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Abstract

In this paper, the locally risk-neutral valuation relationship (LRNVR) of Duan (1995)

is used to model implied volatility, as in Hao and Zhang (2013), utilising the square-root

stochastic autoregressive volatility models of Meddahi and Renault (2004). This GARCH

implied volatility is then extended with the modified LRNVR of Zhang and Zhang (2020)

to incorporate the volatility risk premium. For the GARCH models, a GARCH(1,1) and an

EGARCH(1,1) are used.

The models are applied to the volatility indices of the S&P 500, FTSE 100, DAX 30, and

Nikkei 225. There appears to be a negative relationship between the persistence of shocks

and the equity risk premium. The highest equity risk premiums are found for the S&P 500,

followed by the FTSE 100 and DAX 30, with the lowest being the Nikkei 225. Contrary

to this, the largest volatility risk premium is found for the Nikkei 225, with the S&P 500

following closely, while the DAX 30 and FTSE 100 have smaller volatility risk premiums.

Furthermore, the models are applied to different maturities of the CBOE VIX. The results

suggest that as the maturity increases, the persistence increases and the equity risk premium

decreases. Additionally, a lengthening in maturity results in an increase in the volatility risk

premium. This indicates that for longer maturities, investors demand a smaller premium

for bearing risk while being willing to pay a larger premium to hedge against an increase in

risks.

∗The views stated in this thesis are those of the author and not necessarily those of the supervisor, second
assessor, Erasmus School of Economics or Erasmus University Rotterdam.

1



1 Introduction

In the financial world, bearing risk requires compensation. Part of this risk is explained by the

volatility of returns, known as the equity risk premium. However, this volatility is not constant

but varies over time. Consequently, investors also demand a volatility risk premium to com-

pensate for the risk associated with this volatility. Carr and Wu (2008) analysed this volatility

risk premium and found that the volatility risk premiums have a negative sign, indicating that

investors perceive increasing market volatility as undesirable and are willing to pay a premium

to hedge against it. To further analyse how this volatility risk premium is embedded into market

prices, one can pursue two distinct directions. First, researchers can analyse the implied volatil-

ity, and second, they can study the difference between the variance swap rate and the realised

variance1.

This paper will highlight the first method, analysing implied volatility. By understanding

and estimating implied volatility, one can analyse the equity and volatility risk premiums that

are embedded in it. In this paper, the equity and volatility risk premiums will be analysed by

applying a GARCH implied option pricing model to several indices and various implied volatility

maturities. By understanding the properties of the equity risk premium and volatility risk

premium, the ability for effective risk management and strategic decision-making in financial

markets is enhanced. Furthermore, this analysis helps in understanding differences between

markets by examining various indices.

The GARCH option pricing method was first introduced by Duan (1995), who applied the

locally risk-neutral valuation relationship (LRNVR) to obtain a risk-neutral measure. Hao and

Zhang (2013) further developed the model to include the square-root stochastic autoregressive

volatility (SR-SARV) model introduced by Meddahi and Renault (2004), enabling it to effectively

model implied volatility. Although the model was able to capture the equity risk premium, Hao

and Zhang (2013) showed that this model was insufficient to capture the volatility risk premium.

Therefore, Zhang and Zhang (2020) introduced a method that applied a modified LRNVR, which

they demonstrated to be sufficient in capturing the volatility risk premium and the statistical

properties of market volatility.

This paper utilises the models proposed by Hao and Zhang (2013) and Zhang and Zhang

(2020) to analyse different stock indices and maturities. The indices analysed are the S&P

500, Nikkei 225, FTSE 100, and DAX 30, along with their corresponding volatility indices.

Additionally, to analyse the impact of the maturity of the implied volatility, this paper examines

1The difference between the variance swap rate and the realised variance is not discussed in this paper. For
more information on this topic, refer to Demeterfi et al. (1999) and Carr and Wu (2008).
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1-day, 9-day, 1-month, 3-month, 6-month, and 1-year maturities of the CBOE VIX.

The results indicate a potential relationship between the persistence of shocks2 and the equity

risk premium: the higher the persistence, the lower the premium. Furthermore, as the maturity

lengthens, the persistence increases while the equity risk premium decreases. The indices show

consistent results, with higher persistence being linked to a lower equity risk premium. However,

for the maturities, this reduction of the equity risk premium is paired with an increase in the

volatility risk premium, indicating that investors are less sensitive to bear risk but more sensitive

to a rise in risk.

The models employed in this paper utilise option pricing, the fundamentals of which were

laid by Black and Scholes (1973) and Merton (1973). These models operate on no-arbitrage

principles, ensuring that a fully hedged position yields a return equivalent to the risk-free rate.

Extending this framework, researchers have proposed several models incorporating stochastic

volatility, such as Wiggins (1987), Johnson and Shanno (1987), Hull and White (1987), and

Heston (2015). The introduction of GARCH models led to their incorporation into option

pricing, resulting in models such as Christoffersen et al. (2006).

Furthermore, empirical studies have shown the presence of volatility jumps, which in turn

were incorporated into new models. These volatility jump models progressed from constant-

volatility models, featuring constant-intensity jumps (Merton (1976) and Carr et al. (2002)),

to models with stochastic-intensity jumps (Bates (2000) and Bates (2012)). Moreover, Duffie

et al. (2000) presented a constant-intensity co-jump model where the spot volatility jumps

synchronously and correlates with price jumps. Recent models by Andersen et al. (2015) and

Carr and Wu (2020) feature co-jump models with self-exciting jump intensity.

These option pricing models all use volatility as one of the key variables. Therefore, if the

price of an option is known, one can use reverse engineering to determine the volatility factor

embedded in the option. Since the market prices the option, this resulting value is then referred

to as market-implied volatility.

Duan (1995) states that the GARCH option pricing model has three unique features. First,

it includes the risk premium embedded in the underlying asset, unlike standard preference-

free option pricing models. Second, the GARCH option pricing model is non-Markovian, in

contrast to traditional option pricing, which assumes the underlying asset follows a Markovian

diffusion process. Third, the GARCH model can potentially account for several systematic biases

commonly associated with the Black-Scholes model. These biases include the overpricing of out-

of-the-money options, the underpricing of options on low-volatility securities, the underpricing

2A higher persistence of shocks is also in relation with a smaller impact of shocks. This coincides with a lower
“News Impact Curve” (Engle, 1993)
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of short-maturity options, and the U-shaped implied volatility curve relative to the exercise price

(Black (1975), Gultekin et al. (1982), and Whaley (1982)).

An important assumption for option pricing is risk-neutralisation (Black and Scholes (1973),

Rubinstein (1976)); however, due to the complexity of GARCH option modelling, a generalised

version of risk-neutralisation is required, found Duan (1995). Therefore, he introduced the

locally risk-neutral valuation relationship (LRNVR), which is different in terms of variances, as

the LRNVR states that the one-step-ahead conditional variance is invariant with respect to a

change to the risk-neutralised measure. This assumption is made since GARCH models are used

to model the one-period-ahead conditional variance.

Hao and Zhang (2013) used the GARCH option pricing model on the S&P 500 and compared

it against the CBOE VIX. First, they applied MLE with the return data to obtain parameter

estimates. However, they found that the implied VIX was consistently lower than the CBOE

VIX. The undervaluation had a mean error in the range of 3.47 to 3.78, which is about the same

as the volatility risk premium, around 3.3 (Hao and Zhang, 2013).

Therefore, they also applied MLE with the CBOE VIX itself, in line with Fassas and Siri-

opoulos (2021), who found that implied volatility offers insights into future volatility that exceed

the information available from past volatility. This led to a better fit; however, the parameters

were distorted to match the level of the CBOE VIX, resulting in an overestimation of the equity

risk premium. Additionally, they combined these two approaches, obtaining a joint maximum

likelihood. These joint maximum likelihood parameters were less distorted; nonetheless, they

still failed to reflect the statistical properties of the CBOE VIX. This indicates that while com-

bining information from both returns and implied volatility can improve model fit, challenges

remain in accurately capturing the equity risk premium and the underlying statistical properties.

The first to point out that GARCH option pricing under the LRNVR has poor pricing and

hedging performance were Chernov and Ghysels (2000) and Christoffersen and Jacobs (2004).

They highlighted the limitations of the LRNVR in accurately pricing options. Barone-Adesi

et al. (2008) identified that the restrictions imposed by the LRNVR caused these issues. They

took a non-parametric approach, using filtered historical innovations to address the problem.

Additionally, Christoffersen et al. (2013) developed a new pricing kernel that allows for a volatil-

ity premium, providing a more flexible and accurate framework for option pricing under GARCH

models.

In line with this, Zhang and Zhang (2020) proposed a modified LRNVR (mLRNVR) to

address the inadequacies of the original LRNVR, which also allowed for a volatility risk premium.

They proposed a risk-neutral measure that has different conditional volatilities than the real-
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world measure. Specifically, this modified measure is adjusted to be more persistent, enhancing

its ability to capture the volatility risk premium. They found that under the mLRNVR, GARCH

implied VIX fits the CBOE VIX and its statistical properties.

GARCH implied option pricing facilitates the computation of conditional volatility. How-

ever, to compare this against a volatility index, extrapolation is required, which is achieved

by the introduction of the square-root stochastic autoregressive volatility (SR-SARV) model.

The parametric SR-SARV model was first introduced by Andersen (1994) and subsequently en-

hanced to be semi-parametric by Meddahi and Renault (2004). If the underlying index follows

an SR-SARV process under the LRNVR, an analytic formula for the GARCH implied VIX can

be derived (Hao and Zhang, 2013).

The GARCH option pricing model can utilise several types of GARCH models. GARCH

models, pioneered by Engle (1982) and Bollerslev (1986), excel in their ability to capture the

properties of asset returns, such as excess kurtosis and skewness. To further enhance the GARCH

model, several different versions have been proposed, such as exponential GARCH by Nelson

(1991), GJR-GARCH by Glosten et al. (1993), non-linear asymmetric GARCH by Engle (1993),

and component GARCH by Ding and Granger (1996).

This paper will cover the GARCH(1, 1) and EGARCH(1, 1)3 models, as well as the GARCH(1, 1)

model under the modified LRNVR, denoted by mGARCH. The GARCH model is used as a

benchmark, while the EGARCH and mGARCH models are used as extensions. The EGARCH

model is chosen because Hao and Zhang (2013) found it to be the best fit among all models.

In the following section, the data is discussed. The third section introduces the methodology

of the models. The results are presented in the fourth section, and the final section provides a

conclusion.

2 Data

In this paper, several datasets are applied4. There are four stock indices with their corresponding

volatility indices: The NASDAQ (CBOE VIX), the Nikkei 225 (Nikkei 225 VI), the FTSE 100

(VFTSE) and the DAX (VDAX). The country’s 3-month government bond rate is used as the

risk-free rate for each stock index. The different indices are analysed from May 6, 2012, to May

26, 20195. Furthermore, the CBOE VIX is also analysed at a forecast horizon of 1-day, 9-day,

1-month, 3-month, 6-month, and 1-year forecasts. The maturities are analysed from January 4,

3The implied volatility under the EGARCH model is computed using the square-root stochastic exponential
autoregressive volatility (SR-SEARV) model, a slightly different version of the SR-SARV, which is consistent with
the exponential form of the EGARCH model.

4The data was found online through public sources, such as the website of the Chicago Board Options Exchange.
5There are 1677 observations in the dataset of the indices
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2011, until April 22, 2022, except for the 1-day maturity, which starts on May 13, 20226.

3 Methodology

3.1 GARCH option pricing

Consider a discrete-time economy where Xt denotes the price of the asset at time t. Duan

(1995) proposed a linear GARCH process for modelling the asset and the options written on it.

Furthermore, he proposed that the one-period-ahead rate of return of this asset is log-normally

distributed, that is:

ln(
Xt

Xt−1
) = r + λ1

√
ht +−1

2
ht + εt (1)

where εt follows a zero mean distribution with conditional volatility ht, given information set

Jt−1. In this paper, the conditional volatility is modelled using either a GARCH(1, 1) or an

EGARCH(1, 1) model, for which the formulas under the real-world measure P are presented in

Equation (2) and Equation (3), respectively. Moreover, the risk-free rate is denoted by r, and

λ1 is considered the equity risk premium.

ht = α0 + α1ε
2
t−1 + β1ht−1 (2)

ln(ht) = α0 + α1 ln(ht−1) + g(zt−1), zt−1 = εt−1/
√
ht−1 (3)

g(zt−1) = α1zt−1 + κ(| zt−1 | −
√
2/π) (4)

3.1.1 Locally Risk Neutral Valuation Relation (LRNVR)

Following Hao and Zhang (2013), a locally risk-neutral measure Q is utilised instead of the real-

world probabilities P . Under Q, the expected return must equal the risk-free rate. Furthermore,

the one-day-ahead variance must be the same under both measures to ensure the feasibility of

the estimation, given that only under P is the conditional variance observable. Combining this

with the fact that the conditional mean can be replaced with the risk-free rate results in a

well-specified model that does not locally depend on preferences. However, the LRNVR cannot

fully eliminate preferences; nonetheless, they are encapsulated in the risk-premium parameter

λ1. Applying the LRNVR yields Equation (5) for the one-period-ahead rate of return. The

conditional variances for the GARCH(1, 1) and EGARCH(1, 1) models under the LRNVR are

6There are 3345 observations in the dataset for the maturities, except for the 1-day maturity, for which there
are 487 observations.
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described in Equation (6) and Equation (7) respectively.

ln(
Xt

Xt−1
) = r − 1

2
ht + ξt (5)

ht = α0 + α1

(
ξt−1 − λ1

√
ht−1

)2
+ β1ht−1 (6)

ln(ht) = α0 + β1 ln(ht−1) + g(ut−1 − λ1)
7, ut = ξt/

√
ht (7)

Definition 3.1 A pricing measure Q is said to satisfy to locally risk-neutral valuation rela-

tionship (LRNVR) if measure Q is mutually absolutely continuous with respect to measure P ,

Xt/Xt−1 | Jt−1 distributes lognormally (under Q),

EQ[Xt/Xt−1 | Jt−1] = er

and

VarQ(ln(Xt/Xt−1 | Jt−1) = VarP (ln(Xt/Xt−1 | Jt−1)

almost surely.

3.1.2 modified LRNVR

Hao and Zhang (2013) found the LRNVR inadequate for capturing the statistical properties

of the CBOE VIX, attributing this to the omission of the volatility risk premium. Therefore,

Zhang and Zhang (2020) proposed a modified LRNVR, in which an additional parameter λ2 is

incorporated to capture the volatility risk premium and increase the persistence of the condi-

tional volatility. The returns are computed under the mLRNVR as in Equation (5), and below,

the GARCH model under the mLRNVR is described.

ht = α0 + α1

(
ξt−1 − λ1

√
ht−1

)2
+ (β1 −

√
2α1λ2)ht−1 (8)

3.2 Implied Volatility

The market volatility denotes the expected volatility of the underlying index over several days,

commonly 21 trading days. In this paper, the implied volatility is computed using GARCH

option pricing; however, the GARCH models operate on a daily frequency. To overcome this

discrepancy, a daily proxy is employed. This daily proxy has the following relation: Vixt =
1

252

(VIXt

100

)2
, where Vix is the daily proxy of the implied volatility, denoted by VIX.

7For function g(·), see Equation (4).
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In this paper, the implied volatility is approached by taking the expected arithmetic average

of the variance over the next n subperiods of the next τ0 trading days as described in Equa-

tion (9). As the GARCH models operate on a daily frequency, n = τ0 and t+
τ0k

n
reduces to

t+ k.

(VIXt

100

)2
=

1

n

n∑
k=1

EQ
t

[
h̃
t+
τ0k

n

]
(9)

Vixt =
1

n

n∑
k=1

EQ
t

[
h̃t+k

]
(10)

In these formulas, h̃s is the instantaneous annualised variance of the rate of return of the un-

derlying index. If the underlying follows an SR-SARV(p) model, as developed by Meddahi and

Renault (2004), under the LRNVR, then an analytic formula for the Vix can be derived. In line

with the GARCH(p, p) models, an SR-SARV(p) model is proposed, where p denotes the number

of lags in the VAR(p) sub-model.

Definition 3.2 Discrete time SR-SARV(p) model

A stationary square-integrable process {εt, t ∈ Z} is called a SR-SARV(p) process with respect

to a filtration Jt, t ∈ Z, if:

(i) εt is a martingale difference sequence w.r.t. Jt−1, that is E[εt|Jt−1] = 0,

(ii) the conditional variance process ft of εt+1 given Jt is a marginalization of a stationary

Jt-adapted VAR(1) of dimension p:

ft = Var[εt+1|Jt] = e′Ft, (11)

Ft = Ω+ ΓFt−1 + Vt, with E[Vt|Jt−1] = 0, (12)

where e ∈ Rp, Ω ∈ Rp and the eigenvalues of Γ have modulus less than one.

Proposition 3.1 If the underlying follows a SR-SARV(p) process under the LRNVR Q proposed

by Duan (1995), then the implied VIX at time t is affine in Ft, i.e.,

Vixt = ζ +ΨFt, Ψ ∈ Rp (13)

In particular, if p = 1 (then e = 1), the implied VIX at time t is a linear function of the

conditional variance of the next period,

Vixt = ζ + ψft, ψ ∈ R, (14)
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where

ζ =
Ω

1− Γ(1− ψ)
,

ψ =
1− Γn

n(1− Γ)

Proof: See Appendix (A).

Proposition 3.2 Let ξt, t ∈ Z be a m.d.s. with the conditional variance ht ≡ Var[ξt | ξτ , τ ≤

t−1] under the LRNVR. If ht is given by Equation (6) or Equation (8), then ξt is a SR-SARV(1)

process.

Proof: See Appendix (A).

Applying propositions 3.1 and 3.2, the V ixt of the GARCH model can be described as:

V ixt = A+Bht+1

A =
α0

1− η
(1−B)

B =
1− ηn

n(1− η)

η = α1(1 + λ2) + β1

η∗8 = α1(1 + λ2) + β1 −
√
2α1λ2

The EGARCH model is not incorporated into the class of SR-SARV models, therefore, the

square-root stochastic exponential autoregressive volatility model is introduced below.

Definition 3.3 Discrete time SR-SEARV(1) model

A stationary square-integrable process {ϵt, t ∈ Z} is called a SR-SEARV(1) process with respect

to a filtration Jt, t ∈ Z, if:

(i) εt is a martingale difference sequence w.r.t. It−1, that is E[εt|Jt−1] = 0,

(ii) the logarithm of the conditional variance process ft of ϵt+1 given Jt is a stationary Jt-

adapted AR(1):

ln ft = ω + γ ln ft−1 + vt, with vt i.i.d. (15)

where |γ| < 1.

8η has a slightly different form when using the mLRNVR instead of the LRNVR, denoted here by an asterisk.
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Proposition 3.3 If the underlying follows an SR-SEARV(1) process under the LRNVR pro-

posed by Duan (1995), then the implied VIX is a polynomial function of the conditional variance

of the next period, ht+1.

Proposition 3.4 If {ξt, t ∈ Z} is a m.d.s. under the LRNVR with the conditional variance

ht ≡ Var[ξt | ξτ , τ ≤ t − 1] given by Equation (7) and ut = ξt/
√
ht i.i.d., then ξt is a SR-

SEARV(1) process.

Applying propositions 3.3 and 3.4, the implied V ix for the EGARCH(1, 1) model is as follows:

V ixt =
1

n

[
ht+1 +

n−1∑
k=1

(
k−1∏
i=0

li

)
h
βk
1

t+1

]

li = eβ
i
1(α0−κ

√
2/π)

{
e−βi

1(α1−κ)λ+
[βi1(α1−κ)]2

2 N [λ− βi1(α1 − κ)]

+ e−βi
1(α1+κ)λ+

[βi1(α1+κ)]2

2 N [βi1(α1 + κ)− λ]

}

3.3 Estimation

The estimation of the parameters utilises MLE using one of three methods. The first is MLE

using the returns, the second is using the volatility index and the third is using both the returns

and the volatility index.

For the returns, the log-likelihood is computed as follows:

ln(LR) = −T
2
ln(2π)− 1

2

T∑
t=1

(
ln(ht) +

[
ln

(
Xt

Xt−1

)
− r − λ

√
ht +

1

2
ht

]2
/ht

)
(16)

Here, ht is computed using the corresponding GARCH model. As for MLE with the volatility

index, a difference has to be made between the implied volatility and the market volatility, as

the daily return innovation determines the current price and the conditional variance of the next

period. Therefore, an error term µ is added to allow for a difference. This error term follows an

i.i.d normal distribution with variance s2, estimated by: ŝ2 = Var(V IXMKT − V IXImp).

VIXIND = VIXIMP + µ, µ ∼ i.i.d. N(0, s2) (17)

ln(LV ) = −T
2
ln(2πŝ2)− 1

2ŝ2

T∑
t=1

(
V IXMkt

t − V IXImp
t

)2
(18)
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When optimising using both returns and the volatility index, the total log-likelihood is:

ln(LT ) = ln(LR) + ln(LV )

When maximising the log-likelihood, the constraints under measure Q are applied, as they are

stricter than the constraints under measure P . The constraints under measure Q are denoted

below and are necessary to ensure stationarity.

GARCH under LRNVR = α1(1 + λ21) + β1 < 1

GARCH under mLRNVR = α1(1 + λ21) + β1 −
√
2α1λ2 < 1

EGARCH under LRNVR = |β1| < 1

4 Results

In this section, first the GARCH and EGARCH parameters and performance under the LRNVR

are compared against the values found in Hao and Zhang (2013). Then the indices and maturities

are evaluated and compared using three distinct models: GARCH(1, 1) and EGARCH(1, 1)

under the LRNVR, and GARCH(1, 1) under the mLRNVR, denoted as the mGARCH model.

These models are all maximised using both the returns and the corresponding volatility index.

Additionally, in Appendix B the mGARCH and EGARCH models are plotted against their

volatility indices for both the indices and the maturities.

4.1 Reproduction

To evaluate the performance of the models, they are first compared against the results from Hao

and Zhang (2013)9. Due to potential differences in optimisation procedures and slight variations

in data, the results might not be identical. Nonetheless, no significant discrepancies are found, as

the largest difference is 60% of the standard deviation for α0 in the EGARCH model optimised

by both the returns and the VIX. However, the majority of differences fall within the range of

10% to 20% of the standard deviation. In Table 1, the parameter estimates under the LRNVR

are presented, which are applied to the same data as in Hao and Zhang (2013). Moreover, the

performance measures exhibit only slight differences. Only the kurtosis is consistently lower

than reported by Hao and Zhang (2013).

9Hao and Zhang (2013) utilised several GARCH models; however, only the GARCH(1, 1) and EGARCH(1, 1)
models are applied in this paper.
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For the GARCH model, the biggest difference when maximising with the VIX instead of

the returns is in the parameter λ1, which changes from 0.0518 to 0.774, indicating a significant

increase in the equity risk premium. Moreover, when estimating solely with the return, the

mean error was in the range of 3.5 to 3.7, almost consistent with the volatility premium in

standard deviation unit of around 3.3 (Hao and Zhang, 2013). In the EGARCH model with

VIX estimation, a negative value of −0.0678 is observed for λ1, while slightly positive values are

noted for the returns and joint optimisation.

The performance of the GARCH and EGARCH models improves when estimating with

the VIX, with the mean error decreasing from around 3.5 to 0.1. However, the parameters

become distorted when estimating solely with the volatility index, as the equity risk premium

is overvalued. This indicates that estimation using both the returns and the volatility index is

superior. Additionally, the EGARCH model has the best model fit, as the errors are lower and

the statistical properties are closer to those of the CBOE VIX.

α0 α1 β1 κ λ1 Ret VIX Both

GARCH
Ret Hao 7.245E-07 0.0632 0.9312 ∼ 0.0523 16097 20552 36649

Mald 7.123E-07 0.0638 0.9309 ∼ 0.0529 16059 20566 36625
std (1.579E-07) (0.0065) (0.0068) ∼ (0.0139)

VIX Hao 1.711E-06 0.0366 0.9387 ∼ 0.7914 14472 23873 38345
Mald 1.715E-06 0.0367 0.9390 ∼ 0.7859 14455 23832 38287
std (4.121E-08) (0.0009) (0.0014) ∼ (0.0300)

Both Hao 1.675E-06 0.0473 0.9498 ∼ 0.2068 15872 23634 39507
Mald 1.687E-06 0.0471 0.9499 ∼ 0.2067 15832 23592 39423
std (4.652E-08) (0.0011) (0.0012) ∼ (0.0122)

EGARCH
Ret Hao -0.1329 -0.0921 0.9854 0.1105 0.0167 16169 20492 36661

Mald -0.1354 -0.0933 0.9851 0.1119 0.0165 16132 20452 36584
std (0.0166) (0.0078) (0.0018) (0.0095) (0.0142)

VIX Hao -0.0761 -0.0641 0.9895 0.0906 -0.0690 16002 24478 40480
Mald -0.0770 -0.0639 0.9894 0.0901 -0.0678 15964 24432 40395
std (0.0021) (0.0016) (0.0002) (0.0019) (0.0176)

Both Hao -0.0838 -0.0614 0.9891 0.0955 0.0096 16038 24468 40506
Mald -0.0849 -0.0612 0.9890 0.0952 0.0113 15997 24424 40420
std (0.0018) (0.0016) (0.0002) (0.0101) (0.0021)

Table 1: A comparison of the MLE parameters of Hao and Zhang (2013), referred to as “Hao”, and those
discussed in this paper, referred to as “Mald”. The data range utilised in this study is identical to that
of Hao and Zhang (2013), covering the period from January 2, 1990 to August 8, 200910. The models
used are the GARCH(1, 1) and the EGARCH(1, 1) under the LRNVR. The likelihood that is maximised
is presented in the first column, with “Ret” denoting Returns, “VIX” referring to VIX data, and “Both”
representing a joint log-likelihood of the Returns and VIX data. The maximised log-likelihood values are
indicated in boldface. The standard deviation is denoted in parentheses, and since the GARCH model
does not include the κ parameter, it is represented by “∼”.

10This dataset consists of 4938 observations.
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Model ME Std.Err. MAE MSE RMSE P-value Violation of Corr.Coef. AR1 AR10 AR30 Var Skew Kurt
and Data one-sigma

band

GARCH

Ret
Hao 3.63 3.31 4.02 24.13 4.91 0.00 7.86% 0.92 0.9943 0.9355 0.7751 70.64 3.10 17.06
Mald 3.65 3.29 4.05 24.18 4.92 0.00 7.78% 0.92 0.9949 0.9400 0.7855 71.88 3.05 13.58

Vix
Hao 0.12 3.08 2.36 9.51 3.08 0.48 1.61% 0.93 0.9961 0.9551 0.8221 65.23 3.27 17.66
Mald 0.10 3.08 2.35 9.48 3.08 0.55 1.60% 0.93 0.9962 0.9552 0.8234 66.03 3.25 14.54

Both
Hao 0.26 3.23 2.39 10.47 3.24 0.13 2.30% 0.92 0.9967 0.9554 0.8162 66.80 3.27 17.95
Mald 0.26 3.22 2.39 10.45 3.23 0.12 2.29% 0.92 0.9967 0.9555 0.8171 66.90 3.26 14.84

EGARCH

Ret
Hao 3.62 3.12 3.76 22.81 4.78 0.00 8.08% 0.94 0.9889 0.9068 0.7457 47.16 2.19 10.92
Mald 3.54 3.11 3.69 22.20 4.71 0.00 7.65% 0.94 0.9887 0.9052 0.7444 47.97 2.18 7.90

Vix
Hao 0.00 2.73 2.10 7.45 2.73 1.00 0.75% 0.95 0.9953 0.9510 0.8295 63.13 2.17 10.53
Mald 0.02 2.73 2.09 7.44 2.73 0.89 0.75% 0.95 0.9953 0.9508 0.8301 63.06 2.16 7.49

Both Hao 0.09 2.73 2.10 7.48 2.73 0.57 0.71% 0.95 0.9949 0.9475 0.8203 64.04 2.18 10.65
Mald 0.09 2.73 2.09 7.46 2.73 0.58 0.77% 0.95 0.9949 0.9473 0.8211 64.26 2.17 7.61

CBOE Hao 0.9844 0.9162 0.7846 70.65 2.06 10.26
VIX Mald 0.9845 0.9164 0.7868 70.80 2.06 7.25

Table 2: Comparison of various statistics from the paper of Hao and Zhang (2013) and the parameters found in this paper, using the data from January 2, 1990
to August 10, 2009. The likelihood that is maximised is presented in the first column, with “Ret” denoting Returns, “VIX” referring to VIX data, and “Both”
representing a joint log-likelihood of the Returns and VIX data. In the second column, “Hao” refers to values from Hao and Zhang (2013), while “Mald” indicates
values from the optimisation performed in this paper. The error is determined by subtracting the implied VIX from the CBOE VIX. The mean error (ME)
represents the daily average difference between the implied VIX and the CBOE VIX. The standard error (Std.Err.) measures the standard deviation of this error.
The mean absolute error (MAE) calculates the daily average of the absolute differences between the implied VIX and the CBOE VIX. The mean squared error
(MSE) computes the daily average of the squared differences, while the root mean squared error (RMSE) is the square root of the MSE. The P-value tests the
null hypothesis that the means of the implied VIX and the CBOE VIX are equal. The violation of the one-sigma band indicates the probability that the implied
VIX falls outside the one-standard-deviation range of the CBOE VIX. The correlation coefficient (Corr.Coef.) assesses the linear relationship between the implied
VIX and the CBOE VIX. Additionally, autocorrelation coefficients for lags of 1, 10, and 30 days, as well as higher moments, are reported.
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4.2 Indices

In Table 3, the parameters for the indices are displayed. For the S&P, the mGARCH model

shows the highest log-likelihood, indicating the best fit. However, for the remaining three indices,

the EGARCH model provides the highest log-likelihood. Additionally, the log-likelihood of the

GARCH model is consistently close to that of the mGARCH model across all indices. However,

as the mGARCH model provides a higher log-likelihood and a better fit, this model is preferred

over the standard GARCH model. Therefore, in the following section, the parameters for the

mGARCH models are discussed. Nonetheless, as they are similar to the GARCH model they

provide insights into the GARCH model as well.

When comparing the mGARCH models, the S&P demonstrates the highest sensitivity to

innovation and the least persistence, with α1 = 0.1207 and β1 = 0.8046. In contrast, the

Nikkei exhibits an α1 of 0.0180 and a β1 of 0.9623, indicating lower sensitivity and greater

persistence. The DAX also shows greater persistence than the S&P, while the FTSE exhibits

similar characteristics. Furthermore, the equity risk premium, λ1, is highest for the S&P and

lowest for the Nikkei, which appears to correspond with the level of persistence, exhibiting a

negative relationship.

The volatility risk premium, λ2, does not appear to be related to the other parameters. For

example, the lowest values are found for the S&P and the Nikkei, with −0.2119 and −0.2355,

respectively. The DAX and FTSE have higher values, with −0.1696 and −0.1370. This discrep-

ancy suggests that the S&P and Nikkei are associated with higher levels of risk aversion among

investors compared to the DAX and FTSE.

The EGARCH models all show a high level of persistence, ranging from 0.98 to 0.99. The

sensitivity to innovation is greatest for the S&P 500 and FTSE, lowest for the Nikkei, and

intermediate for the DAX, similar to the other models. Note that the equity risk premium is

negative for the FTSE, and not significantly different from zero for the S&P 500.

In Table 4, the performance measures for the different indices and models are displayed. In

line with the log-likelihoods, the EGARCH model performs worse than the GARCH models for

the S&P. However, for the other indices, the mGARCH model outperforms the EGARCH model

in terms of mean error but is outperformed in terms of all other error measures. This indicates

that, on average, the mGARCH model provides a better fit, but the EGARCH model captures

the peaks more accurately. This is due to the higher sensitivity to shocks of the EGARCH

model’s structure, which utilises an exponential function.

When comparing the statistical properties of the different models with their underlying

volatility indices, the EGARCH model shows a higher level of autocorrelation compared to
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the mGARCH model, which is generally more aligned with the underlying volatility index.

Furthermore, the EGARCH model has a higher variance, and a lower skewness and kurtosis,

providing a better fit for most indices except for the S&P 500. However, none of the models are

able to consistently capture all of the statistical properties across all indices.

Index Model α0 α1 β1 κ λ1 λ2 ML

S&P 500

Garch 3.688E-06 0.1287 0.8311 ∼ 0.3626 ∼ 14761
(1.247E-07) (0.0051) (0.0064) ∼ (0.0180) ∼

mGARCH 3.575E-06 0.1207 0.8046 ∼ 0.3685 -0.2119 14781
(1.211E-07) (0.0047) (0.0083) ∼ (0.0182) (0.0356)

EGARCH -0.1131 -0.0725 0.9857 0.1136 0.0006 ∼ 14126
(0.0137) (0.0140) (0.0014) (0.0083) (0.0108) ∼

Nikkei

Garch 2.459E-06 0.0169 0.9703 ∼ 0.0534 ∼ 13206
(1.667E-07) (0.0009) (0.0017) ∼ (0.0229) ∼

mGARCH 2.677E-06 0.0180 0.9623 ∼ 0.0546 -0.2355 13218
(1.84E-07) (0.0010) (0.0026) ∼ (0.0229) (0.0521)

EGARCH -0.1314 -0.0042 0.9843 0.0492 0.0543 ∼ 13359
(0.0048) (0.0021) (0.0006) (0.0018) (0.0229) ∼

DAX

Garch 2.188E-06 0.0483 0.9391 ∼ 0.2356 ∼ 13652
(1.566E-07) (0.0028) (0.0037) ∼ (0.0202) ∼

mGARCH 2.255E-06 0.0480 0.9275 ∼ 0.2392 -0.1696 13664
(1.597E-07) (0.0028) (0.0047) ∼ (0.0203) (0.0351)

EGARCH -0.1589 -0.0427 0.9818 0.0899 0.1016 ∼ 13748
(0.0010) (0.0009) (0.0001) (0.0009) (0.0010) ∼

FTSE

Garch 2.506E-06 0.0926 0.8802 ∼ 0.2781 ∼ 14318
(1.351E-07) (0.0044) (0.0056) ∼ (0.0200) ∼

mGARCH 2.603E-06 0.0923 0.8616 ∼ 0.2789 -0.1370 14327
(1.84E-07) (0.0010) (0.0026) ∼ (0.0229) (0.0521)

EGARCH -0.1144 -0.0740 0.9870 0.0918 -0.0197 ∼ 14449
(0.0066) (0.0036) (0.0007) (0.0221) (0.0049) ∼

Table 3: The parameters for the different indices, namely, the S&P 500, the Nikkei 225, the DAX 30,
and the FTSE 100. The models are the GARCH(1, 1) under the LRNVR and the mLRNVR (denoted
as mGARCH), and the EGARCH(1, 1) under the LRNVR. The data spans from 6 May 2012 to 26 May
2019, and all models are optimized using both the returns and the corresponding volatility index. The
corresponding maximum log-likelihood (ML) values are provided in the final column, with the highest
log-likelihood in boldface. The standard deviations of the parameters are denoted in parentheses below
the parameters.

4.3 Maturity of CBOE VIX

In Table 3, the parameters for the different maturities and models are displayed. Important to

note is that the 1-day maturity does not use the same data range, as it was only introduced in

2020. Therefore, the 1-day maturity will only be discussed in the last paragraph. The models

are all maximised using the returns and the CBOE VIX with the corresponding maturity.

For the 9-day and 6-month maturities, the EGARCHmodel provides the highest log-likelihoods.
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Model & ME Std.Err. MAE MSE RMSE P-value Violation Corr.Coef. AR1 AR10 AR30 Var Skew Kurt
Index of one-sigma

band

S&P 500 0.9259 0.5588 0.2605 14.17 1.57 4.15

GARCH 0.03 1.83 1.35 3.34 1.83 0.7879 4.23% 0.8744 0.9521 0.5378 0.1949 11.36 2.05 5.21
mGARCH 0.00 1.82 1.34 3.32 1.82 0.9685 4.35% 0.8751 0.9557 0.5553 0.2026 11.22 2.01 4.94
EGARCH -1.21 2.37 2.05 7.09 2.66 0.0000 16.34% 0.8395 0.9858 0.8021 0.4500 19.07 0.95 0.86

Nikkei 0.9654 0.8416 0.7071 16.58 0.54 -0.49

GARCH 0.09 2.85 2.32 8.14 2.85 0.4598 14.01% 0.7145 0.9944 0.9182 0.6917 9.31 0.94 0.39
mGARCH 0.04 2.85 2.33 8.14 2.85 0.7770 13.66% 0.7141 0.9938 0.9117 0.6728 9.26 0.99 0.51
EGARCH 0.06 2.63 2.14 6.90 2.63 0.6576 10.49% 0.7642 0.9950 0.9221 0.7100 9.96 0.51 -0.26

DAX 0.9576 0.7239 0.5471 20.81 1.08 1.29

GARCH 0.08 2.58 1.84 6.64 2.58 0.5770 5.72% 0.8257 0.9872 0.8509 0.5905 14.98 1.24 1.71
mGARCH 0.03 2.57 1.84 6.62 2.57 0.8247 5.61% 0.8257 0.9871 0.8503 0.5890 14.68 1.25 1.74
EGARCH 0.08 2.50 1.84 6.26 2.50 0.5701 4.59% 0.8363 0.9873 0.8535 0.5898 14.95 0.69 0.48

FTSE 0.9392 0.6521 0.3352 14.18 1.48 2.93

GARCH -2.08 2.45 2.70 10.36 3.22 0.0000 21.41% 0.7623 0.9895 0.8320 0.5183 9.97 1.71 3.33
mGARCH 0.01 2.28 1.62 5.18 2.27 0.9612 7.39% 0.7968 0.9679 0.6358 0.2300 9.19 2.11 5.75
EGARCH 0.14 2.18 1.52 4.77 2.18 0.2510 5.90% 0.8179 0.9826 0.7902 0.4627 11.00 1.22 1.88

Table 4: The performance measures for the different indices, namely, the S&P 500, the Nikkei 225, the DAX 30, and the FTSE 100. The models are the
GARCH(1, 1) under the LRNVR, and the mLRNVR (denoted as mGARCH), and the EGARCH(1, 1) under the LRNVR. The data spans from 6 May 2012 to 26
May 2019, and all models are optimised using both the returns and the corresponding volatility index. The row of the index displays the statistical properties of
the volatility index. For a detailed description of the performance measures, see Table 2
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Maturity Model α0 α1 β1 κ λ1 λ2 Both

1 Day

Garch 9.190E-13 0.0898 0.9029 ∼ 0.2832 ∼ 3751
(2.485E-07) (0.0079) (0.0088) ∼ (0.0363) ∼

mGARCH 1.50E-12 0.0928 0.9108 ∼ 0.2847 0.0931 3752
(2.84E-07) (0.0082) (0.0095) ∼ (0.0359) (0.0408)

EGARCH -0.1012 -0.0699 0.9869 0.0998 -0.0206 ∼ 3621
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) ∼

9 Days

Garch 4.460E-06 0.1253 0.8536 ∼ 0.2497 ∼ 26580
(1.488E-07) (0.0034) (0.0038) ∼ (0.0140) ∼

mGARCH 4.48E-06 0.1194 0.8183 ∼ 0.2586 -0.2465 26582
(1.45E-07) (0.0032) (0.0056) ∼ (0.0140) (0.0247)

EGARCH -0.1042 0.0974 0.9845 0.1955 0.2161 ∼ 25606
(0.0009) (0.0009) (0.0001) (0.0011) (0.0009) ∼

1 Month

Garch 3.657E-06 0.0879 0.8905 ∼ 0.2230 ∼ 26843
(1.196E-07) (0.0032) (0.0038) ∼ (0.0149) ∼

mGARCH 4.136E-06 0.0946 0.8627 ∼ 0.2405 -0.2737 26906
(1.025E-07) (0.0007) (0.0008) ∼ (0.0009) (0.0010)

EGARCH -0.1367 -0.0635 0.9836 0.3682 -0.0218 ∼ 26013
(0.0025) (0.0024) (0.0003) (0.0029) (0.0030) ∼

3 Months

Garch 1.278E-06 0.0253 0.9703 ∼ 0.1905 ∼ 26658
(7.450E-08) (0.0015) (0.0018) ∼ (0.0166) ∼

mGARCH 3.56E-06 0.0810 0.8661 ∼ 0.2312 -0.2813 26826
(1.14E-07) (0.0029) (0.0049) ∼ (0.0150) (0.0276)

EGARCH -0.1280 0.1099 0.9828 0.1911 0.2132 ∼ 26455
(0.0023) (0.0050) (0.0003) (0.0027) (0.0044) ∼

6 Months

Garch 5.090E-07 0.0092 0.9906 ∼ 0.1159 ∼ 26693
(1.304E-08) (0.0001) (0.0001) ∼ (0.0001) ∼

mGARCH 1.11E-06 0.0206 0.9616 ∼ 0.1731 -0.4953 26999
(5.38E-08) (0.0009) (0.0019) ∼ (0.0169) (0.0318)

EGARCH -0.0822 -0.0314 0.9907 0.0899 0.1839 ∼ 27149
(0.0017) (0.0028) (0.0002) (0.0025) (0.0035) ∼

1 Year

Garch 2.897E-07 0.0057 0.9942 ∼ 0.1143 ∼ 26842
(5.695E-09) (0.0000) (0.0000) ∼ (0.0000) ∼

mGARCH 4.41E-07 0.0092 0.9832 ∼ 0.1609 -0.5591 27088
(1.83E-08) (0.0002) (0.0006) ∼ (0.0172) (0.0310)

EGARCH -0.0901 -0.0070 0.9900 0.1844 0.2117 ∼ 26943
(0.0017) (0.0040) (0.0001) (0.0031) (0.0040) ∼

Table 5: The parameters for the different maturities of the CBOE VIX. The models are the
GARCH(1, 1) under the LRNVR, the GARCH(1, 1) under the mLRNVR (denoted as mGARCH), and
the EGARCH(1, 1) under the LRNVR. The data spans from 4 January 2011 to 22 April 2022, except for
the 1-day maturity, which starts on May 13, 2022, and all models are optimised using both the returns
and the CBOE VIX with the corresponding volatility. The log-likelihood values are provided in the
final column, with the highest log-likelihood in boldface. The standard deviations of the parameters are
denoted in parentheses below the parameters.

In contrast, for the 1-month, 3-month, and 1-year maturities, the mGARCH model has the

highest log-likelihoods. When examining the GARCH and mGARCH models, it is apparent

that persistence increases and sensitivity to innovation decreases as maturity lengthens, with α1
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decreasing from 0.1194 to 0.0092 and β1 increasing from 0.8183 to 0.9832 when lengthening the

maturity from 9 days to 1 year. This decrease of α1 is due to the fact that a single day has less

impact on the expected volatility of a year than the next 9 days.

In line with the findings from the indices, the equity risk premium decreases with an increase

in persistence, and therefore with an increase in maturity. Furthermore, λ2 displays a similar

effect, decreasing as maturity lengthens. This indicates that for longer maturities, investors

are willing to pay a larger premium to hedge against volatility increases. Thus the equity risk

premium decreases, while the volatility risk premium increases as maturity lengthens.

The EGARCH model shows a persistence parameter around 0.98 to 0.99, with the absolute

innovation parameter decreasing when the maturity lengthens, except for the 3-month maturity,

which has a higher absolute α1 than the 1-month maturity.

Among the three models, the mGARCH provides the best fit, regardless of maturity, as

evidenced by Table 6. The errors associated with the mGARCH model are lower, the p-value of

equal means is higher, and the violation of the one-sigma band is lower for all maturities.

Contrary to the findings for the indices, the EGARCH model is not consistently the highest

in terms of autocorrelation across different maturities of the CBOE VIX. Nonetheless, none of

the models is able to consistently capture the autocorrelations of the underlying CBOE VIX.

In terms of variance, the mGARCH model generally outperforms the EGARCH model. For

skewness and kurtosis, neither model consistently outperforms the other across all maturities.

5 Conclusion

This paper analyses the GARCH implied volatility model by Hao and Zhang (2013) and the

modified version by Zhang and Zhang (2020) across various indices and maturities. By applying

these models, the equity and volatility risk premiums are analysed to determine their behaviour

across different indices and various maturities.

First, this paper reproduces the findings of Hao and Zhang (2013) to validate the models

used in the subsequent analysis. This reproduction revealed that when estimating using only the

returns, the implied VIX lacked approximately the same value as the volatility risk premium,

consistent with the findings of Hao and Zhang (2013). Furthermore, when estimating with the

VIX data, the parameters become distorted, resulting in an overestimation of the equity risk

premium. Therefore, the parameters estimated using both the returns and the VIX data are

superior, as they provide a good fit to the data while remaining consistent with the theoretical

expectations of the equity risk premium.

Then, the S&P 500, FTSE 100, Nikkei 225, and DAX 30 indices are analysed by
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Model & ME Std.Err. MAE MSE RMSE P-value Violation of Corr.Coef. AR1 AR10 AR30 Var Skew Kurt
Maturity one-sigma

band

1 Day 0.8622 0.7150 0.6026 61.90 1.14 0.92

GARCH -0.21 4.04 2.69 16.35 4.04 0.6525 5.54% 0.8607 0.9824 0.8794 0.7428 42.31 0.78 -0.42
mGARCH -0.10 4.04 2.65 16.30 4.04 0.8320 5.75% 0.8608 0.9810 0.8726 0.7343 42.28 0.80 -0.37
EGARCH -3.06 4.06 4.46 25.79 5.08 0.0000 4.93% 0.8712 0.9893 0.8946 0.7240 32.67 0.59 -0.69

9 Days 0.9446 0.7035 0.4212 70.93 3.06 17.41

GARCH 0.27 3.74 2.58 14.09 3.75 0.1699 3.71% 0.8969 0.9811 0.7403 0.3172 63.05 5.03 39.92
mGARCH 0.12 3.74 2.59 13.98 3.74 0.5593 3.50% 0.8970 0.9823 0.7480 0.3235 62.25 5.01 39.49
EGARCH 0.17 4.74 3.29 22.45 4.74 0.3952 5.83% 0.8300 0.9874 0.8401 0.5052 57.74 3.07 16.55

1 Month 0.9673 0.7946 0.5396 50.27 2.49 11.54

GARCH 0.22 3.39 2.45 11.54 3.40 0.1899 5.11% 0.8801 0.9879 0.7887 0.3628 44.23 5.11 39.34
mGARCH 0.11 3.38 2.46 11.44 3.38 0.5031 4.90% 0.8804 0.9891 0.8006 0.3792 43.61 5.04 38.00
EGARCH -0.36 4.43 3.13 19.71 4.44 0.0745 8.67% 0.8922 0.9686 0.6969 0.3542 87.98 3.11 19.10

3 Months 0.9822 0.8675 0.6778 39.95 1.89 6.60

GARCH 0.21 3.37 2.39 11.39 3.37 0.1541 7.20% 0.8491 0.9979 0.9304 0.6869 33.73 3.54 17.07
mGARCH 0.07 3.34 2.41 11.13 3.34 0.6244 6.31% 0.8506 0.9983 0.9422 0.7308 32.09 3.25 14.19
EGARCH 0.78 3.57 2.67 13.39 3.66 0.0000 8.61% 0.8282 0.9838 0.8275 0.5231 22.62 2.39 10.79

6 Months 0.9877 0.9043 0.7679 32.50 1.33 2.55

GARCH -0.66 3.07 2.47 9.84 3.14 0.0000 6.46% 0.8439 0.9994 0.9737 0.8655 25.29 2.15 5.61
mGARCH 0.10 3.03 2.18 9.22 3.04 0.4613 7.00% 0.8480 0.9993 0.9736 0.8653 26.22 2.12 5.44
EGARCH 0.33 3.08 2.31 9.60 3.10 0.0098 8.43% 0.8415 0.9952 0.9060 0.6351 22.48 1.88 6.43

1 Year 0.9912 0.9337 0.8345 23.58 0.86 0.05

GARCH 0.33 2.87 2.11 8.35 2.89 0.0027 10.85% 0.8092 0.9996 0.9822 0.9072 18.08 1.65 2.91
mGARCH 0.20 2.88 2.13 8.32 2.88 0.0706 10.46% 0.8064 0.9995 0.9803 0.8975 16.88 1.80 3.61
EGARCH 0.40 3.33 2.64 11.24 3.35 0.0001 13.60% 0.7285 0.9902 0.8414 0.5089 11.50 2.27 10.25

Table 6: The performance measures for the different maturities of the CBOE VIX. The models are the GARCH(1, 1) under the LRNVR, and the mLRNVR
(denoted as mGARCH), and the EGARCH(1, 1) under the LRNVR. The data spans from 4 January 2011 to 22 April 2022, except for the 1-day maturity, which
starts on May 13, 2022, and all models are optimised using both the returns and the CBOE VIX with the corresponding volatility. The row of the maturity
displays the statistical properties of the maturity. For a detailed description of the performance measures, see Table 2
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applying three different models: the GARCH(1, 1) under the LRNVR and the mLRNVR,

and the EGARCH(1, 1) under the LRNVR. This analysis shows that when the persistence of

shocks is higher, the equity risk premium decreases, indicating a potential relationship between

the persistence of shocks and the equity risk premium. The equity risk premium is highest for

the S&P 500, followed by the FTSE 100 and then the DAX 30, while the Nikkei 225 has the

lowest equity risk premium. This suggests that investors in the Nikkei 225 demand the lowest

excess return for bearing risk.

Furthermore, in the GARCH model under the mLRNVR, the volatility risk premium is

consistently negative, aligning with theoretical expectations. However, there does not appear

to be a relation with other parameters, as the lowest values are found for the S&P 500 and the

Nikkei 225, while the DAX 30 and FTSE 100 have higher values. This indicates that investors

in the S&P 500 and Nikkei 225 have a higher level of risk aversion than investors in the FTSE

100 and DAX 30.

The analysis of different maturities indicates that as the maturity lengthens, the persistence

of shocks increases. This is accompanied by a decrease in sensitivity to shocks, resulting in a

less volatile model. Additionally, as the maturity lengthens, the equity risk premium decreases,

indicating that investors are willing to accept lower compensation for bearing risk over longer

periods. This again suggests a potential relationship between the persistence of shocks and the

equity risk premium.

Similarly, the volatility risk premium displays a decrease as maturity lengthens. This indi-

cates that for longer maturities, investors are willing to pay a larger premium to hedge against

volatility increases. Therefore, as maturity lengthens, investors become less susceptible to bear-

ing risk, but more susceptible to an increase in risk.

Overall, the GARCH model under the mLRNVR and the EGARCH model provide a good

fit for the underlying volatility index, but they still lack the ability to fully capture its statistical

properties. Therefore, more models under the mLRNVR should be applied to gain further

insight into the behaviour of these models. Moreover, the relationship between the risk premiums

and the persistence of shocks, as well as the possible negative relation between the equity risk

premium and the volatility risk premium are topics for further research.
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A Appendix A

Proof Proposition 3.1

For k ≥ 1

EQ
t [ft+k] = e′EQ

t [Ft+k] = e′E[Ω + ΓFt+k−1 + Vt+k] (11)&(12)

= e′EQ
t [Ω + EQ

t+k−1[ΓFt+k−1 + Vt+k]]

= e′EQ
t [Ω + ΓFt+k−1] (12)

= e′EQ
t [Ω + ΓEQ

t [Ft+k−1]]

Iterating:

EQ
t [ft+k] = e′

( k−1∑
i=0

ΓiΩ+ ΓkFt

)

Then with V ixt =
1

n

∑n
k=1E

Q
t [ht+k] =

1

n
EQ

t [ft+k], we have:

V ixt = ζ + ψFt

with

ζ =
e′

n

n−1∑
k=1

k−1∑
i=0

ΓiΩ,

ψ =
e′

n

n−1∑
k=1

Γk,

which is affine in Ft. For p = 1, we can get V IXt as a linear function of the conditional variance

of the next period, ft,

V ixt = ζ + ψft,

where

ζ =
Ω

1− Γ
(1− ψ),

ψ =
1− Γ

n(1− Γ).
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Proof Proposition 3.2

Let ut = ξt/
√
ht. From Definition 3.2, ht = ω + γht−1 + vt−1.

If ht is given by Equation (6), then write:

ω = α0, γ = α1(1 + λ21) + β1, vt−1 = α1ht−1(u
2
t−1 − 1− 2λ1ut−1)

If ht is given by Equation (8), then write:

ω = α0, γ = α1(1 + λ21) + (β1 −
√
2α1λ2), vt−1 = α1ht−1(u

2
t−1 − 1− 2λ1ut−1)

Proof Proposition 3.3

Let eγ
iωEQ

t (e
γivt+1) = li. Under the LRNVR Q, the expectation of the conditional variance

k ≥ 1 periods ahead can be expressed as

EQ
t (ft+k) = eωEQ

t

[
EQ

t+k−1

(
fγt+k−1e

vt+k
)]

= eωEQ
t (e

vt+k)
[
EQ

t+k−1

(
fγt+k−1

)]
= l0E

Q
t

(
fγt+k−1

)
For 0 ≤ i ≤ k − 1, we have

γi ln(ft+k−i) = γiω + γi+1 ln(ft+k−i−1) + γivt+k−i

Thus,

EQ
t

(
fγ

i

t+k−i

)
= eγ

iωEQ
t

(
fγ

i+1

t+k−i−1

)
EQ

t+k−i−1

(
eγ

ivt+k−i

)
= liE

Q
t

(
fγ

i+1

t+k−i−1

)
Iterating:

EQ
t (ft+k) = fγ

k

t

k−1∏
i=0

li

And the implied VIX formula is

V ixt =
1

n

[
ft +

n−1∑
k=1

(
k−1∏
i=0

li

)
fγ

k

t

]
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Proof Proposition 3.4

Let utξ/
√
ht. From Definition 3.3, ln(ht) = ω + γ ln(ht−1) + vt.

If ht is given by Equation (7), then write:

ω = α0, γ = β1, vt = α1(ut−1 − λ1) + κ
(
| ut−1 − λ1 | −

√
2/π

)

B Appendix B

(a) S&P (b) DAX

(c) Nikkei (d) FTSE

Figure 1: The EGARCH model for the different indices, optimised using the returns and the VIX. The
data spans from May 6, 2012 to May 26, 2019.
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(a) S&P (b) Caption for DAX mod

(c) Nikkei (d) FTSE

Figure 2: The mGARCH model for the different indices, optimised using the returns and the VIX. The
data spans from May 6, 2021 to May 26, 2019.
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(a) Maturity of one day (b) Maturity of nine days

(c) Maturity of one month (d) Maturity of three months

(e) Maturity of six months (f) Maturity of one year

Figure 3: Maturities at different time frames using the EGARCH model under the LRNVR. The data
spans from 4 January 2011 to 22 April 2022, except for the 1-day maturity that starts on May 13 2022.
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(a) Maturity of one day (b) Maturity of nine days

(c) Maturity of one month (d) Maturity of three months

(e) Maturity of six months (f) Maturity of one year

Figure 4: Maturities at different time frames using the mGARCH model. The data spans from 4 January
2011 to 22 April 2022, except for the 1-day maturity that starts on May 13 2022.
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Appendix C

The code used to obtain the results is structured as follows:

First there is a difference between the main and the function part. The main document is

used to run and import everything, while the function document stores all of the methods used.

The function document starts with performance measures and data-cleaning functions. Then

follows a function that runs the GARCH models along the given time series, and functions to

compute the hessian and standard deviations.

Then the GARCH option pricing models are introduced. First, the shocks are computed

under measures P and Q. Then follow the functions to update the conditional variance using

the different GARCH models. After this, a function is written that computes the implied

volatility using the models and the conditional variance. This uses the SR-SARV models to

compute the daily proxy and then a function to annualize this to obtain the implied volatility.

Finally, the likelihood functions are displayed. The return and implied volatility log-likelihood

are computed as in Hao and Zhang (2013). The joint log-likelihood is differentiated in the

GARCH and EGARCH models, as the return function is embedded in the method. The like-

lihoods are optimised using the trust-const method of SciPy, as they can optimise using the

constraints necessary for the models.
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