than the MF-GVARP and MF-BAVART models. What is evident however, is

that the variance coefficient of the GVARP model is too high. This can be caused by the wide

predictive distribution of the model. This wide predictive distribution, will lead to quite a few

predicted values that are large positive or negative. This will result in too high values for σ2 in

the probability integral transform.

Furthermore, looking at the relative calibration of the MF-GVARP-SVO model compared

to the MF-GVARP model, the table shows that the calibrations of the two models do not differ

much. However, including the Covid period seems to improve the relative calibration of the

MF-GVARP-SVO model, especially when looking at the means. This indicates that the outlier

adjusted stochastic volatility specification does lead to better calibration in the presence of

outliers. However, the SVO covariance matrix does not lead to a consistently better calibration

throughout all measures and observations when including the Covid-19 period. Moreover, we

see that adjusting the covariance matrix to have a SVO specification ensures that the variances

of the PIT improve in value.

4.4 Economic Interpretation

Accurate GDP nowcasts are useful for a wide variety of people, from business owners trying to

decide whether to invest in expanding their business, to politicians deciding what policies to

implement. It is therefore important to put the results of Section 4 into economic perspective.

This paper shows that using a Gaussian process in a mixed frequency framework does not

improve the MF-BAVARTmodel of Huber et al. (2023). The point nowcasts provided by the MF-

GVARP model underperform the existing MF-BAVART model when measured by RMSE. Also,

the model cannot be used to improve the nowcasted density of GDP growth in economically

stable times, as it produces too wide estimates of the distribution of GDP growth in these

periods.

One exception occurs when it is clear the economy is heading into unstable times, as was the

case at the outbreak of Covid-19, when businesses had to shut down and the economy grinded

to a halt. In these instances, the MF-GVARP model can be used to improve the nowcasted

densities of GDP growth by correctly predicting wider GDP growth distributions. However, it

is difficult to know when a crisis will occur beforehand. Therefore, it is not clear when to use

this model. Also, because policy makers and other individuals typically also want to get the

best point estimate of GDP growth, the MF-GVARP model as defined in this paper cannot be

used by policy makers and other individuals to improve upon existing GDP growth models.
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Until Q4-2019 Until Q1-2020
MF-BAVART MF-VAR MF-GVARP MF-GVARP-SVO MF-BAVART MF-VAR MF-GVARP MF-GVARP-SVO

M/Q 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Germany
µ -0.012 0.060 0.094 0.111 0.031 0.024 0.063 0.333 0.213 0.034 0.180 0.282 -0.163 -0.094 -0.062 -0.047 -0.123 -0.129 -0.092 0.164 0.071 -0.062 0.075 0.131
σ2 1.934 1.956 1.692 1.890 1.995 1.602 2.663 2.719 2.496 1.033 1.096 1.958 2.250 2.292 2.053 2.245 2.320 1.947 2.962 3.100 2.743 1.152 1.301 2.272
AR(1) -0.556 -0.508 -0.456 -0.513 -0.454 -0.438 -0.374 -0.522 -0.456 0.105 -0.162 -0.073 -0.388 -0.333 -0.260 -0.345 -0.276 -0.267 -0.230 -0.373 -0.356 0.192 -0.171 0.022
Spain
µ -0.346 -0.300 -0.122 -0.391 -0.291 -0.418 0.104 -0.417 -0.259 0.022 0.098 0.229 -0.468 -0.435 -0.267 -0.522 -0.428 -0.547 -0.053 -0.547 -0.391 -0.084 0.041 0.072
σ2 1.889 1.902 1.709 2.018 1.908 1.830 2.667 2.912 2.372 0.543 0.617 1.355 2.067 2.139 2.005 2.226 2.148 2.041 2.978 3.064 2.566 0.735 0.655 1.741
AR(1) -0.237 -0.285 -0.241 -0.208 -0.303 -0.231 0.109 -0.152 -0.255 0.359 0.690 0.342 -0.148 -0.143 -0.067 -0.098 -0.161 -0.121 0.179 -0.053 -0.167 0.371 0.680 0.441
France
µ -0.110 -0.061 0.087 -0.078 -0.131 -0.077 0.103 -0.080 -0.102 0.172 0.281 0.086 -0.211 -0.209 -0.069 -0.202 -0.275 -0.224 -0.032 -0.198 -0.248 0.011 0.141 -0.070
σ2 1.948 2.076 2.152 0.922 0.955 1.019 2.480 2.737 2.828 1.264 2.134 2.127 2.071 2.370 2.486 1.170 1.290 1.366 2.693 2.862 3.069 1.672 2.392 2.462
AR(1) -0.155 -0.067 -0.083 -0.181 -0.233 -0.287 -0.305 -0.153 -0.177 0.395 0.344 -0.383 -0.028 0.099 0.078 0.095 0.091 0.009 -0.169 -0.058 -0.064 0.399 0.376 -0.153
Italy
µ -0.209 -0.183 -0.116 -0.087 -0.102 -0.080 0.198 0.053 -0.030 -0.185 -0.167 -0.102 -0.349 -0.324 -0.267 -0.182 -0.123 -0.227 0.036 -0.084 -0.149 -0.327 -0.271 -0.097
σ2 0.899 0.989 1.062 0.422 0.513 0.712 2.128 1.505 1.753 1.996 1.367 1.647 1.215 1.308 1.426 0.619 0.799 1.074 2.498 1.781 1.937 2.260 1.524 2.006
AR(1) 0.026 0.183 0.165 -0.032 0.037 0.158 0.167 -0.037 -0.091 0.485 0.325 0.064 0.216 0.329 0.294 0.144 -0.083 0.300 0.271 0.103 0.014 0.488 0.274 -0.016

Table 3: Summary Statistics of Transformed Probability Integral Transform for the Different Models
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Additionally, this paper finds that adding an outlier adjusted stochastic volatility covariance

matrix to the MF-GVARP model does not improve the GPD growth nowcasts. Even though the

distribution is widened in times of crisis, the performance of the point nowcasts worsens substan-

tially. Also, the predicted distribution of GDP growth is too wide when in stable macroeconomic

periods. Therefore, adding this SVO specification does not improve GDP growth predictions.

The policy implications of this finding are clear. As using an outlier adjusted stochastic volatil-

ity covariance matrix worsens the nowcasting performance, this specification of the covariance

matrix should be avoided when nowcasting GDP growth.

To understand why the SVO covariance matrix cannot improve the GDP growth nowcasts,

Figure 4 shows the estimates of the latent monthly GDP growths for Germany as estimated

by the MF-BAVART model (the best performing model in this paper). These latent states

are estimated by the model that nowcasts GDP growth in Q2-2020 using all available data,

resembling a nowcast made in the last month of the quarter. The figure shows that the monthly

latent states of GDP growth are relatively stable. Also, even though the volatility of the latent

states of GDP growth varies, most of this variation is related to crises, with spikes occuring

during the financial crisis and the Covid-19 period. Outside of these observations, GDP growth

volatility does not seem to vary that much over time. This is to be expected, as GDP growth

itself is relatively stable. This is especially noticeable when compared to other macroeconomic

variables such as inflation, for which stochastic volatility has often been used successfully in

models, such as by Stock and Watson (2007). Figures 5a and 5b in appendix A show that

monthly inflation of Germany does indeed display more variation, as does the volatility of

inflation. Therefore, the stability of GDP growth ensures that the covariance matrix of the

mixed frequency framework does not need a time varying outlier adjusted stochastic volatility

component. Thus, the SVO specification is not suitable to improve GPD growth nowcasts.

(a) GDP Growth (b) GDP Growth Volatility

Figure 4: Latent GDP Growth of Germany

The figure shows the latent monthly GDP growth of Germany estimated by the MF-BAVART

model, ranging from September 2005 until June 2020.

5 Conclusion

This paper investigates whether the performance of a mixed frequency GDP nowcasting model

can be improved by replacing the Bayesian additive regression trees model in a mixed frequency
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framework by a Gaussian process. Additionally the paper adds an outlier adjusted stochastic

volatility covariance matrix to check if this can improve nowcasting performance, especially in

crisis times. This paper researches this by using a data from Q2-2005 until Q2-2020. The

dataset contains GDP growth values, as well as several macroeconomic variables available on

four countries: Germany, Spain, Italy, and France. We nowcasts GDP growth using a mixed

frequency vector autoregressive (MF-VAR) model and a mixed frequency Bayesian additive vec-

tor autoregressive trees (MF-BAVART) model, and introduces two new models. First of all,

the paper introduces a mixed frequency Gaussian vector autoregressive process (MF-GVARP)

model, and adds an outlier adjusted stochastic volatility covariance matrix to this specifica-

tion, creating the mixed frequency Gaussian vector autoregressive process with outlier adjusted

stochastic volatility (MF-GVARP-SVO).

We conclude that the MF-BAVART model outperforms the simpler MF-VAR model, espe-

cially when comparing them based on the entire distribution as measured by the cumulative log-

predictive score (LPS). This outperformance seems to stem from the ability of the MF-BAVART

model to widen the distribution in more uncertain and volatile economic times. Furthermore,

the MF-GVARP model underperforms the MF-BAVART and MF-VAR models when excluding

2020 (the COVID-19 observations) from the sample. This underperformance is evident both

for point estimates, as well as the entire predicted distribution. However, when including the

COVID-19 data in the sample, the relative nowcasting performance of the MF-GVARP model

improved. Even though the MF-GVARP model still underperformed the MF-VAR and MF-

BAVART models based on point nowcasts, the MF-GVARP improves the entire distributional

nowcasts of GDP growth based on the LPS. This improvement largely arises due to the ability

of widening the distribution even further when in times of economic turmoil. Also, adding an

outlier adjusted stochastic volatility covariance matrix to the MF-GVARP model did not result

in improved GDP nowcasts. This result seems to be attributable to the stability of GDP growth

over time, ensuring an outlier adjusted stochastic volatility specification is not necessary in the

mixed frequency framework.

The policy implications of the results in this paper are not immediately clear. Using an outlier

adjusted stochastic volatility covariance matrix cannot improve the performance of the models

when nowcasting GDP, and should therefore not be used by policy makers. However, the MF-

GVARP model performs relatively well when forecasting the distribution of GDP growth when

including the Covid-19 observations. This model can thus be used to improve the nowcasted

distribution, but only when in crisis times. Because it is difficult to know in advance when such

a time will occur, it is in practice not possible to use this model to improve GDP nowcasts.

Therefore, it will in practice be difficult to use either models to improve GDP nowcasts for

policy makers.

Finally, there is still room for additional research in this field. The underperformance of the

MF-GVARP model could be caused by a too flexible model, partially caused by a variance prior

that is not restrictive enough. Therefore, it might be worth to research whether imposing more

restrictive priors on the variance can improve the nowcasting performance in stable economic

situations. Additionally, the methods used in this paper use a forward filtering backwards

sampling (FFBS) algorithm to estimate the latent states of the variables that are observed at a
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quarterly frequency. In order to use this FFBS algorithm, the model is linearized first. It might

be more appropriate to use different algorithms such as particle filters to estimate the latent

states. As the MF-GVARP model did not improve the performance of point nowcasts, this paper

would also suggest to research the appropriateness of different models in the mixed frequency

framework used in this paper. Lastly, it is worth exploring how the models used in this paper

perform compared to other often used nowcasting techniques such as MIDAS or dynamic factor

models.
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A Inflation

(a) Inflation (b) Rolling 12 Month Volatility of Inflation

Figure 5: Inflation and Rolling 12 Month Volatility of Inflation in Germany From February 1970
Until December 2023

Figures 5a and 5b display the inflation, as well as the rolling 12 month volatility of inflation,

in Germany from February 1970 until December 2023. The inflation data is obtained from the

World Bank. The figures clearly show that inflation varies substantially from month to month.

Also, the volatility of inflation varies considerably in short periods of time. Therefore, when

comparing these results to Figure 4, GDP seems more stable over time.

B Code

This section explains the code that is used to generate the nowcasts of the models used in

the paper, as well as all the figures and tables presented. The attached zipfile contains all

the code and the data used to generate the results in this paper. The folder contains a

README.md file that explains the code. Note that once the working directory is set to this

folder, with a directory ending in a ”/, all files should run. (as an example, for my computer

this would be done with: setwd(C:/Users/vandi/OneDrive/Documenten/Academic Year 2023-

2024/Thesis/Code Stefan van Diepen 573588/”)). The file contains several subfolders, namely

Code, Data, Display, and Figures, that are explained in the remainder of this appendix.

The ”Code” subfolder contains the code that is used to create nowcasts using the models of

the paper. This subfolder contains a read data.R file, which contains 2 functions, one that reads

the input data as provided by Huber et al. (2023), and one that reads the nowcasts made by

the models. Note that this function is required as the nowcasts produced by the models of this

paper are stored in excel files to ensure the nowcasts do not have to be generated every time a

table is altered slightly, which is necessary as the models take a long time to run.

Furthermore, the code subfolder contains a utils.R file which contains several fuctions that
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are used to make the nowcasts for the different models. These functions mainly ensure the proper

data is selected for every nowcast and process the nowcasted distributions of GDP growth, such

that the tables and figures can easily be generated from the stored nowcasts.

The Code folder also contains two subfolders, a folder ”Models”, which contains the code that

is used to run the models and a folder ”Nowcast”, that is used to actually generate the nowcasts

of the different models. The ”Models” subfolder contains the file mfbavart func var.R, which

contains the function that is used to run all models (MF-BAVART, MF-VAR, MF-GVARP, and

MF-GVARP-SVO), with the model being selected depending on the parameters ”model” (indi-

cating which model is used) and sv (indicating whether the SVO specification of the covariance

matrix is used). Secondly, this subfolder contains the file aux func.R, which contains auxiliary

functions that are used by the function in the mfbavart func var.R file to estimate the models.

The aux func.R file is provided by the github of Michael Pfarrhofer (repository mf-bavart), and

the mfbavart func var.R file is the ”mfbavart func.R” file from the same github repository, but

changed such that it accomodates the estimation of MF-VAR and MF-GVARP models as well.

Note that this github repository contains the code for the paper ”Nowcasting in a Pandemic

using Non-Parametric Mixed Frequency VARs” by Huber et al. (2023). Furthermore, the mf-

bavart func var.R file draws inspiration from the mfbavart.R file that is obtained from an old

forked repository of the repository of Michael Pfarrhofer, to obtain nowcasts using the MF-VAR

model.

The ”Nowcast” subfolder that is contained in the ”Code” subfolder contains 4 files that are

used to obtain the nowcasts from the models described in the paper. Every file in this folder calls

the function in mfbavart func var.R via the helper functions defined in utils.R, with the proper

parameters. For the MF-BAVART model, the model is called with ”model = MF BAVART”, for

the MF VAR model, the model is called with ”model = MF VAR”. For the MF GVARP model,

the model is called with ”model = MF GVARP” and ”sv = False”, and the MF-GVARP-SVO

model is called with ”model = ”MF GVARP” and ”sv = True”.

The ”Data” subfolder contains 2 folders. One subfolder contains input data, as provided by

Hubert et. al and described in Section 2, as well as inflation data used for the figure in the

appendix as provided by the world bank. The second subfolder contains the nowcasts generated

by the models in the paper, as obtained by the files in the ”Models/Nowcast” subfolder.

The ”Display” subfolder contains the R files that are used to create the figures and tables that

are presented in the paper. Table RMSE LPS.R contains the code that creates table 2, present-

ing the LPS and RMSE evaluation metrics for all models and countries. Figure PIW Leverage.R

contains the code that creates the scatterplot of Figures 2 and 3 and PIT table.R contains the

code that creates the Table 3, presenting the information on the transformed probability integral

transforms. Economic Figure.R contains the code that is used to make Figures 4, 4a, 5a, and 5b

used in the economic interpretation sections well as the inflation graph in the appendix. This

includes both the plot of the latent states of GDP growth, as well as the figure of inflation in

Germany. The file Summary Stats.R contains the code to create Table 1 and Figures 1a and 1b,

used to describe the data in section 2. The utils display.R file contains all auxiliary functions

that are used by the files mentioned above to make the tables and graphs presented in the paper.

Lastly, the ”Figures” subfolder contains all the figures that are created for the paper in the
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R files of the ”Display” folder. This includes some older versions of figures that are not used in

the paper. The versions of the figures used in the paper have a name ending in ” used”.
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