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ABSTRACT 
 
 This paper studies the impact of volatility forecasting methods on the performance of dynamically scaled 

momentum strategies in the U.S. equities market. The volatility forecasting methods used include: historical 

mean variance, Monte Carlo simulations, GJR-GARCH models, and machine learning algorithms. The 

enhanced strategies significantly outperform the traditional momentum strategy (MOM) and the market. 

Using mean historical variance yields the highest mean returns and Sharpe ratio, making the method most 

attractive for risk-seeking investors. The model based on GJR-GARCH forecasts excels in risk 

management; this portfolio has the lowest maximum drawdowns and highest positive skewness, making it 

the best for risk-averse investors. The machine learning approach has the best performance in recent years, 

especially during financial crises, demonstrating resilience and adaptability. These findings highlight the 

importance of selecting appropriate volatility forecasting methods to enhance momentum strategies' 

performance. 
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CHAPTER 1 Introduction 
Lawrence Summers, former secretary of treasury of the United States, is widely attributed with saying, 

"Most investors want to do today what they should have done yesterday" (Summers, n.d.). While there 

is no doubt that it would be better to have acted yesterday, acting today might still prove to be enough. 

Momentum strategies are a prime example of this as they consist in going long on winner stocks, and 

short on losers, and tend to be significantly profitable. In the period between January 1930 and December 

2017, a long-short momentum factor portfolio of U.S. equities would have generated a raw average 

return of 0.60% per month, with a Fama French 3 Factor model alpha of 0.88% (Hanauer and 

Windmuller, 2022). For this reason, since their introduction (Jegadeesh and Titman, 1993) momentum 

strategies have been frequently used in investing, and are still in use today, especially on securities with 

higher volatility such as cryptocurrencies (Bloomberg, 2024). However, despite its profitability and 

widespread use, momentum has its downsides. Momentum leads to especially large dropdowns, in 

particular during market reversals as documented by Asem and Tian (2010). Thus, identifying effective 

solutions to minimize these drawdowns has been a hot topic in research ever since these strategies were 

introduced.  

Previous papers which study methods to mitigate the effects of momentum crashes suggest various 

solutions to the problem, such as implementing a 10% stop-loss order (Han et al., 2016), and reversing 

the strategy after a significant local market crash (Dobrynskaya, 2019). Other authors explore volatility-

scaling strategies which consist in determining a position’s size based on its volatility, to contrast the 

leverage effect. This results in larger (smaller) positions when volatility is lower (higher). Three 

volatility-scaling strategies have been proposed and studied: constant volatility-scaled momentum 

(Barroso and Santa-Clara, 2015), constant semi-volatility-scaled (downside risk) momentum to 

distinguish between up and down movements (Wang and Yan, 2021), and dynamic-scaled momentum 

which also considers the estimated return (Daniel and Moskowitz, 2016). Hanauer and Windmuller 

(2022) compare these strategies across equity markets of 49 countries. They find that volatility-scaling 

is successful in reducing momentum crashes and yields higher Sharpe ratios. To predict volatility, the 

authors use the average squared daily returns of the past 6 months following Barroso and Santa-Clara 

(2015). This estimation method has the advantage of simplicity; however it ignores any current market 

conditions that might affect future volatility, and it does not account for changes in volatility patterns 

over time.  

This paper explores how different volatility estimation methods affect the returns and overall 

performance of the dynamically scaled momentum strategy. To estimate the models, I will use the 

following additional volatility estimation methods: a Monte Carlo simulation following the Geometric 

Brownian Motion (GBM) model, a GJR-GARCH model, and a machine learning algorithm based on 
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the random forest method. The Monte Carlo approach with GBM has the advantage of being forward-

looking, thus not having to rely on past data to make a forecast. On the other hand, the GJR-GARCH 

model considers the time-varying nature of volatility while accounting for its asymmetric shocks. 

Finally, the machine-learning model has the advantage of not requiring any initial assumptions. I will 

also estimate volatility following Barroso and Santa-Clara (2015) and use this value for the reference 

portfolio. It is expected that these enhanced models, with improved volatility estimation processes, will 

have better performances due to their more accurate volatility forecasts. Thus, in this paper I will study:  

How does the volatility estimation process affect returns and overall performance of enhanced 

momentum strategies in the U.S. equities market? 

To compare the strategies, I will use data on the U.S. stock market from January 1st, 1962, to June 1st, 

2024. The main unit of this analysis will be daily returns, which will be computed based on the daily 

close value for each security, retrieved from Yahoo Finance. I will then compare portfolio performances 

based on different metrics. Mean returns will be used to evaluate overall performance, the latter will 

have the relevant t-statistic to test their significance.  Additionally, I will compare Sharpe ratios to 

examine the risk weighted returns, and different measures of portfolio risk including volatility, 

skewness, kurtosis, and maximum drawdown. Finally, I will estimate the maximum transaction cost that 

renders profits insignificant at a specific level of 𝛼 following Grundy and Martin (2001), and Barroso 

and Santa-Clara (2015). Graphs of the portfolios’ performances, reported as cumulative returns, will 

also be provided. This will help better assess how the portfolio performances are affected by the different 

volatility forecasts over time. I will then regress the portfolios based on the Fama French 3 Factor model 

(Fama & French, 1993) to observe if the strategies yield a significant 𝛼, which would be interpreted as 

unexplained return based on the chosen risk factors. Finally, I will perform pairwise tests with t-tests 

and the sign test, to verify whether any strategy significantly outperforms the other. The sign test will 

be included to account for the potential non-normality of portfolio returns. 

In this analysis, the more advanced and complete volatility estimation methods are expected to improve 

the effect of volatility scaling on the momentum strategies, as opposed to using the mean squared returns 

of the past 6 months as a forecasted volatility proxy. Additionally, I expect this difference to be 

particularly noted in the reduced skewness, kurtosis, and maximum drawdown as a more precise 

estimate of risk is vital in pre-emptively mitigating its downside effects. This research will add to 

previous research on the topic, as it will offer a more comprehensive analysis on the most used and 

currently trending volatility forecasting tools and on their applications in portfolio risk management, 

more specifically for momentum portfolios. Additionally, these results will provide further insight on 

momentum strategies, and on how they can be adapted and improved to become feasible investment 

mechanisms for any type of investor. However, I expect better and improved volatility forecasting 

models to arise as volatility forecasting methods become more sophisticated and accurate. Additionally, 
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as different approaches such as those of Han et al. (2016), Dobrynskaya (2019), and others are 

implemented and improved, better methods may arise. Finally, developments in volatility forecasting, 

and data processing might better explain the nature of momentum crashes by approaching the problem 

from a different perspective. 

The empirical results of this study do not allow us to identify a comprehensively better strategy out of 

the enhanced momentum strategies. Overall, the dynamically scaled momentum (dMOM) portfolios 

consistently outperform the basic momentum strategy and the market, in the sample. When using the 

historical mean variance as a forecasting mechanism for volatility scaling, the portfolio that yields the 

highest mean returns and Sharpe ratio is obtained. On the other hand, using GJR-GARCH models to 

forecast volatility for volatility scaling, yields the best performance as goes for risk-management, due 

to the portfolio’s low maximum drawdown, and its high and positive skewness. Finally, when 

considering the most recent period in the sample, between June 2004 and June 2024, the dMOM model, 

based on machine learning algorithm forecasts yields the best performance based on cumulative returns. 

These results highlight the fact that more advanced volatility forecasting improves risk management 

capabilities, however the correct model should be chosen based on an investor’s risk appetite. 

The paper will be structured as follows. To start, the literature review will consider the most relevant 

existing studies on the topic, and briefly summarize their findings. This will lead to the formation of the 

primary research question along with the sub-questions. Then, the data and methodology sections will 

describe the process of deriving portfolio returns, and the methods which will be used in the statistical 

analysis. Subsequently, the results of such analysis will be presented. Finally, the conclusion will include 

a discussion, address limitations, and offer suggestions for further research based on the analysis. 
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CHAPTER 2  Theoretical Framework  
 

2.1 Volatility Forecasting 

In this section the topics of volatility forecasting, portfolio performance evaluation, and momentum 

strategies will be discussed. The discussion will be based on previous papers and includes a historical 

review of these topics. 

In this paper, I will use the outputs of different volatility forecasting methods to scale a momentum 

portfolio, based on the dynamic-scaled momentum strategy (Daniel and Moskowitz, 2016). Thus, before 

proceeding, it is crucial to properly define volatility. Volatility is not a concept strictly related to finance 

and has slightly different interpretations based on the field. In finance, volatility is the rate at which the 

price of a security, or the returns of a portfolio or stock increase or decrease, given a time horizon (cf. 

Forbes, 2023). In more practical terms, volatility is a measure of expected market fluctuations, and a 

proxy for market risk. Two main categories of volatility exist: implied volatility which is the value of 

volatility factored in the security’s current option price, and realized volatility which is based on 

historical performance. However, it is not clear if one measure outperforms the other, Christensen and 

Prabhala (1998) find that both methods are equivalent when forecasting realized volatility. Thus, in this 

paper, the realized volatilities calculated using log-returns will be used as a volatility proxy for the 

calculations. 

The root of modern quantitative finance and the use of metrics such as volatility in investment decisions, 

is usually attributed to Louis Bachelier who introduced the concept of Brownian motion (1900). 

Building on the work of Bachelier, Metropolis and Ulman (1940), introduced the “Monte Carlo 

Method”, a computational technique based on random sampling to make projections. Volatility finally 

became a mainstream topic in finance, when Benoit Mandelbrot (1960), highlighted the presence of 

large, unpredictable market moves. This paper influenced the understanding of volatility, stimulating 

researchers to find better ways to forecast these movements. One of the most disruptive discoveries for 

financial markets was when Black and Scholes (1973) and Merton (1973), revolutionized the pricing of 

options and incorporated volatility as a crucial factor. This model (Black-Scholes formula) allows for 

the calculation of implied volatility and is still in use today. Similarly, Engle (1982) disrupted the 

industry by introducing a whole new category of models for volatility forecasting, the Autoregressive 

Conditional Heteroskedasticity (ARCH) models. ARCH models are used to forecast realized volatility 

based on its lagged values. Currently trending volatility forecasting techniques include improved and 

more complex versions of Engle’s ARCH model, deep learning models, and long-memory models. 

When considering the volatility forecasting techniques used in this paper, evidence can be found of their 

successful application in finance. Glasserman (2004) discusses the effectiveness of the Monte Carlo 
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method in modelling the stochastic nature of financial markets. The author suggests that with an 

appropriate number of simulations, one can get a clearer idea of the likelihood of extreme events and 

potential risks. Nugroho et al. (2019), find that the GJR-GARCH model provides the best fitting results 

compared to any other GARCH family model. This is due to the fact that the model effectively captures 

the leverage effect and accounts for the asymmetry between positive and negative shocks. Finally, the 

empirical findings of Diane and Brijlal (2024), show that Random Forest algorithms outperform 

Artificial Neural Networks in volatility forecasting in the South African stock market. However, no 

research has been done comparing these methods, especially when applied to volatility scaling. 

 

2.2 Portfolio Performance Evaluation 

Having discussed the input of interest, the paper will proceed by mentioning how the process of 

evaluating portfolios has evolved over time. To start, there is no universally accepted framework to 

evaluate a portfolio’s performance, as different methods should be used in different situations. The 

classic approach to evaluating a portfolio’s performance is limited to evaluating the portfolio’s returns, 

cumulative returns which help visualize the portfolio’s performance over time, and the Sharpe ratio 

which provides a measure of risk-weighted returns. These values are then compared to a benchmark, 

usually the market. While these methods provide straight-forward information on a portfolio’s 

performance, they have significant limitations. Evaluating the Fama French 3 Factor model 𝛼!!",$ of a 

portfolio is arguably a better measure than using mean returns when comparing performance with the 

market. By considering the 𝛼!!",$, one controls for factors such as firm size and the book-to-market 

factor which would not be possible when basing the analysis on mean returns (Mahrfor, 2015). 

Additionally, Kolari, Liu and Pynnönen (2024) recommend including measures of potential drawdowns 

such as kurtosis, skewness, and maximum in-sample drawdown. When evaluating a portfolio, this is 

especially for portfolios including short positions, as large, unexpected drawdowns might lead to margin 

calls. In this paper I will not use a single or universal measure of performance, as such a method does 

not exist. However, I will use different methods to evaluate different aspects of a portfolio, such as its 

risk and return in order to have the most complete overview of the portfolio’s performance. 

Since the start of investing, finding the best measure or method to evaluate a portfolio and compare it to 

other options has been a central topic in finance. Not being able to distinguish which portfolio performs 

best, or not considering crucial factors such as expected risk will most likely lead to wrongful decisions 

and potentially huge losses. One of the first, and most influential works on the topic is “Mutual fund 

performance, in which Sharpe introduced the “Reward-to-Variability ratio” currently better known as 

the Sharpe ratio (1966). This measure allows to calculate the risk adjusted return of a portfolio and 

became a steppingstone for future research. Later, Jensen introduced the Jensen alpha, based on the 

CAPM model (1968). This method allows to identify whether the strategy yields return in excess of the 
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market. Many extended versions of the model started being used in the following years, mainly based 

on Fama French models. More recently, Daniel, Sornette, and Wohrman, published an influential paper 

focusing on the issue of look-ahead bias in back-testing investment strategies (2008). This study 

considers portfolio evaluation from a whole different perspective and provides insight on how to deal 

with this bias. More recently, models that attempt to integrate behavioral finance insights and ESG 

metrics are gaining traction, due to the increasing ability to process large quantities of data and the fact 

that investors are becoming more conscious of environmental, social, and governance factors (Khan, 

Serafeim, and Yoon, 2016). 

 

2.3 Momentum 

Finally, I can proceed with discussing the strategy I will study in this paper. The general definition of 

momentum interprets it as a property of a moving body which determines the amount of time required 

to stop its motion, when a constant force is applied (cf. Merriam-Webster online, 2024). Thus, the 

concept of momentum is originally related to physics, however it is used also in other contexts. In 

finance, a momentum strategy is a type of investment strategy based on the assumption that stocks, like 

objects, have inherent momentum. This implies that once a stock is moving upwards or downwards (in 

value) this movement will continue for a certain period. More specifically, momentum strategies consist 

in going long (short) stocks that have had a positive (negative) trend in the past period. Overall, 

momentum strategies have been proven to have positive 𝛼, and to return better risk adjusted returns than 

the market (Jegadeesh and Titman, 1993). The classic momentum strategy is a quantitative type of 

investment strategy which implies that it is a strategy which does not consider the business model, 

management team, and other more qualitative factors when making an investment decision. 

According to various sources, momentum investing dates to as early as the Victorian Era (Chabot, 

Ghysels, and Jagannathan, 2014), however Richard Driehaus is often referred to as the father of 

momentum investing as he is accredited with popularizing the strategy in the 80s (Larsen and Larsen, 

2018). One of the first academic articles providing empirical evidence on momentum, written by Levy, 

in the late 60s (1967) proving that stock that performed well in the past continue performing well. 

However, the article did not gain much traction, unlike “Returns to Buying Winners and Selling Losers: 

Implications for Stock Market Efficiency” (Jegadeesh and Titman, 1993) which is the seminal paper on 

the topic. In 1997, Carhart published a particularly influential paper, introducing an extended version of 

the Fama-French three-factor model which included a momentum factor. This helped prove that 

momentum is an economically and statistically significant determinant of portfolio returns, emphasizing 

its importance in portfolio formation. More recently, alongside others, Blitz, David, and Pim van Vliet 

(2008), and Asness, Moskowitz, and Pedersen (2013) proved the efficiency and profitability of 

momentum strategies over various asset classes and markets worldwide. However, even if the classic 
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momentum strategy is widely regarded as a profitable investing strategy, serious concerns have risen 

due to its high maximum drawdowns which make the strategy unfeasible or disregarded by more risk-

averse investors (Barroso and Santa-Clara, 2015). Thus, finding ways to mitigate these risks has been a 

hot topic in the past decade. Han et al. (2016) have suggested the simple but effective solution of 

implementing a 10% stop-loss order which more than halves the maximum monthly loss and doubles 

the strategy’s Sharpe ratio. Dobrynskaya (2019) suggests reversing the strategy after a significant local 

market crash, to contrast the effect of market reversals and turn them into opportunities to profit.  

A different approach consists in utilizing volatility scaling which is the process of increasing or 

decreasing the portfolio’s size based on the forecasted volatility. The purpose of volatility scaling is to 

contrast the leverage effect, which is an empirically proven stylized fact of finance (Wang and Mykland, 

2014). Generally, the leverage effect consists in the notion that when volatility is high returns are low. 

Additionally, one must mention that scaling a momentum portfolio is feasible, as it is a long-short 

strategy. Which implies that the standard momentum portfolio can be theoretically scaled indefinitely 

due to its self-financing nature. Barroso and Santa-Clara (2015) are the first to come up with a volatility 

scaled momentum strategy. More specifically the constant volatility-scaled momentum, which scales 

the portfolio based on a ratio of a volatility target, divided by the forecasted volatility for the next period. 

Wang and Yan (2021) introduced the semi-volatility-scaled momentum, making use of Roy’s (1952) 

semi-volatility intuition, to distinguish between up and down movements, and thus hedge against the 

downside risk. Finally, Daniel and Moskowitz (2016) suggest using a dynamic-scaled momentum, 

which has the main advantage of allowing the portfolio weight to be negative in case the forecasted 

return is negative. The scaling weight is calculated based on an adapted version of the Markowitz model 

(1952) and aims to maximize the risk-weighted return. The biggest advantage of this solution is its 

ability to adapt the portfolio to market conditions similarly to the method proposed by Dobrynskaya 

(2019), alongside hedging for the risk of high market volatility.  

In their work on enhanced momentum strategies, Hanauer and Windmuller (2022) compare the 

strategies of Barroso and Santa-Clara (2015), Wang and Yan (2021), and Daniel and Moskowitz (2016) 

across equity markets of different countries. In their analysis, the authors use the method used in Barroso 

and Santa-Clara for volatility forecasting, which consists in calculating the average daily volatility over 

the past 6 months and turning it into monthly terms. This choice is made for comparative reasons, to 

better evaluate the performance of the different strategies. The authors conclude that no strategy 

significantly outperforms the other, however the dynamic-scaled momentum strategy has reduced 

skewness, kurtosis, and maximum drawdown. This indicates an overall mitigated level of risk compared 

to the other strategies. Mindful of these results, in this paper I will be basing my analysis on the dynamic-

scaled momentum strategy following Daniel and Moskowitz (2016). As volatility scaling for momentum 
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strategies is a niche topic, not much research has been done on which volatility forecasting approach 

better suits this technique.  

In this study, I replicate the work of Daniel and Moskowitz (2016) due to their method yielding the best 

performing portfolio in the empirical comparison performed by Hanauer and Windmuller (2022). I test 

different volatility forecasting techniques and their effect on the dynamic-scaled momentum strategy. 

These methods include calculating the mean volatility over the past 6 months following Barroso and 

Santa-Clara (2015), a Monte Carlo simulation, a GJR-GARCH model, and a Machine Learning 

algorithm integrating insights from the other models. Compared to the base model (mean volatility), the 

Monte Carlo approach has the advantage of being forward looking, the GJR-GARCH model has the 

advantage of considering the time series structure of data, and the Machine Learning model has the 

advantage of not making any initial assumptions on distributions or data structures. In the study I will 

use data from the US stock market, where the momentum strategy has been empirically proven to work 

(Levi, 1960). As returns tend to be normally distributed, given the number of simulations is sufficiently 

large, the first hypothesis is: 

H1: The Monte Carlo approach does not improve the portfolio’s performance when compared to the 

base (mean volatility) model.  

Due to the GJR-GARCH more detailed understanding of the data structures, the second hypothesis is as 

follows: 

H2: The GJR-GARCH volatility estimation technique improves the portfolio’s performance when 

compared to the base (mean volatility) model.   

Finally, I formulate the last hypothesis. As the machine learning model has the most complete input 

data, and makes no initial, strict assumptions, I expect that: 

H3: The Machine Learning method brings the greatest improvement to the portfolio, compared to the 

other methods. 

More generally, in this study, I will assess the portfolio improvement brought by the different volatility 

forecasting methods. The process will not only assess the mean and cumulative return difference, but 

also compare the level of risk of the strategies. 

 

 

 



 9 

CHAPTER 3  Data and Methods 

3.1 Raw Data 

The data used in this study consists of daily close values for 9,990 stocks listed in the United States. 

Due to the dataset not being clean, multiple filters were applied. Penny stocks were removed from the 

data, defined as stocks having a price per stock under 5 USD on June 1st, 2024. All missing values, likely 

generated due to differences in trading days between exchanges, were forward filled to match the close 

value of the next trading day. Additionally, all stocks that had a day-to-day return exceeding 50% were 

removed from the sample, as such extreme returns are outliers. French Schwert and Stambaugh (1995) 

find that high returns (defined as 50% daily increases) are rare and typically associated with 

extraordinary events or speculative bubbles. These filters remove stocks which are more likely to be 

subject to market manipulation due to low liquidity and smaller market cap, and overall reduce noise in 

the data. However, as a consequence the overall sample volatility is significantly reduced. It must be 

mentioned that filtering for extreme day-to-day gains is a particularly conservative approach; however, 

by doing so, all unrealistic observations are excluded, and momentum signals are better isolated to avoid 

false positives and better assess the strategy’s performance. After the data cleaning process, the sample 

is reduced to 6,900 securities. The data constitutes of daily adjusted close values starting in January 

1962 and ending in June 2024 and is obtained through Yahoo Finance’s python API. This period was 

chosen, as January 1st, 1962, is the first, available data point on the platform. Yahoo Finance is a financial 

platform that offers real-time and historical market data, financial news, and investment tools. Its data 

is retrieved from a variety of sources, including financial exchanges, public companies, and third-party 

data providers. The “yfinance” Python API facilitates access to this database. The adjusted close price, 

is the closing price of the day, adjusted to reflect the effect of corporate actions, such as dividends, stock 

splits, and rights offerings. This figure is used instead of the standard daily close price, as it better reflects 

the true economic value of holding the stock over time. The adjusted close prices are expressed in USD. 

Additionally, daily and monthly data on the Fama-French factors is obtained from Kenneth French’s 

website1. More specifically: the risk-free rate (RF), the market excess return (RMRF), the average return 

on the three small portfolios minus the average return on the three big portfolios (SMB), and the average 

return on the two value portfolios minus the average return on the two growth portfolios (HML). SMB 

and HML values are calculated using the following formulas: 

𝑆𝑀𝐵	 =
1
3
(𝑆𝑚𝑎𝑙𝑙	𝑉𝑎𝑙𝑢𝑒	 + 	𝑆𝑚𝑎𝑙𝑙	𝑁𝑒𝑢𝑡𝑟𝑎𝑙	 + 	𝑆𝑚𝑎𝑙𝑙	𝐺𝑟𝑜𝑤𝑡ℎ)

−	
1
3
	(𝐵𝑖𝑔	𝑉𝑎𝑙𝑢𝑒	 + 	𝐵𝑖𝑔	𝑁𝑒𝑢𝑡𝑟𝑎𝑙	 + 	𝐵𝑖𝑔	𝐺𝑟𝑜𝑤𝑡ℎ) 

 

(1) 

 
1 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Research 
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𝐻𝑀𝐿	 =
1
2
	(𝑆𝑚𝑎𝑙𝑙	𝑉𝑎𝑙𝑢𝑒	 + 	𝐵𝑖𝑔	𝑉𝑎𝑙𝑢𝑒) −	

1
2
		(𝑆𝑚𝑎𝑙𝑙	𝐺𝑟𝑜𝑤𝑡ℎ	 + 	𝐵𝑖𝑔	𝐺𝑟𝑜𝑤𝑡ℎ) (2) 

The relevant values are calculated based on Fama and French’s paper: “Common risk factors in the 

returns on stocks and bonds” (1993).  

 

 

Table 1: Descriptive Statistics. 

 Mean Stand. Dev. Max. Min. 

Adj. Close 3,026 533,958 210,426,160 9.940e-11 

N. of Obs. 3,042 3,251 15,721 1 
Notes: The table includes the summary statistics related to the adjusted close values of the securities in 
the sample, and the number of observations. The “Mean”, “Stand. Dev.”, “Max.”, and “Min.” represent 
respectively the mean, standard deviation, maximum, and minimum. All values are expressed in USD 
for Adj. Close, and in units for N. of Obs., and are rounded to the next dollar. “e-11” stands for ∙ 10%&&. 

 

As can be seen in Table 1, the adjusted close values have a considerably wide range (between 9.940 ∙

10%&& and 210,426,160) and vary a significant amount from the mean on average. This is due to the fact 

that the adjusted close values are normalized to account for stock splits to provide a linear measure of 

the company’s performance. This inevitably leads to exorbitant maximum and minimum values. The 

maximum value was registered by Direxion Daily Semiconductor Bear 3X Shares (ticker symbol: 

SOXS). SOXS is a 3x levered ETF offering short exposure to the semi-conductor market. Due to the 

recent boom in the industry, the index experienced a substantial decline in value. Due to this, the stock 

underwent multiple reverse stock splits to maintain a reasonable stock price. On the other hand, the 

minimum value was registered by Burke & Herbert Financial Services Corp. (ticker symbol: BHRB). 

The stock had an outstanding performance since its IPO and had to announce multiple stock splits such 

as a 40 − 1 split in October 2022. Having a wide range of prices is not a concern as once the close 

values are converted to returns, they will be uniformized. Relative performance is of interest for this 

study, and not its absolute value. Similarly, the number of observations per security is subject to large 

variations, as it can observed that the standard deviation is larger than the mean. This is also not a main 

concern for the analysis as it does not affect the formation of momentum strategies. 
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3.2 Portfolio Construction 

In this section I will discuss the process of portfolio formation, starting from the standard momentum 

portfolio, to then discuss the calculation of the relevant scaling weights for the dynamic-scaled 

momentum strategies (dMOM). 

Starting from the adjusted close values of individual stocks, I calculate the respective returns. In the 

analysis, I used the individual stock returns to estimate the final portfolio returns. This process requires 

multiple steps, the first of which is calculating the returns of a long-short momentum portfolio, based 

on Jegadeesh and Titman (1993). For this study, a long-short momentum strategy with a 12-month 

lookback period, a 1-month gap, and a 1-month holding period is being used as the base strategy (MOM). 

These parameter choices are in line with the recommendations of Jegadeesh and Titman (1993), and 

with the model used by Hanauer and Windmüller (2023) except for the lookback period, about which 

the authors are not specific. In other words, to estimate MOM returns, given my parameters of choice, 

one must evaluate the cumulative performance of assets over the previous 12 months and identify the 

tickers in the top and bottom decile. Then, after a 1 month (gap period), the strategy involves going long 

on the top-performing assets and going short the bottom-performing assets. Thus, a decision to trade 

today would be based on the assets’ cumulative performance in the months 𝑡 − 2 to 𝑡 − 13 (this number 

accounts for the 1-month gap period). These positions are then held for 1 month before re-evaluating 

and rebalancing the portfolio based on the new 12-month performance data. Additionally, as a long-

short portfolio is being considered, one must sum the daily (monthly) risk free rate to the daily (monthly) 

return. This is due to the fact that a long-short strategy requires the investor to have a margin account, 

on which the risk-free rate is earned. Having calculated the returns of MOM, it is then necessary to 

calculate the appropriate weights for the dynamic-scaled momentum strategy (dMOM). 

The implementation of volatility scaling to enhance MOM, has the objective of managing its realized 

volatility. Barroso and Santa Clara (2015), have shown that for cross sectional momentum (MOM), 

realized volatility has a positive correlation with future volatility, and negative correlation with future 

returns. It must be noted that volatility scaling itself, including the standard dMOM, does not account 

for the positive autocorrelation of returns. By combining these insights, one can generate a momentum 

strategy with an overall improved performance. Additionally, one must consider that since long-short 

strategies are self-financing, the portfolio can be theoretically infinitely scaled positively or negatively 

(going long the past losers and short the past winners). The dMOM approach, based on Daniel and 

Moskowitz (2016) is applied as follows to calculate the appropriate portfolio weights (𝑊'()(,*): 

𝑊'()(,* = C
1
2𝜆E

∙
�̂�*
𝜎I*+

 (3) 
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In the above formula, 𝜎I*+ = 𝔼*%&[𝜎*+] is the forecasted respective conditional expected variance of 

MOM,  �̂�* = 𝔼*%&[𝜇*] is the forecasted respective conditional expected return of MOM, while 𝜆 is a 

static scalar scaling the volatility of dMOM to that of MOM. Both 𝜎I*+ and �̂�* are estimated using out-

of-sample approaches, to prevent incurring in look-ahead bias. The return of MOM (�̂�*) is estimated 

based on the following regression, using 126 trading days (6 months) of data: 

𝑅()(,* = 𝛾, + 𝛾-.* ∙ 𝐼/012,*%& ∙ 𝜎3(3!,*%&+ + 𝜖* (4) 

In the regression formula, 𝐼/012,* is a bear-market indicator at time t, 𝜎3(3!,*+  is the realized variance of 

RMRF over the past 126 trading days (6 months) at time t, 𝛾, is the regression intercept, and 𝛾-.* is the 

coeffiecient of the interaction effect between 𝐼/012,* and 𝜎3(3!,*+ . More specifically, 𝐼/012,* is a dummy 

variable taking a value of 1 if the cumulative past two-year market return is negative, and 0 otherwise. 

In their study Daniel and Moskowitz (2016) find that momentum returns are particularly low in periods 

of market stress (bear market and high market variance), and that the optionality associated with loser 

portfolios is significant only in bear markets. This yields a significant negative market exposure during 

periods of market reversal (from bear to bull). Based on these intuitions, to hedge against the risk of 

market reversals, the authors include 𝐼/012,* and 𝜎3(3!,*+ , to forecast MOM returns for the purpose of 

volatility scaling. Additionally, Daniel and Moskowitz (2016) find that MOM returns are particularly 

poor during bear markets with high volatility, thus justifying the choice of the interaction effect. The 

expected return, in Formula 3 is defined as the fitted values from this regression. 

To forecast the expected variance 𝜎I*+, I used 4 different methods: the mean historic variance, a Monte 

Carlo simulation following the Geometric Brownian Motion (GBM) model, a GJR-GARCH model, and 

a machine learning algorithm based on the random forest method. To calculate the mean historic 

variance, following Barroso and Santa-Clara (2015), I used the following formula where 𝑅()(,'%4,*+  is 

squared realized daily return of momentum. 

𝜎I()(,*+ = 21 ∙Q
𝑅()(,'%4,*+

126

&+5

46&

 
(5) 

For the Monte Carlo simulation, I used the squared realized daily return of momentum returns 

𝑅()(,'%4,*+ , as a volatility proxy. The simulation has a sample of 126 trading days (6 months), and runs 

1,000 simulations based on the normal distribution, to make its forecasts. Similarly, the GJR-GARCH 

method has a window of 126 trading days (6 months) as a sample to make its forecasts. Finally, the 

machine learning method uses a random tree algorithm to make predictions, based on a training sample 

of 126 trading days (6 months). The model uses 100 decision trees and is set to the random seed “42”, 

in order to ensure reproducibility of results. A new model is trained for every prediction, based on the 
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most recent out-of-sample data. The training dataset includes the forecasts of the other models (historical 

mean variance, Monte Carlo approach, and GJR-GARCH), the past MOM returns, the past squared 

MOM returns, and the rolling variance estimated using the previous 30 observations. While the target 

dataset uses square returns as variance proxies. 

Finally, having calculated the appropriate weights, one can derive dMOM return in month t with the 

following formula. 

𝑅'()(,*	 = 𝑅()(,*	 · 𝑤'()(,*		 (6) 

 

3.3 Methods 

In this section I will briefly discuss the methods used to analyse the overall performance of the portfolios, 

to assess if the returns are significant, and to make pairwise comparisons of the portfolios.  

To assess the overall performance, standard descriptive statistics will be compared between the 

portfolios, this includes the mean monthly return, and the monthly volatility or standard deviation. 

Additionally, the annualized Sharpe ratios will be used to evaluate the risk-adjusted returns of each 

portfolio. Generally, any Sharpe ratio value above 1 is considered to be acceptable, while any value 

above 2 would be excellent. Furthermore, the Sharpe ratios are tested using the Gibbons, Ross, and 

Shanken (GRS) test (1989), to verify whether the portfolios are jointly equal to zero, considering a 

specified factor model: Fama French 3 Factor (FF3) model (Fama and French, 1993). This is done by 

testing the joint hypothesis 𝐻,:	𝛼- = 0		∀		𝑑𝑀𝑂𝑀-,  in other words, it checks whether the portfolios are 

mean-variance efficient with respect to the FF3 factors. To set up the test, the returns of the strategies 

are regressed on the FF3 factors based on the following regression equation: 

𝑟!!" = 𝛼 + 𝛽3(3!Y𝑟8 − 𝑟9Z + 𝛽:(/(𝑆𝑀𝐵) + 𝛽;(<(𝐻𝑀𝐿) + 𝜖 (7) 

where 𝛼 is the constant, 𝑟8 − 𝑟9 is the market risk premium, SMB is the historic excess returns of small-

cap companies over large-cap companies, HML is the historic excess returns of value stocks (high book-

to-price ratio) over growth stocks (low book-to-price ratio), and 𝛽3(3!, 𝛽:(/, and 𝛽;(< are the 

respective coefficients. The values of the factors used in this calculation are taken from Kenneth 

French’s library. From this regression the betas (𝛽) and residuals (𝜖) are obtained, for each strategy. 

Then, the mean excess returns of each portfolio, and the covariance matrix of the residuals are 

calculated. Finally, the test statistic (GRS) is computed following: 

GRS =
(𝑇 − 𝑁 − 𝐾)/𝑁
1 + 𝐹=bbbbΣ!%&𝐹b

𝑅=bbbbΣ>%&𝑅b (8) 
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Where 𝑇 is the number of time periods, 𝑁 is the number of portfolios, 𝐾 is the number of factors, 𝐹b is 

the mean vector of factor returns, Σ! is the covariance matrix of factor returns, 𝑅b is the mean vector of 

portfolio excess returns, and Σ> is the covariance matrix of the residuals. The appropriate p-value is 

derived from an F-distribution N and 𝑇 − 𝑁 − 𝐾 degrees of freedom: 

𝑝 − 𝑣𝑎𝑙𝑢𝑒?3: = 1 − 𝐹(𝐺𝑅𝑆,𝑁, 𝑇 − 𝑁 − 𝐾) (9) 

Moreover, skewedness, kurtosis, and the maximum drawdown are considered. When considering 

skewedness, one would ideally aim for their returns to be positively skewed, indicating that an investor 

should expect frequent small losses, and few large returns. Regarding kurtosis, high (low) values of 

kurtosis indicate a higher (lower) chance of extreme outcomes occurring. Most investors regard a 

combination of positive skewness and moderate kurtosis as optimal. Additionally, the maximum 

drawdown is an intuitive measure of risk, as it represents the largest month-to-month loss that the 

portfolio experienced in-sample. Finally, for each portfolio I will calculate the round-trip costs that 

would render the profits of the strategy insignificant at a significance level of 𝛼 = 0.05, and 𝛼 = 0.01. 

This is done following Grundy and Martin (2001): 

𝑅𝑜𝑢𝑛𝑑 − 𝑇𝑟𝑖𝑝	𝐶𝑜𝑠𝑡@6A% = C1 −
1.96

𝑡 − 𝑠𝑡𝑎𝑡:
E
�̅�$
𝑇𝑂bbbb$

 (10) 

In the case in which 𝛼 = 1%, 2.576 is used instead of 1.96. In the above formula 𝑡 − 𝑠𝑡𝑎𝑡: is the t-test 

value of the portfolio returns, and �̅�$ in the portfolio mean return. On the other hand, based on Barroso 

and Santa-Clara (2014), 𝑇𝑂bbbb$ is calculated as follows: 

𝑇𝑂bbbb$ = 0.5 ∙Qo
𝑤-,*
𝐿*

−
𝑤-,*%&
𝐿*%&

o
C!

-

 
(11) 

In Formula 11 𝑁* represents the number of stocks at time t, 𝑤-,* is the weight inside MOM of stock i at 

time t, and 𝐿* is the scaling weight of dMOM calculated using Formula 3. It must be mentioned that 

𝑤-,*%& does account for the return obtained over the holding period as it represents the weight 𝑤-,*%& of 

the previous period multiplied by the returns obtained in the current period 𝜇&,* + 1. 

When assessing if the portfolio returns are significant, two measures will be used: a paired t-test with 

𝐻,:	�̅� = 0, and the portfolio returns will be fitted to a (FF3) model (Fama and French, 1993). The t-test 

is used to observe whether the returns are significantly different from 0. When the p-value of the test is 

smaller than the chosen confidence level, one can reject the null hypothesis 𝐻,, and thus conclude that 

the mean is significantly different from 0. Differently, fitting the portfolio returns to a FF3 model, is 

done to verify if the portfolio has a significant constant (𝛼). If 𝛼 is significant, this implies that the model 



 15 

is not able to fully explain the returns of the portfolio, based on the factors of the regression, in this case 

a FF3 model, based on Formula 7.  

Finally, to make pairwise comparisons between the portfolios, I will use both parametric and non-

parametric tests. Parametric tests have higher power and are thus more likely to identify a significant 

effect when one truly exists. However, parametric tests require strong assumptions such as normality of 

data and might lead to biased results in case these assumptions are not satisfied. Thus, both tests will be 

used to ensure robustness of results. Additionally, as a high number of t-tests will be used, the risk for 

false positives is elevated. By using a different pairwise test, one can accept or reject the results of the 

original t-test, and significantly reduce such risk. The parametric test used in this paper will be a standard 

paired t-test to compare the mean returns of the two portfolios. The paired t-test has been chosen, as the 

equality of standard deviations was tested with a variance ratio test, and the results never allowed to 

reject the null (see Appendix A). The non-parametric test used in this study will be a sign test. The sign 

test is used to determine if there is a significant difference between the medians of paired or matched 

samples by comparing the number of positive and negative differences. The test counts the number of 

times one condition exceeds the other and uses the binomial distribution to evaluate whether the 

observed difference is statistically significant. 
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CHAPTER 4  Results 
In this section the performances of the enhanced momentum strategies are compared to each other and 

to the benchmark strategy MOM. In the first part I will evaluate the companies based on individual 

metrics, while in the second part the companies’ performances will be directly compared to each other. 

Table 2 includes all the statistics regarding the individual performance of each strategy. Table 3 includes 

the test statistics of all the pairwise tests performed to evaluate whether one method significantly 

outperforms the other when used to forecast volatility for a dMOM strategy. 

 

 

Table 2: Portfolio Performance Measures. 

 MOM BSC MC GJR ML 

Return Statistics      

Mean Ret. (in %) 0.850 
(7.063)* 

1.499 
(12.454)* 

1.461 
(12.133)* 

1.376 
(12.454)* 

1.255 
(12.453)* 

𝛼!!" (in %) 0.97* 1.49* 1.45* 1.35* 1.24* 

Sharpe Ratio (annualized) 0.619 1.309 1.268 1.177 1.049 

Portfolio Risk Measures      

Volatility (in %) 3.255 3.257 3.257 3.257 3.257 

Skewness -0.687 2.264 2.620 4.251 3.815 

Kurtosis 5.157 10.896 12.532 33.735 27.060 

Max. Drawdown (in %) 21.694 18.331 16.858 13.373 16.850 

Turnover and Maximum Transaction Costs 

Mean Turnover (in %) 53.145 63.957 61.297 63.957 63.957 

Max. Round-Trip costs 1.155 
(1.016) 

1.975 
(1.859) 

1.998 
(1.877) 

1.975 
(1.859) 

1.975 
(1.859) 

Note: The table includes results of different performance measures: (1) the mean monthly return (in %),  
(2) the corresponding t-statistic, (3) the constant of the FF3 model fitted to the strategy’s returns (in %), 
(4) the annualized Sharpe ratio, (5) the monthly volatility of returns (in %), (6) the skewness of the 
return distribution, (7) the kurtosis of the return distribution, (8) the max drawdown of the strategy, (9) 
the mean turnover in the portfolio between each period, (9) the round-trip costs which render the profits 
insignificant at 𝛼 = 5%, and (10) the round-trip costs which render the profits insignificant at 𝛼 = 1%. 
MOM is the basic momentum strategy, BSC is the dMOM strategy with the volatility estimated 
following Barroso and Santa Clara (2014), MC is the dMOM strategy with the volatility estimated using 
the Monte Carlo approach, GJR is the dMOM strategy with the volatility estimated using a GJR-
GARCH model, and ML is the dMOM strategy with the volatility estimated using machine learning. 
* Significant at the 1 percent level. 
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As can be seen in Table 2, the standard momentum factor (MOM) returned an average of 0.85% monthly 

between January 1962 and June 2024. This value is statistically significant at a confidence level of 𝛼 =

0.01 having a t-statistic of 7.063. Additionally, the strategy has a statistically significant FF3 𝛼!!" =

0.010, implying that the strategy generates, monthly, a 0.97% return which cannot be explained by the 

FF3 factors (RMRF, SMB, and HML). However, as indicated by other authors (Barroso and Santa-

Clara, 2015; Daniel and Moskowitz, 2016), the MOM strategy has high kurtosis and negative skewness 

which leads to high maximum drawdowns. These results replicate in my study and are visualized in 

Figure 1. Moreover, partially due to the fat left tails, the strategy has a sub-optimal Sharpe ratio of 0.619. 

However, due to the conservative approach used to filter the data, the sample likely has a reduced 

volatility compared to the samples of the other authors, thus these results are not particularly extreme. 

This can be verified by the fact that the MOM strategy has a 21.694% maximum monthly drawdown in 

the period, which is significantly lower than what other authors report (Hanauer and Windmuller, 2022). 

Regardless, this is a significantly high value, as it must be kept in mind that it is expressed in monthly 

terms and would correspond to a 75% drawdown when the value is annualized. Finally, it must be 

mentioned that the strategy has a considerable amount of turnover, as on average, more than 53% of the 

positions change monthly, which, combined with the high returns, results in a maximum acceptable 

transaction cost just over 1%. 

 

 

Figure 1: Distribution of MOM returns. 
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This figure displays a histogram, portraying the frequency of each value of returns of MOM over the 
whole sample, with a distribution curve. The values of “Values” are in USD. 
 

When considering the enhanced momentum strategies, a significantly better performance is observed 

compared to MOM. All dMOM strategies outperform MOM in every metric, except for their increased 

kurtosis. Overall, the volatility, the mean turnover, and the maximum round-trip costs appear to be more 

or less equivalent for the 4 dMOM strategies using the Barroso and Santa-Clara (2015) method (BSC), 

the Monte Carlo approach (MC), a GJR-GARCH model (GJR), and the Machine Learning approach 

(ML). Similarly, when considering mean returns, the 4 dMOM strategies have extremely significant t-

statistics, signifying that the returns are very unlikely to be 0. Alongside being significant, the mean 

returns are also positive and considerably larger in scale compared to those of MOM, and range between 

1.49	% (BSC) and 1.24% (ML) per month. Additionally, all dMOM strategies have statistically and 

economically significant values of 𝛼!!" which implies that the strategies generate unexplained returns. 

All dMOM strategies have a Sharpe ratio above 1 which implies that the portfolios yield more than 

acceptable risk-adjusted return. In this metric, the BSC strategy clearly has the best performance, under 

all metrics, with a standout 1.309 Sharpe ratio indicating the strategy has the best risk weighted returns 

in the sample. Moreover, the GRS test statistic is 20.765, which corresponds to a p-value of 1.11 ∙ 10%&5 

(see Appendix B). The extremely low p-value suggests that at least one of the strategies has a Sharpe 

ratio that is significantly different from the others when adjusted for the Fama-French three factors, 

leading to the rejection of the null hypothesis of equal Sharpe ratios. This implies that there are 

significant differences in the Sharpe ratios of the five strategies tested, and that the overperformance of 

BSC, as goes for risk-adjusted returns, is indeed significant. An interesting thing to notice is that MC 

trails BSC in all categories, and has similar statistics, which is an argument in favor of Hypothesis 1, 

which states that MC is not an improved version of BSC. As for returns, the GJR and the ML strategies 

resulted in the worst overall performances. This is especially clear when looking at Figure 2 which 

visually compares the cumulative returns of the 4 dMOM strategies, MOM, and the market. The 5 

strategies outperform the market; however, MOM’s outperformance is not as marked.  
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Figure 2: Cumulative performance of the momentum strategies and the market. 

The figure displays the cumulated performance of a $1 investment in each of the momentum strategies 
(the risk-free rate is included as they are long-short strategies) and the market. The following strategies 
are included: MOM, BSC, MC, GJR, and ML. MOM is the standard momentum strategy, the other are 
dMOM strategies with volatilities calculated using respectively the mean variance (BSC), a Monte Carlo 
simulation (MC), a GJR-GARCH (GJR), and machine learning (ML). The shaded areas of the graph 
represent major financial crises, from left to right: Black Monday (1987), Dot-Com Bubble Burst (2000-
2002), 2008 Financial Crisis, and COVID-19 Market Crash. For details regarding variable construction, 
see Section 3.2. The sample period ranges from 01/1962 to 06/2024. 

 

From a portfolio risk management perspective, by looking at Table 2 it is not clear which strategy has 

the best performance. As previously mentioned, all dMOM strategies have the same value for the 

standard deviation, when rounding to the third decimal. However, the standard deviation is not the best 

indicator when evaluating portfolio risk, and this does not allow us to conclude that the strategies are 

equivalent. When considering skewness, the dMOM strategies significantly outperform the standard 

MOM strategy, as they have high, positive skewness compared to the negative skewness of MOM. As 

the dMOM strategies have positive skewness and mean �̅�$ > 0, extreme losses are very unlikely, values 

close to or slightly under the mean are the most common, and few extremely high gains are to be 

expected. This makes the strategies’ performance, particularly attractive. GJR exhibits the highest 

skewness at 4.251, with ML following closely at 3.815. As for the previous discussion related to return 

metrics, BSC and MC have similar values for skewness.  
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When considering kurtosis, my results do not replicate Hanauer and Windmuller (2022), as the dMOM 

strategies have considerably higher kurtosis than MOM and their returns’ distributions are leptokurtic. 

The authors find that, in their sample, kurtosis is reduced by volatility scaling. Moreover, these values 

are significantly high and range between 33.735 (GJR) and 10.896 (BSC). High levels of kurtosis are 

not a particular concern in this case as it implies that the distributions have fat tails. In other words, 

extreme values (both on the left and right side) are considerably more common. However, as the 

distributions of dMOM returns are positively skewed and have mean �̅�$ > 0, high kurtosis could be a 

positive characteristic as extreme positive values are more likely. Additionally, it can be verified that 

this is not an issue by observing the maximum drawdown of the strategies in Table 2, as the enhanced 

momentum strategies have lower values for this statistic compared to MOM. BSC has the highest 

maximum drawdown at 18.33%, which is 3% less than MOM, whereas GJR has the lowest maximum 

drawdown at 13.37%, 8% lower than MOM. These values provide tangible evidence that volatility 

scaling reduces the overall risk exposure of the MOM. The data structures of the distributions of dMOM 

strategies can be better observed in Appendix C.  

Moreover, by looking at Figure 2, one can observe that, differently from MOM and the market, the 

dMOM strategies are robust to the major crises (shaded areas). Studying the performance of these 

strategies during crises is particularly important, as such events constitute the greatest downwards risk 

for most portfolios. Most strategies, incur sizeable losses during market crashes, as can be seen from the 

performance of MOM. However, the dMOM strategies appear significantly resilient and even be able 

to capitalize on the reversal, unlike MOM which is particularly sensitive to such events. This is due to 

the fact that the portfolio weight of dMOM partially depends on MOM’s forecasted return, which can 

be both positive and negative. Thus, dMOM weights are negative in periods of crisis causing the strategy 

to be inverted (long losers, and short winners). 

Finally, when comparing the strategies based on the maximum acceptable transaction costs, and mean 

turnover, it can be observed that the dMOM strategies have similar values in these metrics (Table 2). 

The dMOM strategies have an overall higher average turnover, compared to MOM; this difference is 

amounts to roughly 10%. However, the maximum transaction costs to render profits insignificant are 

surprisingly higher at both levels of 𝛼 (𝛼 = 0.05 and 𝛼 = 0.01), when compared to MOM. This 

indicates that the strategies are profitable in some cases in which MOM fails to generate profit. This is 

likely driven by the significantly higher returns of the dMOM strategies, which overcompensate for the 

higher overall amount of turnover. 
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Table 3: Pairwise tests’ p-values. 

 MOM BSC MC GJR ML 

MOM  0.000 0.000 0.000 0.004 

BSC 0.042  0.000 0.036 0.007 

MC 0.112 0.000  0.155 0.024 

GJR 0.853 0.000 0.024  0.146 

ML 0.130 0.001 0.007 0.171  
Note: In the table above one can find the p-values of paired t-tests (parametric; in the dark grey section), 
and of sign tests (non-parametric; in the white section). All tests are two-sided. Tests comparing the 
returns of the following strategies are included: MOM, BSC, MC, GJR, and ML. MOM is the standard 
momentum strategy, the other are dMOM strategies with volatilities calculated using respectively the 
mean variance (BSC), a Monte Carlo simulation (MC), a GJR-GARCH (GJR), and machine learning 
(ML). For details regarding variable construction, see Section 3.2. 

In Table 3, one can observe the results of the pairwise tests performed between the 5 strategies (MOM 

+ 4 dMOM). Interestingly, the results of the t-test and sign test, contrary to expectations, indicate that 

returns of BSC and MC are significantly different at 𝛼 = 0.01. While these results appear to be in 

contrast with the conclusions derived from Table 2, using statistical tests to compare two strategies is a 

more robust method of analysis. This is due to the fact that statistical tests can identify small differences 

which would be overlooked when comparing performance metrics just by magnitude. On the other hand, 

both the t-test and the sign test do not allow to reject the null hypothesis that the returns of GJR and ML 

are statistically different, even at a confidence level of 𝛼 = 0.1. This result is striking as the difference 

in performance appeared to be more marked by just looking at Table 2. Thus, this finding suggests that 

the machine learning model, at the base of ML, strongly bases its forecasts on the forecasts of GJR-

GARCH models which are present in its training dataset. Differently, the t-test results allow to reject 

the hypothesis that the mean returns are different only at 𝛼 = 0.05  when comparing BSC to GJR, and 

MC to ML. In both cases, the sign test allows rejection at 𝛼 = 0.01. In cases in which the two statistical 

tests lead to opposite conclusions the interpretation is not straight forward. The t-test, being parametrical, 

has higher power, which implies that it is more likely to identify an effect in the case that an effect exists, 

when compared to the sign test. However, the t-test requires strong assumptions on the distribution of 

data, more specifically, that data is normally distributed. Based on the results in Table 2, and by looking 

at Appendix C, one can observe that the distributions of returns of the dMOM strategies are not normal, 

thus the normality assumption is not satisfied. This condition is likely to lead to biased t-test results. 

Thus, one can conclude that in this case, the sign test is more reliable, and that BSC and GJR, and MC 

and ML, most likely have statistically different means at 𝛼 = 0.01. Similarly, in the case of the pairwise 

tests between MC and GJR, the t-test does not allow to reject the null at any significance level 𝛼 ≤ 0.1, 

however the sign test rejects the null at 𝛼 = 0.05. In this case the result of the sign test is deemed to be 

more appropriate. In conclusion, the returns of all strategies are statistically different, at a confidence 
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level of at least 𝛼 = 0.05, except for the returns of GJR and ML which are not statistically different 

from each other. 

Many authors have found that markets behave differently in discrete periods of time such as Perron 

(1989) who argues that major economic shocks have lasting effects on financial markets. Additionally, 

one must consider that cumulative returns are intrinsically strongly dependent on the performance at the 

start of the sample. Due to the variability of stock markets, and the nature of cumulative returns, a graph 

is included tracking the cumulative performance of the strategies in the past 20 years (Figure 4). Figure 

4 paints a completely different picture of the strategies’ performance. To start, it must be noted that the 

market outperforms all strategies in this sample period. Additionally, it should be noted that MOM 

exhibits poor overall performance, as it never fully recovers from the 2008 financial crisis. This is 

reflected in the performance of the dMOM strategies which fail to outperform the market, while 

considerably outperforming the standard MOM. Finally, one can notice that ML surprisingly has the 

best performance, followed GJR, BSC, and MC. These results are in contrast with those obtained when 

considering the full sample, in which BSC and MC outperformed the other strategies. 

 

 
Figure 4: Cumulative performance of the momentum strategies and the market 2004-2024. 

The figure displays the cumulated performance of a $1 investment in each of the momentum strategies 
(the risk-free rate is included as they are long-short strategies) and the market. The following strategies 
are included: MOM, BSC, MC, GJR, and ML. MOM is the standard momentum strategy, the other are 
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dMOM strategies with volatilities calculated using respectively the mean variance (BSC), a Monte Carlo 
simulation (MC), a GJR-GARCH (GJR), and machine learning (ML). The shaded areas of the graph 
represent major financial crises, from left to right: 2008 Financial Crisis, and COVID-19 Market Crash. 
For details regarding variable construction, see Section 3.2. The sample period ranges from 06/2004 to 
06/2024. 
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CHAPTER 5  Discussion 
This section will discuss the results presented in the “Results” section and compare them to previous 

literature when possible. Additionally, the results will be discussed in the optic of the 3-hypothesis stated 

at the start of the paper. 

To start, the most important finding at the base of this study is that volatility scaling, in the form of 

dynamic-scaled momentum, does in fact improve the performance of the standard MOM. These results 

are almost perfectly in line with those of Daniel and Moskowitz (2016), and Hanauer and Windmuller 

(2022). Both papers find that the dMOM strategies have significant and increased mean return 

(compared to MOM), significant and unexplained excess returns (𝛼!!" > 0), lower maximum 

drawdown, and positive skewness. However, an aspect that did not replicate, in this study, is the lower 

level of kurtosis. In this analysis, dMOM strategies have considerably higher levels of kurtosis compared 

to MOM. This is likely due to the differences in the samples and is not a major concern, as all other 

aspects replicate. The authors use data starting in 1930 and ending in 2017, while my study uses data 

starting in 1962 and ending in 2024. Additionally, my sample likely has a significantly lower volatility 

compared to that of Hanauer and Windmuller (2022), who report an annualized in-sample volatility of 

MOM of 𝜎()( = 19%, while in my case it is 𝜎()( = 11%. As previously stated, this difference is 

most likely driven by the conservative approach used in data cleaning processes in this study. 

Additionally, the authors use a sample of over 23,000 securities which leads their MOM portfolio to be 

larger in size and have lower maximum transaction costs at the same confidence levels due to the higher 

absolute turnover. 

When comparing the performance of the dMOM strategies (BSC, MC, GJR, and ML) to each other, the 

interpretation is not particularly clear. From the results of pairwise testing in Table 3, one can observe 

that all strategies have returns which significantly different from each other, except for GJR and ML. 

However, as discussed in Section 4, this is due to the fact that the training dataset of the machine learning 

model at the base of ML has all the forecasts used to estimate GJR, and the other models. This implies 

that the volatility forecast used in ML is based on the forecasts used in the other strategies, and especially 

on those of GJR (based on the ML portfolio performance). The fact that the returns of the strategies are 

significantly different implies that BSC yields the highest return on average, followed by MC, and GJR 

and ML, over the full sample. However, when the most recent (20 year) sample is considered, ML yields 

the best returns, followed by GJR, BSC, and MC. By observing these rankings (for returns in both the 

full and shortened sample), one can conclude that MC is a strictly dominated strategy by BSC, as goes 

for returns. In the full sample, BSC and MC are the best strategies based on return metrics. Nonetheless, 

when assessing the performance of these strategies from a risk management perspective, they have the 

highest maximum drawdowns in the sample, and the lowest values for skewness. This implies that BSC 

and MC are overall riskier than GJR and ML. On the other hand, it must be considered, that, based on 
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the Sharpe ratios (which are proven to be statistically different), BSC and MC offer better reward for 

the risk taken, which is likely the reason why they outperform in the full sample.  

The first hypothesis (H1), states that the Monte Carlo (MC) approach does not improve the portfolio’s 

performance when compared to the mean volatility model (BSC). The expectation is based on the fact 

that due to the law of large numbers, if a sufficiently large number of simulations is performed, the 

historical mean variance should be equal to the variance forecasted with the Monte Carlo approach. This 

is expected even if the Monte Carlo approach has the advantage of being a forward-looking approach. 

Thus, according to expectations BSC and MC should have had similar performances in all metrics, and 

the 2 strategies should have had the same mean return according to pairwise testing. As goes for 

performance, BSC outperforms MC for all return metrics in all samples, and MC outperforms BSC from 

a risk-management perspective, having a lower maximum drawdown (by 1.5%), and a higher positive 

value for skewness (2.620 compared to 2.264). However, these differences are marginal, and one could 

argue that this condition was satisfied, especially when considering the cumulative performance. On the 

other hand, the pairwise testing did not return the expected results, as the mean strategy returns are 

statistically different at a level of alpha 𝛼 = 0.01. Since the strategies are indeed different, H1 cannot 

be accepted or rejected. Overall, the strategies are statistically different, and there is no universally better 

option. More risk averse investors are likely to find MC more attractive than BSC due to its better risk 

management capabilities, while return-optimizing investors would prefer BSC. 

Hypothesis 2 (H2) states that the GJR-GARCH volatility estimation technique (GJR) improves the 

portfolio’s performance when compared to the mean volatility model (BSC). This hypothesis was based 

on the fact that the volatility forecasting approach of BSC (mean historical volatility), does not account 

for the autocorrelation present in time-series data. This implies that the GJR-GARCH volatility forecasts 

are supposed to be more accurate. However, it must be noted that the most accurate volatility forecasts 

do not necessarily lead to the best portfolio performance, as one cannot conclude that the dynamic 

volatility scaling process benefits from the added precision. In this case, when considering the full 

sample, GJR had worse mean returns, lower 𝛼!!", and lower Sharpe ratio than BSC. Yet, in the most 

recent (20 year) sample, GJR has the second-best cumulative performance, outpacing BSC. This 

difference in performance is most likely due to GJR’s better risk management. The past 20 years saw 

two of the largest financial crises in history: the 2008 financial crisis, and the COVID-19 crisis (2019), 

which cause a flat performance of BSC and generated speculation opportunities for GJR, which spikes 

during market reversals. Additionally, GJR completely outperforms all strategies (BSC in particular) as 

goes for risk management. This is particularly clear when considering that GJR has almost twice the 

value for (positive) skewness as BSC, and a maximum drawdown which is reduced by 5%. In this case, 

differently from H1, the improvement in risk-management cannot be ignored, however also the 

difference in mean returns over the whole sample is sizeable and BSC has a higher Sharpe ratio. For 
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these reasons, similarly to H1, also H2 cannot be accepted or rejected as more risk seeking investors 

would find BSC more appealing regardless of the significantly better performance of GJR in risk 

management and during economically unstable periods. This conclusion is also in contrast with the 

expectations of Hanauer and Windmuller (2022), who state that by controlling for the positive 

autocorrelation, one can generate scaling weights that increase the Sharpe ratio of enhanced momentum 

strategies. 

Finally, the third and last hypothesis (H3), states that the machine learning algorithm yields the greatest 

improvement to the portfolio, compared to the other methods. The expectation is based on the fact that 

the machine learning model has all forecasts by the other models in its training dataset, plus moving 

averages and other data. This implies that the model makes forecasts based on forecasts of other models 

and additional data and is combining the intuitions of the other models. Due to this, the volatility 

forecasts used to calculate ML were expected to be the most precise. When considering ML’s 

performance, it is trailing all other enhanced portfolios under every return metric and has the worst 

cumulative performance in the full sample out of the dMOM strategies. However, when considering the 

risk-related metrics, ML, has the second-best performance very close to that of GJR. The overall 

similarity to GJR is confirmed by both pairwise tests which do not allow to reject the hypothesis that 

the mean returns of the two models are identical. This implies that the predictions of ML are strongly 

based on the volatility forecasts made with the GJR-GARCH model.  

On the other hand, ML is the best performer in the most recent (20 year) sample. This alone is not 

enough to state that ML had the best performance out of all the dMOM strategies, considering that it 

lags GJR in every aspect in the full sample. As mentioned during the discussion of H2, it must be kept 

in mind that the most accurate forecast is not necessarily the optimal one for the dynamically scaled 

momentum strategy. Thus, ML’s underperformance is not necessarily indicative of imprecise forecasts. 

Additionally, another source of bias is using squared returns (variance proxy), as a target value for the 

model. This implies that the machine learning model will use its data to make a forecast, as close as 

possible to the realized squared returns, which is only a proxy for the actual realized variance. Thus, the 

model is trained to target an approximation of the real value, which inevitably introduces a strong bias 

in the estimation process. All considered, it would be incorrect to state that ML is the best model as it is 

outperformed by BSC from a returns and Sharpe ratio perspective, and by GJR from a risk management 

perspective. This implies that no rational investor would choose ML over BSC or GJR. Thus, the third 

hypothesis (H3) is rejected. 

In conclusion, BSC is the best performing model for risk-seeking investors, which aim to maximize 

their returns and/or their portfolio’s Sharpe ratio. On the other hand, GJR is the preferred strategy for 

risk-averse investors, due to its superior risk management. Finally, one can conclude using more 
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sophisticated models to forecast volatility helps significantly reduce portfolio risk, which is the primary 

objective of volatility scaling. 
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CHAPTER 6  Conclusion 
This study explores the impact of various volatility forecasting methods on the performance of 

dynamically scaled momentum strategies within the U.S. equities market. Historically, momentum 

strategies have consistently outperformed the market, and yielded substantial returns, however they are 

particularly sensitive to market reversals, during which they experience significant drawdowns. Such 

drawdowns make the momentum strategy especially unattractive to risk-averse investors, or investors 

with tight budget constraints (due to the risk of margin calls). To address this issue, multiple approaches 

have been put forward by researchers, a particularly interesting one being volatility scaling. In this paper, 

a specific type of volatility scaling is studied: dynamically scaled momentum. Volatility scaling, in 

general, aims to improve a momentum portfolio’s performance by accounting for the leverage effect. 

More specifically, the dynamically scaled momentum strategy is a combination of volatility scaling and 

a dynamic Markowitz model, which allows the weights of the portfolio to vary (be positive or negative) 

based on market conditions and return forecasts. In this study, the performance of different volatility 

forecasting techniques is analysed alongside their effects on the performance of the strategy. Using the 

historical mean variance (BSC) for volatility scaling, has been empirically proven to work, however this 

study tested whether more advanced techniques, such as Monte Carlo simulations, GJR-GARCH 

models, and machine learning algorithms could further improve the strategy’s performance. This paper 

provides a comparison of these methods. Thus, the study’s main purpose was to understand how risk 

can be better managed when investing using a momentum strategy. Consequently, the main research 

question of this paper was: “How do different volatility forecasting methods impact the performance of 

dynamically scaled momentum strategies in the U.S. equities market?” 

To compare the portfolio performances, in order to be able to address the research question, the analysis 

starts with the construction of a long-short momentum portfolio. To apply volatility scaling, the 

appropriate scaling weights were estimated using different forecasting methods, to be then applied to 

MOM. Firstly, the mean historical return (BSC) was used, a simple but effective approach used in 

previous research. This strategy was used as the benchmark, to test whether more advanced volatility 

forecasting techniques could bring an improvement to the strategy. Then, Monte Carlo simulations were 

used to generate forward-looking volatility data for the forecasts of at the base of MC. Additionally, the 

GJR-GARCH model was used to make volatility forecasts for GJR, as the method accounts for the 

positive autocorrelation of data, and for the inherent asymmetries of stock market volatility. Finally, 

machine learning algorithms were used make volatility forecasts to estimate weights for ML, such 

models have the advantage of not requiring initial assumptions. The performance of these portfolios was 

then evaluated and compared by considering both return-based and risk-based metrics. This double 

approach allows to have a better overview of the strategies’ performances. Moreover, pairwise tests 

were performed to verify whether the portfolios had statistically different mean returns.  
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Finally, the results indicate that the dynamic momentum strategies: BSC, MC, GJR, and ML consistently 

outperform the traditional MOM strategy across various metrics in the sample. The BSC method yielded 

the highest mean returns and Sharpe ratio, making it particularly attractive for risk averse or risk-

weighted-return maximizing investors. While the GJR-GARCH model had the best performance with 

regards to risk management, due to it having the lowest maximum drawdowns and highest positive 

skewness. These characteristics make the strategy particularly attractive to risk-averse investors. The 

analysis of the past 20 years reveals a shift in the performance dynamics of these strategies. Purely based 

on cumulative performance, ML outperforms its peers when using the past 20 years (June 2004, to June 

2024) as a sample. This was due to the model’s high resilience during financial crises, and its ability to 

rebound during market reversals which lead to spikes in its performance. This proves its value and 

efficiency during periods of market uncertainty and periods prone to crises. However, no strategy was 

found to consistently outperform the other. Overall, this research highlights the importance of adapting 

investment strategies to different market conditions and risk appetites and provides further empirical 

evidence of the dMOM strategies’ outperformance compared to the standard MOM, and the market.  

Concluding, the more advanced and complete volatility estimation methods significantly improve the 

performance of momentum strategies from a risk management perspective, by reducing overall risk 

exposure. However, simpler volatility forecasting techniques, such as using the historical mean variance, 

appear to be almost as effective at hedging for risk, while outperforming from a returns and risk-

weighted returns perspective. Thus, no universally better volatility forecasting method was identified. 

As financial markets continue to evolve, the application of more advanced models and techniques will 

be vital in developing new strategies to deal with the modern problems of financial markets.  

The main limitations of this study include the underlying subjectivity of the performance evaluation 

process, and the limits to practical applicability of these methods. The former limitation of this study is 

clear, when considering that 2 out of 3 hypotheses could neither be rejected nor accepted. This would 

not be a problem in cases like Hypothesis 3 (H3) in which the performance of one portfolio is strictly 

dominated. Unfortunately, in most cases the interpretation is ambiguous. This is due to the risk-

preferences of investors and no universally accepted framework exists to correct for this. A potential 

solution would be to choose one type of investor (risk-seeking or risk-averse) and make the portfolio 

evaluation based on their preferences. However, this approach does not consider the portfolio’s 

performance as a whole and might lead to sub-optimal conclusions. When considering the limits to the 

practical applicability of these methods, one must consider the complexity of calculations, the large 

portfolio size (which has a maximum size of 1,380 stocks), the fact that an investor must change the 

portfolio almost fully (average turnover >60%) every month, transaction costs, and the constraints 

related to short selling. These factors (except the limits to short selling) could be mitigated, by reducing 

the sample of stocks, however this exposes the investor to higher variability depending on the sample 
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size and constituents. Unfortunately, the limitations related to short selling cannot be ignored, as this 

strategy could not be modified to be long-only. Regardless, dMOM strategies are at least as 

implementable as MOM, and tend to be profitable even with higher levels of transaction costs. 

Further research should consider more efficient volatility forecasting methods such as more 

sophisticated machine learning techniques, to better identify patterns in the data, and improve the quality 

of predictions. Additionally, setting an optimized value of portfolio performance as a target for the 

model, instead of the realized volatility, might help output volatility forecasts that better suit the model. 

Moreover, better volatility proxies can be used, in order to further improve the performance of dMOM 

strategies and enhance their risk management capabilities. On the other hand, improved versions of 

dMOM could arise, which consider indicators such as market sentiment, or tackle liquidity issues 

inherent to some securities. Such models could further improve the performance of MOM due to their 

better understanding of real market conditions. These advancements would help further commercialize 

momentum strategies and make them an investment vessel that caters to any type of investor. 
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APPENDIX A:  Variance Ratio Test 
 
Table A1: Variance ratio test. 

 MOM BSC MC GJR ML 

MOM      

BSC 0.985     

MC 0.985 1.000    

GJR 0.985 1.000 1.000   

ML 0.985 1.000 1.000 1.000  
Note: In the table above one can find the p-values of the variance ratio tests used to compare the 
distributions of the samples. All tests are two-sided. Tests comparing the returns of the following 
strategies are included: MOM, BSC, MC, GJR, and ML. MOM is the standard momentum strategy, the 
other are dMOM strategies with volatilities calculated using respectively the mean variance (BSC), a 
Monte Carlo simulation (MC), a GJR-GARCH (GJR), and machine learning (ML). For details regarding 
variable construction, see Section 3.2 
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APPENDIX B:  GRS Test 
 
Table B1: Gibbons, Ross, and Shanken (GRS) Test Results and Parameters. 

  Test Statistic T N K P-Value 

GRS Test  20.765 732 5 3 1.110e-16 
Note: In the table above one can find the test results and parameters of the GRS test, used to verify 
whether the portfolio’s Sharpe ratios are significantly different. The test statistic is obtained with 
Formula 8, “T” is the number of observations per portfolio, “N” is the number of portfolios, “K” is the 
number of factors (of FF3), and “P-Value” is the relevant p-value based on Formula 9. The test compares 
the following strategies: MOM, BSC, MC, GJR, and ML. MOM is the standard momentum strategy, 
the other are dMOM strategies with volatilities calculated using respectively the mean variance (BSC), 
a Monte Carlo simulation (MC), a GJR-GARCH (GJR), and machine learning (ML). For details 
regarding variable construction, see Section 3.2 
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APPENDIX C: Distributions of Portfolio Returns 
 

 

Figure C1: Distribution of BSC returns. 

This figure displays a histogram, portraying the frequency of each value of returns of BSC over the 
whole sample, with a distribution curve. The values of “Values” are in USD. For details regarding 
variable construction, see Section 3.2. 
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Figure C2: Distribution of MC returns. 

This figure displays a histogram, portraying the frequency of each value of returns of MC over the whole 
sample, with a distribution curve. The values of “Values” are in USD. For details regarding variable 
construction, see Section 3.2. 
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Figure C3: Distribution of GJR returns. 

This figure displays a histogram, portraying the frequency of each value of returns of GJR over the 
whole sample, with a distribution curve. The values of “Values” are in USD. For details regarding 
variable construction, see Section 3.2. 
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Figure C4: Distribution of ML returns. 

This figure displays a histogram, portraying the frequency of each value of returns of ML over the whole 
sample, with a distribution curve. The values of “Values” are in USD. For details regarding variable 
construction, see Section 3.2. 
 
 

 

 


