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Abstract

Accurately forecasting the equity premium out-of-sample has proven difficult over the
past decades partly because of the challenges posed by structural instability, the complicated
characteristics of the data generating process and numerous possible predictors. Bootstrap
aggregating (bagging) and forecast combination can be employed to reduce the adverse effects
of some of these obstacles and have been applied separately to produce excess stock returns
that are significantly more accurate than the historical average. This paper investigates
whether applying these techniques in tandem can improve the accuracy of monthly one-step-
ahead equity premium predictions. In addition to combining forecasts over the whole set
of predictors, a subset combination approach based on automatic rolling-window selection
is evaluated. The results show that this sequential forecasting method outperforms the
historical average by a substantial margin for short in-sample estimation windows, as bagging
reduces the mean squared prediction error and forecast combination offers a decrease in

accuracy risk.

1 Introduction

Predicting excess returns has become a central topic in the finance literature due to the eco-
nomic value that accurate forecasts can provide to investors. Numerous financial macroeconomic
variables have been proposed as predictors for the equity premium, however |Welch and Goyal
(2008) find that most of these explanatory variables fail to outperform the historical average
out-of-sample when used in a simple linear model. Some of the major challenges in producing
equity premium forecasts with improved accuracy relative to the historical average are structural
instability, the complicated characteristics of the data generating process (DGP) and the numer-
ous possible predictors. Bagging was introduced to improve forecasting accuracy by smoothing
instabilities and can be similarly utilised for equity premium forecasting. Even though it was
originally intended to be applied to independent and identically distributed (IID) data, |Jin,
Su and Ullah| (2014) proof that teir revised version reduces the mean squared prediction error
(MSPE) of time series forecasts. Additionally, they find that forecasts based on macroeconomic
variables can outperform the historical average when using bagging. Forecast combination al-
lows forecasters to more accurately model the intricate characteristics of the data generating
process, mitigate the instability risk associated with the reliance on a single model and incorpor-
ate information from different forecasting models. |Rapach, Strauss and Zhou| (2010) find that
combining produces statistically and economically improved equity premium forecasts compared
to the historical average

Although both of the previously described methods have been employed separately to im-
prove excess stock return predictions and Rapach and Strauss| (2010) find that in some instances
forecasts based on both methods contain different information, there is, to the best of our
knowledge, no literature that investigates their joint application to equity premium forecasting.
Therefore this paper will look into the question: Can the accuracy of monthly one-step-ahead
equity premium forecasts be improved by applying bagging and forecast combination in tandem?

Before employing both techniques sequentially to forecast the equity premium, the perform-
ance of bagging in a time series setting is first evaluated using Monte Carlo simulations. Two

bootstrap aggregating methods are considered in the form of traditional bagging and the revised



method, introduced by (Jin et al., [2014), which makes use of historical forecasts to improve pre-
dictions. These techniques are applied to parametric as well as non-parametric forecasting
models, three DGPs and numerous parameter settings. Consequently, the simulations provide
comprehensive insight into the accuracy of the bagging methods relative to the non-bagged
forecasts and each other in various scenarios.

To address the main research question, both bagging and forecast combination are used to
produce monthly equity premium forecasts based on macroeconomic variables. Similar to the
Monte Carlo simulations, the traditional and revised bagging methods are applied to forecasts
produced by parametric and non-parametric models. Following this, both the bagged and non-
bagged forecasts are combined across the different predictive variables. These combinations
are constructed using the whole set of predictors as well as a subset of variables with the
best historic performance, which is automatically selected through the use of a rolling window
approach. Four combination schemes are considered, two of which are simple averaging schemes
in the form of the simple mean and trimmed mean, as literature shows that more complicated
methods struggle to outperform these methods. In addition, a weighting scheme based on past
performance introduced by (Stock & Watson, [2004) and a combination technique that uses
regression based weights are assessed.

The results of the Monte Carlo simulations reveal that both bagging procedures can be
utilised to substantially improve forecasting accuracy regardless of model specification. Similar
observations are made for the application of these methods to monthly equity premium pre-
dictions. With the use of bagging procedures, the one-step-ahead monthly excess stock return
forecasts based on macroeconomic variables outperform the historical average for short in-sample
estimation periods. Although the application of forecast combination to bagged predictions is
less effective than employing them to combine unbagged forecasts and combination does not
yield improved forecasting accuracy compared to the ex-post best single model, the utilisation
of the technique in tandem with bagging can still offer substantial benefits in practice. Spe-
cifically, the simultaneous use of both methods increases forecasting accuracy and reduces the
accuracy risk that is related to model selection, as combining provides consistent performance
over time compared to forecasts based on a single predictive variable. In contrast, the sequential
implementation of bagging and subset combination using automatic selection, although less con-
sistent than combining over the full set of predictors, provides more accurate predictions than
the ex-post best single model in several cases.

The rest of this paper is organised into the following sections. Section [2] provides an overview
of the relevant literature concerning equity premium prediction, bagging and forecast combina-
tion. Section [3| describes the models used to produce forecasts, the applied bagging procedures,
forecast combination schemes and subset selection procedure. In addition, the performance
measures used to evaluate forecasting accuracy are presented. This is followed by Section [4]
which provides an overview of the DGPs employed in the Monte Carlo simulations followed by
the results of these simulations. The practical application in the form of equity premium fore-
casting is discussed in Section [5} Finally, Section [6] summarises the main findings and supplies

suggestions for further research.



2 Literature Review

Forecasting excess stock returns has been a central topic within the finance literature for decades.
In the past few years, a considerable amount of papers concerning predictions based on financial
and macroeconomic explanatory variables has accumulated. However, Welch and Goyal| (2008)
find that most variables examined in the literature fail to outperform the historical average
out-of-sample. In contrast, Campbell and Thompson (2008) show that a number of predictive
variables perform better than the historical average when some minor restrictions are imposed
and suggest that even small gains in forecasting accuracy could be meaningful for investors in
practice. The performance of numerous predictive variables and forecasting models has been
investigated since, a number of papers consider bagging or forecast combination to improve
prediction accuracy. |Jin et al.| (2014)), |[Jordan, Vivian and Wohar| (2017) and Hillebrand, Lukas
and Wei (2021) make use of bagging in their equity premium forecasting procedure and find
that some models achieve better results than the historical average when using this technique.
Similarly, Rapach et al.|(2010) and Tsiakas, Li and Zhang] (2020)) implement forecast combination
and report significantly improved equity premium predictions.

Although bagging has recently seen considerable success in time series settings, it was first
introduced by (Breiman, (1996 as a technique to reduce predictor variance for applications with
IID data, which proved to be particularly effective for unstable predictors. [Bithlmann and Yu
(2002) demonstrate the effectiveness of bagging at decreasing variance and mean squared error
for hard decision problems, which are inherently unstable. Even though bootstrap aggregating
proved effective at increasing forecast accuracy in empirical applications, detailed understand-
ing of the exact statistical workings of the technique was lacking. [Friedman and Hall (2007)
contribute to expanding this understanding by providing substantial statistical insight into the
factors that affect the performance of bagging. In a similar vein, Stock and Watson| (2012)
show that bagging asymptotically is a shrinkage forecast. Lee and Yang (2006) extend the use
of bagging to time series by employing it in binary and quantile prediction using asymmetric
loss functions. [Inoue and Kilian| (2008) further explore this avenue through employing three
variants of the technique to forecast the U.S. consumer price inflation. Jin et al| (2014)) address
the lack of statistical justification for the use of bagging in a time series context, by proving
that their proposed bootstrap aggregating method, which is based on using historical forecasting
information to improve predictions, reduces the MSPE. [Petropoulos, Hyndman and Bergmeir
(2018) further explore the causes behind the excellent forecasting performance that the tech-
nique provides when applied to time series and find that this accuracy mostly originates from
reducing model uncertainty.

Unlike bagging, forecast combination has been used in time series applications since its in-
troduction by (Bates & Granger, 1969)). Combining forecasts is now common practice in the
forecasting literature to improve the accuracy of time series predictions and it has become
widely acknowledged that the technique brings substantial benefits (Wang, Hyndman, Li &
Kang| [2023). Combining forecasts is often better than selecting a single best model, as the
latter is unluckily to fully capture the complex characteristics that time series typically exhibit,
such as time-varying trends, seasonality changes, and structural breaks (Clements & Hendry,

1998). In addition, Petropoulos et al. (2018) conclude that selecting a single model is subject to



model, data and parameter uncertainty which can all be reduced through forecast combination.
Although a vast number of refined combining methods have been proposed in the literature,
Timmermann| (2006) finds that it is challenging to beat simple, non-parametric, combination
methods, partly because these do not suffer from estimation errors in determining the weights.
Similarly, [Makridakis, Spiliotis and Assimakopoulos (2020) report that simple combinations
continue to perform relatively well compared to more complicated weighting schemes and ma-
chine learning algorithms. Other forecasting methods tend to be held back by the challenges
of estimation. For example, the generalised version of the optimal weights proposed by (Bates
& Granger, 1969) relies on accurately estimating the covariance matrix of the forecasts, which
is notoriously difficult. Despite this, some more complicated methods have been implemented
to realise forecasting performance gains, like the weights based on historic model performance
proposed by (Stock & Watsonl 2004).

Despite the fact that most combination approaches assessed in the literature use all available
models in constructing combined predictions, the characteristics of the models used for combin-
ing have a major impact on forecasting performance, as including models with low accuracy will
affect the final results negatively and a high degree of diversity among the included forecasts
is instrumental to realising improved performance (Thomson, Pollock, Onkal & Goniil, 2019)).
The approach that logically follows from these findings is to include only a subset consisting of
the most appropriate models in combined forecasts, which has displayed notable effectiveness
in academic research. |Zhou, Wu and Tang (2002)) show that in a neural network application,
selecting a subset of models before combining reduces variance as well as bias. Similarly, [Hibon:
and Evgeniou (2005) and Lichtendahl and Winkler| (2020) find that using only a subset of
all available forecasts to create combination forecasts often yields favourable results as it may
reduce accuracy risk. The application of subset combination might also produce positive out-
comes for equity premium predictions, as|Geweke and Amisano| (2011) observe that combining
many instead of all forecasts could lead to improved accuracy. Although subset combination
has been shown to improve forecast accuracy, most of the considered methods are challenging
to implement and suffer from limited portability to existing procedures, as they rely on ad-hoc
modelling decisions. Therefore Kourentzes, Barrow and Petropoulos (2019)) propose a heuristic
to automatically identify a forecast subset that at least matches the performance of more in-
volved methods In a similar vein, Diebold and Shin| (2019) explore a direct subset combination
procedure and find that it outperforms the simple averaging scheme and achieves comparable
accuracy to the ex-post single best model.

The contribution of this paper to the literature is twofold. First, this study examines the
potential greater forecasting accuracy offered by employing both bagging and forecast combin-
ation techniques in tandem to construct monthly on-step-ahead equity premium predictions.
While previous studies have demonstrated the effectiveness of these methods individually, there
is limited research covering a sequential approach using both techniques, especially concerning
application to equity premium prediction. Second, a novel forecasting method that combines
bagging and subset combination based on automatic rolling-window selection is presented, which
is relatively simple to implement and outperforms the ex-post best model based on a single pre-

dictor in several instances.



3 Methodology

This section first describes the parametric and non-parametric forecasting models used in this
paper. Following this, both bagging methods and the forecast combination schemes are presen-

ted. Finally, a description of the forecast evaluation metrics is given.

3.1 Forecasting Models

In this study, the forecasting performance of both parametric and non-parametric forecasting
models is evaluated. This allows for the examination of the forecasting accuracy provided
by bagging and forecast combinations for misspecified as well as correctly specified models.
Specifically, the considered parametric model is misspecified for the Monte Carlo simulations
and equity premium forecasting, in contrast, the non-parametric models theoretically converge
to the true DGPs under certain conditions (Racine et al. 2008). For the sake of simplicity only
linear models are taken into consideration.

For all models, to construct a prediction of the dependent variable y;y1 at time ¢, a training

set

Dy = {(y“xi*l)}g:t—R-i—l fort=R,..., T —1, (1)

is used, consisting of R observations. Here z; is a ¢ x 1 vector of explanatory variables. Using
this training set D; and the input vector x; in one of the models discussed below results in the
one-step-ahead forecast for y;11, which is denoted as ¢(z¢, Dy).

The first model to be examined is the simple linear model

Yer1 = BTy + ey, (2)

with 8 being the ¢ x 1 parameter vector. An estimate for S at time ¢ can be obtained by

applying ordinary least squares (OLS) using D;. This results in the estimate

R t—1 —1 /i
B = ( > 117@:16;) ( > ﬂﬁzyz) ; (3)

i=t—R i=t—R

which is used at time t to construct the standard one-step-ahead forecast for y;41 given by

¢1(xy,Dy) = Blay fort=R,..., T —1. (4)

In addition to the parametric forecasting model, two non-parametric forecasting models are

considered. These are of the form

Yir1 = m(ze) + €41, (5)

where the functional form of the smoothing function m(-) is estimated from the data and z;
does not include a constant term.

The first non-parametric forecasting model is the one-step-ahead local constant forecast



S R Yir1 Kn (2 — HTt)

d2(xe,Dy) = fort=R,..., T —1, (6)
Z’L =t— RKh(xZ -
where Ky (z;—x;) = ] 1 h] 1k (@) is the univariate kernel function, with z;; being the
jtn entry of x;, and hy,..., hy the kernel smoothing parameter sequences. The latter converge

to zero as t — o0, as described in (Ullah & Pagan, [1999)). The standard normal kernel function,
k(z) = \/%exp(%@), is used for both the Monte Carlo simulations and empirical application,
as in Jin et al. (2014). The value of the smoothing parameters will be determined according to
the rule of thumb h; = coc}jR_l/ (4+9)  following [Silverman (1986), where cg is set to 4'|and &5 is
the sample standard deviation of x;;. The same bandwidth is used for all bootstrap resamples.
This rule of thumb is applied for the sake of simplicity, as (Jin et al., 2014)) find that the results
produced by the bagging methods are robust to the choice of smoothing parameter. It is however
important to note that the bandwidth choice does affect the simple forecasts produced by both
of the non-parametric models.

The second non-parametric forecast considered is the one-step-ahead local linear forecast

b3(zs, Dy) = ) (Xe K X)) ' XK Y; fort=R,..., T —1 (7)

with e is a (¢+1) x 1 vector with the first entry equal to 1 and all the other entries equal to
0, X7 = ((1,(xe—p — )", ..., (1, (w41 — 2)")"), K¢ = diag(Kp(we—r — xt), .. ., Kp(2e-1 — ¢))
and V; = (ye-R,- - Yi—1)"-

3.2 Bagging and Revised Bagging

The forecasts described in the previous section are all constructed using only the data in the
observed training set D; Assuming that the R observations in each D, are drawn from a known
distribution P, an improved forecast can be constructed in the form of the ensemble aggregating

predictor

QSA(xt) = Ep, [¢(wt7Dt)]7 (8)

where Ep,[-] is the expectation with respect to D;. |Breiman (1996) proved that MSPE of
¢a(x¢) is smaller than or equal to that of ¢(zy, D;), under the assumption that (y;41,2;) €
D, fori =t— R+ 1,..,t, are IID draws from P. It goes without saying that this assumption
does not hold for time series. To justify the use of bagging in a time series application, [Jin et
al.| (2014) relaxed this IID condition and proved

Elyi41 — o ($t7Dt)]2 > Elyi1 — E[¢($t’Dt)\$tayt+1H2~ 9)

The left-hand side of the equation is the MSPE of the original forecast and the right-hand
side of the equation is formed by the MSPE of the new predictor E[¢(z+, D¢)|xt, Yet1]. It seems
infeasible to construct a consistent estimator for the latter. Because at time ¢, y;41 is unknown.

However, Jin et al| (2014)) show that this predictor can be approximated by E[¢(z+, Dt)|z¢], for

¢o is set equal to 5 when producing forecasts for DGP 1, with (a,8) = (0.7,0.2) in Equation to avoid
singularity problems in Equation m, caused by sparse data.



which it is possible to construct a consistent estimator, under certain assumptions. Therefore,
the original forecast ¢(z, D;) can be improved upon by employing this new ensemble aggregating
predictor. It is important to note that | Jin et al.| (2014) prove the forecasts produced by all models
described in Section to be suitable for this purpose under certain regularity conditions.
This new predictor and the traditional forecast introduced by (Breiman, 1996) are particularly
effective at increasing forecasting accuracy for unstable predictors, which is well suited to equity
premium forecasting, as the relation between the excess stock returns and its predictive variables
is highly unstable (Hillebrand et al.l 2021)).

To construct an ensemble aggregating predictor in practice, multiple training sets drawn from
P are needed. Since in reality, the distribution P is unknown, these additional training sets are
constructed using moving block bootstrap, which uses randomly drawn blocks of observations
from D, and combines these to form a new training set. To create one such additional training

set Dy the following procedure is used:

1. The optimal block length B, as described by (Politis & White}, 2004), is determined based

on the correlation structure of the observations of y; € D;.
2. The number of blocks to be drawn, n, is set s.t. (n—1)x B< RAnx B> R.

3. The length of all blocks is set to 3. The length of block n is changed to 5*,
with B* s.t. (n—1)xB+B*=R

4. The starting points of the blocks, expressed as indices of y;, i1, .. .4, are IID draws from
the discrete uniform distribution on the domain {t - R+1,...,t — B+ 1}.

5. The series that results from putting these blocks one after another forms Dy.

Repeating this process B times results in the series of training sets {D: (b)}szl. Using the

forecasts produced based on these gives the traditional bagging predictor

*(b) .
QS:t $taDt Zwbt¢l xtv t ) fOI‘ 1= 172737 (10)

where wy ¢ is the weight function with Zszl wp = 1.
Jin et al. (2014) propose an updated bagging predictor that utilises a 2-step procedure to
produce improved forecasts by exploiting historical information. The first step incorporates the

historical information through a non-parametric regression of {¢;(z;, D;)} on x; with R

j=t—R+1
being the number of forecasts incorporated in the regression. This results in the predictor

S it m1 GiKn(wj — 1)

]E[sz ('Ita Dt) ‘l‘t] Z;‘:t_FH_l Kh(x] _ xt)

fort=R+R,...,T—1andi=1,2,3, (11)

which has been shown to be a consistent estimator for E[¢;(z¢, Dy)|x:] by (Jin et al. 2014)
under the conditions that R — 0o, R — 00, Rhy-...-hq — 00, Rhyi-...-hy — 0o and Y 1 ; h
in addition to standard conditions on the DGP. In theory, this means that employing this

250

predictor without bagging would produce a lower MSPE than the traditional forecast ¢;(x¢, Dy).



However, in practice the dataset might only allow for moderately large values of R and R.
Furthermore, using only a single training sample causes a high degree of forecast uncertainty.

Therefore (Jin et al.l 2014)) propose to apply bagging, which results in the predictor

B
B¢ = Y wpiBlgi(ar, D PJay] fort=R+R,...,T—1andi=123. (12)
b=1

For this bagging predictor and the predictor in Equation [10| the weights are set wy; = % for
the sake of simplicity, which entails that every bootstrapped training set is treated as equally
important regardless of in-sample performance. |Jin et al.| (2014) implement the same weighting
scheme because other options, such as the Bayesian model averaging implemented by (Lee &

Yang, [2006)), produce comparable results.

3.3 Forecast Combination

Combining multiple forecasts constructed using different models often produces superior res-
ults compared to selecting a single best forecast, as a single specification is unlikely to fully
capture the intricacies of an underlying unknown data generating process (Wang et al., [2023).
Therefore this paper will investigate the performance of multiple linear combination forecasts in

conjunction with bagging, these combination forecasts are of the form

N
Girc = Y Wit din(weg, Dyy), fori=1,2,3, (13)
j=1

where x; ; is the vector that contains the observations for the set of explanatory variables j
at time t, Dy ; = {(yi,xi,Lj)}g:t_RH, wjt,; the weight corresponding to the forecast based on
these and N the total number of explanatory variable sets.

The first two combining methods considered are the simple mean and trimmed mean. These
have the advantage of being trivial to implement, do not suffer from estimation error and sig-
nificantly reduce the bias and variance present in individual forecasts as described by (Palm &
Zellner, [1992). In addition to this, the literature indicates that simple schemes often outperform
more complicated methods (Timmermann, 2006). The simple mean is given by the weights
Wit j = % and the trimmed mean can be constructed by setting the weight corresponding to the
two most extreme forecasts to 0 and all other weights equal to ﬁ

The third combining method, as outlined in (Stock & Watson, 2004)), constructs combina-
tion forecasts using weights based on past model performance, which allows forecasters to take
advantage of the varying predictive power of macroeconomic variables. |Rapach et al.| (2010)
find that this technique significantly outperforms the historical average statistically and eco-
nomically for a variety of out-of-sample periods. The weights are derived from historical model

performance as follows,

—1
Mg 5

—>—  fori=1,2,3, (14)
Z?:l mztlj

Wit,j =

with



t—1
Mit j = Z 0" (ysy1 — ¢i(xs7j,Ds,j))2 fori=1,2,3. (15)
s=t—R

The historical performance of a model based on a specific set of explanatory variables is
taken into account through the discounted MSPE, m;; ;. This value is determined using the R
most recent observations and depends on the value of the discount factor 6. Following (Rapach
et al., [2010), the values considered for ¢ are 1.0 and 0.9.

The fourth and final method utilises a nonnegativity-restricted least squares (NRLS) regres-
sion to determine the combination weights. |(Gunter| (1992) finds that in an empirical setting, the
combination forecasts produced using this method are at least as accurate and robust as those
constructed using the simple mean. The weights for this method are determined by estimating

them as the parameters in the regression

Ys+1 = wsz’,l@i(l‘s,la Ds,l) +.o+ wsi,n¢i(xs,na Ds,n) + €51, St Wil,ee ., Wein = 0

(16)
fori=1,2,3,

with the observations and forecasts used for parameter estimation being those for s = ¢ —
R,....t—1.

In addition to combined forecasts based on all N explanatory variable sets, combination
predictions derived from a subset of the best performing predictive variables are also considered.
Diebold and Shin|(2019) show that such a subset combination procedure can outperform methods
that make use of all available forecasts and match the performance of the ex-post most accurate
model. To construct a subset of predictors for time t = R + R + E, ..., T"—1 the explanatory
variables are ranked based on their MSPE over the past R periods. The subset used for the

combination forecasts consists of the n most accurate predictors with 3 <n < N.

3.4 Forecast Evaluation

To assess the out-of-sample performance of all forecasting methods, two performance measures
are employed. Firstly, the MSPE

T-1
1 .
MSPE((,{)%) = m Z (yt+1 - ¢it)2 for 1 = 17 27 3, (17)
t=R+R+R

is used to evaluate forecasting performance for the Monte Carlo simulations. To get the
final result the MSPE is averaged over all replications. Secondly, the out-of-sample R-squared
as suggested by (Campbell & Thompson, 2008)
T—1
Zt:R+R+§(yt+1 — i)’

T—1 — fori=1,2,3, (18)

is employed to quantify the forecasting performance in the empirical application of forecasting

stzl—

excess stock returns, with ¢ being the average excess return over the past R periods. A positive

R2, indicates that the equity premium forecasts produced by a model have a lower average



MSPE than the historical average and vice versa.

4 Monte Carlo Simulations

This section offers a description of the DGPs used for Monte Carlo simulations followed by the

results of these simulations.

4.1 Data Generating Processes

The DGPs, which are based on the processes used by Jin et al. (2014),

DGP 1: 51 = 0.95yexp(—y2) + €141
0.5

1+ exp(—m¢)

DGP 3: yey1 = 26 (2¢) 21 + €141,

DGP 2: y;11 = +&t,1, (19)

will be employed to construct the time series for the Monte Carlo simulations. In these DGPs
t=0,.,T—1, ¢ () is the standard normal density function, x; is constructed using the AR(1)
process x; = pxi—1 + € with p being set to 0, 0.95 and ¢; is IID standard normally distributed.
The error term &; follows the GARCH(1,1) process

€t = UM

2 2 2 (20)
'Ut — 1 + O‘gt—l + ,B'Ut_l,

where 7, is IID standard normally distributed and the values considered for («, ) are (0,0),
(0.3,0.4), (0.7,0.2).

The number of observations generated is such that out-of-sample period consists of 50 ob-
servations, as Jin et al.| (2014) report that the chosen value does not have a considerable impact
on the observed forecasting performance. The number of bootstrap resamples is set to B = 100

and 200 Monte Carlo replications are used.

4.2 Simulation Results

Tables and |3| contain the MSPE percentage gains with respect to the simple linear forecast
in Equation The forecasting methods are evaluated using four different choices of R, in
R = 20,50,100,200, and R is held constant at 20, as Jin et al| (2014) report that different
values of R produce comparable outcomes. For the sake of brevity only the outcomes for
R = 20,200 are displayed in the previously mentioned tables, the figures for R = 50,100
are available in Appendix [A] The results were produced using parallel computing, specifically
MATLAB?’s parallel computing toolboxﬂ and all 12 cores of an i5-1240P CPU. The results can
be summarised as follows.

First, all methods except for the local linear forecast without bagging outperform the simple
linear benchmark in the vast majority of cases. The rationale behind this is twofold. The

bandwidth resulting from the rule of thumb is sub-optimal for the local linear model which

Zhttps:/ /nl.mathworks.com/products/parallel-computing.html
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Table 1: MSPE percentage gain with re-
spect to the simple linear model: DGP 1

(cv, B)
R Forecast (0,0) (.3,4) (.7,.2)
20 o 3.83 11.62 20.98
B* oy 4.02  11.72  21.37
b2 3.41 358 16.41
o4 3.72  11.73  21.39
E* s 3.78  11.76  21.43
b3 .77 -42.37 -14.94
o4 428 11.15 20.74
E* g 480 11.62 21.19
200 % 1.67 079  3.65
E*¢y -0.88  0.78  3.88
b2 0.09 0.16 125
o4 1.62  0.79  3.90
BE* o 095 080  4.02
b3 1.16 -11.66 -25.81
o4 -1.78  0.64  3.05
E* g 088 0.76  3.82

This table displays the MSPE gains with
respect to the simple linear model for
DGP 1. The first column shows the val-
ues of R that were tested, followed by
the forecasting model used in the second
column. The second row contains the val-
ues of (a, ) in Equation

results in decreased forecasting accuracy. In addition, this model may yield very odd forecasts
when there is an outlier at the forecast horizon which leads to a further increase in MSPE. The
percentage gains for the methods that outperform the benchmark are generally larger when R
is small (20, 50) and less sizeable for large R (100, 200). For example, all forecasting methods,
except the local constant model without bagging, have a higher MSPE than the benchmark for
DGP 1 with (o, 8) = (0,0) when R is large. This is partly caused by the fact that the accuracy of
the parameter estimates used in the benchmark model improves drastically as more observations
become available for estimation.

Second, both the traditional bagging method and the revised version outperform the non-
bagged simple linear, local constant and local linear models by a sizeable margin in most cases.
For example, when R = 20 the MSPE reduction with respect to the simple linear forecast is
higher than 6% with the exception of DGP 1 with («, ) = (0,0). When (a, 8) = (.7,.2), these
accuracy gains increase to over 20% for DGP 1. For the same value of («, 8) and p = 0.95, DGP
2 and DGP 3 also show relatively high reductions in MSPE, with decreases of over 10% and
9% respectively. In addition, the bagged models provide similar increases in accuracy relative
to the simple linear benchmark, even if the MSPEs of the non-bagged models differ drastically.
Take as an example DGP 2 with (o, 8) = (.7,.2), p = 0.95 and R = 200, the non-bagged
MSPE percentage gains for the local constant and local linear model are 0.24% and -1.28%
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Table 2: MSPE percentage gain with respect to the simple linear

model: DGP 2
(a, B)

0,00 (3,4) (7,2) (0,00 (3,4) (7,2

R Forecast p=0 p=0.95
20 ¢F 796 800 6.72 9.98 10.81 10.21
E*¢y 8.08 812 6.84 10.21 1091 10.35
b2 3.36  3.67 262 6.66 626 6.51
b5 798 794  6.69 10.02 10.85 10.23
E* o 8.06 807 6.78 10.16 10.94 10.34
b3 888 -7.79 -6.79 -875 -9.43 -10.37
o4 777 780  6.35 9.78 10.65 10.14
E*¢s 796 805 6.68 10.09 10.74 10.35
200 ¢F 029 075 067 -211 -0.64 0.53
E*¢py 031 075 0.68 -1.21 -0.32  0.54
b2 021  -0.01 019 -0.02 -0.09 0.24
b 029 075 0.66 -212 -0.63  0.48
E* o 0.30 074 0.68 -1.40 -0.37  0.54
b3 -1.40  -1.50  -0.91 -1.40 -1.75  -1.28
o4 029 073 059 -2.10 -0.67  0.42
E* s 0.32 0.73 065 -1.17 -0.33  0.50

This table displays the MSPE gains with respect to the simple
linear model for DGP 2. The first column shows the values of R
that were tested, followed by the forecasting model used in the
second column. The second row contains the values of («, ) in
Equation followed by the values of p in the third row.

respectively, whereas all three models with revised bagging result in the relatively similar MSPE
gains of 0.54%, 0.54% and 0.50%. This leads to the conclusion that the application of bagging
to misspecified parametric models can be as effective as employing it to improve the accuracy
of correctly specified non-parametric forecasting models.

Third, the revised bagging method outperforms the traditional bagging method for most
parameter settings and in-sample estimation window lengths. For DGP 2 and 3 the performance
of the revised method relative to the standard bagging procedure appears to depend on the value
of p. Take as an example the MSPE gains of DGP 3 with R = 200,p = 0 and (o, 8) = (.7, .2),
which don’t differ more than 0.01% between both methods compared to a difference that grows
up to 9 times as large for p = 0.95 . These characteristics of the revised bagging method are well
suited to equity premium prediction as many of the predictive variables described in Section
are highly persistent.

5 Empirical Application: Equity Premium Prediction

This section details the application of bagging and forecast combination in tandem to monthly
equity premium forecasting. First, an overview of the used data is given, followed by the
outcomes of implementing bagging in isolation. Finally, the results for the utilisation of both

techniques in sequence are presented.
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5.1 Data

The empirical dataset containing the monthly equity premium values and macroeconomic ex-
planatory variables runs from 1927 M1 to 2005 M12. The majority of data used to compute the
equity premium and the predictive variables comes from the updated dataset of (Welch & Goyal,
2008) and can be retrieved from Prof. A Goyal’s website ﬁ The data for the real earnings and
real prices were obtained from Prof. R. J. Shiller’s Websiteﬂ The equity premium is computed as
the return on the S&P 500 index minus the risk-free rate which is derived from the Treasury-bill
rate. It is important to note that the log of equity premium is used to construct the forecasts
and the simple equity premium is employed to compute the R2,. The predictive variables used
correspond to the ones employed by (Jin et al. [2014) and are Dividend Price Ratio (d/p), Earn-
ings Price Ratio (e/p), Smoothed Earnings Price Ratio (se/p), Book-to-Market Ratio (b/m),
Treasury Bill (¢bl), Long Term Yield (lty), Term Spread (ts), Default Yield Spread (ds), Infla-
tion (inf), Net Equity Expansion (ntis) and Lagged Equity Premium (lagy). A description of

these macroeconomic variables can be found in Appendix

Table 3: MSPE percentage gain with respect to the simple linear

model: DGP 3
(@.7)

(0,0) (.3,4) (.7,.2) (0,0) (.3,4) (.7,.2)

R Forecast p=20 p=0.95
20 ¢} 7.57 7.60 7.83 10.26 10.64 9.02
E* ¢y 7.65 7.79 8.11 10.34 10.57 9.56
D2 3.35 3.47 3.06 6.83 6.77 5.77
5 7.52 7.66 792 10.19 10.68 9.42
E* o 7.54 7.72 8.09 10.26 10.62 9.56
3 -8.12  -749 -9.87r -879 -946 -5.30
o3 7.54 7.48 7.58 10.21 10.55 8.90
E* s 7.67 7.62 7.95 10.38 10.49 9.35
200 o7 0.51 0.59 0.41 -0.07 0.62 0.56
E* ¢y 0.55 0.60 0.42  0.09 0.64 0.63
D2 -0.07 0.09 0.04 047 0.15 0.16
0 0.49 0.59 0.42 -0.14 0.57 0.54
E* o 0.52 0.60 0.41  0.06 0.61 0.63
o3 -1.26 -1.13  -1.33 -0.50 -1.55 -1.44
o3 0.51 0.49 0.40 -0.10 0.61 0.53
E* s 0.55 0.55 0.40 0.19 0.66 0.62

This table displays the MSPE gains with respect to the simple
linear model for DGP 3. The first column shows the values of R
that were tested, followed by the forecasting model used in the
second column. The second row contains the values of («, ) in
Equation followed by the values of p in the third row.

3https:/ /sites.google.com /view /agoyal 145
“https://shillerdata.com/
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5.2 Bagging Results

Table [4] contains the results of the application of bagging to equity premium forecasting. Fol-
lowing (Jin et al., 2014) the in-sample estimation window lengths considered are R = 24,60, 120
and the number of observations used to estimate the revised bagging predictor is kept constant
at R = 24. The results can be summarised as follows.

First, none of the predictive variables is able to outperform the historical average forecast
when used in the simple linear model for any of the tested values of R. From this, one might
conclude that the macroeconomic variables do not have any predictive power for the excess
returns on the S&P 500. However, the local linear model does outperform the historical average
in some cases. For example, the Term Spread and Default Yield Spread provide a lower MSPE
than the average excess return for all values of R. This leads to the conclusion that some of
the macroeconomic variables provide a certain amount of information about the future equity
premium. Even these small positive values of the R2,, like 0.98% for ds with R = 120, can be
economically meaningful for investors (Campbell & Thompson, [2008|).

Second, both bagging methods provide improved accuracy compared to their non-bagged
counterparts for nearly every explanatory variable and value of R. These improvements relative
to the non-bagged forecasts and historical average are especially sizeable for R = 24, here the R2,
ranges from 2.75% to 4.10%. The gains over the historical average are, however, not limited to
R = 24. For example, the local linear model, with R = 120, using the T-Bill rate gives a R2, of
-5.71%. In contrast, applying the revised bagging method results in a value of 0.14%. A similar
pattern emerges when comparing the accuracy of the revised bagging predictor to the traditional
bagging method. The former outperforms the latter for the majority of explanatory variables
and values of R. These improvements of the revised bagging method over the traditional are
once again largest for R = 24. The values of the R2, for the revised range from 3.52% to 4.10%
while those of traditional run from 2.75% to 3.71%.

5.3 Forecast Combination Results

The results of Equity Premium forecasting using forecast combination for the full set of variables
as well as the subset combination are displayed in Table [} [6| and [7]] The settings considered for
R and R are the same as described above. The values evaluated for the combination forecast
hold-out period are R= 24,60,120. In addition to the combination forecasts, the results of the
models that only use a single predictor are also displayed for the same out-of-sample periods.
For the subset combination methods an arbitrary and relatively small value of n was chosen,
following (Diebold & Shin), 2019), in n = 4. For the sake of brevity the results for n = 3,5,6 are
reported in Appendix [C] The contents of these tables can be summarised as follows.

First, in general all combining methods, except the regression based weights, outperform a
considerable number of the bagged models based on a single explanatory variable. However,
the combined forecasts very rarely are more accurate than the best single bagged model. For
example, in Table E] for R = 120, the 8 worst performing local linear forecasts with revised
bagging give R2, values ranging from 0.01% to 0.29% and the simple mean produces a value of
0.31%, which is only bested by the 3 best performing single models. In contrast, the application

of forecast combination to non-bagged models results in more accurate equity premium forecasts
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Table 4: Out-of-Sample R squared (%): Monthly Equity Premium forecasts

Variable

R Forecast d/p e/p se/p  b/m tbl Ity ts ds inf  ntis  lagy
24 ¢ -7.57  -9.13 -8.13 -11.05 -10.08 -8.21 -7.78 -6.23 -5.99 -5.61 -6.69
H 3.33 3.44 3.54 3.55 3.53 3.74 3.24 3.50 3.60 3.62 3.28
E*¢y 395 367 384 378 381 4.01 3.71 3.89 3.67 4.10  3.73
D2 -2.16  -0.77  -0.71  -3.51 0.47 0.28 0.28 141 -1.22 0.06 -2.76
o5 3.52 3.42 3.53 3.50 3.63 3.61 3.56 3.43 340 3.48 3.53
E*(]ﬁz 3.79 3.63 3.76 3.69 3.78 3.85 3.73 3.71  3.55 3.78 3.83
o3 -13.88 -12.74 -12.51 -18.93 -15.77 -11.64 -11.89 -22.77 -8.69 -9.30 -13.16
H 3.38 4.03 367 343 359 370 324 354 371 360 275
fE*qﬁg 3.83 4.10 3.88 3.73 3.89 4.00 3.60 3.88 377 4.04 3.52
60 ¢ -3.08 -3.73 -6.28 -6.85 -2.13 -5.68 -1.37 -2.11 -1.73 -1.64 -3.09
H 0.32 0.06 0.37 0.34 -0.11 0.11  -0.22 -0.11 -0.13 0.08 -0.50
E*¢py 0.02 0.05 -0.21 -0.01 0.03 0.00 -0.01 -0.02 -0.17 -0.16 -0.08
D2 -1.55  -2.17 -1.58 -4.07 -0.15 -0.77 0.73 0.14 -0.89 -0.40 -1.78
o5 -0.05  -0.02 0.14 0.01 -0.01 0.15 -0.16 -0.13 -0.21 0.03 -0.23
E*¢2 -0.17  -0.01 -0.10 -0.17 0.03 0.13 -0.12 -0.12 -0.24 -0.14 -0.13
o3 -10.63  -8.59 -10.08 -13.01 -6.83 -832 -3.55 -5.07 -3.71 -5.69 -10.66
3 0.46 -0.01 0.24 043 -0.34 -0.10 -0.20 -0.24 -0.11 -0.04 -0.50
E*(bg 0.24 0.06 -0.30 0.04 -0.06 -0.05 0.04 -0.24 -0.16 -0.30 -0.01
120 ¢ -2.99 -221 -324 -362 -251 -28 -064 -0.69 -1.33 -196 -2.01
T -0.19 -0.05 -0.26 -0.22 -0.13 -0.18 -0.20 -0.12 0.06 -0.11 -0.05
E*¢py -0.08 -0.13 -026 -0.18 025 0.13 025 -0.11 -0.06 -0.01 -0.05
D2 -3.63 -3.03 -1.39 -410 -0.78 -0.79 0.28 0.98 -1.00 -0.70 -1.61
o5 -0.14  -0.10 -0.12 -0.25 -0.05 0.05 -0.16 -0.16 0.03 -0.19 -0.18
E*¢2 -0.08 -0.11 -0.07 -0.23 0.22 0.20 0.08 -0.10 -0.11 -0.11  -0.20
o3 -11.95 -768 -6.58 -984 571 -547 -1.66 -2.29 -3.43 -5.01 -6.94
&4 -0.03 -0.06 -0.14 -0.08 -0.37 -0.44 -0.25 -0.22 0.18 -0.13  0.13
E*(]ﬁg 0.07  -0.10 -0.19 -0.06 0.14 -0.13 0.27  -0.09 -0.12 0.00 0.01

This table displays the R2, (%) for the Monthly Equity Premium forecasts. The first column shows the
values of R that were tested, followed by the forecasting model used in the second column. The out-of-
sample periods for R = 24,60, 120 start from 1954 M1, 1957 M1 and 1962 M1 respectively. The second row
contains the employed predictors.

compared to the best single model in the vast majority of cases. Similarly, the average perform-
ance gains that combining provides relative to the corresponding single models are generally
larger for the unbagged models, especially for the combined forecasts based on the whole set of
predictors. For example, in Table [5, the average R?0s of the unbagged simple linear forecasts
with R = 120 is 8.47 percentage points lower than that of the simple mean, for the same model
with revised bagging this difference is only 0.07. This overall lack in performance increase for the
bagged forecasts can be explained by the fact that bagging and forecast combination improve
forecasting accuracy in a somewhat similar manner, both methods reduce prediction variance
by smoothing forecast instability, either through the inclusion of additional training samples or
multiple predictive variables. These results however, do not necessarily lead to the conclusion
that employing bagging and forecast combination in tandem can not offer an increase in forecast-
ing performance in a practical application. Specifically, a considerable part of the performance
of the best single model is based on ex-post knowledge. In other words, one would need to select
the best single model before the out-of-sample period to realise the performance in practice.
Selecting the best single model is done based on an in-sample fit measure or past forecasting

performance, which does not guarantee that the picked model will produce the most accurate
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forecasts in the future relative to the other predictors. The figures in Appendix especially
Figurell] clearly show that the forecasting accuracy a model based on a single predictor provides
compared to different models varies greatly over time. Although combining forecasts generally
does not result in a MSPE reduction, Figure [2| shows that the forecasting performance of the
simple mean is consistent over time relative to the models based on a single predictors, which
can reduce accuracy risk in practical applications.

Second, the simple mean and trimmed mean combination forecast deliver the overall best
performance and have comparable accuracy. In line with expectations, their performance is
relatively consistent compared to the models that only use a single predictor. These combination
methods are closely followed in accuracy by the discounted MSPE combination models, which
generally produce comparable values of R2,. However, they are outperformed by the simple
averaging schemes by a considerable margin in some cases. Take as an example the unbagged
local linear forecasts for R = 120 in Table @ the trimmed mean gives a R2, of -1.96% and the
discounted MSPE weights using # = 0.9 produce a value of -3.09%. The choice of # appears
to have a negligible impact on the accuracy of the combination method. The performance of
the discounted MSPE models relative to the simple mean also seems to be independent of R.
For 6 = 0.9 this can be explained by the fact that earlier observations will have a negligible
impact on the final weighting of the different single models. For § = 1.0 this pattern is more
curious, it could be related to the choice of R. A 2-year hold-out period might already be too
long to fully take advantage of fluctuations in predictive power of the explanatory variables.
In general, the combination forecasts based on regression weights perform poorly, especially for
lower values of R. For R = 24 the NRLS weights produce values of R%, as low as -39.10%.
This lack of accuracy is mostly caused by the estimation errors that come with determining the
weights using a regression, estimation errors that the other methods do not suffer. Consistent
with expectations, the weights can be estimated more accurately for higher values of R. For
example, in Table |5/ for the local linear model with revised bagging and R = 120, both regression
=3.95%

Third, the combination methods that use a subset of the available models to construct a

based forecasts outperform all other combination methods with a R2,
forecast seem to provide very inconsistent performance relative to their full set counterparts,
except for the regression based combinations. The NRLS combination method that does not use
the full set of available forecasts consistently has higher accuracy than its full set counterpart,
this is caused by the fact that most of the single variable forecasts are highly correlated. There-
fore, including fewer models in the regression reduces the multicollinearity induced estimation
errors, which in turn increases the forecasting performance. The results of subset selection, as
stated before, are inconsistent compared to the non-subset combination methods for all other
combination techniques. The accuracy is also highly dependent on the choice of n, which can be
seen in Appendix [C] and thus contains a considerable ex-post component. Nonetheless, subset
selection can produce outstanding performance in some cases and not only outperform full set
forecast combination but also the ex-post best single model. Take for example Table |5 for
R = 24 the subset trimmed mean based on the simple linear model with revised bagging gives

an R20s of 4.24% and the single models give values ranging from 3.60% to 4.11%.

16



"AToA1100ds01 $[STom Pose( UOISSAISal puR ¢ JO anjea ay) Aq pomoq[o] sIySIom 5 JSIA POIUNOISIP ‘UeOW POUIWLI) ‘Ueowt o[duils 9j0uop STHN pue
A ‘INL ‘TNS I039R] o) 10, "oWoYDs SUISom UOIPRUIqUIOd JSeIAI0J 10 s10901pald pofordue o) sARIASID MOI PUODAS O], "UOTJRUIGUIOD JSBIDIOJ J9SqNS I0 UOTIRUIGUIOD JSRIDIOJ 1S [[I] ‘O[eLIeA d[Suls
:8)582910] 91} 9onpoid 01 Pasn sem POYIOU JBYM SMOTS MOI ISI YT, "A[PAIIRdSI TN F96T PU® TIN 6S6T ‘TIN 9G6T WO 4Ie)s 0ZT ‘09 ‘¢ = Y 10§ sporrad o[dures-Jo-yno o], "UWN[0D PUOIAS Y} Ul
Posn [9pow UIISBISIOJ ST} AQ PIMO[[0] ‘PaIsa) alom Jel[} g JO sonyeA dY SMOYS UWN0D JSIY Y, ' = U PUL Jg = Y I $)SRIDI0] WINIWAL] Kymbg Aqysuoly o3 10§ (%) 24 oy3 sAedsip o[qey iy,

96e 8¢ 89°¢ 65°¢  89€  G6E  GLE L vLe  GLe  ope I8¢ 0LE €8 0ge  0LE 09€ 0L€ @Le 00F  0L€ &
8¢ ¢ee e'e Tee GEe T8e L¥E Lre 6V'¢  Lre V9T 19€  19¢  L&E II€  6€€ Qe Ve gge e GTE fo
v9e- oLl Sl €S- 8gL- L0G-  IT'6- 8¢ 88'T- 80C- GO€I- 086~ PI'8 TGFE- ELTI- T0VI- S0LI- E€I8I- 89°€I- 66FI- LGl £p
96¢  2ge 2se eee Tee  L6E €9°€ €9°¢ €9¢  €9€ L9€  69°€ 8€E L9E  G¥E  L9€ 99 8YE  99€  €9¢  9L€ e
w6e  97E 9¢°€ 8¢e  9¢E Ve 0FE or'e 6ee  O0F€  9¢°€  ¥EE  6I'€  9TE  TFE  68E  FFE  8€E€  €re 98¢ Gre )
gre 0€0- 910 0€0- LU0~ 6T LE0- 610 PEO- 120~ 60°€- 190~ €61 6T €80-  190-  G20-  @9e-  60T- STl 69T e
16 69°€ 69°€ 65°¢  69¢ €6 9LE 6L €€ GLE  LGE 96'€  TgE 68'€  I€E 69¢  6e€ FLE 6L€ e 96€ 9.
06¢  61°€ 61°¢ €€ 61¢  06€  €FE e Tre  ere  60€  €9€¢  Ore  T¥Fe  90€  ere  VEE  L¥E  TPE 1€€ GTE )
Ve1- 99 ATV LFF- 607 69T- g¢0-  800- 800 10°0- 299- 8€9- 01°9- 929  6LL- 986~  66°0T- LSTI- 806~ F90I- 16 ¢ 0l
8T 08¢ 08¢ pLe 08¢ 10T 9L€ cLe cL'e eLe  LEE 9L€ 0LE 8LE  66€  TLE  69€  G9E  I8E  L6E  PLE e
8T Li'E Lre €re  Le  8LT  OVE ar'e sV'e  9v€ 99T PPE  99e  Lge  0I'E  PEE  9Fe g€ PeEe €Le 0C€ fo
P89- 99’8~ LI'S-  Gg'L- 808 g0l 606" 0pE €810 eI 00€l- 886 G¢8- 0°€C- 09I~ 9Tl 6€LI- S961- 80TI- IIFI- 0TVI- £
187 ¥o€ vee Vee ¥ee 8% 99°¢ €9°¢ Vo€ G9€ 69 €9 8E'E  69E  L9E  0LE L9 69€ 0L€ ¥9E 9LE o
9e  6T€ 62°€ 0€¢  63€ ¥TE  €FE e €¢  €re  6€€  68€  TTE  0€€  FFE  LPE  9F'E  8€€  LPE  68€  LVE o
60T  €20-  600-  9¢0- 600- 60 g&0-  ST0-  620- 9U°0- T0€-  6€0- 8T~ TLT 80~ gE0- 800 8E  690- 62T LET @
09T  68°¢ 68°¢ V6 68€ FOT  LLE LLE cLe LLE L€ €6€  TEE  PRE  8€€ 69C  PPE  FLE  88E  TLE  L6€ o
66C  1C€ 15°¢ e 1Te 66T  €E e Tre  Tre  60€  8%€  €FE  68€  FOE  Tge 08¢ TFE  LPE  PEE 9T¢ 0
e G99 ST 1€~ 80F- G4  190- P10~ L00  FO0- 699 €9~ 609~ 61°9- 198 188 €GTI- L9TI- G8L-  GIOI- €TL- 909
Lre- Ir¥ 0Ty 607 OV She 16€ 06°¢ 88°¢  06'¢ e  96€  €LE  68€  I9E  66€ €8¢ L€ g6E 0TV e8¢ €D
¢e T 89'€ L9°¢ TLe  L9¢ ToT- 6ge 6ge 9¢'¢  YEE  ¢9T  GrEe  99€  ¢ge  PI'E 29t 8FE  GgEe 29t 007 62¢ fo
P8Ce- C&L 86'9-  6FL- L9°O- €96 81T S9T- 60T 8ZT- GGE€I- 8€6- 998 €96 ¢8TI- 9€CI- T09T- 88'8I- 69TI- 00°€T- LEET- £p
8CT-  L9€ L9¢ €9¢  L9€¢ 89T~ €LE €L¢ tLe gLe 08¢ 08¢ SFE  €9¢  69°€  LLE  69C 99 GLE  €9¢  6L€ o
€e  8re 8r°¢ 09  8VE€ S0T  8FE 87°¢ Ve 8V€ 6V 8¥e 66 Tg€e  0%€  6FE  I§E e 0S¢ 66€  8pE %
P6'S- 6070 P10 65°0- L0 96~ F0°0 80°0 90°0- 600 6 L00 LZT- ST FIO  SI0  Lg0  99e €90 80 61T o
€re- €4y €y Vev €8V €8e 68°¢ 88°¢ 6'¢  88'¢ 89t II'P  69€ 98¢ 09€ 96  69¢ ISE  V6E  L9E  86€ 9.4
60 29€ 29°¢ 89°¢ o€ €IT  8FE 8r°¢ e 8Ve Tee 19¢ LFe ere 1T 19¢  gge 9v'e  eee  Tre 6C€ )
Tree OUF- 00 88F 69°¢- 0L'66- 610 A L90 990 ¥89- 19°G- 18C- 8F9-  G6L-  8L8-  6€0I- CCIl- VLL- €86~ 80L- o
STUN (60)da (0DHId WL WS STYN (60)dd (0DId WL WS  fiby  syu  fu sp sq iy lgp w/q  dfas  d/s d/p gsedsrog Y
UOI)RUIGUIOY) JosqNg UOI)RUIUIO)) o[qeLIeA

$Z = Y SISLODIOJ PoulquIod pue o[3uls wnimald Aymby A[yjuopy :perenbs y ojdureg-Jo-m( :¢ 9[qr],

17



“AToA1900dsa1 S)STom PIse( UOISSAISaI PUR ¢ JO onjea oY) AQ Pamo[[o] sJYIem JJSIN PIIUNO0ISIP ‘Uestl pauruuly) ‘ueswt o[duls 9j0uep STYN Pue 4 ‘INL ‘NS 1097%]
a1} 10 "PwWPYDS JUISIoM UOTJRUIGUIOD JSBIDIOJ 10 s10421paid pafojdure o1y sArdSIp MOI PUOJSS Y], "UOIPRUIQUIOD JSBIDIOJ J9SNS IO UOTYRUIGUIOD JSeIAI0J 498 [[Nf ‘O[(RLIBA S[SUIS :S)SRIDIOJ
a1y} 2onpoid 03 pasn sem POTIOUL JeTM SMOTS MOI JSI Y, A[PA1I0adsal TN L96T PUe TIN €961 ‘TIN 6G6T WOIf 1Iels 0ZT ‘09 ‘¢ = § Iof sporiad o[dures-jo-ino o], "WWN[0d PUOIIS ST} UT Pasn
[opowt SuIjse0010§ oY) Aq POMO[[O] ‘POISO] oTom JeY) 3 JO SOT[BA OY} SMOYS UWN[0D JSIY oYL, “F = ¥ PUR (9 = I Y}m S)Seda10j wniweld Ambg A[quoly oy 10§ (%) 24 ou3 sAerdsip o[qey sy,

G0~ 00 €00 800 €00 60 €0 €ro €U0 €U0 020  PI0O- 100 T00- 90 S00- 000 L00  gE0-  VEO  6E0 &
€00~  0T°0 020 820 00 €00 020 020 720 020 er0- 910 010 120- €00 600 ¥I0- 650  ¥EO 0 890 fo
692~ 8¢'¢- 967~ S¥E 16T VEL 606 19T 96T~ 09T 6LTI- 89" 9UF- LT €0F- 198 9LL- €Sl €PTI- 66l E8TI- &
00~ 00 70°0 000 700 900~ 900 90°0 200 900 000 GO0~ 800~ 00 100 20 SI'0 000 100 800 L00- i
900~ 900 90°0 00 900 800 EI0 ero 10 g0 ¥I'0- g0 €00- S00- €00- V€0 L0 €0  0£0 00 900 S
§9°¢- 180~ 69°0-  ST'0- 89°0- 89°G-  TIL0- 990~ 9¥0- L90- 00 V60~ S60- 160 620 T&T- @80~ 8LF- 86T~ €IE- 081- p
G0 LT0 LT0 9¢0 L1060 010 00 10 010 600  €00- 100- €0 010 €00 200 S00 120~ 120 ZI0 9.
V0°0-  8€0 8€°0 00 860 F00- 80 &all €0 220 0F0-  LZ0 L00 F00- 200 Lg0 600 L50  €90 610 190 0
107~ 8GT-  G&T- 661~ ¥EI- T€F-  6T0-  T1°0-  6I0- €1°0- €Fe-  €8% 9671~ ¢9l- 00% €FS- 160 6I'S-  6TL-  €0'€- TIE- ‘¢ oz1
vee-  e00-  200-  S00  100- 1% V00 700 700 GO0 200 020- 60°0- 080- SO0 900~ 80°0- 800  8¢0- €0 0£0 &
89T~ 000 000 900 000 89T~ 010 01T'0 €10 010 090~ 00 SO0~ 8€0- 90°0- T00- €0~ TY0 680 800 FG0 fo
e86- 9TV 19'¢- GVe- LPe L8010 LLT Gee LU0 18T 6UTI- G090 PRE 89T eFF- €08 P9L- 66'€L- CG0I- 988 G801- &)
00 200 200 700 €00 IIg-  200- €00~ 100- 200- 80°0- €1°0- LI'0- €0°0- IT°0- 80 900 0L0- 100~ €00 00 S
€5 200 200 €00 €00 FOT- ¥00 700 700 Y00 10 €00 GI'0- 200- IT°0- €0 L0O O0I0  S€0 €00 00 S
L L00- G9°0- 8100 ¥9°0- LIS 29°0-  LG0-  €F0- 890~ 981 LS80~ I60- €80 900 I60- 980~ L&V 29T~ 9TE 8¢I- p
L8 100 70°0 600 FO0 €FE €00 €0°0 P00 €00 T00- 800~ TI'0- 600 T100- 000 T10°0- 200 910~ 600 800 R
L9T- 810 8T°0 LT0 810 L9T-  TI'0 ero €10 2’0 LF0- IO 800~ 600- 600- LI'0 000 €0 80 10 0F0 0
€04 T9Il-  GPI- 091~ gpl- LS.~ €1°0-  F00-  GT0- L00- 6T'€-  1€e F8T- 99T~ LT L0'G- 10€- 9FL- 999~ €TE- V6T ' 09
88°G- 800 80°0 600 600 G€9-  GT0 §T°0 S0 ST0  8T°0  01°0- 100 010- 610 &00 ¥00 610 LU0~ &0 150 &
0Lrg- ST P10 90  GI0 L9 CE0 dll 920 ¢¢’0 G€0- e0 800 FL0- €00 600 TIT0- €90 IF0 610 190 fo
6L 909 I®G eV 9LG 09Le- 19T Fer  8¢T- €0T 9801 $6°G- 6LE 19T PIP- 98L T¥L- €€l LEO0T- TE'8- gg0l- &)
I8¢ 100 10°0 000 100 €0F- L0 L0°0 800 L00 000  €0°0- 0T'0- 900 00 8¢0 910 TO0- 900 €10 TO0- o
€Le- €10 €r0 Tro0 €U0 GEE S0 §r0 PIO  GU'0 I0-  9T0  G00- FO0O 100 FEO0 80 610 g€0  ¥I0  IL0 S
LEET- €0T- 960~ LL0- G6°0- 6VGI- €90 60~ 9€0- 09°0- @81 G8°0- 68°0- 080 €¢0 €80 €90 SIF- 69T~ L0T 6V b
609- €00~ €00~ T0 T00- L09-  €r0 €r0 €U0 €0 800 000 200~ LI'0 €U0 110 g0 g0 800~ 8T0 910 R
Tov-  8T0 82°0 G0 80 €0 €80 €20 ¥C0  €C0  L&0- L0 P00 FO0 200 0€0 2’0 20 990 &0 090 9
0roe- 9¢1-  €¢l-  PUIl- IUT- GLEE 100 80°0 €00 T1°0  Tr¢- 1€ 8LT- 9T~ 10T €U'¢- T1Le g0l 899-  €I'e- 98°%- ' ¥t
STUN (60)dd (0Ddd WL WS STIN (60)dd (0NIA WL IS  fibyy  syu  fuwr  sp  sqp  fiyg g w/q d/5s  d/>  dfp gseniog Y
UOT)RUIqUIO)) Josqng UOL)RUIqUIO)) S[(RLIRA

09 = Y SISeDdI0] PAUIqUIOD PUR S[3UIS WNIWLIJ ANnby A[yiuoly :parenbs 3 ojdureg-jo-inQ :9 s[qe],

18



"AToA1300dso1 SIYSToM Poseq UOISSOISoI puR ¢ JO anjeA 9y} A PoMO[[O] SHYSM HJISIN PRIUNOISIP ‘Ueowl pouruLly ‘wreowt o[duuls 9j0uop STHYN PUe [ ‘INL ‘TNS I031e[ oy} I0] OUIdYDS
SUIYSoM UOTYRUIGUIOD J58IDI0J 10 SI10921pald pasojduro oY) sAe[dSIp MOI PUODAS OYJ, "UOIJRUIQUIOD JSBRIOIOJ 19SNS 10 UOIIRUIGUIOD ISBIVIOJ 39S [[N] ‘O[RLIRA 9[SUIS :SISRIOIO0J oY) donpord
07 POsTL sem POYIOW JRYM SMOYS MOI ISI oY T, "A[oA1300dsor TIN ¢L6T PU® TIN 2961 ‘TIN $96T WoIy 1reis 0g] ‘09 ‘F¢ = Y 10} spouod ojdures-Jo-no oy ], "UWN[OD PUOIDS 91} Ul Pash [opout
8u1ISRIOI0] o1} A POMO[[O] ‘PoIso) oTom ey} Y JO soufeA dY) SMOYS UWN[0D ISIY DY, '§ = U Pue gl = Y YA $3580010} wntwelJ A3mbg A[YIUOI ouy 10§ (%) 24 U3 sAe[dsIp o[qey ST,

T 1€0 0€°0 9¢'0  0£0  TET-  1€0 1€°0 1€0  1€0 ¢80 680 €0 620 80 80 &r0 910 100 &0 280 R
65T 8T0 820 8C0 820 09T~ T1€0 1€°0 €60 T€0 80 610 8Y0 ST0 080 T100- LI0 €0 680 0£0 €0 {o
0£6-  9T'L- 829" 86'¢- LI'O- 9T6- TLe 16T 98T 9LT LIS 96°¢- 98°¢- €Fe SIS L0G 99°%- FROI- 9TL- 606 S6TI- &
6670 920 9z°0 0€0 920 660- SI°0 61°0 80 610 010 ¥I'0 FL0 910 S0 €0 IF0 900~ 800 110 L0 o
6670 GO0 50°0 800 SO0  LOT-  LTO LT0 910 LT'0 2’0 800 0€0 II0 €U0 ¢€0 920 €00 SI0 S0 600 o
pLrL- 80T P®T- €Fe o8T- @8l 0Ul- 960-  860- $6°0- P61~ SGP0- STl 20T IO PLO- 060~ 9% F6T- 0LE€ FEP- o
6670 8€0 8€°0 PE0 80 00T €20 €270 ge0 €0 80 680 PO 020 00 960 IF0 €00 SI0- €10 600 .
160~ ST0 ¢ro €U0 SI'0 660- G20 5270 €00 920 TE0 €0 0F0 TE0 610 020 €0 IO 600 I€0 910 ¥
PeL- 860~ 86'0-  8¢I- 860~ GF6- 80~ LP0-  ¥90- LV0- 6€C ¥El- 091~ G80- 8F0- 6€C LeT POV~ 0LE 18C 8- 9ozt
8- €e0 12°0 920 @0 €T 610 61°0 120 020 €0 920 O0r0 TII'0 80 100 820 00 &I'0- 800 120 R
TeT G0 ¢r0 9T0  ST'0 99T SGT0 §T°0 910 ST'0 IF0 00 IF0 €00 P00 0Z0- L00- 00 600 €10 ST0 fo
9¢°Tl- €89 L6'G  LE&G- 16 TGS ILE 16C  1€T P8T €FL- €97 09¢ FPE 9€1- €19 98¢ 98°0I- 6TL- €68 S80I £
9¢°T-  LT0 820 €0 820 ¥9TI- 2L ero gro  TI'0  100- 200 800 800 €20 GE0 9¢0 TI0- €00 00 €00 o
- €00 €0°0 900 €00 29T~ 600 60°0 800 600 €00 T00- €0 GO0 800 ¥EO 90 800~ 900 FOO 000 S
6 ¥9T- @rI- 8LT- 8- 0601- T0T-  880- 880~ 180~ LLT- 69°0- 00T- 0T 9€0  F60- 060- 65T 08T- 68€ T0V- o
0T 80 820 TE0  8T0  L0T  ST0 §T°0 GT'0 GI'0 910 FE0 €U0 900 S€0 GC0  FE0 0U0-  €80- 200 F00 o
¢GT- 60°0 60°0 800 600 SST-  0T0 01T'0 600 010 120 600 80 OI0 L00 0 €0 000  L00- €U0 €00 0
€06 GI'l-  L0T- 990 90°'I- 96TI- I¥F0- 880~ 8V0- 8€0- ¥EE 98- FVI- G80- 09°0- 9U'€- €9%- SIY-  8GE- 14T 16" %09
S0¢- IO 110 ST0 110 SPP- 200 L0°0 800 200 900 €00 O0L0- 200~ I€0 80°0- 020 800~ 120~ 90°0- 010 R
€96~ FIO0- FUO- €U0 FLO- L09-  €00-  €00-  200- €00- &&0 80°0- &0 S8T0- 6T0- 8€0- 820- 800~ 0T0- 100 100 fo
T8ET- ST PG 69T 61°G- 61FE 8%Ee-  L0€- LT 89T 0Tl 8P L€ TFT 6V 1 €8¢ 96'G- 6G°0I- FEL- 8T8 PRTI- £
L&€ €00 €0°0 00 €00 6€T 000 000 000 000 0Z0- €U0~ 600~ L00- €10 920 80 &&0- 900- TII'0- 900 i
pee- €U0 €r0-  Pr0- €r0- §¢e 900-  90°0-  L00- 90°0- 9T0- 61°0- 900 Tr0- 0T0- IT0 €00 g0~ 800~ 80°0- TI0- %o
LETT- €9T- 09T 9LT- €IS €0TI- G6°0-  L80- IS0~ 080- €LT- GL0- 00T- €0T  SGP0  8%0- €80~ PP 69T GTE 16°€- e
0TF-  ST0 ST°0 90  FTO 1T F00 700 P00 ¥00 20°0- TO0  FO0- 600- 00 6U0 TE0  6T°0- 850~ TIO- 90°0- i
997- 200~ T00- 000 E00- P0G L00-  L00-  L00- 1000~ T00 80°0- IO 600~ FTO- EU0- S00- 6I0- 10~ 100 SI0- 0
Te91- 0€T-  9gT- L0~ GTI- 8FGE- T1€0-  0€0-  L£0- Lg0- ITG 191- 8€T- TL0- &rO0- ¥0'&- 09T S0P 0L€- 8¥T TLE- L
STUN (60)dd  (0D)dd WL WS STUN (60)da (0ndaa WL NS Aoy syu  fur — sp  sq Ay qq  w/q dfes  dfo d/p gsedsrog Y
UOT)RUIqUIO)) 0SNG TOTJRUIUIO)) S[qeLIRA

02T = Y SISeD9I0] PAUIqUIOD Pue J[3UIs Wl A)mby A[qjuoly :parenbs 3 ojdureg-jo-nQ :), o[qel,

19



6 Conclusion

This paper introduces a forecasting method that sequentially applies bagging and forecast com-
bination to improve the accuracy of time series predictions. The two bagging approaches con-
sidered are the traditional bagging method and the revised method proposed by (Jin et al., 2014).
In addition, multiple combination weighting schemes are evaluated in the form the simple mean,
trimmed mean, discounted MSPE based weights and regression based weights. This sequential
technique is employed to produce equity premium forecasts based on macroeconomic variables
to investigate whether applying bagging and forecast combination in tandem can improve the
accuracy of monthly one-step-ahead equity premium predictions. Before applying both meth-
ods to excess return prediction, the forecasting performance of bagging is investigated through
Monte Carlo simulations. Thereafter, both methods are employed in succession to construct
equity premium forecasts, where combinations derived from the entire set of macroeconomic
variables and an automatically selected subset of well performing predictors are considered.

The Monte Carlo simulations show that both bagging methods yield sizeable forecasting
performance increases for all tested model specifications. The revised bagging method tends
to outperform the traditional in the simulations. This higher accuracy is especially prolific for
explanatory variables with high autocorrelation, which is useful for equity premium forecasting
as many of the macroeconomic variables possess this property. When applied to monthly equity
premium forecasting, although none of the macroeconomic variables consistently outperform
the historical average when used in non bagged models, both of the bagging techniques provide
higher accuracy than the historical average by a sizeable margin for short in-sample estimation
periods. This shows that the equity premium is predictable using the information contained in
the macroeconomic variables. The accuracy improvements of the equity premium predictions
resulting from forecast combination relative to the models that only use a single predictor are
comparably smaller for bagged forecasts. This however, does not mean that the application of
bagging and forecast combination in tandem to monthly equity premium predictions does not
hold any practical value. Using these techniques sequentially improves forecasting accuracy and
reduces the accuracy risk related to forecast selection, as combining provides relatively consistent
performance over time. In addition, although the combinations based on a subset of predictors
are less consistent than their full set counterparts, subset combination in tandem with bagging
has shown some potential, even besting the ex-post best single model in several cases.

Given the observed performance of the use of bagging and forecast combination in tandem
for equity premium forecasting, it might be interesting to investigate their sequential use for
other time series. Specifically, considering this method for forecasting macroeconomic variables
could be valuable, as they possess many of the same properties as the excess returns in the
form of structural instability and numerous possible predictors. It may also be worthwhile to
add to the existing literature, by evaluating the performance provided through the sequential
application of both methods using a purely statistical approach. In addition, considering the
sizeable reduction in MSPE that subset combination provides in certain instances, it may be
beneficial to further refine the subset selection procedure. The approach implemented in this
paper is relatively crude and leaves room for improvement, such as automatic selection of the

number of forecasts to include in the combination or more appropriate selection criteria.
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A Monte Carlo Simulations Results

Tables [8] [9] and [10] contain the MSPE percentage gains with respect to the simple linear forecast
in Equation [4] for the Monte Carlo simulations with R = 50,100 and R = 20.

Table 8: MSPE percentage gain with re-
spect to the simple linear model: DGP 1

(cv, B)
R Forecast (0,0) (.3,4) (.7,.2)
50 ¢* 117 2.89  6.72
E*¢y 1.83 293  6.94
b2 1.09 0.80  6.63
o5 117 2.85 7.0
E*¢o 1.58 293  7.06
®3 -5.08 -35.22 -13.92
% 1.18 255  6.41
E* g 1.82 290  6.74
100 ¢% -0.88  0.86  5.21
E*¢y 017  0.88  5.26
b2 042 -0.34 271
o3 097 086  5.41
B* o 042 093  5.44
®3 -2.02 -17.93 -22.31
b4 0.87  0.64  4.72
E* g 0.08 083 5.01

This table displays the MSPE gains with
respect to the simple linear model for
DGP 1. The first column shows the val-
ues of R that were tested, followed by
the forecasting model used in the second
column. The second row contains the val-
ues of (a, 8) in Equation
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Table 9: MSPE percentage gain with respect to the simple linear
model: DGP 2

(v, B)

0,00 (3,4) (7,.2) (0,00 (3,4) (7,2)

R Forecast p=20 p=0.95
50  ¢F 259  3.01 323 1.71 317 277
E*¢y 2.58  3.03 3.27 227 328 297
b2 079 1.00 121 154 124 1.18
o5 251 295 332 167 3.18 279
E* o 249 299 335 202 328 293
b3 371 -483  -298 -4.68 -557 -3.10
o4 264 284 293 1.79 3.08 261
E* s 262 296 3.03 236 322 289
100 &} 119 099 1.58 -0.99 092 1.09
E*¢, 118 103 1.60 -0.31  1.09  1.19
b9 011 019 039 016 050  0.53
o5 1.17 100 1.62 -1.05 092  1.10
E* o 1.16 102 166 -054 1.04  1.19
b3 =253 =290 -2.75 -3.20 -2.56 -2.92
o4 1.17 096  1.39 -0.98 0.86  1.06
E* s 1.17 100 146 -029  1.06  1.18

This table displays the MSPE gains with respect to the simple
linear model for DGP 2. The first column shows the values of R
that were tested, followed by the forecasting model used in the
second column. The second row contains the values of (a, ) in
Equation followed by the values of p in the third row.
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Table 10: MSPE percentage gain with respect to the simple linear

model: DGP 3
(v, B)

0,00 (3,4) (7,.2) (0,00 (3,4) (7,2)

R Forecast p=20 p=0.95
50  ¢F 2.66 256 273 312 277 380
E*¢y 265 260 276 319 275  3.75
b2 087 072 084 204 153  1.02
o5 261 258 275 307 274 381
E* o 262 259 281 315 275  3.79
b3 -3.05 -3.98 -3.27 -4.05 -4.28 -6.75
o4 251 242 247 3.05 267  3.69
E* g 254 250 265 323 271  3.70
100 ¢F 122 1.02 074 120 1.80 1.08
E*¢, 1.24  1.00 081 131 178 1.24
b9 0.40 -0.09 0.0 1.12 074  0.88
o5 123 092 08 110 179 1.05
E* o 1.24 091 08 121 1.78 1.34
b3 223  -297 -263 -1.77 -2.09 -1.62
o4 114  1.09 063 130 1.81  1.43
E* g 117 1.07 069 148 1.78  1.53

This table displays the MSPE gains with respect to the simple
linear model for DGP 3. The first column shows the values of R
that were tested, followed by the forecasting model used in the
second column. The second row contains the values of (a, ) in
Equation followed by the values of p in the third row.
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B Macroeconomic Variables

A brief description of the macroeconomic variables is given below.

e Dividend Price Ratio (d/p): This ratio compares dividends paid on the S&P 500 index to
the price level. It is calculated as the difference between the log of dividends and the log

of prices. The value of dividends is computed as a 12-month moving sum.

e Earnings Price Ratio (e/p): This ratio compares earnings on the S&P 500 index to the
price level. It is calculated as the difference between the log of earnings and the log of

prices. The value of earnings is computed as a 12-month moving sum.

e Smoothed Earnings Price Ratio (se/p): This ratio uses a 10-year moving average of real

earnings divided by current real prices.

e Book-to-Market Ratio (b/m): This ratio is constructed by dividing the book value by the

market value for the Dow Jones Industrial Average.
e Treasury Bill (¢bl): The interest rate on a three month Treasury Bill.
e Long Term Yield (lty): The yield on long-term government bonds.

e Term Spread (ts): The term spread is the difference between long-term government bond

yields and Treasury bill rates.

e Default Yield Spread (ds): This spread is computed as the difference between BAA and
AAA-rated corporate bond yields.

e Inflation (inf): The inflation is Consumer Price Index for all urban consumers. This
variable is lagged to avoid using future information, as the values become available with a

delay.

e Net Equity Expansion (ntis): This ratio is computed by dividing the net issues by S&P
listed stocks, for which a 12-month moving sum is used, by the total end-of-year market

capitalisation of S&P stocks.

e Lagged Equity Premium (lagy): The value of excess stock returns lagged one-period.
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C Subset Combination
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D Cumulative Out-Of-Sample R-Squared

Figure [1| and [2| display the R2, at each point in time (cumulative R2,) for forecasts produced

using the simple linear model and the simple mean combined forecasts, with R = R =24.

Figure 1: Cumulative R2, non-bagged
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This figure displays the cumulative R2, for the non-bagged forecasts produced using the simple linear
model based on the Dividend Price Ratio, Default Yield Spread and Lagged Equity Premium as well as
the simple mean combined forecasts for the full set of variables. The value employed for R and R is 24
and the displayed period runs from 1963 M1 to 2005 M12.

Figure 2: Cumulative R2, bagged
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This figure displays the cumulative R2, for the bagged forecasts produced using the simple linear model
based on the Dividend Price Ratio, Default Yield Spread and Lagged Equity Premium as well as the
simple mean combined forecasts for the full set of variables. The value employed for R and R is 24 and
the displayed period runs from 1963 M1 to 2005 M12.
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E Code

This appendix lists all MATLAB code and data files used to compute the results reported in

this paper. A concise description of each file is provided.

e The excel file Raw Data contains the original data.

e All computed macroeconomic variables and final results are stored in the excel file Vari-

ables and Results.

e All data generated by the DGPs described in and forecasts computed for the Monte
Carlo Simulations as well as equity premium predictions are stored in the following MAT-
LAB data files.

- Results_MC.mat contains the data and forecasts for the Monte Carlo simulations.
- Results_EP.mat contains the non-bagged and bagged equity premium forecasts.

- Results_EP_Combined.mat contains the combined premium forecasts.

e To replicate the results presented in this paper, the following MATLAB scripts should be

run in order.

- Monte_Carlo_main.m runs the Monte Carlo simulations to produce the results
reported in Table 9] and

- Generate_Variables.m computes the equity premium and agronomic variables ac-
cording to the description provided in Section and Appendix [B]

- EP _Forecast_main.m constructs the non-bagged and bagged equity premium pre-

dictions to produce the results reported in Table

- EP _Forecast_Combined_main.m constructs combined equity premium predictions
to produce the results reported in Table [5] [6] and [/l The figures in Table and
can be replicated by changing the value of n.

- Generate_Figs.m produces Figure [I] and
e The following helper functions are called in some of the previous scripts.

- MC.m runs a Monte Carlo simulation for the chosen DGP and parameter settings

and handles parallelisation.
- MonteCarlolter.m runs one replication of a Monte Carlo simulation.

- DGP1.m, DGP2.m and DGP3.m generate a time series according to DGP 1, DGP
2 and DGP 3 in Equation [19] respectively.

- EPForecast.m produces non-bagged and bagged equity premium predictions for

specific values of R and R.

- OLS.m, LocalConstant.m and LocalLinear.m produce one-step-ahead predic-

tions according to Equation [ [6] and [7] respectively.
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- KernelBandwidth.m computes the appropriate value for the smoothing parameter
according to the rule-of-thumb described in Section

- TrimmedMean.m, MSPEWeighted.m and NRLS.m construct combined fore-
casts according to their respective procedures as described in

- BlockBootstrap.m produces B bootstrap resamples according to the procedure
described in Section 3.2

- opt_block_length REV _dec07.m computes the optimal bootstrap block length as
described by (Politis & White, [2004), the code can be retrieved from Prof. A. Patton’s
websiteP]

- mlag.m generates a matrix of n lags from a matrix containing a set of vectors, the

code can be retrieved from Prof. A. Patton’s website.
- R200SLog.m calculates the R2, according to Equation

- Rank.m returns a matrix containing the forecasts of the n best performing models
based on a single predictor according to the MSPE as described in Section

Shttps://public.econ.duke.edu/ ap172/code.html
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