
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis International Bachelor Econometrics and Operations Research

Discovering Latent Dependencies: Boosting the

Nonexchangeable Conformal Prediction Paradigm

Timothy Lauren Nijhuis (611398)

Supervisor: Meer, S van

Second assessor: Hemerik, JBA

Date final version: 1st July 2024

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.

Abstract

This study advances the literature on conformal prediction for time series data through a

two-stage approach. First, we address the considerations that go into selecting an appropriate

forecaster for conformal prediction in the context of time series. Specifically, a Bayesian

Structural Time Series (BSTS) model is evaluated against several traditional forecasting

methods. Second, we propose a novel technique to determine test-sample adaptive weights in

nonexchangeable conformal prediction. Our approach leverages a Long Short-Term Memory

(LSTM) network to estimate the conditional distributions of nonconformity scores. We then

compute the Kullback-Leibler divergences between these estimated distributions and process

them through a kernel function. This method has been tested and benchmarked across six

different simulated settings. Our findings show that the proposed method generalizes well

and autonomously identifies the relevant latent dependencies between the nonconformity

scores. This significant contribution enhances the validity and reliability of nonexchangeable

conformal prediction for time series data.

1 Introduction

Consider the scenario of forecasting electricity demand using a black-box machine learning

model. The modeler is tasked with finding predictive intervals for tomorrow’s electricity de-

mand with a 1− α probability, such that the electricity demand of households can be met with

a specified confidence level. To achieve this, the modeler turns to conformal prediction, a tech-

nique that is compatible with any model and requires minor assumptions about the distribution

of electricity demand.

Conformal prediction is a technique that constructs prediction intervals with guaranteed

coverage for any model. Given a dataset of n points (X1, Y1), (X2, Y2), . . . , (Xn, Yn) and a new

data point (Xn+1, Yn+1), conformal prediction calculates nonconformity scores Ri = |Yi− µ̂(Xi)|
using the model’s predictions µ̂(Xi). Here, µ̂ represents the fitted model, X denotes the features,

and Y is a real-valued target variable. These scores are then used to form a prediction interval

Ĉ(Xn+1) that includes Yn+1 with the specified probability 1 − α. This ensures a marginal

coverage guarantee: P (Yn+1 ∈ Ĉ(Xn+1)) ≥ 1− α.

The modeler uses this technique to create the desired prediction intervals Ĉ(Xn+1) for electri-

city demand. However, they find that the prediction intervals do not achieve the target coverage

level. This is because the required assumption for marginal coverage is the exchangeability of

the nonconformity scores, which is violated in time series data. In practice, tomorrow’s electri-

city demand can depend on trends, seasonal patterns, and autoregressive components. These

dependencies lead to a coverage gap: (1 − α) − P{Yn+1 ∈ Ĉ(Xn+1)}, indicating the difference

between the intended and actual coverage level.

To minimize the coverage gap, the modeler must enhance the exchangeability of the non-

conformity scores. This can be achieved in two stages. First, selecting an appropriate forecaster

that accounts for temporal dependencies such as trends, seasonal patterns, and autoregressive

components will reduce uncaptured dependencies in the nonconformity scores. Second, the con-

formal prediction procedure can be improved by weighting the nonconformity scores based on

their similarity to the test point.

In this paper, the first stage is addressed by using a Bayesian Structural Time Series (BSTS)

model to forecast electricity demand. The BSTS model combines simpler Bayesian time series

models to capture changing slopes, trends, and seasonal effects. Specifically, the model’s time-

dependent coefficients evolve according to a random walk with variance determined by prior

beliefs, such that coefficients that better explain the data are considered more likely. This

allows the BSTS model to adapt to distributional changes over time without needing to refit

the model or discard samples. This makes the model particularly appropriate for handling data

with evolving temporal dependencies.

The second stage is addressed by employing a Long Short-Term Memory (LSTM) network to

weigh nonconformity scores. The LSTM estimates the moments of the conditional nonconformity

score distribution for the test point using the features Xn+1 and calculates the Kullback-Leibler

(KL) divergence between this distribution and those of the sample points. These KL divergences

serve as the distance metric for a kernel function that assigns adaptive weights to the utilized

nonconformity scores. This method improves the validity of conformal prediction in the presence

of distribution drift, changepoints, and conditional heteroskedasticity.

1

The rest of the paper is structured as follows. Section 2 reviews the literature on conformal

prediction, emphasizing test-sample adaptive weighting schemes. Section 3 describes the data

used to test the hypotheses: the BSTS model is applied to an electricity demand dataset in the

first stage, while the LSTM model provides weights under six simulated datasets in the second

stage. Section 4 details the methodology, including the mathematical underpinnings and the

motivations for using the BSTS and LSTM models. Section 5 presents the numerical results

and discusses their practical implications. Finally, Section 6 summarizes the main findings and

offers suggestions for future research.

2 Literature Review

Conformal prediction techniques vary in their sample efficiency, with more efficient methods also

being more computationally intensive. Nonconformity scores, derived from point forecasts, need

to be exchangeable. Exchangeability is violated when nonconformity scores are more likely to

belong to specific observations rather than being equally likely for all observations. For instance,

using the absolute residual as the nonconformity measure, constructing prediction intervals

for out-of-sample predictions based on in-sample predictions violates exchangeability. This is

because the residual for Xn+1 is more likely to belong to observation n+1 than to observations

1 : n, as in-sample and out-of-sample residuals typically follow different distributions.

Therefore, one approach to conformal prediction, called split conformal prediction, involves

using a holdout set to measure residuals and then taking an empirical quantile from these holdout

residuals. Another method, known as full conformal prediction, hypothesizes a value for the test

point’s target variable, fits the model on the entire dataset, and treats each point as an in-sample

prediction. However, this requires fitting the model for each possible value of Yn+1, which is

feasible for only a small set of models. Both of these methods were first comprehensively detailed

in the book ”Algorithmic Learning in a Random World” (Vovk et al., 2005).

Since then, algorithms that bridge these two extremes have been developed using a cross-

validation framework. For example, the Jackknife+ constructs sample-efficient prediction in-

tervals using leave-one-out predictions (Barber, Candes et al., 2020). Angelopoulos & Bates

(2022) give a comprehensive introduction to the current field of conformal prediction and its

methods. Additionally, Vovk et al. (2022) published an updated version of the aforementioned

book, including improved algorithms and extensions.

The central assumption for these methods to be valid is that the nonconformity scores are

exchangeable. However, this paper focuses on time series data where this condition does not

hold. In Barber et al. (2023), a weighting method is proposed to deal with such nonexchangeable

data. Here, each data point (Xi, Yi) is assigned a weight wi that relates to our prior expectations

of its exchangeability with the test point. The prediction interval is then calculated using the

weighted quantile Q1−α (
∑n

i=1wiδRi + wn+1δ∞). This weighting method provides approximate

coverage guarantees despite the violation of exchangeability.

These methods for conformal predictions aim to provide marginal coverage guarantees, mean-

ing that coverage is obtained in the long run when averaging out all observations. In this paper,

we seek to enhance the validity of conformal prediction by assigning higher weights to more ex-

changeable observations, such that these marginal coverage guarantees are more likely to hold.

2

This approach is connected to the literature on conditional coverage guarantees for conformal

prediction. By making the weights adaptive to the test sample, we effectively implement a soft

form of conditioning.

In this domain of the literature, it has been proven that it is not possible to construct

finite-width prediction intervals that offer conditional coverage guarantees of the form

P
{
Yn+1 ∈ Ĉn(Xn+1) | Xn+1 = x

}
≥ 1− α, for all distributions P and almost all x

when dealing with finite samples, without assuming smoothness of the distributions P (Lei &

Wasserman, 2012; Vovk, 2012). However, Barber, Candès et al. (2020) find that by relaxing the

conditional coverage definition to

P
{
Yn+1 ∈ Ĉn(Xn+1) | Xn+1 ∈ X

}
≥ 1− α, for all distributions P and all X ⊆ Rd

with PX(X) ≥ δ

nontrivial finite-width prediction intervals can be found. An intuitive ’soft conditioning’ method

related to this relaxed conditional coverage definition is localized conformal prediction, which

assigns higher weights to samples within a local region around the test sample using a kernel

function (Guan, 2022).

A more advanced method for finding weights, similar to the Long Short-Term Memory

(LSTM) network procedure proposed in this paper, is described by Auer et al. (2023). In their

approach, a Modern Hopfield Network (MHN) is used to identify segments of the time series with

similar conditional absolute residual distributions. This technique reweights samples based on

their similarity to the current test sample, effectively conditioning on identified ’error regimes.’

Again, the focus is not on the conditional coverage guarantees; yet, state-of-the-art performance

is achieved in both coverage and predicted interval widths through this soft conditioning.

The MHN encodes features and determines similarity to stored feature representations, which

are processed through a softmax function to establish association strengths. In contrast, this

paper uses an LSTM network to make point predictions for the moments of the conditional non-

conformity score distribution. It then calculates the Kullback-Leibler (KL) divergences between

the test sample’s conditional distribution and those of the other samples. Finally, a kernel

transforms these KL divergences into the utilized weights.

These adaptive reweighting methods can be further improved by superposing a method that

adaptively changes the coverage target based on the actual miscoverage level relative to the

desired coverage. The first method to do this, developed by Gibbs & Candes (2021), simply

increases the coverage target after a miscoverage event and decreases it after a coverage event.

The most recent improvement in adaptive target selection is described by Angelopoulos

et al. (2023), where a Proportional-Integral-Derivative (PID) controller is applied to conformal

prediction. Their derivative control component addresses systematic trends in the nonconformity

scores that were not captured by the initial forecaster. The LSTM network in this paper can

be viewed through the lens of this ’scorecasting’ component. However, the integration of the

scorecaster here differs, as it does not influence the internal target coverage but rather the

weighting scheme of the nonconformity scores.

3

3 Data

This section details the data used for the experiments. The first part covers the Elec2 dataset,

which is utilized to fit the Bayesian Structural Time Series (BSTS) model (Harries, 1999).

This dataset is also used to replicate the findings of Barber et al. (2023), who evaluated three

methods for full conformal prediction in the context of nonexchangeable time series data. They

compared the performance of a Least Squares (LS) model with both normal and nonexchangeable

algorithms, and a Weighted Least Squares (WLS) model with the nonexchangeable algorithm.

The second part describes the Data-Generating Process (DGP) for six different simulated

datasets, each corresponding to a unique scenario. These datasets are employed to evaluate the

performance of the LSTM network in providing test-sample adaptive weights. Each scenario

follows a distinct process, enabling us to assess how well the LSTM network can generalize

across various settings.

3.1 Elec2 Dataset

The Elec2 Dataset is taken from Kaggle (The Elec2 Kaggle Link). The dataset is normalized

to be in the range [0, 1] and contains 45,312 instances from 7 May 1996 to 5 December 1998.

Each instance represents a 30-minute period, with 48 instances per day. The records include

the New South Wales electricity demand nswdemand and price nswprice, the Victoria electricity

demand vicdemand and price vicprice, and the scheduled electricity transfer between these states

transfer. Other features present in the dataset are dropped in this paper. For all models, the

initial stretch of time (t = 0 : 17760) is removed because the target variable transfer is constant

during this period.

To replicate the findings of Barber et al. (2023), we use their methods on a subset of the

data from 9:00 AM to 12:00 PM. This was also done in their paper to minimize the presence of

hourly seasonal effects. For fitting the BSTS model, we use the full Elec2 dataset because we are

specifically interested in how well this forecaster can capture dependencies that make the data

nonexchangeable, such as seasonal effects. An exposition of both the hourly and daily seasonal

effects that are present in the dataset is given in Appendix A

3.2 Simulated Data

The first three scenarios we consider to evaluate the performance of the LSTM network are

based on Barber et al. (2023), providing a reliable benchmark. Then, this paper introduces three

additional scenarios to check the robustness of the LSTM network and its ability to generalize to

different scenarios. These new scenarios are influenced by highly interpretable latent processes,

as illustrated in Appendix B. Consequently, we recommend incorporating these scenarios in

future research on test-sample adaptive weights. For each scenario, 3000 observations have been

generated.

• Setting 1: i.i.d. data. The data points (Xi, Yi) are generated i.i.d, with Xi ∼ N (0, I4)

and Yi ∼ XT
i β +N (0, 1) for a coefficient vector β = (3, 1, 0, 0).

4

https://www.kaggle.com/datasets/yashsharan/the-elec2-dataset?resource=download

• Setting 2: changepoints. The data points (Xi, Yi) are generated with Xi ∼ N (0, I4)

and Yi ∼ XT
i β

(i)+N (0, 1). The coefficient vector β(i) changes three times throughout the

series.

β(1) = . . . = β(500) = (3, 1, 0, 0),

β(501) = . . . = β(1500) = (0,−3,−1, 0),

β(1501) = . . . = β(2500) = (0, 0, 3, 1),

β(2501) = . . . = β(3000) = (0, 3, 1, 0),

• Setting 3: distribution drift. The data points (Xi, Yi) are generated withXi ∼ N (0, I4)

and Yi ∼ XT
i β

(i) + N (0, 1). Here, β(i) is the coefficient vector at time i and changes

gradually through linear interpolation between the starting and ending coefficients.

β(1) = (3, 1, 0, 0),

β(3000) = (0, 0, 3, 1),

• Setting 4: stochastic volatility. The data points (Xi, Yi) are generated with Xi ∼
N (0, I4) and Yi ∼ XT

i β +N (0, σ2
i). Here, β = (3, 1, 0, 0) is the coefficient vector, and σ2

i

represents the stochastic volatility at time i, which evolves according to the exponent of

the latent state hi that follows an AR(1) process.

σ2
i = exp(hi), hi = 0.9hi−1 +N (0, 0.25)

• Setting 5: heteroskedasticity. The data points (Xi, Yi) are generated with Xi ∼
N (0, I4) and Yi ∼ XT

i β +N (0, σ2
i). Here, β = (3, 1, 0, 0) is the coefficient vector, and σ2

i

depends on a linear combination of Xi2 and Xi4.

log(σ2
i) = α0 + α1Xi2 + α2Xi4

where α0 = 0.1, α1 = 0.4, and α2 = 0.3.

• Setting 6: lagged effects. The data points (Xi, Yi) are generated with Xi ∼ N (0, I4)

and Yi ∼ XT
i β+N (0, σ2

i). Here, β = (3, 1, 0, 0) is the coefficient vector. The variances are

initialized as follows:

σ2
(1) = . . . = σ2

(10) = 3.5 (very high initial variance)

σ2
(10) = . . . = σ2

(30) = 1 (low initial variance)

σ2
(30) = . . . = σ2

(45) = 0.5 (very low initial variance)

σ2
(45) = . . . = σ2

(50) = 2 (high initial variance)

5

For the time steps beyond the initial 50 steps, the variance σ2
i is determined by:

log(σ2
i) = 0.95 log(σ2

i−50) +N (0, 0.15),

Introducing lagged effects where the variance at any point depends on the variance from

50 steps earlier, modified by a normally distributed noise term.

4 Methodology

The methodology of this paper is structured into three main sections. The first section outlines

the two conformal prediction techniques utilized in this paper: split conformal prediction and

full conformal prediction. Next, the second section details the Bayesian Structural Time Series

(BSTS) model. It includes both an introduction to the BSTS as an appropriate forecaster for

time series data with changing temporal dependencies and a rigorous exposition of its mathem-

atical structure. The third and final part of the methodology pertains to the Long Short-Term

Memory (LSTM) network, the chosen model to estimate the moments of the conditional noncon-

formity score distributions. This section begins with a motivation for using test-sample adaptive

weights, followed by an in-depth exposition of the LSTM model architecture. It concludes with

the method for obtaining weights using the Kullback-Leibler (KL) divergences between the es-

timated distributions.

4.1 Conformal Prediction Methods

This section details the two main methods for conformal prediction that are used in this paper:

split conformal prediction and full conformal prediction (Vovk et al., 2005). Both methods

can be adapted for nonexchangeable data, but we specifically choose to use the split conformal

method for exchangeable data with the BSTS model. This is because the resulting coverage gap

can then be interpreted as a performance metric that indicates how effectively the BSTS model

transforms nonexchangeable data into exchangeable nonconformity scores.

Three versions of the full conformal prediction method are used: for exchangeable data, for

nonexchangeable data, and for nonexchangeable data using a nonsymmetric algorithm. The

latter two methods were proposed in Barber et al. (2023). Full conformal prediction is feas-

ible for only a limited set of models, including Weighted Ridge Regression (WRR), which also

encompasses Weighted Least Squares (WLS) and Least Squares (LS).

Two algorithms for these versions of full conformal prediction are detailed in the appendix.

In Appendix C, an extension of the algorithm described in Vovk et al. (2005) is presented, with

a time complexity of O(n2). An improved algorithm, based on Vovk et al. (2022), is detailed in

Appendix D, which achieves a reduced time complexity of O(n log n).

4.1.1 General Notation

For both methods, we are given the data points Zi = (Xi, Yi), where Xi represents the feature

vector and Yi is the real-valued target variable for i = 1, . . . , n, we aim to construct a prediction

interval Ĉn(Xn+1) for a new test sample (Xn+1, y) with an unknown y. This prediction interval

6

should satisfy the condition P
{
Yn+1 ∈ Ĉn(Xn+1)

}
≥ 1 − α, where 1 − α is the desired target

coverage. To achieve this, we utilize a fitted regression function µ̂ : X → R, which maps from

the predictor space X to a real-valued output.

A nonconformity function S(Xi, Yi) is chosen that measures how unusual a data point is

relative to the other samples. Here, we choose to work with the absolute residuals si = |Yi −
µ̂(Xi)| as nonconformity scores. These scores are then used to construct a prediction interval

by taking an empirical quantile Q1−α of the scores at the level of the desired target coverage.

This works because if the exchangeability of the nonconformity scores is assumed, each score

is equally likely to belong to any observation, including the test sample. Consequently, the rank

of the test sample’s nonconformity score is uniformly distributed, ensuring that the empirical

quantile at level 1− α has an α probability of being exceeded.

4.1.2 Split Conformal Prediction

Let µ̂ : X → R be a forecasting model fitted on an initial subset of the data. Now, define an

additional holdout set {(X1, Y1), . . . , (Xn, Yn)}, which was not used to train the fitted model.

Let δa denote the the point mass at a. The prediction interval Ĉn(Xn+1) for the test point with

features Xn+1 is now given as.

Ĉn(Xn+1) = µ̂(Xn+1)±Q1−α

(
n∑

i=1

1

n+ 1
· δsi +

1

n+ 1
· δ+∞

)

4.1.3 Full Conformal Prediction

The method for full conformal prediction with nonexchangeable data and a nonsymmetric al-

gorithm is described here. To adapt this method for full conformal prediction with exchangeable

data, set the weights for each observation to one. For full conformal prediction with a symmetric

algorithm, ensure all tags are set to one.

A concise description of the method will be given, for a more detailed exposition refer to

Barber et al. (2023). Let A be an algorithm that maps a sequence of ”tagged” data points

(Xi, Yi, ti) ∈ X × R × T to a fitted regression function f (X). Here, X denotes the predictor

space and T is the tag space.

A :
⋃
n≥0

(X × R× T)n → {measurable functions µ̂ : X → R},

The tags ti can serve multiple purposes. In the context of fitting a WLS model, they

denote the observation weights. Let w1, . . . , wn ∈ [0, 1] be the initial weights assigned to the

nonconformity scores. Then, construct normalized weights as follows.

w̃i =
wi

w1 + · · ·+ wn + 1
, i = 1, . . . , n, and w̃n+1 =

1

w1 + · · ·+ wn + 1
.

These normalized weights will be used for both the swap step and for taking the empirical

7

quantile at the target coverage level. Define πk as the permutation swapping the tags k and

n+ 1 and denote the vector of target variables with y unknown as.

Y y
i =

Yi, i = 1, . . . , n,

y, i = n+ 1.

Then, a prediction interval Ĉn(Xn+1) is constructed for the test point using Algorithm 1.

Algorithm 1 General Full Conformal Prediction

Input:

Observed data Z1:n, Xn+1

Miscoverage level α

Draw an index k, where K ∼
∑n+1

i=1 w̃i · δi

for each y ∈ R do

Fit model µ̂ = A
(
{(Xπk(i), Y

y
πk(i)

, ti) : i ∈ [n+ 1]}
)

Compute the nonconformity scores si:n+1 = S(Xπk(i), Y
y
πk(i)

)1:n+1

end for

Return:

Ĉn(Xn+1) =
{
y : sn+1 ≤ Q1−α

(∑n+1
i=1 w̃i · δsi

)}

4.2 Bayesian Structural Time Series

In this section, a detailed account of the employed Bayesian Structural Time Series (BSTS)

model will be provided. It will also be argued that this model is particularly suitable for

conformal prediction using time series data with evolving temporal dependencies. The BSTS

model is constructed as a sum of simpler Bayesian state-space models, each designed to capture a

specific component of the process dynamics. These components include changing slopes, trends,

and seasonal effects.

The flexibility of the BSTS model comes from its use of time-dependent coefficients that

evolve according to a random walk. Through a Kalman Filtering algorithm, the coefficients

that make the data more likely are given a higher probability. To illustrate the benefit of this

approach, consider a simple example of a time series where the slope reverses midway.

yt =

µ+ βt for t ≤ T
2

µ+ β(T − t) for t > T
2

Non-state space models, such as traditional linear regression, assume that the coefficients

are constant over time and would yield a β coefficient of zero in this scenario. The absolute

residuals of such a model would therefore be affected by this unmodeled dependency shift. These

8

types of unmodeled dependencies that remain in the nonconformity scores nullify the validity

of conformal prediction. This makes the use of traditional models with constant coefficients an

ill-informed choice for conformal prediction in time series contexts with potentially changing

dependencies.

4.2.1 The BSTS Model

The BSTS model is defined as a linear Gaussian system, where the level, slope, and seasonal

effects are assumed to be latent states (Harvey, 1990; Scott & Varian, 2014). Additionally, the

model includes a regression component, which is simply an OLS regression. This component

should be viewed as an augmentation to the model rather than a core part of the Bayesian

framework. The mathematical equations of the BSTS model are given below.

yt = µt + γ
(d)
t,i + γ

(h)
t,j + β⊤xt + ε1,t (Observation Regression)

µt = µt−1 + δt−1 + ε2,t (Semi-Local Linear Trend)

δt = D + ϕ(δt−1 −D) + ε3,t (Semi-Local Linear Trend)

γ
(d)
t,i = −

∑
d∈D\i

γ
(d)
t−1,d + ε4,t (Day-of-Week Effect)

γ
(h)
t,j = −

∑
h∈H\j

γ
(h)
t−1,h + ε5,t (Hour-of-Day Effect)

For the Semi-Local Linear Trend, it holds that the coefficient µt is a level term that changes

as a random walk plus a slope coefficient δt. The slope δt follows an AR(1) process with the AR

parameter ϕ and a potentially non-zero mean D.

The Seasonal Effects are captured through the coefficients γ
(d)
t,i for the day of the week i ∈ D

(set of 7 days) and γ
(h)
t,j for the hour of the day j ∈ H (set of 24 hours). Finally, β is the vector of

fitted regression coefficients, with xt being the observed covariates. Each process also includes

a Gaussian noise term.

4.2.2 The Likelihood

For the linear Gaussian system, the interest is in finding a distribution over the model parameters

given the observed data. This distribution is given by Bayes’ Rule.

p(θ | Y = y) =
p(Y = y | θ)p(θ)

p(y)

This distribution of the model parameters given the observed data is referred to as the

posterior. The posterior reflects the adjusted beliefs over the model parameters after having

seen the data. That is, the proper Bayesian first defines the probability p(θ), also called the

prior, that reflects the probability distribution of the model parameters prior to having seen any

of the data. The initialization of these prior distributions is explained in Appendix E.

9

Given these prior beliefs, encapsulated as probabilities over the model parameters, the like-

lihood of observing the data p(Y = y | θ) is calculated. The final term p(y) is the marginal and

reflects the probability of observing the data after having integrated out all the latent states.

The likelihood p(Y = y | θ) is the probability of observing the data given the model paramet-

ers. To demonstrate the analytical computation of this likelihood, the exposition of Yi (2019)

will be closely followed. First, the likelihood can be broken down as a chain of conditional

probabilities.

p(Y = y | θ) = p(y1, y2, . . . , yn | θ)

= p(y1|θ) p(y2|y1, θ) p(y3|y1:2, θ) · · · p(yn|y1:n−1, θ)

In the linear Gaussian system, we know that each of these yt variables is normally distributed.

Moreover, based on the transition and observation equations defined in Appendix F, we can

model their inductive relationship via a two-step procedure. First, the update step computes

the probability distribution of the next state estimate given the current state estimate.

p(zt−1|y1:t−1, θ) = N (µt−1,Σt−1)

p(zt|y1:t−1, θ) = N (Aµt−1 + b, AΣt−1A
⊤ +Σw)

Since we have initialized the states z0 as Gaussian, all subsequent states will also be Gaussian

when we use the inductive step defined above. Then, since we have solved for the distribution

of the state zt we can use the observation equation for the prediction step. This allows us to

write down the distribution of the observed variable yt.

p(yt|y1:t−1, θ) = N (H(Aµt−1 + b), H(AΣt−1A
⊤ +Σw)H

⊤ +Σv)

This algorithm, known as the Kalman filter (Kalman, 1960), underpins the implementation

of the Bayesian Structural Time Series (BSTS) in TensorFlow (Abadi et al., 2015), which we

use to fit the BSTS model in Python.

To estimate the posterior, a Variational Inference (VI) procedure was chosen. VI is often

faster than Hamiltonian Monte Carlo (HMC) for high-dimensional problems. However, whether

HMC might have been more effective for this specific problem has not been tested. A detailed

description of the VI procedure is provided in Appendix G

4.3 Long Short-Term Memory

This section elucidates the application of the Long Short-Term Memory (LSTM) network to

determine test-sample adaptive weights. It starts with a motivation for using test-sample ad-

aptive weights within the nonexchangeable conformal prediction framework. Next, it outlines

the mathematical framework of the LSTM and its suitability for finding latent dependencies in

the Data-Generating Process (DGP).

10

Finally, the complete approach for determining the test-sample adaptive weights is detailed.

The proposed method parametrizes a distribution for each conditional nonconformity score. To

assess the degree of exchangeability between these scores, the Kullback-Leibler (KL) divergences

between the estimated distributions are calculated. These divergences are then smoothed using

a kernel to obtain the final weights.

4.3.1 Adaptive Weights Motivation

This section serves as the motivation for using test-sample adaptive weights. For ease of ex-

position, the Stochastic Volatility (SV) model will be assumed (Taylor, 1994). Here, the price

process follows a random walk, and the second central moment is conditionally dependent. As

we assume that the innovations are normally distributed around zero with dependent variance,

we are not interested in modeling dependencies between other moments. The equations for the

DGP are given below.

yt = µ+ yt−1 + εt, εt ∼ N (0, σ2
t)

ht = ϕht−1 + ηt, ηt ∼ N (0, σ2
η)

σ2
t = σ2 exp(ht)

The core idea behind conformal prediction is to use the empirical distribution of noncon-

formity scores and trim the tails of this distribution to obtain a forecasted nonconformity score

interval at a new time step. This method relies on the assumption that the new nonconformity

score belongs to the same distribution as the previous ones. However, in time series contexts,

this assumption is often violated due to the dependency of observations on prior sequences.

For the given DGP, observing a relatively high innovation term ϵt when σt is relatively low

is clearly less likely than observing a lower innovation term. In the nonexchangeable setting for

conformal prediction, a weighted quantile of the observed nonconformity measures is taken. Let

us take the residual as the nonconformity measure. Then, higher weights need to be assigned to

residuals that are approximately exchangeable with the residual of the forecasted observation,

while making sure that the effective sample size of the empirical distribution is still sufficient.

The foremost method described in the literature fixes weights in advance in relation to our

prior expectations of the DGP. In the case of the presently described SV model, one could assign

exponentially decaying weights, where the ratio of weight i to weight j, with j > i is given as

λj−i. This approach integrates the expected autoregressive covariance structure that is inherent

in the assumed DGP. In essence, we are embedding our expectations of the dependency structure

of the DGP into the utilized weights, while also considering the smoothness of their distribution.

However, this method can be improved on a fundamental level by making the weights de-

pendent on the observed values of the target variable. This is because assigning fixed weights

only allows one to model an expectation of future similarities between observations. By incor-

porating the previously observed data y1:t−1, the state estimates h1:t can be refined. This enables

the modeler to form a more accurate expectation of the similarities between observations.

11

In the SV model, this is reflected by virtue of the fact that the residual at time step t is

exchangeable with the residual at time step t− i to the degree that ht ≈ hi (considering the joint

likelihood p(et, ei)). Therefore, the data-uninformed weights model the dependency structure

suboptimally and unnecessarily reduce the effective sample size when latent states repeat.

4.3.2 Long Short-Term Memory

An LSTM model is a specific type of Recurrent Neural Network (RNN) that includes an addi-

tional cell state to retain long-term information (Hochreiter & Schmidhuber, 1997). This makes

it particularly effective for DGPs with long-range dependencies. The model is therefore chosen

for its potential to generalize across different settings. However, this ability to generalize comes

with the drawback of increased training complexity. Simpler models might perform better on

straightforward DGPs without significant long-term dependencies. The LSTM model consists

of three main components that integrate together in a recursive manner.

1. Cells: Each cell in the LSTM network corresponds to a time step in the input sequence.

These cells are the fundamental units that process the input data xt and maintain the

internal state of the network. At each time step, an LSTM cell takes the input data and

the previous states, the hidden state ht−1 and cell state ct−1, to compute the current states

ht and ct.

2. States: Each LSTM cell takes the input vector xt along with the previous hidden state

and cell state as inputs. It outputs an updated hidden state and cell state.

• Cell State (Ct): Acts as the long-term memory of the LSTM. It is updated based on

the forget gate and input gate, carrying forward important information through the

sequence.

• Hidden State (ht): Represents the short-term memory and is used as the output of

the LSTM cell. It is updated based on the output gate and the current cell state.

3. Gates: LSTM cells contain three types of gates that control the flow of information. Each

gate takes the current input vector xt and the previous hidden state ht−1 as input.

• Forget Gate (ft): This gate determines what information from the previous cell state

should be discarded.

• Input Gate (it): This gate decides which new information should be added to the cell

state.

• Output Gate (ot): This gate controls which information from the cell state is passed

to the hidden state.

A forward pass in the LSTM network involves taking the input vector xt along with the

previous hidden state ht−1 and cell state Ct−1 as inputs to the cell. Inside the cell, the forget

gate, input gate, and output gate perform internal computations to determine which information

to discard, update, and output, respectively. The outputs of the cell are the updated cell state

Ct, which carries forward important information, and the new hidden state ht. The compact

forms of the equations for the forward pass of an LSTM cell are given below (Gers et al., 1999).

12

ft = σg(Wfxt + Ufht−1 + bf) (1)

it = σg(Wixt + Uiht−1 + bi) (2)

ot = σg(Woxt + Uoht−1 + bo) (3)

c̃t = σc(Wcxt + Ucht−1 + bc) (4)

ct = ft ⊙ ct−1 + it ⊙ c̃t (5)

ht = ot ⊙ σh(ct) (6)

At each time step t, the forget gate (1) is computed first. Similarly, the input (2) and output

gates (3) are calculated. All of the gates use the sigmoid activation function σg. A new cell state

(4) is then proposed based on the input vector xt and the previous hidden state ht−1 using a

hyperbolic tangent activation function σc. This function normalizes the values of the cell state

between -1 and 1, making sure that the network is stable over time (Mishra, 2023).

Let the superscripts d and h represent the number of input features and hidden units,

respectively. Then W ∈ Rh×d, U ∈ Rh×h, and b ∈ Rh are the weight matrices and bias

vector parameters that need to be learned during training. In (5) the new cell state is created

by combining the element-wise product ⊙ of the forget gate with the previous cell state and the

input gate with the proposed cell state. Finally, the output gate determines the new hidden

state by applying the element-wise product to the cell state (6). Initially, both c0 and h0 are set

to zero. A schematic representation of the LSTM cell can be found in Appendix H.

4.3.3 Model Features

Due to time constraints and practical considerations, the LSTM model fitted in this paper is

only used to estimate the latent variance process. The model estimates the absolute residual

as a proxy for the standard deviation following the approach of Auer et al. (2023). The base

forecaster that is used is the Least Squares (LS) forecaster.

To accommodate various potential variance processes, we use three types of features derived

from the residuals: (1) lagged abs residual, which represents the absolute residual with lags from

1 to 10, resulting in ten features; (2) averaged abs residual, which averages the absolute residual

over lookback windows of 10, 20, 30, 40, and 50, yielding five features; and (3) garch sd estimate,

a Generalized Autoregressive Conditional Heteroskedasticity (GARCH) estimate of the condi-

tional standard deviation (Bollerslev, 1986).

The GARCH(1,1) model is refitted for each observation, such that all observations before

the test point are used in the model fitting. Incorporating a GARCH input feature in the LSTM

model can significantly enhance the variance modeling performance (Kim & Won, 2018).

Finally, the original covariates are added to the input features to model conditional hetero-

skedasticity coming from these covariates. The LSTM is implemented using the Keras API from

TensorFlow in Python (Chollet, 2015), with model parameters detailed in Appendix I.

13

4.3.4 Weight Calculation

The weights are test-sample adaptive, meaning that the entire vector of weights is recalculated

for each test sample. These weights are derived from the conditional moment predictions of the

LSTM model. For each observation, we estimate a conditional nonconformity score distribution.

This distribution is parameterized as a normal distribution with mean zero and a standard

deviation equal to the absolute residual predicted by the LSTM.

Next, the KL divergences for each observation relative to the test point are calculated. This

metric measures the statistical distance between distributions, making it a suitable proxy for

the degree of exchangeability among the observations. The KL divergence ranges from [0,∞),

where a value of 0 indicates identical distributions. To derive the weights, we therefore pass the

KL divergences through an appropriate kernel function.

wi = e−ρDKL(pi∥pn+1), i = 1, . . . , n+ 1

Here, DKL(P ∥ Q) denotes the KL divergence of the distribution P to the reference distri-

bution Q. The specific nonconformity score distributions are represented as pi. In this study,

the parameter ρ, which acts as a smoothing parameter, is set to 100 without any tuning.

However, finding an optimal value for ρ is possible through cross-validation and grid search.

Generally, ρ should be selected to ensure that each test point has a reasonable effective sample

size. The appropriate choice of ρ depends on several factors, including the number of modeled

moments, the complexity of the parameterized distribution, and the target coverage level 1−α.

5 Results

This section presents the numerical results of the experiments conducted in this study. The

aim of the study was to enhance the two stages of the nonexchangeable conformal prediction

framework. Both stages are described in a separate section. The first stage focused on selecting

an appropriate forecaster for nonexchangeable time series data; a Bayesian Structural Time

Series (BSTS) model was chosen. The performance of this model is discussed and a detailed

account of its coverage properties is given.

The second stage aimed to improve the nonexchangeable conformal prediction framework

through a novel method of obtaining test-sample adaptive weights using a Long Short-Term

Memory (LSTM) network. The proposed procedure is benchmarked against three other meth-

ods. Following this, we describe how the obtained weights respond to various scenarios. This

description includes (1) the uniformity of the weights for i.i.d data, (2) the behavior of the

weights after a changepoint, and (3) the parabolic shape of the weights exhibited for data with

distribution drift.

5.1 The BSTS Forecaster

The BSTS model was selected to analyze the Elec2 Dataset. It was trained on an initial 2000

observations, while an additional 2000 observations formed the holdout set. The holdout set

14

employed an expanding window approach, where predictions were incorporated into the holdout

set after their true values were observed. The model delivered a stellar performance, achieving

89.3% coverage for the subsequent 23352 observations. The average interval width obtained by

the model was 0.12. Figure 1 below depicts the coverage and interval width over time.

Figure 1: BSTS properties

The BSTS model significantly outperforms the methods used in Barber et al. (2023) for

modeling the Elec2 dataset. The results from that paper are replicated in Appendix J. The

BSTS model achieves an interval width that is more than four times narrower than the best

method from the cited paper. Furthermore, the BSTS model is applied to predict the entire

Elec2 dataset, while the other methods only used a subset of the data to reduce seasonality

effects. This demonstrates the advantage of using models capable of inherently handling evolving

temporal dependencies. A plot of the predicted intervals, the predictions, and the true values

are given in Figure 2 below.

Figure 2: BSTS predictions

The plot clearly shows that the BSTS model accurately captures the seasonal effects inher-

ent in the data. The predictions closely align with the true values, underscoring the model’s

effectiveness for time series data. The narrow predicted intervals indicate that the model has

learned an adequate representation of the underlying process.

15

5.2 The LSTM Weights

An LSTM model was utilized to determine the test-sample adaptive weights by calculating

the KL divergences between the estimated conditional nonconformity score distributions and

passing them through a kernel. This method, paired with the Least Squares (LS) forecaster,

will be referred to as LstmCP + LS. The effectiveness of this method is compared to three

approaches used by Barber et al. (2023). These approaches are: CP + LS using an exchangeable

algorithm with an LS model, nexCP + LS using a nonexchangeable algorithm with weights

wi = 0.99n+1−i and an LS model, and nexCP + WLS using a nonexchangeable algorithm

with a Weighted Least Squares (WLS) model with weights and tags wi = ti = 0.99n+1−i. The

performance of these methods across the six simulated scenarios is graphically presented in

Figure 3 and Figure 4 below. The numerical results can be found in Appendix K.

Figure 3: Coverage Properties Setting 1-3

For i.i.d. data, we observe that the LstmCP + LS method performs similarly to the LS + CP

method. This similarity is desirable because it indicates that the proposed method for obtaining

weights does not introduce additional variability into the system for i.i.d. data. In the context

of changepoints and distribution drift, the method behaves similarly to the nonexchangeable

16

nexCP + LS algorithm. This indicates that the LstmCP + LS method can autonomously

determine the suitable treatment of the time series data. In essence, it adapts its approach

by using an exchangeable algorithm for exchangeable data and a nonexchangeable algorithm

for nonexchangeable data. This represents a significant advancement in developing a reliable

method for conformal prediction in time series data.

Figure 4: Coverage Properties Setting 4-6

For the final three settings, providing an appropriate interpretation of the interval widths

is more challenging. This difficulty arises because we plot the widths using a rolling average of

300 observations. Therefore, for the stochastic volatility, heteroskedasticity, and lagged effects

settings, we expect the influence of the conditional variance on the interval width to even out.

Despite this, it is noteworthy that the interval width of the LstmCP + LS consistently dips

below that of the CP + LS method. This suggests that the soft conditioning allows the LstmCP

+ LS method to achieve lower interval widths for observations where it has higher certainty.

This effect is particularly evident in the heteroskedasticity setting, likely because the model

predicts narrower intervals when X2 and X4 are low, as these covariates are responsible for the

heteroskedasticity. Moreover, since the interval widths for these settings should approximately

17

even out when using a rolling average, the drawback of using fixed exponentially decaying weights

becomes clear. These weights cause sharp peaks and troughs in the predicted interval widths,

which is unjustified when averaging over 300 observations for these scenarios.

To gain a deeper understanding of the test-sample adaptive weights provided by the LSTM

model, we will examine three specific settings. First, we will analyze the weights for i.i.d. data

to confirm that the model assigns uniform weights when the data is exchangeable. The plot of

the weights for i.i.d data is given in Figure 5 below.

Figure 5: Weights for IID Data

In this plot, we can see that the weights are uniform, resembling the CP+LS method. The

increasing weights in the first 500 observations are due to the LstmCP+LS method setting the

first 200 weights to zero (due to the lagged features and practical considerations). This persists

up to observation 500 because of the 300-observation rolling window. The same pattern applies

to the other two plots. The next plot, Figure 6, shows how the test-sample adaptive weights

react to a changepoint.

Figure 6: Response of Weights to a Changepoint

It is important to note that the first changepoint occurs at time step 500. In the first plot,

the LstmCP + LS method already assigns more weight to observations after this changepoint.

This occurs because the LS model is fitted on a larger number of observations following the

18

changepoint compared to before it. Therefore the relations that it has learned are biased towards

the second regime.

When a new changepoint occurs, the weights invert. At this point, the model is still primarily

fitted on data from the second regime. The LstmCP + LS method identifies that its uncertainty

in modeling the first and third regimes is similar. Thus, it assigns high weights to observations

coming from both of these regimes. This approach increases the effective sample size compared

to the NexCP methods while maintaining a comparable level of validity.

Figure 7: Weights for Distribution Drift

The final plot, Figure 7, displays the weights in the context of distribution drift. The pattern

of the weights is as expected. Note again that the increasing weights up until observation 500 are

a result of the aforementioned rolling window. After this point, the weights exhibit a parabolic

shape with the minimum centered around observation 1100. This is logical since it roughly

represents the midpoint of the observations. This means the LS model is most effective at

modeling these observations and its performance gradually declines as we move outward from

the center. Therefore, the Lstm + CP method also appropriately determines the weights for

this scenario. The weights for the other three settings can be found in Appendix L.

6 Conclusion

This study aimed to enhance the conformal prediction framework for time series data through

a two-stage approach. Initially, a Bayesian Structural Time Series (BSTS) model was utilized

to manage evolving temporal dependencies inherent in time series data. Subsequently, a novel

method for deriving test-sample adaptive weights was introduced using a Long Short-Term

Memory (LSTM) network.

The BSTS model demonstrated significantly narrower prediction intervals, over four times

tighter than those of conventional forecasting models. Additionally, despite using only a small

subset of the data for training, the model came very close to achieving the target coverage level.

This finding underscores the effectiveness of state-space models as forecasters for time series

data within the conformal prediction framework.

The proposed LSTM method for determining test-sample adaptive weights proved effective

across six different simulated scenarios. The method demonstrated excellent performance despite

19

not having inherent expectations of the potential time series dependencies. For exchangeable

data, it produced uniform weights. For nonexchangeable data, the method quantified the un-

certainty in predicting the test point and assigned higher weights to nonconformity scores for

which the used forecaster had a similar uncertainty.

This was further confirmed by a more detailed examination of the weight behavior. Following

a changepoint, the method inverted the weights it had previously assigned. This inversion

occurred because the test point now belonged to a new regime characterized by high uncertainty,

contrasting with the previous regime of high certainty. For data showing distribution drift, the

weights followed a parabolic pattern. This makes sense as the uncertainty of the used forecaster

grows with the distance to the temporal midpoint.

In conclusion, our study demonstrated substantial improvements in both stages of the con-

formal prediction framework. By selecting an appropriate forecaster for time series data, we

achieved a performance that is over four times more efficient than that of conventional fore-

casters. Most importantly, the LSTM method for deriving test-sample adaptive weights marked

a significant advancement in the understanding and application of nonexchangeable conformal

prediction algorithms.

Future research could investigate various LSTM network architectures. In particular, testing

a deeper network could be beneficial, as this study employed only a single LSTM layer. Addi-

tionally, since the current LSTM model still fits a significant amount of noise, enhanced feature

engineering and regularization techniques could further improve the method. Finally, other

models for generating conditional moment forecasts could be investigated. A promising candid-

ate is the N-BEATS model, which employs a deep neural architecture to achieve state-of-the-art

performance in univariate time series modeling (Oreshkin et al., 2020).

20

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Zheng, X.

(2015). TensorFlow: Large-scale machine learning on heterogeneous systems. https://

www.tensorflow.org/. (Accessed: 2024-05-16. TensorFlow Structural Time Series (STS)

library.)

Angelopoulos, A. N. & Bates, S. (2022). A gentle introduction to conformal prediction and

distribution-free uncertainty quantification. Retrieved from https://arxiv.org/abs/2107

.07511

Angelopoulos, A. N., Candes, E. J. & Tibshirani, R. J. (2023). Conformal pid control for time

series prediction.

Auer, A., Gauch, M., Klotz, D. & Hochreiter, S. (2023). Conformal prediction for time series

with modern hopfield networks.

Barber, R. F., Candes, E. J., Ramdas, A. & Tibshirani, R. J. (2020). Predictive inference with

the jackknife+. Retrieved from https://arxiv.org/abs/1905.02928

Barber, R. F., Candès, E. J., Ramdas, A. & Tibshirani, R. J. (2023). Conformal prediction

beyond exchangeability. The Annals of Statistics, 51 (2), 816 – 845. Retrieved from https://

doi.org/10.1214/23-AOS2276 doi: 10.1214/23-AOS2276

Barber, R. F., Candès, E. J., Ramdas, A. & Tibshirani, R. J. (2020). The limits of distribution-

free conditional predictive inference.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of

Econometrics, 31 (3), 307-327. Retrieved from https://www.sciencedirect.com/science/

article/pii/0304407686900631 doi: https://doi.org/10.1016/0304-4076(86)90063-1

Chollet, F. (2015). Keras. https://keras.io.

Gers, F., Schmidhuber, J. & Cummins, F. (1999). Learning to forget: continual prediction with

lstm. In 1999 ninth international conference on artificial neural networks icann 99. (conf.

publ. no. 470) (Vol. 2, p. 850-855 vol.2). doi: 10.1049/cp:19991218

Gibbs, I. & Candes, E. (2021). Adaptive conformal inference under distribution shift. In

M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang & J. W. Vaughan (Eds.), Advances

in neural information processing systems (Vol. 34, pp. 1660–1672). Curran Associates,

Inc. Retrieved from https://proceedings.neurips.cc/paper files/paper/2021/file/

0d441de75945e5acbc865406fc9a2559-Paper.pdf

Guan, L. (2022). Localized conformal prediction: A generalized inference framework for con-

formal prediction.

Harries, M. (1999). Splice-2 comparative evaluation: Electricity pricing (Technical report).

Sydney, Australia: University of New South Wales.

21

https://www.tensorflow.org/
https://www.tensorflow.org/
https://arxiv.org/abs/2107.07511
https://arxiv.org/abs/2107.07511
https://arxiv.org/abs/1905.02928
https://doi.org/10.1214/23-AOS2276
https://doi.org/10.1214/23-AOS2276
https://www.sciencedirect.com/science/article/pii/0304407686900631
https://www.sciencedirect.com/science/article/pii/0304407686900631
https://keras.io
https://proceedings.neurips.cc/paper_files/paper/2021/file/0d441de75945e5acbc865406fc9a2559-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/0d441de75945e5acbc865406fc9a2559-Paper.pdf

Harvey, A. C. (1990). Forecasting, structural time series models and the kalman filter. Cambridge

University Press.

Hochreiter, S. & Schmidhuber, J. (1997, 12). Long short-term memory. Neural computation, 9 ,

1735-80. doi: 10.1162/neco.1997.9.8.1735

Ingolfsson, T. M. (2021). Insights into lstm architecture. Retrieved from https://thorirmar

.com/post/insight into lstm/ (Accessed: 2024-06-25)

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of

Basic Engineering , 82 (1), 35. Retrieved from http://dx.doi.org/10.1115/1.3662552 doi:

10.1115/1.3662552

Kim, H. Y. & Won, C. H. (2018). Forecasting the volatility of stock price index: A hy-

brid model integrating lstm with multiple garch-type models. Expert Systems with Applic-

ations, 103 , 25-37. Retrieved from https://www.sciencedirect.com/science/article/

pii/S0957417418301416 doi: https://doi.org/10.1016/j.eswa.2018.03.002

Kingma, D. P. & Welling, M. (2022). Auto-encoding variational bayes.

Köhler, F. (2021). Variational inference — evidence lower bound (elbo) — intuition & visu-

alization. Retrieved from https://www.youtube.com/watch?v=HxQ94L8n0vU&list=PLISXH

-iEM4JloWnKysIEPPysGVg4v3PaP (Accessed: 2024-06-13)

Lei, J. & Wasserman, L. (2012). Distribution free prediction bands.

Mishra, P. (2023). Understanding and implementing lstm networks. Medium.

Retrieved from https://medium.com/@palashm0002/understanding-and-implementing

-lstm-networks-41ca52495108 (Accessed: 2024-06-28)

Oreshkin, B. N., Carpov, D., Chapados, N. & Bengio, Y. (2020). N-beats: Neural basis expansion

analysis for interpretable time series forecasting.

Scott, S. & Varian, H. (2014, 01). Predicting the present with bayesian structural time series.

Int. J. of Mathematical Modelling and Numerical Optimisation, 5 , 4 - 23. doi: 10.1504/

IJMMNO.2014.059942

Taylor, S. J. (1994). Modeling stochastic volatility: A review and comparative study. Math-

ematical Finance, 4 (2), 183-204. Retrieved from https://onlinelibrary.wiley.com/doi/

abs/10.1111/j.1467-9965.1994.tb00057.x doi: https://doi.org/10.1111/j.1467-9965.1994

.tb00057.x

Vovk, V. (2012, 04–06 Nov). Conditional validity of inductive conformal predictors. In

S. C. H. Hoi & W. Buntine (Eds.), Proceedings of the asian conference on machine learn-

ing (Vol. 25, pp. 475–490). Singapore Management University, Singapore: PMLR. Retrieved

from https://proceedings.mlr.press/v25/vovk12.html

Vovk, V., Gammerman, A. & Shafer, G. (2005). Algorithmic learning in a random world. United

States: Springer US. doi: 10.1007/b106715

22

https://thorirmar.com/post/insight_into_lstm/
https://thorirmar.com/post/insight_into_lstm/
http://dx.doi.org/10.1115/1.3662552
https://www.sciencedirect.com/science/article/pii/S0957417418301416
https://www.sciencedirect.com/science/article/pii/S0957417418301416
https://www.youtube.com/watch?v=HxQ94L8n0vU&list=PLISXH-iEM4JloWnKysIEPPysGVg4v3PaP
https://www.youtube.com/watch?v=HxQ94L8n0vU&list=PLISXH-iEM4JloWnKysIEPPysGVg4v3PaP
https://medium.com/@palashm0002/understanding-and-implementing-lstm-networks-41ca52495108
https://medium.com/@palashm0002/understanding-and-implementing-lstm-networks-41ca52495108
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9965.1994.tb00057.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9965.1994.tb00057.x
https://proceedings.mlr.press/v25/vovk12.html

Vovk, V., Gammerman, A. & Shafer, G. (2022). Algorithmic learning in a random world

(2nd ed.). Springer Cham. Retrieved from https://link.springer.com/book/10.1007/

978-3-031-06649-8 doi: https://doi.org/10.1007/978-3-031-06649-8

Yi, W. (2019). Demystifying tensorflow time series: Local linear trend. Retrieved

from https://towardsdatascience.com/demystifying-tensorflow-time-series-local

-linear-trend-9bec0802b24a (Accessed: 2024-06-14)

23

https://link.springer.com/book/10.1007/978-3-031-06649-8
https://link.springer.com/book/10.1007/978-3-031-06649-8
https://towardsdatascience.com/demystifying-tensorflow-time-series-local-linear-trend-9bec0802b24a
https://towardsdatascience.com/demystifying-tensorflow-time-series-local-linear-trend-9bec0802b24a

Appendix

The Appendix covers various extra details of the paper for the interested reader.

A Elec2 Seasonality

Figure 8 below illustrates the hourly and daily seasonal effects present in the Elec2 dataset. The

hourly mean transfer shows notable peaks between 20:00 and 06:00. The daily mean transfer

indicates two peaks on Sunday and Monday. Additionally, the graph demonstrates that selecting

an hourly subset from 09:00 to 12:00 removes most of the hourly seasonal effects.

Figure 8: Transfer Rates Seasonal Effects

B Simulation Graphs

The graphs below illustrate the different types of nonexchangeability exhibited by the newly

introduced scenarios. Figure 9 shows a process with clear volatility clustering. Periods of high

and low volatility occur randomly but persist over time. Next, Figure 10 shows variance mainly

determined by the two covariates X2 and X4. As these covariates are generated randomly, the

graph does not exhibit a clear pattern for the variance. However, we know that the variance

fluctuates depending on the values of the relevant X variables. Finally, Figure 11 displays a

repeating pattern with a wavelength of 50, which is expected due to the introduced lag-50 in

the AR component. A well-generalizing model should be able to detect all three of these latent

processes.

24

Figure 9: Simulation Setting 4

Figure 10: Simulation Setting 5

Figure 11: Simulation Setting 6

C 2005 Algorithm

Vovk et al. (2005) originally presents the algorithm implemented by Barber et al. (2023) as

the Ridge Regression Confidence Machine (RRCM). The RCCM uses the absolute error as the

25

nonconformity measure. This algorithm can be further adapted to Weighted Ridge Regres-

sion (WRR), while simultaneously being extended to handle nonexchangeable data. The WRR

predictions can be obtained with the following formula.

Ŷn = Xn

(
X ′

nWnXn + zIp
)−1

X ′
nWnYn

Here, when z = 0, this clearly reduces to Weighted Least Squares (WLS) regression. To

simplify the notation of the vector of the nonconformity scores (s1, s2, . . . , sn)
′, we can make

use of the hat matrix H = Xn (X
′
nWnXn + zIp)

−1X ′
n. Note that the vector of nonconformity

scores can now be given as.

|Yn −HnYn| = | (In −Hn)Yn|

Let y be a possible label for xn. Then, we can represent the label vector as Y = (y1, y2, . . . , 0)
′

+ (0, 0, . . . , y)′. This allows us to write the vector of nonconformity scores as a true label

component plus a hypothesized label component |A+By|. This deconstruction makes use of.

A = (In −Hn) (y1, y2, . . . , 0)
′

B = (In −Hn) (0, 0, . . . , 1)
′

In conformal prediction, we are looking for hypothesized labels that conform to the data. To

do this, we select the y labels that have a p-value greater than α, a pre-specified miscoverage

parameter. Under exchangeability of the data, this corresponds to selecting the labels y for

which it holds that a fraction equal or greater than α has a greater or equal nonconformity

score.

To extend this method to the nonexchangeable setting, the p-value needs to be redefined.

In particular, we have a vector of normalized weights (w̃1, w̃2, . . . , w̃n) that represents our belief

in the degree of exchangeability of the observations with our test point, while simultaneously

ensuring that the effective sample size is great enough. Intuitively, a measure of nonconformity

is only valid when the observations can be compared. Hence, we redefine the p-value as follows.

py =

n∑
i=1

(w̃iI
y
i)

Here, we make use of the indicator function Iyi that indicates whether the label y is in the

set Si. The label is in the set Si when the nonconformity measure given the hypothesized label

of observation i is greater than or equal to that of the test point n.

26

Iyi =

1 if y ∈ Si

0 if y /∈ Si

Si = {y : si (y) ≥ si (y)} = {y : |ai + biy| ≥ |an + bny|}

In light of the previous explanation, it effectively measures whether observation i is more or

equally nonconformal as the test point n. In the weighted case, we need to adjust the relevance

of this measure according to the normalized weight, which serves the purpose discussed before.

Note that the p-value can only change if the sign of si (y)−sn (y) changes. Since we are interested

in |ai + biy|, we can assume bi ≥ 0, for i = 1, . . . , n. As y increases, the possible points at which

the p-value might change are given by.

−ai − an
bi − bn

and − ai + an
bi + bn

, if bi = bn ̸= 0

−ai + an
2bi

, if bi = bn ̸= 0 and ai ̸= an

Hence we can find the explicit representation of the set for which py ≥ α as the union of

finitely many intervals and rays. The algorithm is schematically laid out below in Algorithm 2.

27

Algorithm 2 Weighted RCCM Nonexchangeable Setting 2005

Input:

A = (In −Hn) (y1, y2, . . . , 0)
′

B = (In −Hn) (0, 0, . . . , 1)
′

for i = 1, . . . , n do

if bi < 0 then

ai = ai; bi = −bi

end if

end for

P = ∅
for i = 1, . . . , n do

if bi ̸= bn then

add
ai − an
bi − bn

and
ai + an
bi + bn

to P

end if

if bi = bn ̸= 0 and ai ̸= an then

add
ai + an
2bi

end if

end for

add −∞ and ∞ to P
sort P in ascending order obtaining y(0), . . . , y(m+1)

N (j) = 0; j = 1, . . . ,m

for i = 1, . . . , n do

for j = 0, . . . ,m do

if |ai + biy| ≥ |an + bny| for y ∈ {y(j), y(j+1)} then

N (j) = N (j) + w̃i

end if

end for

end for

M (j) = 0; j = 1, . . . ,m

for i = 1, . . . , n do

for j = 0, . . . ,m do

if |ai + biy| ≥ |an + bny| then
M (j) = M (j) + w̃i

end if

end for

end for

Return:

Cn = {∪j:N(j)≥α(y(j), y(j+1))} ∪ {y(j) : M(j) ≥ α}

28

D 2022 algorithm

Vovk et al. (2022) later developed a simpler and more efficient approach for doing conformal

prediction for Ridge Regression. The main logic is the same as discussed in Appendix C.

However, instead of defining a single set Si that uses the absolute error as the nonconformity

measure, a combination of sets S
(l)
i and S

(u)
i is used. Here (l) denotes lower and (u) denotes

upper. The lower set takes the form (−∞, ti] and the upper set takes the form [ti,∞).

The sets follow by taking both a lower and upper nonconformity measure. These are defined

as s
(l)
i = ŷi − yi and s

(u)
i = yi − ŷi. The lower nonconformity measure assesses how much

smaller the true label is than the predicted label. Conversely, the upper nonconformity measure

evaluates how much larger the true label is than the predicted label. Since the sets S
(l)
i , S

(u)
i

do not make use of an absolute value measure, the points for which the sign s
(j)
i − s

(j)
n , with

j ∈ {l, u} might change is simply given as
ai − an
bn − bi

.

Now, we define both a lower l = (l1, l2, . . . , ln)
′ and upper u = (u1, u2, . . . , un) vector of

points. Since ti is both a lower bound of S
(l)
i as an upper both of S

(u)
i , we simply set ti = li = ui

with one exception; In the anomalous case that bn ≤ bi we set li = −∞ and ui = ∞. This is

because the slope of the inequality bi− bn would be negative, thereby pointing to y values in the

wrong direction. Intuitively, we want to avoid cases where the nonconformity measure of point

i is more sensitive to the hypothesized label y than the point n itself.

Now, as each point li corresponds to the lower bound of a set Sl
i, and each point ui corres-

ponds to the upper bound of a set S
(u)
i , the conformal prediction set in the exchangeable scenario

can easily be found. First, sort l and u in ascending order. Then, take the (α/2) quantile of the

lower vector and the 1 − (α/2) quantile of the upper vector as the lower and upper bound of

your predicted set, respectively.

In the setting of nonexchangeable data, we similarly have to take into account the adjusted

p-value defined in Appendix C. In the adapted algorithm, this is implemented by defining two

new vectors of ordered normalized weights w̃(l) and w̃(u) that follow the same sorting arguments

as the lower and upper vector. Then, the index of the lower bound in the lower vector, and

the upper bound in the upper vector, is found by finding the smallest index in the normalized

weights w̃(l) and w̃(u) such that the cumulative sum of the weights up until the lower and upper

index is greater than (α/2) and 1 − (α/2), respectively. The upper index needs to be adjusted

by -1 so that it covers more than a fraction (α/2) of sets. The algorithm is schematically laid

out below in Algorithm 3.

29

Algorithm 3 Weighted RCCM Nonexchangeable Setting 2022

Input:

A = (In −Hn) (y1, y2, . . . , 0)
′

B = (In −Hn) (0, 0, . . . , 1)
′

for i = 1, . . . , n− 1 do

if bn − bi > 0 then

set li = ui =
ai − an
bn − bi

else

set li = −∞ and ui = ∞
end if

end for

sort l = (l1, . . . , ul−1) in ascending order, then get w̃(l)

find lower index g = min{g |
∑g

i=1 w̃
(l)
i ≥ α}

sort u = (u1, . . . , un−1) in ascending order, then get w̃(u)

find upper index h = min{h |
∑h

i=1 w̃
(u)
i ≥ 1− α} − 1

Return:

Cn = [lg, uh]

E The BSTS Priors

The BSTS model in this paper is a sum of three Bayesian time series models, plus a regression

model. The three time series models comprise one model that captures changes in the level and

the slope of the overall time series, while the other two models serve to capture hour-of-day and

day-of-week seasonality.

In the Bayesian framework, we are required to define prior probability distributions for all

coefficients. This section serves to explain the definitions and initialization of the two time

series architectures that are employed. These are referred to as the Semi-Local Linear Trend

model and the Seasonal Effects model. The latter is deployed both for the Day-of-Week and the

Hour-of-Day seasonality.

1. Semi-Local Linear Trend : The Semi-Local Linear Trend is a simple time series model

with a level that evolves according to a random walk and a slope component that moves

according to an AR(1) process centered on a potentially nonzero value D.

µt+1 = µt + δt + ϵt ϵt ∼ N (0, σµ)

δt+1 = D + ϕ(δt −D) + ηt ηt ∼ N (0, σδ)

To have valid priors for the components µt and δt as they evolve over time, their initial

priors need to be defined first. These serve to initialize the first variables µ0 and δ0

30

• Initial Level Prior : A prior distribution for the initial level. µ0

• Initial Slope Prior : A prior distribution for the initial slope δ0.

To ensure valid prior distributions for the time-dependent parameters, we must specify four

additional prior distributions that condition on our estimates of the parameters’ realized

values from the previous time step.

• Level Scale Prior : A prior distribution for the level scale parameter σµ.

• Slope Mean Prior : A prior distribution for the slope mean D.

• Slope Scale Prior : A prior distribution for the slope scale σδ.

• Autoregressive Coefficient Prior : A prior distribution for the autoregressive

coefficient ϕ.

2. Seasonal Effects: The Seasonal Effects model represents the current observation as the

seasonal effect corresponding to that observation. The model maintains a set of seasonal

effects equal in number to the defined seasons S. Each of these seasonal effects evolves

according to a random walk.

γt+1 = −
S−2∑
s=0

γt−s + ϵt ϵt ∼ N (0, σγ)

To have valid priors for the parameter γt as it evolves over time, two priors need to be

defined.

• Initial Effect Prior : A prior distribution for the initial effect of each season. It is

also possible to have an independent prior distribution for each season.

• Drift Scale Prior : A prior distribution for the drift scale σγ .

The model is constructed in Python using TensorFlow STS (Abadi et al., 2015), which

handles the entire process of fitting the surrogate posterior. This means that the priors are

heuristically formed based on the observed time series (which is not truly Bayesian but is often

done in practice to avoid model misspecification). Additionally, the approximated posterior is

mean-field, meaning it assumes the posterior factorizes into independent distributions for each

parameter. Thus, the surrogate posterior is built by training an independent distribution for each

parameter. Specifically, the surrogate posterior consists of independent normal distributions

with trainable mean and scale parameters, which are then transformed into the appropriate

distribution approximation for that parameter using bijective functions.

F State-Space Representation BSTS Model

In essence, the BSTS is a linear state-space model plus a regression model. To understand the

state space model, the regression model that is added on top of this model is disregarded in this

31

section. To get a grip on the model, we will write it in terms of the fundamental equations for

any state space model.

zt = Azt−1 + wt, wt ∼ N (b,Σw)

yt = Hzt−1 + vt, tt ∼ N (0,Σv)

Here the first equation is called the transition equation since it models how the latent states

evolve over time. The latent states are denoted by z, they evolve linearly according to the

transition matrix A and a Gaussian noise component w. The second equation is the observation

equation, as it links the observed values y to the latent states x by means of the linear relations

defined in the observation matrix H with a Gaussian noise component v. For additional clarity,

we can define the matrices using the notation for the coefficients defined in Section 4.2.1.


µt

δt

γ
(d)
t

γ
(h)
t

 =


1 1 0 0

0 ϕ 0 0

0 0 A
(d)
t 0

0 0 0 A
(h)
t



µt−1

δt−1

γ
(d)
t−1

γ
(h)
t−1

+


w1,t

w2,t

w3,t

w4,t


zt = Atzt−1 + wt, wt ∼ N (b,Σw)

The latent states for the seasonal effects are organized such that the current seasonal effect

of the relevant seasonal effects model is always in the first dimension. The seasonal effects

transition matrices A
(d)
t and A

(h)
t are ruled by the following logic.

A
(g)
t =

Pg if the season changes at time step t

Ig otherwise

Here, the index g ∈ {d, h} selects the relevant seasonal effects model. Moreover |g| denotes
the cardinality of their respective sets D (set of 7 days) and H (set of 24 hours). The purpose of

the permutation matrix Pg is to rotate the ordering of the seasonal effects vector. The matrix

Ig is the identity matrix.

Pg =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

1 0 0 · · · 0


Ig =



1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


The dimensions of Pg and Ig are |g| × |g|. The observation equation can then be denoted as

follows.

32

[
yt

]
=
[
1 0 H(d) H(h)

]


µt

δt

γ
(d)
t

γ
(h)
t

+
[
vt

]

yt = Hzt−1 + vt, vt ∼ N (0, σv)

Here, H(g) is a 1×|g| vector with a one as the first element followed by all zeros. The vector

selects the appropriate seasonal effect. Finally, the Gaussian noise terms are defined as.

wt =


w1,t

w2,t

w3,t

w4,t

 ∼ N

b =


0

(1− ϕ)D

0

0

 ,Σw =


σµ, 0, 0, 0

0, σδ, 0, 0

0, 0, σd,t, 0

0, 0, 0, σh,t


 , vt ∼ N (0, σv)

Here, the drift scales σd,t and σh,t follow a similar logic as their transition matrices.

σg,t =

σg if the season changes at time step t

0 otherwise

G Variational Inference

The problem in finding the true posterior is that we can not evaluate the marginal p(y).

p(y) =

∫
p(y, θ) dθ

=

∫
p(Y = y | θ)p(θ) dθ

Integrating out the model parameters for the specified BSTS is an intractable task (Kingma

& Welling, 2022). The Variational Inference (VI) procedure solves this problem by finding a

surrogate posterior that best approximates the true posterior. The explanation in this section

closely follows the demonstration of Köhler (2021), but it is adapted to consider the model

parameters instead of the latent states.

The surrogate posterior is constructed from a set of distributions that are easy to work

with and is defined in such a way that it best captures the features of the true posterior.

The intuition behind this is that even though the true posterior is complex, it might have

characteristic attributes that can be well represented by other, simpler distributions.

This means that we are looking for a function q(θ) that best approximates the true distri-

bution p(θ | Y = y). In essence, we want to minimize the distance between the approximating

distribution and the target distribution. Hence, the metric that we need to minimize is the

33

Kullback-Leibler (KL) divergence. The problem can then be set up as.

q∗(θ) = arg min
q(θ)∈Q

KL(q(θ) ∥ p(θ | Y = y))

For a given set of families of distributions Q. However, this term still involves the true

posterior. Hence, the KL divergence needs to be rewritten so that we can find the optimal

distribution.

KL(q(θ) ∥ p(θ | Y = y)) =

∫
q(θ) log

(
q(θ)

p(θ | Y = y)

)
dθ

=

∫
q(θ) log

(
q(θ) · p(y)
p(θ, y)

)
dθ

=

∫
q(θ) log

(
q(θ)

p(θ, y)

)
dθ +

∫
q(θ) log(p(y)) dθ

= Eθ∼q(θ)

[
log

(
q(θ)

p(θ, y)

)]
+ Eθ∼q(θ) [log p(y)]

= −Eθ∼q(θ)

[
log

(
p(θ, y)

q(θ)

)]
+ log p(y)

= −L(θ) + log p(y)

The log-likelihood log p(y) of the data is fixed and is called the evidence. Since the probability

is between zero and one, the logarithm of the probability will be negative. Here, L(q) is called the

Evidence Lower Bound (ELBO), and it can not be greater than the evidence. Having rewritten

the KL divergence, we now have a solvable optimization problem.

q∗(θ) = arg min
q(θ)∈Q

KL(q(θ) ∥ p(θ | Y = y))

= arg max
q(θ)∈Q

L(q)

This is the optimization problem that TensorFlow solves when approximating the posterior

distribution of the BSTS.

H Schematic Representation LSTM

The schematic representation of an LSTM cell that is given below is taken from Ingolfsson

(2021).

34

Figure 12: Schematic Representation of an LSTM cell

I LSTM Parameters

The LSTM network in this study consists of a single LSTM layer with 200 units. To prevent

overfitting, a dropout layer with a rate of 0.5 is applied after the LSTM layer. This dropout

layer randomly sets half of the hidden state outputs to zero during training. Finally, a dense

layer is used to compute the prediction. The parameters used to train the model using the Keras

API are given below. Additionally, early stopping with a patience of 10 was implemented to

train the model.

• n neurons: 200

• stateful : True

• kernel regularizer : l1 l2(l1 = 0.0001, l2 = 0.01)

• kernel initializer : glorot uniform

• n epochs: 500

• n batch: 100

J Replication Results

The 2005 algorithm ran in 1:26:25. The numerical results are presented in Table 1 below.

Following that, a graphical display of the coverage properties is given in Figure 13.

35

Regular Elec2 Data Permuted Elec2 Data

Coverage Width Coverage Width

CP+LS 0.852 0.565 0.899 0.639

NexCP+LS 0.890 0.606 0.908 0.652

NexCP+WLS 0.884 0.549 0.908 0.663

Table 1: 2005 Algorithm Results

Figure 13: 2005 Algorithm Results

The 2022 algorithm ran in 15:38. The numerical results are presented in Table 2 below.

Following that, a graphical display of the coverage properties is given in Figure 14.

Regular Elec2 Data Permuted Elec2 Data

Coverage Width Coverage Width

CP+LS 0.874 0.566 0.899 0.627

NexCP+LS 0.891 0.496 0.898 0.633

NexCP+WLS 0.885 0.509 0.899 0.612

Table 2: 2022 Algorithm Results

36

Figure 14: 2022 Algorithm Results

K LstmCP + LS Benchmark

The numerical results for the LstmCP + LS method together with the three methods detailed

by Barber et al. (2023) are given here. Table 3 shows the results for the first three settings.

Following that, Table 4 displays the results for the final three settings.

Setting 1 Setting 2 Setting 3

IID Data Changepoints Distribution Drift

Coverage Width Coverage Width Coverage Width

CP + LS 0.892 3.188 0.897 9.251 0.781 4.303

NexCP + LS 0.897 3.277 0.888 8.726 0.864 5.430

NexCP + WLS 0.899 3.307 0.894 4.117 0.895 3.275

LstmCP + LS 0.893 3.176 0.899 8.956 0.837 5.021

Table 3: Prediction Results for Settings 1-3

37

Setting 4 Setting 5 Setting 6

Stochastic Volatility Heteroskedasticity Lagged Effects

Coverage Width Coverage Width Coverage Width

CP + LS 0.905 3.653 0.904 3.642 0.894 3.532

NexCP + LS 0.900 3.567 0.898 3.609 0.897 3.563

NexCP + WLS 0.897 3.607 0.897 3.637 0.895 3.591

LstmCP + LS 0.900 3.584 0.898 3.539 0.887 3.439

Table 4: Prediction Results for Settings 4-6

L Adaptive Weight Plots

As mentioned in Section 5.1, for the stochastic volatility, heteroskedasticity, and lagged effects

settings, we expect the influence of the conditional variance to even out in plots. This is due

to the fact that a rolling average of 300 observations is used for plotting. Therefore, the weight

plots for these settings are here just for completeness and should not be unduly interpreted.

Figure 15: Weights for Stochastic Volatility

Figure 16: Weights for Heteroskedasticity

38

Figure 17: Weights for Lagged Effects

39

	Introduction
	Literature Review
	Data
	Elec2 Dataset
	Simulated Data

	Methodology
	Conformal Prediction Methods
	General Notation
	Split Conformal Prediction
	Full Conformal Prediction

	Bayesian Structural Time Series
	The BSTS Model
	The Likelihood

	Long Short-Term Memory
	Adaptive Weights Motivation
	Long Short-Term Memory
	Model Features
	Weight Calculation

	Results
	The BSTS Forecaster
	The LSTM Weights

	Conclusion
	Elec2 Seasonality
	Simulation Graphs
	2005 Algorithm
	2022 algorithm
	The BSTS Priors
	State-Space Representation BSTS Model
	Variational Inference
	Schematic Representation LSTM
	LSTM Parameters
	Replication Results
	LstmCP + LS Benchmark
	Adaptive Weight Plots

