
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis Econometrie & Operationele Research

Corporate Bonds in a Spectral Factor Realm
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Abstract

We use spectral factor models to allow systematic risk to vary across frequencies, thereby

studying the cross-sectional pricing effects of cycles of different lengths, that would otherwise

be hidden. The factor models that we study are common in recent asset pricing literature

and include the stock, bond CAPM, and multifactor stock and bond models. We bridge the

gap between spectral factor models in the equity and bond market and set out to broaden

the existing set of test assets and factor models to which a spectral approach is applied.

We find that low-frequency components are subject to heavy change when the estimation

method differs slightly. Test assets and factor models require constant adjusting of tuning

parameters for optimal spectral models. Furthermore, we find that the pricing abilities of

the bond CAPM can benefit from a spectral approach and that the spectral multifactor bond

model leads to economically interpretable results.

1 Introduction

This research is based on Bandi et al. (2021), who focus on so-called spectral factor models.

Spectral factor models extend ‘regular’ factor models using a link between systematic risk and

frequencies. Research on the topic of spectral factor models is highly relevant, because cur-

rent risk assessments lack the interpretation on the role of frequencies. As Bandi et al. (2021)

conclude, spectral factor models may lead to better model selection and may also lead to di-

mensionality reduction of the factor space. People who perform risk assessments, such as risk

or portfolio managers, financial analysts, and investment advisors, can benefit from the extra

interpretability of spectral factor models, as these models allow them to differentiate between

long and short term effects. When frequency is of importance, but one does not allow systematic

risk to differ across frequencies, high-frequency effects can hide low-frequency effects (Bansal and

Yaron (2004)). The generalized framework of risk, style, and frequency, covered in this paper,

is capable of disentangling these effects.

The purpose of this research is to focus on the empirical evaluation of the beta-representation

and the cross-sectional pricing abilities of each spectral model. We address this main research

question in a (i) replication part and an (ii) extension part. We try to replicate the results of

Bandi et al. (2021) using our own code and data (and extending it until December 2022). The

spectral approach of Bandi et al. (2021) uses the stock CAPM, with only the stock market excess

return as a factor. Then, we extend their research in two ways: (1) We shift the spectral approach

to the bond market (bond CAPM) using portfolio and traded factor data from Dickerson et al.

(2023), and (2) we research two spectral multifactor models, namely the Fama-French five-factor

stock model (Fama and French (2015)), and the BBW bond model (with bond market excess

return, downside, credit and liquidity risk) from Bai et al. (2019).

Our main contribution is that we broaden the set of test assets and factor models on which

spectral methods are performed. We pave the way for further research on spectral factor models

in the bond market and on spectral multifactor models. Also, we contribute to existing literature

on the economic interpretation of these spectral models. The main finding of this research is that

small changes in the estimation method lead to large changes in the low-frequency components

of the spectral models. This follows from the fact that the exact replication of the results

from Bandi et al. (2021) is not possible due to: (1) State variables and return data that differs
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slightly, (2) the restriction of zero Granger-causality that is not implemented in their code, and

(3) that they do not state every decision made in their research. Furthermore, we find that the

bond CAPM performs well in cross-sectionally pricing different sets of portfolios, giving stable

prices of risk, low constant estimates and large R2 values compared to the spectral stock CAPM.

Regarding the multifactor models, the spectral form of the BBW model leaves us with results

that are easy to economically interpret.

We will proceed as follows. In Section 2 we will elaborate on the existing literature regarding

the topic of spectral factor models, and in Section 4 we will discuss the data used for both ‘types’

of spectral factor models (stock and bond). Section 3 will cover the procedure to obtain spectral

components, and Section 5 lays out the results that follow from the methodology. Lastly, in

Section 6 we will summarize the relevant and main conclusions, together with possibilities for

further research. In the Appendix, the reader can find extra tables and figures that are not

explicitly discussed in the text, as well as a description of the programming code (and differences

with the code of Bandi et al. (2021)), and derivations to obtain the spectral components. The

exact data and code are to be found in a zip-file enclosed with this research.

2 Literature Review

In this section we will give an overview of the literature preceding this research, and how we

extend the existing literature. Specifically, we will expand on the asset pricing context of this

work, highlighting stock factor models, bond factor models, and frequency-specific risk.

2.1 Factor Models

There exists extensive research on the topic of factor models used for asset pricing purposes in

equity markets, starting with the findings of Sharpe (1964) and Lintner (1965), who proposed

the capital asset pricing model (CAPM) for stocks. The CAPM is used to calculate systematic

risk, by projecting excess stock portfolio returns on excess market returns. Extensions are the

consumption CAPM, which uses a consumption beta (Breeden (1979)), and the intertemporal

CAPM, that extends the one-period nature of the normal CAPM (Merton (1973)). Other famous

linear stock factor models include the arbitrage pricing theory by Ross (1976) and the Fama-

French three- and five-factor models (Fama and French (1993); Fama and French (2015)). It was

for corporate bonds only later that the independent search for relevant factor models started, as

Dickerson et al. (2023) state. Most existing bond market factor models do not perform well cross-

sectionally in predicting prices, because they are not based on bond-specific information, but on

stock factor models and on macroeconomic variables. Differences between the stock market and

the bond market, such as over-the-counter trades that bring higher liquidity risk, higher exposure

to downside risk, and buy-and-hold strategies, call for the independent identification of bond risk

factors (Bai et al. (2019)). An example of a bond-specific factor model is the DEFTERM model

by Fama and French (1993), which consists of a default factor (DEF) and term spread (TERM).

Dickerson et al. (2023) show that outperforming the bond market factor (the bond CAPM),

for example by adding the BBW factors from Bai et al. (2019) (i.e. the downside, credit, and

liquidity risk factor), is very challenging and does not come with an increase in pricing ability.
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However, Bandi and Tamoni (2022) draw the important notion that for all CAPM’s (stock &

bond) and the other factor models above, meaningful conclusions about investment effects based

on the length of time cannot be drawn, because betas are assumed to be constant over time.

2.2 Frequency-Specific Risk

Consequently, most recent literature shifts the attention more from the relation between risk

and style, towards the relation between risk and frequencies (Chaudhuri and Lo (2015); Neuhierl

and Varneskov (2021)). But, a framework for factor models that links risk, style and frequen-

cies, remains relatively unexplored. The methods of Bandi et al. (2021) yield promising results,

that substantiate the analysis of short- and long-term dynamics in asset pricing. They propose

a methodology to obtain frequency-specific components and analyze the cross-sectional pricing

abilities of these components. Bandi et al. (2021) find that the ‘business cycle’ component

belonging to cycles between 32 and 64 months leads to economically interpretable and stable

pricing results in a stock context. Their research builds upon four different streams of literature

on asset pricing. Firstly, re-balancing frequency of portfolios can cause betas to change sim-

ultaneously (Kothari et al. (1995)). Secondly, cross-sectional pricing contains time effects that

can be studied using temporal aggregation (Hawawini (1983)). Thirdly, filters can split returns

and factors to get frequency-specific analyses of risk, as in Kang et al. (2017) who also price

assets using different time-weighted betas. The filters that Bandi et al. (2021) use to move from

the regular Wold decomposition to the extended Wold decomposition are the Haar filters, which

are the only ‘symmetric compactly supported orthonormal wavelets’ (Gençay et al. (2001)).

Fourthly, Neuhierl and Varneskov (2021) show that the stochastic discount factor has frequency

characteristics. Also Ortu et al. (2020) and Bandi et al. (2019) use the extended Wold compos-

ition that is necessary to get the component effects of a stationary time series. The first shows

that in two applications (for a realized variance and a yield-Treasury bonds analysis) the spectral

approach can eliminate noise and can leave us with better economic interpretation. The second

shows that for economic uncertainty as a factor, the restriction of no changing effects across

frequencies, is too strong. Several others have, since the introduction of frequency approaches,

used the same spectral forms for other applications (Bandi and Tamoni (2023); Cerreia-Vioglio

et al. (2023); Piccotti (2022)).

This research can be placed in the streams of the literature above, as it uses the methodology

from Bandi et al. (2021) on modern (multi)factor models. Specifically, we propose a spectral

approach for the corporate bond models from Dickerson et al. (2023). We increase the spectral

research on potentially useful test assets and factor models, using Wold decompositions and

Haar wavelet filters, and adding frequency-specific interpretations to existing and thoroughly

researched factor models.

3 Methods

This section will discuss the transformation of our time series from a regular Wold decomposition

into an extended Wold decomposition that we will estimate using a Least Squared method (after
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cutoff), which then looks like:

yt = α+

∞∑
j=1

β(j)x
(j)
t + ut, (1)

where yt can be some excess asset/portfolio return (for bond or stock) and x
(j)
t denotes the

jth component of our factor. This is the univariate case, but spectral approaches also apply to

multivariate factor models, which we will discuss here. Both yt and xt are covariance-stationary

time series. The betas now correspond with frequency-specific dependence and ut exhibits

standard properties. The notation and methodology closely follow Ortu et al. (2020) and Bandi

et al. (2019). It is the restructured and multivariate case of the methodology and notation from

Bandi et al. (2021). Both the replication and the extension part follow the same steps, but differ

in the test asset/portfolio return and factors, which will be explained in more detail in Section

4.

3.1 Factor Structure

Firstly, like Bandi et al. (2021), we write our time series in the form of xt = (yt, x̃
T
t )

T ∈ Rk,

with yt ∈ R and x̃t ∈ Rk−1. Here, yt is the excess return of some asset or portfolio at time t and

x̃t is a vector that can contain (multiple) factors and state variables, also known at time t. Both

yt and x̃t will change, according to the model that we are trying to evaluate. By assumption,

xt is a Vector Autoregressive (VAR) process of lag p (we use p = 18 like Bandi et al. (2021)):

xt = A1xt−1 + . . .+Apxt−p + ϵt, (2)

where A1, . . . , Ap are k×k matrices and ϵt follows a white noise process with a covariance matrix

Σk. We can rewrite Equation 2 into a VAR(1) process and estimate using Least Squares:

Xt = AXt−1 +Ut, (3)

using the fact that Xt = (xt
T , . . . ,xt−p+1

T )T . We recall that Xt is stable if det(Ikp −Az) ̸= 0

∀|z| ≤ 1 (Heij et al. (2004)).

In the companion matrix A above, just like Bandi et al. (2021), we implement the following

structure:

yt = ay +A1,yYt−1 +A2,y · X̃t−1 + ϵ1t , (4)

x̃t = ax +A2,x · X̃t−1 + ϵ
2
t , (5)

where Yt−1 = (yt−1, . . . , yt−p)
T and X̃t−1 = {x̃T

t−1, . . . , x̃
T
t−p}T . Also, (·) denotes the element-

by-element inner product, and A2,y and A2,x are of size 1× p and k × p, with k being equal to

the total number of factors and state variables. Importantly, A1,xYt−1 is missing, because we

set A1,x = 0. This corresponds with the assumption that y does not Granger-cause x̃ across all

lags, and the interpretation that we do not let the test asset return influence the factors or state

variables. In Appendix B, we provide the detailed structure of the companion matrix A.
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3.2 Wold Decomposition

Then, as Bandi et al. (2021) point out, by investigating time-series that are stable, our processes

have a time-invariant mean and variance/covariance matrix, meaning that they are covariance

stationary and can be written in the form of a Wold representation. Using the Wold decompos-

ition theorem from Wold (1938), applied to our multivariate case (with a zero-mean), we get for

any t ∈ Z:

xt =

(
yt

x̃t

)
=

∞∑
k=0

(
α1
k α2

k

α3
k α4

k

)(
ϵ1t−k

ϵ2t−k

)
=

∞∑
k=0

αkϵt−k, (6)

where ϵ = {(ϵ1t , ϵ2t )T }t∈Z is again our white noise process from Section 3.1,
∑∞

k=0 tr
1/2(αT

kαk) <

∞ and α0 = Ik (Bandi et al. (2021)). What follows from this, is that we can set the matrix A,

which consists of the different Ai (see Appendix B) with i = 1, . . . , p from Equation 2 equal to

the αk from Equation 6 to get

αk = Ak, (7)

from which we can draw the conclusion that we can obtain the Wold-coefficients αk from our

VAR estimation (Bandi et al. (2021)).

3.3 Extended Wold Decomposition

Furthermore, the extended Wold decomposition, as also in Ortu et al. (2020), allows us to write

Equation 6 in a spectral form:

xt =

(
yt

x̃t

)
=

∞∑
j=1

∞∑
k=0

ψ
(j)
k ϵ

(j)

t−k2j =

∞∑
j=1

x
(j)
t , (8)

with x(j) the j-th component of x. We obtain the innovations from the extended Wold decom-

position, the same way as Bandi et al. (2021), as follows:

ψ
(j)
k =

1√
2j

2j−1−1∑
i=0

αk2j+i −
2j−1−1∑
i=0

αk2j+2j−1+i

 , (9)

ϵ
(j)
t =

1√
2j

2j−1−1∑
i=0

ϵt−i −
2j−1−1∑
i=0

ϵt−2j−1−i

 , (10)

where ψ
(j)
k for any j ∈ N is a k× k matrix and ϵ

(j)
t is a k× 1 vector. Both are the unique Haar

transforms (Haar (1909)). It can be proven that the extended Wold decomposition from Equa-

tion 8 has components that are orthogonal at all moments and lags in time. This corresponds

with the expression, as Bandi et al. (2021) state,

E[x(j)

t−m2j ,x
(k)

t−n2k

T
] = 0, (11)
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∀j ̸= k, ∀m,n ∈ N0, ∀t ∈ Z. Every component j is defined on the support S(j) = {t− k2j : k ∈
Z}, and has white noise shocks, capturing patterns between 2j−1 and 2j periods1.

3.4 Evaluation

Lastly, we get the spectral factor model in a form that can be estimated (using a Least Squares

method), which gives us the frequency-specific interpretation of the original model:

yt = α+
k−1∑
i=1

∞∑
j=1

β
(j)
i x

(j)
i,t + ut, (12)

where again yt is a test excess asset/portfolio return (that can also be represented in its compon-

ent form) and i = 1, . . . , k−1 correspond with the different factors and state variables that are in

x̃t. Important to note is that the series can be broken down into any number of J components,

which boils down to

yt = α+
k−1∑
i=1

J∑
j=1

β
(j)
i x

(j)
i,t +

k−1∑
i=1

β
(J+1)
i π

(J)
i,t + ut. (13)

Here, π
(J)
i,t = xi,t−

∑J
j=1 x

j
i,t (∀i = 1, . . . , k−1), which can be interpreted as a residual component.

We refer to Bandi et al. (2021), who state as a theorem that the traditional beta, without splits

into components, ‘is the same as a weighted average of spectral betas with weights directly related

to the relative informational content of the corresponding frequencies.’ The same applies to only

a range of frequencies.

4 Data

Here, we will discuss where the data for our spectral models (stock/bond CAPM, BBW model

and Fama-French five-factor model), regular factor models for performance comparison and

portfolio returns are retrieved from. Furthermore, we will elaborate on the exact implementation

of the methods from Section 3.

4.1 Stock Spectral Factor Models

Data for spectral evaluation of the stock factor models ranges from January 1967 through

December 2022, and includes the stock CAPM (with only the market risk premium MKTS)

and the Fama and French (2015) five-factor model (with the market risk premium MKTS,

‘small-minus-big’ SMB, ‘high-minus-low’ HML, ‘robust-minus-weak RMW, and ‘conservative-

minus-aggressive’ CMA). It is retrieved from the following sources, in the same way as Bandi

et al. (2021) describe:

• https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

(Kenneth French’s data library)

1For monthly data, we get components that correspond with 1-2 months, 2-4 months, 4-8 months, 8-16 months
etc.
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• https://www.aqr.com/Insights/Datasets (AQR’s data library)

• https://global-q.org/index.html (Hou, Xue, and Zhang’s data library)

• https://faculty.chicagobooth.edu/michael-weber/research/data (Weber’s data library)

Factor models used for evaluation (without decomposition into components) also include the

Fama-French three-factor model (Fama and French (1993)), which contains the first three factors

of the five-factor model, and the four-factor model from Hou et al. (2015), which includes the

market risk premium, and difference returns on small/big stocks (ME), investment (IA), and

profitability stocks (ROE). In Table 1 (constructed using Dickerson et al. (2023) with our stock

data), we report summary statistics for each of the stock factors. All means are statistically

significant at the 5% level, even after correcting for stock market risk, and are relatively large

compared to MKTS. Only SMB and ME remain statistically insignificant. Then, most of the

bias-adjusted squared Sharpe ratios are statistically significant at the 5% level, excluding SMB.

We see that most of the factors can keep up with the squared Sharpe ratio of MKTS. We conclude

that all of the factor models, the Fama-French three- and five-factor model and the four-factor

model by Hou et al. (2015) perform well and outperform each of the factors independently.

MKTS, SMB, HML, and ME show high standard deviations.

Table 1: Summary statistics for the stock factors. Based on Dickerson et al. (2023). In panel (a) are the mean,
single-factor bond market alphas, squared Sharpe ratios and the standard deviations for the stock factors. Panel
(b) reports the squared Sharpe ratios for the stock multifactor models. Data are from January 1967 through
December 2022. Values statistically significant at the 5% level are in bold using Newey-West standard errors with
three lags, except for the p-values of the alphas, which use a different heteroskedastic test (see Dickerson et al.
(2023)).

Panel (a): Statistics and squared Sharpe ratios

MKTS SMB HML RMW CMA ME IA ROE

Mean 0.561 0.172 0.307 0.302 0.319 0.272 0.396 0.532

Alpha - 0.061 0.387 0.352 0.414 0.170 0.483 0.599

Sh2 0.013 0.002 0.009 0.016 0.022 0.006 0.036 0.040

SD 4.593 3.077 3.035 2.265 2.077 3.052 2.039 2.599

Panel (b): Model squared Sharpe ratios

FF3 FF5 HXZ

Sh2 0.029 0.098 0.149

From the sources above, the relevant portfolio returns are retrieved for: The 25 Fama-

French size and book-to-market portfolios, the 25 Fama-French size and operating profitability

portfolios, the 25 Fama-French size and investment portfolios, 48 anomaly portfolios from French

(together with ‘betting-against-beta’ and ‘quality-minus-junk’ from AQR’s data library), 24

anomaly portfolios from Hou et al. (2020) and 10 duration portfolios from Weber (2018).

4.2 Bond Spectral Factor Models

Monthly data for the spectral evaluation of the bond factor models (i.e. the bond CAPM

and the BBW model) is constructed by Dickerson et al. (2023) and is retrieved from https:

//data.mendeley.com/datasets/n66rp59tr7/1, which covers the period of August 2004 through

December 2021. The data of the authors is on traded-factor models, and consists of the bond

CAPM and the BBW model. Additionally, we use the following ‘regular’ factor models: The
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default and term structure model (DEFTERM), and the intermediary capital model (HKM).

DEFTERM, introduced by Fama and French (1993), uses default risk (DEF) and term structure

risk (TERM) as factors, where the first is defined as the return difference between the market

portfolio of long-term corporate bonds and long-term government bonds, and the second is the

return difference between long-term government bonds and the one-month T-Bill rate. The

intermediary capital HKM from He et al. (2017), uses the stock market factor (MKTS) and

the value-weighted equity excess return for the New York Fed’s primary dealer sector (CPTLT).

Dickerson et al. (2023) make use of a set of filters on clean bond prices from the Trade Reporting

and Compliance Engine (TRACE) and the Mergent Fixed Income Securities Database (FISD),

to calculate monthly bond returns at time t as:

Ri,t =
Pi,t +AIi,t + Ci,t

Pi,t−1 +AIi,t−1
− 1, (14)

where Ci,t is the coupon, AIi,t is the accrued interest and Pi,t is the clean bond price for bond i

at time t. These returns are then transformed into excess returns by subtracting the one-month

U.S. T-bill rate of return. Table 2 is from Dickerson et al. (2023) and gives summary statistics on

the different bond factors. The means of most factors are statistically significant at the the 5%

level, except for the mean of DEF. This significance is removed when we adjust for bond market

risk, looking at the alpha values, and the mean of DEF becomes statistically significant. It seems

that only DEF is not to spanned by the bond market factor. MKTB and LRF report the highest

bias-adjusted squared Sharpe ratios, followed by MKTS, DRF and TERM. When looking at the

full models, BBW slightly outperforms the bond market factor, while DEFTERM and HKM do

not outperform the bond market factor. Also, most factors are very noisy compared to MKTB,

and only LRF has a lower standard deviation. In line with the conclusions of Dickerson et al.

(2023), we conclude from the summary statistics that the bond market factor entails a lot of

information and is difficult to outperform. This underlines the importance of investigating the

spectral effects of the MKTB factor.

Table 2: Summary statistics for the bond factors. Table from Dickerson et al. (2023). In panel (a) are the
mean, single-factor bond market alphas, squared Sharpe ratios and the standard deviations for the bond factors.
Panel (b) reports the squared Sharpe ratios for the bond multifactor models. Data are from August 2004 through
December 2021. Values statistically significant at the 5% level are in bold using Newey-West standard errors with
three lags, except for the p-values of the alphas, which use a different heteroskedastic test (see Dickerson et al.
(2023)).

Panel (a): Statistics and squared Sharpe ratios

MKTB DRF CRF LRF DEF TERM MKTS CPTLT

Mean 0.446 0.625 0.412 0.330 0.059 0.456 0.893 0.622

Alpha - -0.008 0.093 0.119 -0.266 0.292 0.340 -0.006

Sh2 0.054 0.034 0.012 0.055 -0.004 0.016 0.037 0.003

SD 1.832 3.165 3.122 1.340 2.117 3.171 4.320 6.844

Panel (b): Model squared Sharpe ratios

BBW DEFTERM HKM

Sh2 0.061 0.021 0.050

8



Also, the authors gathered data on 32 bond sorted portfolios based on bond characteristics

and Fama-French industry classifications, which are 5 bond rating portfolios, 5 maturity port-

folios, 10 credit spread portfolios, and 12 Fama-French industry portfolios. These will be used

as our set of bond portfolios.

4.3 Implementation

Regarding the implementation, for every factor model that we transform into a spectral factor

model, we follow the reasoning of Bandi et al. (2021) to take away market return predictability

by adding three state variables: The yield spread between long and short-term bonds (TY),

the market’s price-dividend ratio (PE), and the small-stock value spread (VS). This means

that x̃ from Section 3 is a time series consisting of the relevant factors and the aforementioned

state variables. These state variables are constructed, as Bandi et al. (2021) do, guided by

Campbell and Vuolteenaho (2004). Firstly, the yield spread is the yield difference between ten-

year constant-maturity taxable bonds and short-term taxable notes (in annualized percentage

points) by Global Financial Data. Secondly, the price-earnings ratio is the logarithm of the

CRSP price index divided by a one-year trailing moving average of dividends. Thirdly, the

small-stock value spread is the logarithm of the book-to-market ratio of small value stocks

divided by the book-to-market ratio of small growth stocks. The book-to-market ratios are from

Kenneth French, and follow from the intersection of two size portfolios and three book equity to

market equity portfolios. Data on the state variables is monthly and ranges from January 1967

through December 2022. In Appendix A, we report summary statistics on our state variables

and the state variables that Bandi et al. (2021) obtain.

5 Results

This section will discuss the results of spectral decomposition for the stock factor models, the

bond factor models, and a comparison between both types.

5.1 Stock Spectral Models

Throughout this section on stock spectral models, it is important to note that we make use

of our own collected data and code. In Appendix D, we highlight the specific code and data

differences with Bandi et al. (2021). The main differences are: (1) The data on returns and

state variables differ, (2) the restriction in 3.1 is not implemented in the code from Bandi et al.

(2021), (3) our sample ranges through December 2022. We adhere to our own code and data to

ensure the most recent, closely followed replication.

5.1.1 Empirical Evaluation of the Beta-Representation

Firstly, we delve into an example of the covariance and beta decomposition for two different

portfolios: A ‘value’ (high book-to-market) portfolio and a ‘growth’ (low book-to-market) port-

folio, which are respectively the first, and the tenth decile value-weighted portfolios formed on

book-to-market by Kenneth French. We estimate simple regressions (on excess returns) and

9



obtain the following results for January 1967 until December 2022:

Rvalue,t = α+ 1.130 ∗Rm,t + ut, R2 = 0.68,

(t-stat = 37.49)

Rgrowth,t = α+ 1.059 ∗Rm,t + ut, R2 = 0.87.

(t-stat = 66.53)

This confirms that the portfolios have a market beta close to one (statistically significant at

the 5% level) and that the estimated market beta is higher for the value portfolio than for the

growth portfolio, due to higher exposure to market risk. Here, the first difference with Bandi

et al. (2021) becomes apparent, as they report a variance of 15.25% per year for the excess

market returns (January 1967 through December 2018), while we report a variance of 20.14%

per year for the same sample period. This of course increases our market beta estimates above.

Then, in Table 3, we provide spectral covariances that are defined as: Ĉj = Ĉ(R̂(j)
m , R̂

(j)
p )

(with p = {value, growth} and j = 1, . . . , 6). In the last four rows we specify the spectral betas

together with weights that are calculated as:

v̂(j) =
V̂(R̂(j)

m )

V̂(R̂m)
. (15)

What becomes apparent from the table is that the numerical results differ from Bandi et al.

(2021) although some patterns are the same. As in their research, the spectral covariances of

most high frequency components are higher for the value portfolio than for the growth portfolio,

which suggests that our estimation method gives high frequency market components that move

more in line with the value portfolio. For lower frequencies, this effect dies out. Again, as our

excess market returns report higher variance, our spectral covariances are also higher. Then,

regarding the spectral betas, we observe higher dispersion among low frequency components

and that the weighted sum comes very close to the estimated betas from the simple regression

at the beginning of this section. The spectral betas show similar patterns as in Bandi et al.

(2021), where they increase at j = 2 for the value portfolio and decreases at j = 2 for the

growth portfolio. The effects of j > 6 is different, however, and the growth portfolio seems to

be exposed more to the residual component than the value portfolio is exposed to its residual

component. Another important notion is that the weights for the portfolios are the same, due to

the restricted Granger causality. The weights of Bandi et al. (2021) differ among the value and

growth portfolios, because it seems that they do not implement this restriction in their code.
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Table 3: Book-to-market sorted portfolios: covariance and beta decomposition. This table shows estimation
results of the spectral covariances and the betas, after decomposition into six components (seven frequencies), for
a value and a growth portfolio. Data is from January 1967 through December 2022.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j > 6
∑7

j=1 Ĉj

Spectral cov.

Value 10.467 7.225 3.135 1.967 0.928 0.146 0.055 22.486

Growth 10.444 6.413 2.453 1.748 0.912 0.252 0.209 22.431

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j > 6
∑7

j=1 v̂
(j)β̂(j)

Spectral betas

Value 1.059 1.119 1.354 1.214 1.240 1.259 0.631 1.136

weight 0.467 0.294 0.110 0.081 0.040 0.010 0.007

Growth 1.071 1.041 1.058 1.034 1.005 0.957 1.337 1.065

weight 0.467 0.294 0.110 0.081 0.040 0.010 0.007

Table 4, shows the results when we sum high frequency components j = 1, 2, 3, 4 and the

remaining low frequency components, for both portfolios. We should observe that the estimated

betas are close, but only see that this is the case for the high frequency betas and that the

estimates differ more for the low frequency component. This suggests that the estimated low-

frequency components are not fully orthogonal, meaning that effects of components cannot be

singled out completely. We can draw the conclusion that small changes in estimation can lead

to large changes in low-frequency components.

Table 4: Simple and multiple regressions for high- and low-frequency components. Check for the orthogonality
property. The estimated betas in columns 1 and 2 should match the estimated betas in columns 3 and 4. Data
are from January 1967 through December 2022.

Simple regression Multiple regression

βLF βHF βLF βHF

Value 0.905 1.139 1.163 1.121

(20.200) (36.185) (8.589) (33.221)

Growth 1.136 1.066 1.033 1.072

(56.575) (66.399) (15.288) (63.611)

5.1.2 Cross-Sectional Pricing

Then, in this section, we will analyse broader sets of portfolios, starting with the 25 Fama-

French book-to-market and size sorted portfolios, for which the average returns and pricing

errors from a spectral CAPM model (where j = 6) can be seen in Figure 7 in Appendix 7. In

Figure 1, we observe the spectral covariances of every component for the 25 book-to-market and

size portfolios of Fama-French. The first four components seem to show a similar pattern as in

Bandi et al. (2021), but for j = 5 and j = 6, we observe smaller spectral covariances than their

research shows. Their figure is likely to be a mistake for components j = 5 and j = 6, as the

code that they provided also gives components that have decreasing covariances, which can be

seen in Figure 9 in the appendix.
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Contrary to Bandi et al. (2021), the shift in our spectral covariances is from small size and small

value portfolios towards big size and high value portfolios, whereas they report a shift in the

covariance towards small size and high value portfolios.

(a) j = 1 (b) j = 2 (c) j = 3

(d) j = 4 (e) j = 5 (f) j = 6

Figure 1: Spectral covariances for every component of the 25 book-to-market and size portfolios. The spectral
covariances belonging to each component (j = 1, . . . , 6), for every portfolio from the 25 book-to-market and
size portfolios of Fama-French. We observe a shift towards higher value and smaller size portfolios with overall
decreasing covariances. Data is from January 1967 until December 2022.

The j = 6 market component, which corresponds to frequencies between 32 and 64 months,

has the interpretation of the ‘business cycle’ component. This component can help to determine

the effects of the business cycle on excess portfolio returns. For the remainder of the analysis of

stock spectral factor models, we will use the business cycle component of our factors. As Bandi

et al. (2021) point out, the low weights for this component in Table 3 imply that when we do

not use a spectral approach, the effect of the business cycle component is hidden by the effects

of other components. In Figure 2, we see the excess market return together with the business

cycle component. Both time series show a similar pattern as in Bandi et al. (2021), where the

business cycle component is also slow moving and only moves little together with the excess

market return. The business cycle component is, however, consistently smaller in magnitude

than for Bandi et al. (2021), which is an important difference, as this also influences the pricing

abilities of the component.
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(a) Excess market return and the j = 6 market component. (b) The 6th ‘business cycle’ market component.

Figure 2: Time series of the excess market return and the sixth market component. Time series of both the
excess market return and the sole j = 6 ‘business cycle’ market component. We observe similar patterns as Bandi
et al. (2021), but the magnitude for both time series is smaller in our case. Data are from January 1967 through
December 2022.

Table 5: Results of the two-pass Fama and MacBeth regression. In this table are the results of the cross-sectional
regression Re

i = λ0 +λ(6)Ĉ(6)
i + ξi. Together with Fama and MacBeth (1973) standard errors in parentheses, Kan

et al. (2013) model misspecification-robust standard errors in braces, the Root Mean Squared Error (RMSE), the
Mean Absolute Percentage Error (MAPE) and the R2 with its standard error. Bold means that the estimate is
statistically significant at the 10% level or lower. Data are from January 1967 through December 2022 (June 2014
for the duration portfolios).

Constant λ(6) RMSE MAPE R2

Panel (a): 25 size and book-to-market portfolios

1.559 -2.975 1.391 1.119 0.63

(0.245) (0.747) (0.20)

{0.351} {1.060}
Panel (b): 25 size and profitability portfolios

1.511 -2.755 1.363 1.089 0.57

(0.293) (0.965) (0.33)

{0.413} {1.392}
Panel (c): 25 size and investment portfolios

1.524 -2.727 1.210 0.884 0.68

(0.240) (0.717) (0.17)

{0.333} {1.074}
Panel (d): 24 portfolios

1.007 -0.565 2.841 2.202 0.04

(0.113) (0.699) (0.11)

{0.146} {0.865}
Panel (e): 48 portfolios

1.465 -2.717 2.481 2.114 0.33

(0.202) (0.722) (0.24)

{0.370} {1.379}
Panel (f): 10 duration portfolios

2.165 -8.135 1.262 0.837 0.89

(0.244) (1.467) (0.26)

{0.883} {4.472}
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In Table 5 are different sets of portfolios and the price risk of the business cycle component.

The portfolios that are researched, are the 25 size and book-to-market portfolios (panel (a)),

the 25 size and profitablity portfolios (panel (b)) and the 25 size and investment (panel (c))

portfolios by Fama-French. Also, 24 anomaly portfolios from Kenneth French (panel (d)), the

48 anomalies from Hou et al. (2020) (panel (e)) and the 10 duration portfolios from Weber (2018)

(panel (f)). We can observe that, contrary to the results of Bandi et al. (2021), the price of risk

associated with the business cycle component turns out to be negative, meaning that exposure

to (or a larger covariance with) the business cycle component has a negative influence on the

mean excess return of every portfolio. The second-pass regression has some explanatory power,

based on the R2 of every model. It is much smaller, however, than the R2 of Bandi et al. (2021)

and we report larger values for the RMSE/MAPE. For the 24 anomaly portfolios, the business

cycle component has the least risk-based explanatory power, while for the 10 duration portfolios

it has the strongest explanatory power. The large estimates for the constants suggest that the

business cycle component has a large excess mean return that it cannot explain across all of the

different portfolios. This is underlined by the fact that the standard errors of the R2 are quity

large. We observe that Bandi et al. (2021) report stable constants around 0 and stable prices of

risk of around 3. From this, we conclude that adding the restriction of Granger causality has

a large (negative) impact on the business cycle component of the stock CAPM, the covariance

and subsequently on the price of risk. In Table 11 in Appendix A, we provide the differences

between R2 of different models, with the spectral CAPM and the regular CAPM as benchmark

models.

5.1.3 Multifactor Spectral Approach

Lastly, as an extension for the stock factor models, we propose the spectral decomposition of

the Fama-French five-factor model. Figure 3 shows time series of the business cycle components

of each of the five factors. We see that the business cycle component of the excess market

return moves in opposite direction with the other factors, that, on their turn, move very much

in line. We see that just like their overall factors, the business cycle component of the excess

stock market return is lower in economic downturns, and that of the other factors is higher in

economic downturns, as small/value/robust profitability and conservative stocks can be viewed

as safer in those periods.

Figure 3: Fama-French five-factor model. The business cycle component for the Fama-French five-factor model:
the stock market excess return, SMB, HML, RMW and CMA. Data are from January 1967 through December
2022.
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The results from Figure 3, cause the estimates in Table 6 to be statistically insignificant at

the 10% level. It seems that overfitting is the issue here, as the large standard errors take away

the significance of the market business cycle component. The explanatory power is large, due

to a low constant estimate and a large R2, but it is unsure how the effects differ among the

components. The multifactor approach for the stock portfolios seem to be difficult to interpret,

whereas the single factor stock CAPM has better economic interpretation.

Table 6: Results of the two-pass Fama and MacBeth regression for the multifactor stock model. The table
reports covariance risk for business cycle components of the Fama-French five-factor model (panel (a) with the
Fama-French 25 size and book-to-market portfolios) together with standard errors in parentheses, the Root Mean
Squared Error and R2. Bold means statistically significant at the 10% or lower.

25 size and book-to-market portfolios

Constant λ
(6)
mkts λ

(6)
smb λ

(6)
hml λ

(6)
rmw λ

(6)
cma RMSE R2

0.868 -0.730 -0.430 0.029 1.756 0.962 0.112 0.74

(0.289) (2.696) (0.814) (2.354) (1.042) (4.223)

5.2 Bond Spectral Models

As an extension, we perform the same spectral methodology to bond factor models. The estim-

ation procedure regarding the state variables and Wold innovations is the same. We empirically

evaluate two portfolios, report pricing abilities for a larger set of portfolios and decompose the

multifactor BBW model.

5.2.1 Empirical Evaluation of the Beta-Representation

What follows firsty is the empirical evaluation of two bond portfolios, one based on long maturity

bonds from the highest quintile and one based on short maturity bonds from the lowest quintile

(as constructed by Dickerson et al. (2023)). The simple regression of excess returns on excess

bond market returns gives:

Rshort,t = α+ 0.543 ∗Rm,t + ut, R2 = 0.77.

(t-stat = 26.30)

Rlong,t = α+ 1.492 ∗Rm,t + ut, R2 = 0.86,

(t-stat = 36.14)

The long maturity bond portfolio gives higher excess returns when exposed to the bond excess

market returns, due to higher risk exposure. Together with the results from Table 7, we see that

we can approximate the bond market effect of the equations above by multiplying the weights

with the spectral betas, and summing them. Table 7 reports low spectral covariances due to

low variance of returns overall. The bond market excess return only has a variance of 3.35% per

annum, which also makes that the spectral covariances are small. Just like the simple regression

estimate, the covariances of the long maturity bond portfolio are consistently larger than the

short maturity bond portfolio.
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Regarding the spectral betas, we see estimates that remain somewhat constant over the first

four components. After the fourth component, the effects drop. At j = 6, we see a spike in

exposure for the long maturity bond portfolio, and a declining exposure for the short maturity

bond portfolio.

Table 7: Maturity sorted bond portfolios: covariance and beta decomposition. This table shows estimation
results of the spectral covariances and the betas, after decomposition into six components (seven frequencies), for
a long and short maturity bond portfolio. Data is from August 2004 through December 2021.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j > 6
∑7

j=1 Ĉj

Spectral cov.

Short 0.867 0.611 0.156 0.326 0.113 0.151 0.199 2.422

Long 2.327 1.788 0.424 0.688 0.137 0.206 0.156 5.726

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j > 6
∑7

j=1 v̂
(j)β̂(j)

Spectral betas

Short 0.563 0.545 0.589 0.542 0.486 0.231 -0.198 0.607

weight 0.463 0.334 0.086 0.170 0.041 0.055 0.057

Long 1.512 1.667 1.479 1.125 0.303 0.568 0.190 1.631

weight 0.463 0.334 0.086 0.170 0.041 0.055 0.057

Table 8 reports results that are somewhat problematic. By summing high- and low frequency

components into two (with a cutoff at j = 4), we should get beta estimates that are the same

for simple and multiple regressions. For the short and long maturity bond portfolio, this is only

the case for the high frequency component. The low frequency component gives beta estimates

that differ tremendously. The estimation procedure from Bandi et al. (2021) should ensure that

components are orthogonal and are not correlated with each other, but this does not hold for

the maturity bond portfolios. The results from Table 8 make us conclude that due to potential

correlation among spectral components, we should be cautious when interpreting their effects.

Table 8: Simple and multiple regressions for high- and low-frequency components of the maturity bond portfolios.
Check for the orthogonality property of the high- and low-frequency components for a long and short maturity
bond portfolio. The estimated betas in columns 1 and 2 should match the estimated betas in columns 3 and 4.
Data are from January 1967 through December 2022.

Simple regression Multiple regression

βLF βHF βLF βHF

Short 0.878 0.394 0.067 0.335

(53.354) (15.834) (1.705) (14.929)

Long 1.014 1.614 0.336 1.554

(49.278) (25.839) (2.684) (21.791)
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5.2.2 Cross-Sectional Pricing

Then, for the N = 32 bond portfolios from Dickerson et al. (2023), we also perform a cross-

sectional pricing analysis. We start with Figure 4, which shows us the excess bond market return,

together with the independent j = 6 business cycle bond market component. It becomes clear

that the business cycle component is a less volatile variant of the overall excess bond market

return and follows the declines around 2015 and the increase from 2019 onwards.

(a) Excess bond market return and the j = 6 market com-
ponent.

(b) The 6th ‘business cycle’ bond market component, es-
timated independently.

Figure 4: Time series of the excess bond market return and the sixth bond market component. Time series of
both the excess bond market return and the sole j = 6 ‘business cycle’ bond market component. Data are from
August 2004 through December 2021, but figure only depicts from 2011, due to the estimation period.

(a) j = 1 (b) j = 2 (c) j = 3

(d) j = 4 (e) j = 5 (f) j = 6

Figure 5: Spectral covariances for every component of 5 maturity sorted bond portfolios. The spectral covariances
belonging to each component (j = 1, . . . , 6), the five maturity sorted bond portfolios of Dickerson et al. (2023).
Data is from August 2004 until December 2021.

The 5 portfolios sorted on maturity are particularly interesting, because of large differences in

returns. The long maturity bond portfolios, as shown earlier in this section, have higher average

returns. When decomposed into 6 components, Figure 5 shows a shift towards lower maturities
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for the spectral covariances. Especially for the middle quintile, the spectral covariance turns out

to be the largest among the different maturities. This suggests that it moves most in line with

the business cycle bond market component, because it does not entail very extreme returns.

Table 9: Results of the two-pass Fama and MacBeth regression for the bond portfolios. In this table are the
results of the cross-sectional regression Re

i = λ0+λ(6)Ĉ(6)
i +ξi. Together with Fama and MacBeth (1973) standard

errors in parentheses, Kan et al. (2013) model misspecification-robust standard errors in braces, the Root Mean
Squared Error (RMSE), the Mean Absolute Percentage Error (MAPE) and the R2 with its standard error. Bold
means that the estimate is statistically significant at the 10% level or lower. Data are from August 2004 through
December 2021 from the N = 32 bond portfolios of Dickerson et al. (2023).

Constant λ(6) RMSE MAPE R2

Panel (a): 12 industry portfolios

0.317 1.111 0.564 0.463 0.68

(0.126) (0.944) (0.34)

{0.126} {1.920}
Panel (b): 10 credit spread portfolios

0.195 2.036 1.282 1.071 0.86

(0.105) (0.824) (0.09)

{0.112} {0.865}
Panel (c): 5 maturity portfolios

0.038 3.202 1.101 1.059 0.43

(0.084) (1.270) (0.57)

{0.251} {1.998}
Panel (d): 5 rating portfolios

0.172 2.124 0.353 0.278 0.98

(0.121) (0.918) (0.04)

{0.128} {0.963}

Table 9 reports the price of risk for the different bond portfolios estimated with the Fama and

MacBeth regression for the set of 12 industry portfolios, 10 credit spread portfolios, 5 maturity

portfolios, and 5 rating portfolios from Dickerson et al. (2023). The λ(6) estimate gives the

effect of the business cycle component on the mean excess return of every set of portfolios. The

business cycle component performs well in explaining the mean excess return. The constants are

close to zero, and the RMSE and MAPE, for especially the rating portfolios, are low. Exposure

to the business cycle component comes with an increase in mean excess return. The R2 of

every set of portfolios is high and has low standard errors, except for the 5 maturity portfolios.

The standard errors by Fama and MacBeth (1973) and by Kan et al. (2013) are on the high

side for the lambda estimates, but effects remain positive. We can conclude that the business

cycle component adds to economic interpretation when it comes to the cross-sectional pricing

of bonds. This is also explained by Table 12 in Appendix A, which tells us that the business

cycle component has relatively high explanatory power regarding beta risk, also compared to

other factor models (using the spectral bond CAPM and the regular bond CAPM as benchmark

models).

5.2.3 Multifactor Spectral Approach

Lastly, we propose a multifactor spectral approach for the BBW model from Bai et al. (2019). In

Figure 6, we report the business cycle components for each of the different factors of the BBW

model. It becomes clear that each of the factors show the same pattern as the business cycle
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component of the excess bond market return with slightly higher and lower volatility. Especially

LRF has higher volatility than the other factors.

Figure 6: Multifactor decomposition for bonds (the BBW model). The business cycle component for each of the
BBW factors from Bai et al. (2019): the bond market excess return, DRF, CRF and LRF. Data are from August
2004 through December 2021.

Looking at the cross-sectionally pricing abilities of the components in Table 10, we conclude

that the model performs well in explaining mean excess portfolio returns. Only the excess market

bond factor seems to be statistically insignificant, which can be explained with our results from

Table 2, which shows that most of the other factors are spanned by the excess bond market

factor. This seems to also be the case for the business cycle components. Exposure to LRF

seems to have a positive effect on the mean excess portfolio returns. With a low RMSE and a

high R2, a multifactor spectral approach results in good interpretation of business cycle effects.

Table 10: Results of the two-pass Fama and MacBeth regression for the multifactor bond model. The table
reports covariance risk for business cycle components of the BBW model with the 32 bond portfolios of Dickerson
et al. (2023)) together with standard errors in parentheses, the Root Mean Squared Error and R2. Bold means
statistically significant at the 10% or lower.

32 bond portfolios

Constant λ
(6)
mktb λ

(6)
drf λ

(6)
crf λ

(6)
lrf RMSE R2

0.236 1.782 -17.268 -4.608 35.131 0.099 0.78

(0.034) (2.166) (7.549) (1.209) (10.122)

5.3 Comparison Stock vs. Bond Spectral Models

Concluding this section, we compare the spectral analysis of the stock factor models with the

spectral analysis of the bond factor models. Regarding the empirical evaluation of two portfolios,

we obtain similar results, as we come close to beta estimates of each of the simple regressions.

The smaller spectral covariances that are obtained for the bond portfolios are caused by the

smaller variance that is in the excess returns of those portfolios. In both applications, we see

that the low frequency components are not fully orthogonal, which is mostly the case for the

bond spectral components. This can be due to our restriction of zero Granger-causality or due

to a misspecification that follows from undisclosed decisions by Bandi et al. (2021). We can

conclude, however, that small changes in the estimation procedure can lead to large differences

in the low frequency components. Overall, it seems that our spectral approach and the state
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variables are a better fit for the spectral bond CAPM, as the Fama and MacBeth regressions

from Table 9 perform better than the spectral stock CAPM in Table 5. We report constants that

are closer to 0, positive and stable prices of risk, and larger values of the R2. Then, regarding

the multifactor spectral decomposition, we see that the BBW model performs better than the

Fama-French five-factor model. Even though in Figure 10 in Appendix A, the Fama-French

five-factor model is closer to the mean-variance frontier, the business cycle decomposition of the

BBW model, results in pricing effects that are economically easier to interpret.

6 Conclusion

In this research paper, we set out to use the spectral methodology as proposed by Bandi et al.

(2021) to obtain frequency-specific effects of factor models. This is done, by moving from a

regular Wold representation to an extended Wold representation using Haar wavelet filters. The

spectral components that follow from the procedure cover the effects of cycles of different lengths

and should be orthogonal. The models are not forced to have equal risk among frequencies, but

can have varying effects. This adds to the interpretation of the models, especially, when business

cycle components (with lengths between 32 and 64 months) are studied.

We try to replicate the results of Bandi et al. (2021), and extend their research using more

recent data, and the spectral decomposition of bond (multi)factor models. Whereas Bandi et al.

(2021) find business cycle components of the excess stock market return that are capable of pri-

cing different sets of portfolios effectively, we find business cycle components in the stock context

that perform significantly worse and are not fully orthogonal. This is likely attributable to the

following: (1) Data on returns and state variables differ from their description, (2) their pro-

posed restriction of no Granger-causality is not in their code, and (3) low-frequency components

change rapidly with small changes in the estimation procedure. Model misspecification seems to

be the problem here, as the factors are chosen empirically and lack theoretical foundation. The

spectral approach works well for the bond case, as the business cycle component of the bond

CAPM can price different portfolios from Dickerson et al. (2023) relatively well. Also, the spec-

tral multifactor BBW model gives interpretable results, but orthogonality still remains an issue.

Bandi et al. (2021) underline that their research is purely methodological and needs adjustment

of tuning parameters. This is not ideal for investors that seek models that are applicable to a

variety of cases. But, spectral factor models with effects of low-frequency components that are

easy to grasp and without too many factors, can decrease rebalancing costs. From our results

and an investor viewpoint, we can conclude that using our methodology, the bond CAPM can

benefit from a spectral approach, as pricing abilities are well and business cycle effects can be

distinguished. The multifactor BBW model can also benefit, but needs more parameter tuning.

For future research, we also propose that more test assets and factor models should be

evaluated. It would be valuable to increase the small sample size of the bond portfolios and do

research on what the exact tuning of parameters should be, depending on the assets, factors and

state variables. Furthermore, we deem Principal Component Analysis (PCA) to be relevant, as

it can rule out orthogonality issues of the spectral components. Lastly, different Least Squares

estimation methods, such as GLS, can be considered when using Fama MacBeth regressions in

the spectral context.
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A Extra Tables and Figures

(a) Average returns (b) Pricing errors

Figure 7: Average returns and pricing errors for the 25 book-to-market and size portfolios. The figures plot the
average returns of the 25 book-to-market and size portfolios of Fama-French and the pricing errors of a spectral
CAPM model that uses j = 6 as a cutoff. Data is from January 1967 through December 2022.

Table 11: Differences between the R2 of the stock (spectral) factor models. The difference between the R2 (of
the second-pass regression) for the spectral factor model as a benchmark model and the CAPM as a benchmark
model. Data is from January 1967 through December 2022. The portfolios are the same as in Table 5, excluding
the 10 duration portfolios of Weber (2018).

Panel (a): Spectral factor model vs. alternative models

Benchmark model (1) (2) (3) (4) (5)

Spectral factor model versus 7 freq. CAPM FF3 FF5 HXZ

25 size-B/M portfolios -0.599 -0.040 -0.598 -0.692 -0.671

25 size-OP portfolios -0.833 0.010 -0.593 -0.896 -0.902

25 size-inv portfolios -0.637 -0.018 -0.650 -0.654 -0.661

24 portfolios -0.346 -0.021 -0.499 -0.657 -0.670

48 portfolios -0.405 -0.157 -0.331 -0.545 -0.578

Panel (b): CAPM vs. alternative multifactor models

CAPM versus FF3 FF5 HXZ

25 size-B/M portfolios -0.559 -0.652 -0.632

25 size-OP portfolios -0.595 -0.897 -0.902

25 size-inv portfolios -0.633 -0.637 -0.644

24 portfolios -0.477 -0.635 -0.648

48 portfolios -0.174 -0.388 -0.421

(a) Average returns (b) Pricing errors

Figure 8: Average returns and pricing errors for the 5 maturity sorted bond portfolios. The figures plot the
average returns of the 5 maturity sorted bond portfolios (from Dickerson et al. (2023)) and the pricing errors of
a spectral bond CAPM model that uses j = 6 as a cutoff. Data is from August 2004 through December 2021.
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Table 12: Differences between the R2 of the bond (spectral) factor models. The difference between the R2 (of
the second-pass regression) for the spectral factor model as a benchmark model and the CAPM as a benchmark
model. Data is from August 2004 through December 2021. The portfolios are from Dickerson et al. (2023).

Panel (a): Spectral factor model vs. alternative models

Benchmark model (1) (2) (3) (4) (5)

Spectral factor model versus 7 freq. CAPMB BBW DEFTERM HKM

32 bond portfolios -0.225 -0.178 -0.208 -0.145 -0.161

Panel (b): CAPM vs. alternative multifactor models

CAPMB versus BBW DEFTERM HKM

32 bond portfolios -0.030 0.033 0.017

Table 13: Results of the two-pass Fama and MacBeth regression with data and code from Bandi et al. (2021).

In this table are the results of the cross-sectional regression Re
i = λ0 +λ(6)Ĉ(6)

i + ξi using the code and data from
Bandi et al. (2021) from panel a and e. Together with Fama and MacBeth (1973) standard errors in parentheses,
Kan et al. (2013) model misspecification-robust standard errors in braces, the Root Mean Squared Error (RMSE),
the Mean Absolute Percentage Error (MAPE) and the R2 with its standard error. Bold means that the estimate
is statistically significant at the 10% level or lower. Data are from January 1967 through December 2018 (June
2014 for the duration portfolios).

Constant λ(6) RMSE MAPE R2

Panel (a): 25 size and book-to-market portfolios

0.109 3.039 1.593 1.087 0.52

(0.245) (0.825) (0.23)

{0.426} {1.478}
Panel (b): 25 size and profitability portfolios

0.621 2.611 1.181 0.907 0.64

(0.215) (0.806) (0.21)

{0.360} {1.192}
Panel (c): 25 size and investment portfolios

0.727 2.221 1.864 1.276 0.27

(0.210) (0.930) (0.26)

{0.305} {1.442}
Panel (d): 24 portfolios

0.601 2.222 2.569 2.036 0.27

(0.185) (0.0.710) (0.22)

{0.315} {0.1.324}
Panel (e): 48 portfolios

0.535 3.557 1.415 1.214 0.61

(0.249) (0.920) (0.21)

{0.532} {2.048}
Panel (f): 10 duration portfolios

0.218 5.746 1.539 1.204 0.84

(0.420) (1.161) (0.15)

{1.183} {2.885}
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Figure 9: Components of the 25 size and book-to-market portfolios of Fama-French. Figure that follows from the
code of Bandi et al. (2021) on the six components of the 25 size and book-to-market portfolios of Fama-French.
Data is from January 1967 through December 2018.

(a) MSTD frontier and stock factor models. (b) MSTD frontier and bond factor models.

Figure 10: Mean-standard deviation frontier and maximum Sharpe ratios for stocks and bonds. Right figure is
from Dickerson et al. (2023), left figure is with data of Bandi et al. (2021). The figures plot the mean-standard
deviation frontier and maximum Sharpe ratios for stocks and bonds. Figure on the left shows the MSTD frontier
for the 25 size and book-to-market portfolios of Fama-French, the maximum Sharpe ratio of the stock CAPM
and the maximum Sharpe ratio of optimally combining the Fama-French five-factors (data from January 1967
through December 2022). Figure on the right shows the MSTD frontier for the 32 portfolios of Dickerson et al.
(2023), the maximum Sharpe ratio of the bond CAPM and the maximum Sharpe ratio of optimally combining
the BBW five-factors (data from August 2004 through December 2021).
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B Derivation of the Companion Matrix

We follow the notation from Section 3 and we define the time series vector as xt = (yt, x̃
T
t )

T ∈
Rk, with yt ∈ R and x̃t ∈ Rk−1. With the assumption that the whole process follows a VAR(p)

process, we can write it as follows, just like Bandi et al. (2021) do:

yt = ay +A1,yYt−1 +A2,y · X̃t−1 + ϵ1t , (16)

x̃t = ax +A1,xYt−1 +A2,x · X̃t−1 + ϵ
2
t , (17)

where Yt−1 = (yt−1, . . . , yt−p)
T and X̃t−1 = {x̃T

t−1, . . . , x̃
T
t−p}T . Also, (·) denotes the element-

by-element inner product, and A2,y and A2,x are of size 1× p and k × p. We set A1,x = 0, due

to restricted Granger causality. Then, by construction:

Xt = AXt−1 +Ut, (18)

where Xt = (xt
T , . . . ,xt−p+1

T )T (size kp×1), Xt−1 = (xt−1
T , . . . ,xt−p

T )T (size kp×1), and

Ut = (ϵt
T , 0, . . . , 0)T (size kp× 1) with ϵt = ((ϵ1t )

T , (ϵ2t )
T )T . Then, the companion matrix A is

of size kp× kp, and we can conclude that:

A =



A1 A2 . . . Ap−1 Ap

Ik O . . . O O

O Ik . . . O O
...

...
. . .

...
...

O O . . . Ik O


, (19)

where Ik and O are k × k identity and zero matrices respectively. Using Equation 16 and 17,

we know that every matrix Ai (k× k), due to the restricted Granger-causality, looks as follows:

Ai =


ai,11 ai,12 . . . ai,1k

0 ai,22 . . . ai,2k
...

...
. . .

...

0 ai,k2 . . . ai,kk

 . (20)
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C Programming Code

In this section, I will explain what the zip file with my code and data consists of, which parts I

have retrieved and which parts I have written myself. Important to note is that every piece of

code only needs to be run once and in Matlab (preferably R2023a). The zip file consists of two

folders:

1. The first folder called ‘replication package bandi2021’ consists of the replication pack-

age that F. Bandi has sent me and my fellow students. This folder contains data on

the portfolio returns, factor models and state variables (‘dataBCLT.mat’ and ‘dataB-

CLThxz.mat’), that he has used for his paper Bandi et al. (2021). These files are re-

spectively for ‘mainT4PanelA.m’ and ‘mainT4PanelE.m’. This corresponds to the code

for Figure 9, Table 13 panel (a) and (e) in my paper and Table 4 panel (a) and (e) in

Bandi et al. (2021). I used this code and my own data (‘data bandi.xlsx’) for the other

panels in Table 13 of which the outcomes follow when running the file ‘replicate4.m’.

2. The second folder ‘own research’ is the folder that consists of the code and data for the

biggest part of my research. The data is in two separate files: (1) ‘data bandi.xlsx’,

which I have gathered myself as described in the data section. It contains data on the

state variables ‘DataVAR’, the portfolio returns ‘Value growth’ through ‘10PF Weber’

and the stock factor models ‘FamaFrench3’, ‘FamaFrench5’ and ‘FourFactorModel’ for

the period of January 1967 through December 2022. Only the 10 duration portfolios

reach until August 2014. (2) The second data file is ‘data dickerson.xlsx’ which con-

tains the data from Dickerson et al. (2023), which is completely retrieved through https:

//data.mendeley.com/datasets/n66rp59tr7/1. It contains monthly data on the 32

bond portfolio returns, and the traded factors for the period of January 2004 through

December 2021. Then, the files in the folder ‘LibraryKRS’ are from the replication pack-

age of Bandi et al. (2021) above, and so are the files ‘ComputeMVWoldCOmponents-

FromMA.m’, ‘ComputeWoldComponentsFromVAR.m’ (to which I added the code snippet

from Appendix D) and ‘RedundantHaarlso.m’. These are all used to get the Wold de-

composition from a factor model. The files ‘csrgl.m’, ‘csrw.m’, ‘grs.m’, ‘nested r2.m’,

‘nested.m’, ‘nonnested r2.m’, ‘nonnested.m’ and ‘nw.m’ are also retrieved from Dickerson

et al. (2023) through the url above. They are used for the summary statistical analysis

of the factor (models). The other files have been written by myself: ‘ComputeCovari-

ances.m’, ‘ComputeCovariancesBonds.m’, ‘replication.m’, ‘extension.m’, ‘frontier.m’, and

‘summarystatistics.m’. ‘frontier.m’ and ‘summarystatistics.m’ are based on files from Dick-

erson et al. (2023) to get the mean variance frontier and summary statistics of the factor

models, and contain parts of their code. ‘replication.m’ contains the code used for pricing

risk from the replication package of Bandi et al. (2021). Running ‘replication.m’ results

in Table 3, Table 4, Figure 1, Figure 2, Table 5, Figure 7, and Table 11. Running ‘exten-

sion.m’ results in Table 1, Table 2, Figure 3, Table 6, Table 7, Table 8, Figure 4, Figure

5, Table 9, Figure 6, Table 10, Figure 8, Table 12, and Figure 10.
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D Differences with Bandi et al. (2021)

In this Section, I will highlight the important differences in code and data with Bandi et al.

(2021). Important to note is that the replication package of Bandi et al. (2021) only contains

the code for my Table 13 panel (a) and (e), and their Table 4 panel (a) and (e). The rest is

written by myself.

Firstly, I followed their description on obtaining the data, but it becomes apparent that the

data on the state variables differs. This can be seen in Table 14 and Table 15. Also, even when

following their description, returns data differ. This can be seen from the files in the replication

package enclosed with this research, by comparing the data from the ‘data bandi.xlsx’ file with

the return data in their replication package.

Table 14: Summary statistics for our state variables. Summary statistics of the state variables that we use in the
VAR-estimation: The yield spread between long-term and short-term bonds (TY), the market’s price-dividend
ratio (PE) and the small-stock value spread (VS). Data are monthly from January 1967 through December 2022.

TY PE VS

Mean 0.795 6.102 1.615

Minimum -2.010 5.234 1.283

Maximum 2.840 6.978 2.206

SD 0.896 0.394 0.184

Table 15: Summary statistics for the state variables of Bandi et al. (2021). Summary statistics of the state
variables that Bandi et al. (2021) use in the VAR-estimation: The yield spread between long-term and short-term
bonds (TY), the market’s price-dividend ratio (PE) and the small-stock value spread (VS). Data are monthly
from January 1967 through December 2018.

TY PE VS

Mean 1.938 3.647 1.478

Minimum -3.650 2.843 1.162

Maximum 4.550 4.546 1.957

SD 1.469 0.388 0.167

Another difference is that I structure the market components together with the portfolio

components, and then use those when estimating the covariances, the weights and the spec-

tral betas. Another option, that Bandi et al. (2021) do not expand on but maybe implement

at times, is to decompose the market components independently from the excess portfolio re-

turns. Lastly, a very important difference is that I was unable to find where in their code,

Bandi et al. (2021) implement the restriction of no Granger-causality from Section 3.1. In my

‘ComputeWoldComponentsFromVAR.m’ file, I implement this as follows:

Mdl = varm(nvars , nlags);

for i = 1: nlags

Mdl.AR{i}(2: nvars , 1) = 0;

end

VAR_p_model = estimate(Mdl , z);

const = VAR_p_model.Constant;

betaVAR = [const]’;

for i = 1: nlags

betaVAR = [betaVAR; VAR_p_model.AR{1,i}’];

end
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