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Abstract

In this paper, investigated is whether (Realized) GARCH option pricing models are able to price
the CBOE Volatility Index (VIX) at different time horizons. Firstly, the results of Hao and Zhang
(2013) are replicated, where the implied VIX is calculated under the locally risk-neutral valuation
relationship. The same findings are reported, wherein GARCH models are unable to capture the vari-
ance risk premium. Secondly, this research is extended by using an exponentially affine stochastic
discount factor for the Realized GARCH model to price the VIX at a nine (VIX9D) and one (VIX1D)
day time horizon. The reported results show that the Realized GARCH option pricing model out-
performs the GARCH option pricing model for the VIX9D when the CBOE VIX9D is included in
estimation. The Realized GARCH option pricing model does not show major fitting improvements
regarding the VIX1D, but its coefficients are not distorted to fit the CBOE VIX1D as is for the
GARCH model.

1 Introduction

In the field of financial markets, the variance risk premium is known to serve as a measure for the

compensation investors require for bearing the risk of fluctuating volatility. This risk, known as volatility

risk, was introduced, since a lot of research had shown that volatility is not constant over time. For the

pricing of financial options, it meant that the Black-Scholes model by Black and Scholes (1973) was

inappropriate for capturing the variance risk premium. Instead, stochastic volatility models and multiple

GARCH models would become more adequate.

As most risks in the investing world require a premium, it is captivating to research the price of this

volatility risk. Logically, given that volatility risk is adequately compensated in financial markets, the

premium that is demanded from investors should be reflected in the prices of options, which are heavily

dependent on expected volatility. In the literature, this is often measured by the difference between the

realized variance and (risk-neutral) expected or implied variance, which can be synthetically constructed

using a portfolio of options (Carr & Wu, 2009).

The existence of the variance risk premium has been studied from multiple perspectives. One of the

first questions that arises is the sign of the risk premium. The negative correlation between the returns of

indices and its corresponding volatility implies a negative variance risk premium. This is confirmed by

Bakshi and Kapadia (2003), who found evidence of a negative risk premium by examining the statistical

characteristics of portfolios that implement delta-hedging. Furthermore, Carr and Wu (2009) constructed

synthetic option portfolios to capture the volatility risk premium of multiple indices and showed that the

risk premium is negative on average.

The forces and possible implementations of the volatility risk premium are researched more recently.

Todorov (2010) investigated the forces behind the temporal variations in the volatility risk premium

over time. He found that the time-varying changes are mostly driven by large market jumps. Carr and

Wu (2016) and Bollerslev, Gibson and Zhou (2011) show that the extracted variance risk premium has

significant predictive power of future index returns. Moreover, Prokopczuk and Simen (2014) find that

the (adjusted) volatility risk premium outperforms all alternative models in forecasting volatility.

In this paper, it is investigated whether multiple GARCH option pricing models can adequately cap-

ture the volatility risk premium. For a long time, GARCH models have been widely used in financial

applications, as it is able to adequately capture the stylized facts of financial time series (i.e. volatility

clustering and a high kurtosis). Besides the simple univariate GARCH model (Engle & Bollerslev, 1986),
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other more sophisticated models are also implemented, such as the TGARCH (Glosten, Jagannathan &

Runkle, 1993), AGARCH (Engle & Ng, 1993) and Realized GARCH (Hansen, Huang & Shek, 2012).

Using GARCH models in the pricing of options under a locally risk-neutral valuation relationship

(LRNVR) was introduced by Duan (1995). Under certain assumptions on the utility function, he con-

structed an equilibrium equation with which options can be priced. One of the principal differences with

the regular GARCH models is the inclusion of the equity risk premium in the function of the option

price. In this paper, the concept of the LRNVR is utilized in capturing the volatility risk premium.

Since the publication of Duan (1995), the LRNVR has been further investigated in the option pricing

literature. Hao and Zhang (2013) studied the difference between the GARCH implied VIX and the CBOE

VIX. They found that the GARCH implied VIX is consistently lower compared to the CBOE VIX when

using just the asset returns. When the CBOE VIX is included in estimation1, the GARCH implied VIX

still cannot capture the CBOE VIX from a statistical perspective. Following this paper, Zhang and Zhang

(2020) showed that using a modified version of the LRNVR2 improves the fitting of the GARCH implied

VIX on the CBOE VIX substantially.

Other alternatives of the GARCH option pricing model under the LRNVR is a GARCH model

with a variance-dependent pricing kernel that allows for a variance premium, which was introduced

by Christoffersen, Heston and Jacobs (2013). Furthermore, option pricing models which include the

realized variance have also shown its potential in recent literature (Huang, Wang & Hansen, 2017). In

fact, Hansen, Huang, Tong and Wang (2024) showed that the Realized GARCH model outperforms all

other GARCH models in capturing the variance risk premium.

In this paper, the results of Hao and Zhang (2013) are replicated first. The main research question

therein entails whether the GARCH implied VIX under the LRNVR is able to fit the CBOE VIX. This

is investigated using index returns, but also the CBOE VIX itself. The relevance of this research is

mostly scientific, as investigating which methods and models prices the volatility risk premium best is a

captivating pursuit. There are no predictions made in this article and often ex-post information is used

in estimation, making it not useful for practical applications. As the research of Hao and Zhang (2013)

stated that the GARCH implied VIX under LRNVR is not able to capture the variance risk premium

adequately, there is still some room for additional research in this sphere.

Besides replicating the results of Hao and Zhang (2013), this research extends the current literature

by trying to capture the variance risk premium at different time horizons. Specifically, the more recent

variants of the VIX, the VIX9D and VIX1D, are investigated. These indices contain the expected volat-

ility for a shorter time period, and have not been researched often in the literature yet. Therefore, in

this paper, it is also studied whether certain GARCH option pricing models are able to price the CBOE

VIX9D and VIX1D. As the time horizons are shorter, it could be interesting to see whether realized meas-

ures are able to improve the pricing performance through the Realized GARCH option pricing model.

Hansen et al. (2024) already found that the Realized GARCH model outperforms other GARCH models

for the regular VIX, but in this paper, it is researched whether this is also the case for the VIX at shorter

time horizons.

Concerning the VIX9D and VIX1D, literature has shown that the VIX term structure could be used
1The CBOE VIX is included in estimation through the form of a constructed measurement error between the implied VIX

and CBOE VIX. More on this in Section 3
2The main modification in this model entails that the conditional variances under different measures (P and Q, more on this

in Section 3.) are constructed to be different.
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for predicting future stock returns (Aharon & Dimpfl, 2022) and variance risk premia (Johnson, 2017).

Moreover, the VIX indices at a lower time horizon have also been used in forecasting the regular VIX. For

example, the VIX9D could be used as a lower bound for the normal VIX (Jiang & Lazar, 2022). Lastly,

there has been some skepticism surrounding the VIX1D, because it has a highly predictable intraday

pattern and day-of-the-week effect, which coincides with an overnight bias (Albers & Kestner, 2024).

This is something to keep in mind when determining which daily return format is used (close-to-close,

open-to-close etc.). In this paper, this is tackled by only using close-to-close data.

The reported results show that, under the LRNVR, multiple GARCH models are unable to capture

the variance risk premium when only returns are used. When the CBOE VIX is used in estimation, the

coefficient representing the equity risk premium is distorted to fit the CBOE VIX. In regard to the VIX at

lower time horizons, we find that the Realized GARCH options pricing model outperforms the GARCH

option pricing model for modelling the VIX9D. Regarding the VIX1D, the Realized GARCH model

does not show substantial fitting improvements, but its coefficients are not distorted as is for the GARCH

model.

This paper is structured as follows. In Section 2, the data, its sources and its time periods are men-

tioned. This is followed by the financial framework in Section 3. The numerical results are given in

Section 4 and the paper is concluded in Section 5. In the Appendix, additions to the financial framework

and supplementary results are shown, together with an explanation of the used programming code.

2 CBOE VIX Indices

In this section, we shortly discuss the CBOE VIX indices that measure the expected (annualized) volatil-

ity implied by option prices. The VIX30D (often referred to as the regular VIX) was the first index solely

based on volatility and has become one of the principal measures of market sentiment. As the name says,

this index reflects the market’s expectation of volatility for the next 30 calendar days (which equals ap-

proximately 21 trading days). VIX2 reflects the variance swap rate with a duration of 30 calendar days,

which can be interpreted as the risk-neutral expected variance. After the introduction of the VIX30D,

various alternative VIX indices were introduced that cover a different time horizon. These include the

VIX1D, VIX9D and VIX3M, which entail the expected implied volatility for the next day, nine days and

three months, respectively.

In this paper, we will make use of CBOE VIX data during different time periods. This is done,

because of the fact that these indices were not created at the same time. Therefore, the data can be divided

into three sections, each corresponding to the VIX30D, VIX9D and VIX1D, respectively. Moreover,

besides the different time periods, other time series from different sources are used per time period.

2.1 VIX30D

The VIX30D (often referred to as just ’VIX’) is the expected volatility for the next 30 calendar days. The

data for this index consists of three different time series. Firstly, the daily closing prices of the S&P 500

index, which are retrieved from CRSP. Secondly, the daily CBOE VIX time series (again closing prices)

will be implemented. This data is obtained from the CBOE website. Thirdly, the daily 3-month U.S.

treasury bill yields are used to serve as the risk-free rate. The yields are taken from the Federal Reserve

website (FRED) and are transformed to be de-annualized. For all these time series, the period ranges
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from January 2nd 1990 to August 10th 2009.

2.2 VIX9D

The VIX9D is the expected volatility for the next 9 calendar days. This index is newer compared to the

normal VIX, and therefore the period for this index runs from January 3th 2011 to November 24th 2021.

The retrieved data for this period includes the CBOE VIX9D, the daily closing prices of the S&P 500

index and the risk-free rates. Additionally, for the Realized GARCH model, the daily realized variances

of the S&P 500 at a 5-minute frequency are used. These are obtained from the Realized Library at the

Oxford-Man Institute.

2.3 VIX1D

The VIX1D is the expected volatility for the next trading day. This index was introduced in May 2022.

Because of that, the period for this index runs from May 16th 2022 to May 31st 2024. Again, the

implemented time series are the CBOE VIX1D, the S&P 500 prices, the risk-free rates and the 5-minute

realized variance. For this case, the realized variance is retrieved from the site of the University of

Chicago Booth School of Business (Dacheng Xiu)3.

3 Financial Framework

In this section, the models and the corresponding methods are discussed. As mentioned in Section 1,

these will be largely identical to that of Hao and Zhang (2013). Specifically, Sections 3.1 to 3.3 serve to

explain the methods that try to replicate the results of Hao and Zhang (2013), while Sections 3.4 and 3.5

extends this research.

3.1 GARCH option pricing measures

For the GARCH option pricing models, two measures are considered, namely the physical measure P

and the risk-neutral measure Q (LRNVR of Duan (1995)). Under the physical measure P , the returns

are modeled to have a conditional lognormal distribution:

ln
Xt

Xt−1
= rt + λ

√
ht −

1

2
ht + ϵt, (1)

where Xt is the closing price of the asset at day t, rt the risk-free rate and λ is the unit risk premium.

Moreover, ϵ is assumed to follow a GARCH(p,q) (Engle & Bollerslev, 1986) process:

ht = α0 +

q∑
i=1

αiϵ
2
t−i +

p∑
j=1

βjht−j , (2)

ϵt|ϕt−1,∼ N(0, ht) (3)

where ϕt is the information set up to day t. This model is largely similar to a regular GARCH(p,q)

model, except that the risk premium and volatility is included in the return equation. Under measure P ,
3This data can be found at https://dachxiu.chicagobooth.edu/#research
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the GARCH option pricing using only returns is implemented.

Under the measure Q (LRNVR), certain assumptions are made on the utility function, resulting in

the following risk-neutral relationship:

ln
Xt

Xt−1
= rt −

1

2
ht + ξt, (4)

ht = α0 +

q∑
i=1

αi(ξt−i − λ
√
ht−i)

2 +

p∑
j=1

βjht−j , (5)

ξt|ϕt−1,∼ N(0, ht). (6)

This risk-neutral relationship is utilized when the VIX is used in estimation, because the VIX holds

forward-looking expectations.

3.2 GARCH implied VIX

The VIX contains the volatility expectations of the S&P 500 for the following 21 trading days. Mathem-

atically, this can be written as (
V IXt

100

)2

= EQ
t

[
1

τ

∫ t+τ

t
h̃s ds

]
, (7)

where h̃s is the annualized variance of the S&P 500 and τ is the amount of trading days, which in this

case is 21. In this paper, the GARCH implied VIX is computed as the expected arithmetic average of the

variance: (
V IXt

100

)2

=
1

n

n∑
k=1

EQ
t

[
h̃t+ τk

n

]
. (8)

Because daily data is used, the implied VIX equations looks as follows under measure Q.

V ixt =
1

n

n∑
k=1

E[ht+k], (9)

where n is the amount of calendar or trading days and V ixt = 1
252(

V IXt
100 )2 is a proxy for the daily VIX.

For the calculation of the expected conditional mean of future variance, the square-root stochastic

autoregressive volatility (SR-SARV) model is implemented (Meddahi & Renault, 2004). This is defined

as follows.

Theorem 1 A stationary process {ϵt, t ∈ Z} is defined as a SR-SARV(p) process if:

1. ϵt is a martingale difference process with respect to the information set Γt−1, i.e. E[ϵt|Γt−1] = 0,

and

2. the conditional variance process ht of ϵt given Γt−1 is a marginalization of a stationary VAR(1)

model with dimension p:

ht = var[ϵt|Γt−1] = e′Ht, (10)

Ht = Ω+ ΛHt−1 + Vt, with E[Vt|Γt−1] = 0, (11)
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where e ∈ Rp, Ω ∈ Rp and all eigenvalues of Λ have a modulus less than one.

Then, given that the S&P 500 is a SR-SARV(1) process under the LRNVR, the implied VIX can be

defined as follows (proof can be found in Hao and Zhang (2013)).

V ixt = ζ + ψht, where (12)

ζ =
Ω

1− Λ
(1− ψ), (13)

ψ =
1− Λn

n(1− Λ)
. (14)

This expression is obtained by writing out the expectation of volatility (E[ht+k]) under measure Q and

using the SR-SARV(1) characteristics as described in Theorem 1. As shown in the papers of Hao and

Zhang (2013) and Meddahi and Renault (2004), all different GARCH models are variants of the SR-

SARV model. For the TGARCH and AGARCH models, they take the following form. (GARCH model

specification is already described in Equation 2 and 5).

TGARCH(1,1) :

Physical measure : ht = α0 + α1ϵ
2
t−1 + θϵ2t−11(ϵt−1 < 0) + βht−1, (15)

LRNVR : ht = α0 + (ξt−1 − λ
√
ht−1)

2
[
α1 + θ1(ξt−1 − λ

√
ht−1)

]
+ βht−1. (16)

AGARCH(1,1) :

Physical measure : ht = α0 + α1(ϵt−1 − κ
√
ht−1)

2 + βht−1, (17)

LRNVR : ht = α0 + α1(ξt−1 − λ
√
ht−1 − κ

√
ht−1)

2 + βht−1. (18)

Using this specification, the daily GARCH implied VIX can be calculated linearly with the variance

of the previous period and the estimated GARCH coefficients. The exact formulas of the GARCH

implied VIX can be found in Appendix A. Moreover, the proof of how the GARCH models can be

modified to fulfill the SR-SARV characteristics can be found in the paper of Hao and Zhang (2013) and

Meddahi and Renault (2004).

3.3 Estimation under LRNVR

Estimation will be done in three different ways. In all methods, we make use of maximum likelihood.

The first estimation entails only the index returns (so not the VIX) under the physical measure P as in

Equation 2. The log-likelihood function for all different GARCH models is as follows.

ln LR = −T
2
ln(2π)− 1

2

T∑
t=1

{
ln(ht)+

[
ln(Xt/Xt−1)− rt − λ

√
ht +

1

2
ht

]2
/ht

}
, (19)

where ht is the iteratively updated variance process of the different GARCH models.

The second approach is based on the utilization of the returns combined with the market VIX, as

this could contain additional information about how the underlying return series evolves. As the return

innovation ϵt controls both the asset returns through Equation 1 and the GARCH implied VIX through

ht, we allow for a disparity between the market (CBOE) VIX and the GARCH implied VIX through an
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error term:

V IXCBOE = V IXIMP + ν, ν ∼ i.i.d.N(0, s2), (20)

where, variance s2 is estimated by ŝ2 = var(V IXCBOE−V IXIMP ). The log-likelihood for the market

VIX is then as follows.

ln LV = −T
2
ln(2πŝ2)− 1

2ŝ2

T∑
t=1

(V IXCBOE,t − V IXIMP,t)
2. (21)

To estimate the coefficients using both the returns and the market VIX, the joint likelihood function is

maximized, that is

ln LT = ln LR + ln LV . (22)

The third and last estimation involves just the CBOE VIX without the index returns (i.e. maximizing

ln LV ). Following all the estimations, the corresponding implied VIX is analyzed and tested in terms

of fitting of the CBOE VIX. Moreover, to start the variance processes, the first iteration is equal to the

variance of the index returns over the whole sample period. Lastly, all GARCH coefficients are estimated

under the corresponding stationary constraints:

GARCH(1,1) : α1(1 + λ2) + β < 1, (23)

TGARCH(1,1) : α1(1 + λ2) + β + θ

[
λ√
2π

exp−
λ2

2 +(1 + λ2)N(λ)

]
< 1, (24)

AGARCH(1,1) : α1

[
1 + (λ+ κ)2

]
+ β < 1. (25)

3.4 Realized GARCH

The GARCH models in the previous sections use only returns as input for its volatility modeling. How-

ever, by now it is well known that realized measures (realized variance in particular) are more accurate in

modeling volatility compared to asset returns. To make use of this fact in pricing the VIX, the Realized

GARCH framework is implemented. This model combines returns and realized measures, and therefore

offers a more flexible way of forecasting volatility. The Realized GARCH framework was introduced by

Hansen et al. (2012) and improved by Hansen and Huang (2016).

To keep it in the same context as the models in Section 3.2, this model is again approached under

two measures, namely the physical measure P and the risk-neutral measure Q. Moreover, the equity risk

premium is again represented by λ. The Realized GARCH model under the physical measure P looks

as follows (Hansen et al., 2024).

ln
Xt

Xt−1
= rt + λ

√
ht −

1

2
ht +

√
htzt, (26)

ln(ht+1) = α0 + β ln(ht) + τ(zt) + γσut, (27)

ln(pt) = ω + ϕ ln(ht) + δ(zt) + σut, (28)

where zt is the standardized return (i.e. ϵt/
√
ht) and assumed to be distributed standard normally (just

as ut). The functions τ(zt) = τ1z + τ2(z
2 − 1) and δ(zt) = δ1z + δ2(z

2 − 1) are so-called leverage

functions, that try to capture the correlation between returns and its volatility. Lastly, pt is the realized
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measure and σ represents the volatility of volatility.

Before moving on to the model under the risk-neutral measure Q, it is important to choose the right

way of relating this risk-neutral measure to the physical measure P . In the literature, there have been

two principal routes to take. Firstly, the LRNVR by Duan (1995), which is already used in Section 3.1

to 3.3. Secondly, the variance-dependent stochastic discount factor (SDF) by Christoffersen et al. (2013)

is another option. However, the model described above consists of a dual shock structure, zt and ut,

which makes the LRNVR and SDF unusable in this case. Instead, Hansen et al. (2024) propose the

exponentially affine SDF.

The stochastic process of this SDF, is defined by

Mt+1 =
exp(−λzt+1 − ζut+1)

EP
t

[
exp(−λzt+1 − ζut+1)

] = exp

{
− λzt+1 − ζut+1 −

1

2
(λ2 + ζ2)

}
, (29)

which satisfies the necessary condition of EP
t [Mt+1Xt+1] = EQ

t [Xt+1]. Essentially, this term Mt+1

links the physical measure to the risk-neutral measure. In addition, the moment generating function

under the risk-neutral measure Q can be described as

MGF (s1, s2) = EQ
t [exp(s1zt+1 + s2ut+1] = EP

t [Mt+1 exp(s1zt+1 + s2ut+1] (30)

= exp[−s1λ− s2ζ +
1

2
(s21 + s22)]. (31)

This function is equal to EP
t [exp(s1z

∗
t+1 + s2u

∗
t+1], with z∗t+1 = zt+1 + λ and u∗t+1 = ut+1 + ζ. Then,

the Realized GARCH model under measure Q looks as follows.

ln
Xt

Xt−1
= rt + λ

√
ht −

1

2
ht +

√
htz

∗
t , (32)

ln(ht+1) = α̃0 + β ln(ht) + τ̃(z∗t ) + γσu∗t , (33)

ln(pt) = ω̃ + ϕ ln(ht) + δ̃(z∗t ) + σu∗t , (34)

where α̃0 = α0− τ1λ+ τ2λ2−γσζ, τ̃(z∗t ) = z∗t (τ1−2τ2λ)+ τ2(z
2∗
t −1), ω̃ = ω− δ1λ+ δ2λ2−σζ

and δ̃(z∗t ) = z∗t (δ1 − 2δ2λ) + δ2(z
2∗
t − 1).

The estimation is done through Maximum Likelihood, and in the same manner as in the GARCH

models under LRNVR (Equations 19 to 22). For the Realized GARCH model, there are two shocks (zt
and ut), which causes there to be two likelihood functions, which are maximized under measure P :

ln LR = −T
2
ln(2π)− 1

2

T∑
t=1

{
ln(ht)+

[
ln(Xt/Xt−1)− rt − λ

√
1

2
ht

]2
/ht

}
, (35)

ln LX = −T
2
ln(2π)− 1

2

T∑
t=1

{
ln(σ2)+

[
ln (pt)− α0 − β ln (ht)− δ(zt)

]2
/σ2
}
. (36)

Besides these likelihoods, we also include a likelihood for the VIX pricing errors, which originates from

the same specification as in Equation 20. That likelihood looks as follows.

ln LV = −T
2
ln(2π)− 1

2

T∑
t=1

{
ln(s2) + (V IXCBOE,t − V IXIMP,t)

2/s2

}
. (37)
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Lastly, all these functions are combined in a total likelihood equation which will be maximized.

ln LT = ln LR + ln LX + ln LV . (38)

The coefficients are estimated under the stationary constraint |β| < 1. Moreover, λ, γ, σ, τ2, δ2 > 0 and

ζ, τ1, δ1 < 0 to ensure that the equity risk premium is positive and the volatility premium is negative.

3.5 Implied VIX formulas (VIX9D and VIX1D)

The Realized GARCH implied VIX formula that is needed in Equation 37 is largely provided by Hansen

et al. (2024). However, they studied whether the Realized GARCH option pricing model is able to

adequately price the VIX30D (often referred to as the regular VIX). In our paper, we extend this research

by incorporating a more recent version of the VIX, namely the VIX9D. This index has a lower time

horizon, making it more volatile and more dependent on realized measures. The Realized GARCH

implied VIX9D is given by (Hansen et al., 2024)

V ixRG
t =

1

7

[
ht+1 +

7∑
k=2

(
k−2∏
i=0

Fi

)
hβ

k−1

t+1

]
, (39)

where V ixRG
t is the daily proxy of the VIX9D andFi = (1−2βiτ2)

− 1
2 exp

{
βi(α̃0−τ2)+1

2β
2i
[

τ̃1
1−2βiτ2

+

γ2σ2
]}

. This equation is obtained by writing out the expectationEt[ht+k] under measureQ, while using

the variance process in Equation 33.

As a benchmark for this implied VIX9D, the regular univariate GARCH model under the LRNVR is

used. For this model, the implied VIX formula now is equal to

V ixt =
1

7

7∑
k=1

E[ht+k], (40)

which can be computed using the same specified VIX formulas as in the appendix, but with a different

time horizon.

Another VIX index is the VIX1D, which contains the expected volatility for just one day. The index

was introduced in 2022 and has been quite volatile on a daily basis. The calculation of the implied

VIX1D simplifies to V ixt = E[ht+1]. For the univariate GARCH model, this is given by

V ixt = Et[ht+1] = Et[α0 + α1ϵ
2
t + βht] = α̂0 + α̂1ϵ

2
t + β̂ht = ĥt+1, (41)

where the estimated coefficients are calculated using the known likelihood functions. Note that this one-

day-ahead expectation consists of only observable variables, which makes the inclusion of the Realized

GARCH model even more interesting. The Realized GARCH implied VIX1D can be retrieved in the

same manner as above, but using Equations 27 and 28.
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4 Numerical Results

In this section, the results of the coefficient estimations and the corresponding implied VIX are reported.

In addition, graphs of the CBOE VIX and implied VIX are shown to provide a visualization of the results.

All coding was done through the programming language MATLAB. Moreover, the used programming

code can be found as an attachment to this paper. Section 4.1 consists of the replication results of Hao

and Zhang (2013), while Section 4.2 and 4.3 extends the literature through the Realized GARCH option

pricing models for the VIX at lower time horizons.

4.1 GARCH models under LRNVR

The estimation results of the various GARCH models are given in Table 1. The coefficients are estimated

during the period January 2nd 1990 to August 10th 2009. Firstly, looking at the univariate GARCH(1,1)

model, it can be noted that λ, which represents the equity risk premium, increases substantially when

the VIX is used. It increases from 0.0534 (only returns) to 0.2065 (returns and VIX) to 0.7877 (only

VIX). Moreover, the coefficient β, representing the persistence of the conditional variance, also grows

from 0.9310 (only returns) to 0.9389 (only VIX) to 0.9500 (returns and VIX). The higher values for λ

and β when using the CBOE VIX both create a rise in the long-run variance of the SR-SARV(1) process

under measure Q, which will also be shown in Table 2. Lastly, in the GARCH model, all coefficients are

significant.

Regarding the TGARCH model, the patterns in the results are somewhat similar to those in the

GARCH model. Again, the equity risk premium λ increases from 0.0228 (only returns) to 0.0798 (returns

and VIX) to 0.4269 (only VIX). Furthermore, β increases as well. The coefficient θ, representing the

effect of negative return error terms on the variance, decreases from 0.1104 (only returns) to 0.0612

(returns and VIX) to 0.0432 (only VIX). This means that when the implied VIX is forced to fit the

CBOE VIX, the variance is less influenced by negative error terms, which is also exemplified by the

increase in α1. For the TGARCH model, all coefficients are significant.

Lastly, the estimations for AGARCH model show that its λ does not differ much between the case

when only returns are used (0.0154) and the case where both returns and VIX is used (0.0159). While

this value increases to 0.1998 when only the VIX is used, it is important to note that all equity premiums

in the AGARCH are not significantly different from zero. Moreover, there are substantial increases in β

when the VIX is used in estimation, but this is accompanied by a decrease in κ.

With these estimates of the coefficients, we can construct an implied VIX for all the different GARCH

models using either just returns, just the VIX or both. The results of those are shown in Table 2, where

they are contrasted to the CBOE VIX.

The first seven columns of Table 2 report certain statistical characteristics of the difference between

the CBOE VIX and an implied VIX by a certain GARCH model. It can be seen that, for all GARCH

models, the average difference (Mean Error) is substantially higher when only returns are used. This

implies that, on average, the implied VIX (only returns) is lower than the CBOE VIX, which can also

be seen in Figure 2. In the case of only returns, the TGARCH implied VIX performs worst with a mean

error of 3.764. Looking at the scenarios where the CBOE VIX is included in estimation, the mean error
4The values of the average differences for the case where only returns are used in estimation (3.46-3.76) are consistent with

the actual variance premium from empirical studies. This implies that GARCH option pricing models under measure P are not
able to capture this variance premium.
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α0 α1 β θ κ λ

GARCH

Returns 7.1036e−7
(1.6069e−7)

0.0637
(0.0065)

0.9310
(0.0069)

- - 0.0534
(0.0139)

VIX 1.7182e−6
(0.0397e−6)

0.0366
(0.0009)

0.9390
(0.0014)

- - 0.7868
(0.0296)

Both 1.6853e−6
(0.0471e−6)

0.0470
(0.0011)

0.9500
(0.0012)

- - 0.2065
(0.0113)

TGARCH

Returns 1.0808e−6
(0.1728e−6)

0.0018
(0.0049)

0.9317
(0.0069)

0.1104
(0.0120)

- 0.0228
(0.0125)

VIX 1.6192e−6
(0.0410e−6)

0.0043
(0.0024)

0.9524
(0.0017)

0.0432
(0.0032)

- 0.4269
(0.0403)

Both 1.5305e−6
(0.0410e−6)

0.0039
(0.0013)

0.9597
(0.0010)

0.0612
(0.0015)

- 0.0798
(0.0131)

AGARCH

Returns 1.1516e−6
(0.1962e−6)

0.0563
(0.0051)

0.8795
(0.0116)

- 0.9999
(0.0667)

0.0154
(0.0147)

VIX 1.7159e−6
(0.0380e−6)

0.0366
(0.0009)

0.9389
(0.0016)

- 0.5880
(0.0836)

0.1998
(0.8352)

Both 1.7111e−6
(0.0424e−6)

0.0392
(0.0009)

0.9352
(0.0017)

- 0.7689
(0.0331)

0.0159
(0.0135)

Table 1: Estimation results for multiple GARCH models using returns, VIX or both. The
meaning of the parameters can be found in the methodology and the standard errors are in
parentheses.

decreases to almost zero, which is not surprising, as within its estimation, the implied VIX is forced to

fit the CBOE VIX. These results are all similar among the different GARCH models.

The results in the remaining columns mostly result in the same conclusion. In the sixth column, a t-

test is performed to test whether the mean of the implied VIX and the mean of the CBOE VIX are equal.

The corresponding p-values are reported and for the cases where only returns are used in estimation, the

means are significantly different, while it is the opposite for the estimation with the VIX. However, the

correlation between the implied VIX and the CBOE VIX are consistent among all GARCH models and

all estimation inputs.

The reported values in the eight to last column entail the autocorrelations and higher moments of

the implied VIX. As a comparison, these characteristics are also reported for the CBOE VIX at the

bottom. For the univariate GARCH model, the autocorrelations are mostly overestimated, especially

when VIX is used in estimation. For the TGARCH and AGARCH model, the autocorrelations when

only returns are used in estimation are largely underestimated, while the autocorrelations with VIX being

included in estimation are again overestimated. Regarding the second moment (variance), it is noted that

for all models, including the VIX in estimation results in a underestimation of the variance. In the

case of only returns, the GARCH and AGARCH model overestimate the variance, while the TGARCH

model performs best. Lastly, the third and fourth moments (skewness and kurtosis) are substantially

overestimated in all models and estimation inputs, implying that these models cannot capture certain

stylized facts of the CBOE VIX.

In Figure 2 in Appendix B, the graphs of the implied VIX versus the CBOE VIX are shown for the

case with only returns, and the case with both returns and the VIX as estimation input. This visualization

confirms the previous results, as it is clear that, when only returns are used, the implied VIX suffers
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from underestimation. Conversely, the time series for the implied VIX using both returns and the VIX in

estimation, seem to have a decent fit with the CBOE VIX.

Combining all results, we see that, if the VIX data is not considered as estimation input, the implied

VIX is substantially lower than the CBOE VIX for all GARCH models. When the VIX is considered in

estimation, the implied VIX fits the CBOE VIX relatively well, but its estimated parameters are distorted

to fit the VIX. In particular, all GARCH models report an equity risk premium (i.e. λ) that is too

high when VIX data is considered. Moreover, none of the GARCH models seem to be able to fit the

higher moments and autocorrelations of the CBOE VIX adequately. This conclusion, as the estimated

coefficients and implied VIX results, is consistent with that of Hao and Zhang (2013).
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4.2 Realized GARCH implied VIX9D

After the successful replication of Hao and Zhang (2013), we extend the research with the Realized

GARCH implied VIX at lower time horizons. In this subsection, the results of the VIX9D are discussed.

The period regarding the reported values runs from January 3th 2011 to November 24th 2021. In Table

3, the estimated coefficients for the Realized GARCH and univariate GARCH models are shown. For

the Realized GARCH model, two cases are reported, namely the one that excludes the CBOE VIX9D in

estimation (i.e. maximizing ln LR and ln LX in Equation 38), and the one that includes it. Between

the two variants, most coefficients are similar, except for γ, ω and ζ, which are significantly different.

Moreover, it is noted that, on average, the standard errors are lower for the situation where VIX9D is

included in estimation.

Regarding the univariate GARCH model (serving as a benchmark), the equity risk premium λ is

substantially higher for the case where VIX9D is included. This pattern is consistent with the findings for

the regular VIX9D in Section 4.1. Furthermore, the persistence parameter β is relatively low compared

to other time periods, implying that there was less volatility clustering between January 3th 2011 and

November 24th 2021.
.

α0 α1 β λ τ1 τ2 δ1 δ2 γ ω ϕ σ ζ

RealGARCH

No VIX −0.69
(0.086)

- 0.99
(0.024)

0.06
(0.022)

−0.13
(0.015)

0.06
(0.005)

−0.17
(0.022)

0.11
(0.007)

0.12
(0.019)

−3.75
(1.039)

0.22
(0.16)

0.66
(0.011)

−5.13
(2.670)

Including VIX −0.71
(0.039)

- 0.99
(0.003)

0.06
(0.026)

−0.53
(0.052)

0.38
(0.015)

−0.16
(0.016)

0.12
(0.007)

2.84
(0.094)

−0.17
(0.016)

0.01
(0.001)

0.66
(0.009)

−0.02
(0.123)

GARCH

Returns 4.47e−6
(0.571e−6)

0.22
(0.021)

0.75
(0.020)

0.13
(0.018)

- - - - - - - - -

Including VIX 6.59e−6
(0.226e−6)

0.18
(0.005)

0.78
(0.006)

0.29
(0.015)

- - - - - - - - -

Table 3: Estimated coefficients for the (Realized) GARCH models for the period January 3th 2011 to November 24th 2021.
These are used to calculate the implied VIX9D. Standard errors are given in parentheses.

Using the estimated coefficients and the implied VIX formulas, the comparison with the CBOE

VIX9D can be made. The reported results are given in Table 4. Looking at the first row, it can be seen

that the Realized GARCH implied VIX9D without the inclusion of the CBOE VIX9D has the worst

performance by a wide margin. With a mean error or 9.89, this model heavily understates the CBOE

VIX9D. While its skewness and kurtosis are accurate compared to the CBOE VIX9D, the variance is

considerably lower.

In the case where the CBOE VIX9D is included in estimation, the Realized GARCH implied VIX9D

performs better. The mean error is just 0.10, and all other error measures outperform the other mod-

els. Moreover, the skewness and kurtosis come quite close to those of the CBOE VIX9D, while the

autocorrelations and variance are slightly inaccurate.

Comparing these results to those of the benchmark univariate GARCH model, it is noted that the

GARCH model does not outperform the Realized GARCH model. For the GARCH model using only
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returns, the implied VI9D understates the CBOE VIX9D, and it has inaccurate higher moments (except

for the variance). When the CBOE VIX9D is included in estimation, the fit with the CBOE VIX9D

is better, but still worse than that of the Realized GARCH model (a mean error of 0.26 versus 0.10).

However, the skewness and kurtosis are still substantially higher compared to the CBOE VIX9D.

Overall, the Realized GARCH implied VIX9D (including VIX) performs best in both modelling

errors and higher moments (except the variance). Moreover, the equity risk premium λ is distorted

to fit the VIX9D in the case of the GARCH model including the VIX, because its value is too high

compared to empirical studies. The Realized GARCH model has a more realistic equity risk premium.

However, to provide some nuance, there is an argument to be made about distorted coefficients for the

Realized GARCH model as well, because of the big differences in certain values between the exclusion

and inclusion of the CBOE VIX9D in estimation.

ME SD MAE MSE P-value AR1 AR10 Var Skew Kurt

RealGARCH

No VIX 9.89 5.46 9.89 127.62 0.0000 0.97 0.69 14.84 3.70 25.38

Including VIX 0.10 3.70 2.54 13.71 0.6647 0.98 0.76 63.96 3.88 28.04

GARCH

Returns 2.03 4.04 3.11 20.45 0.0000 0.96 0.64 73.21 5.43 48.36

Including VIX 0.26 3.93 2.66 15.53 0.2666 0.97 0.66 68.93 5.70 51.39

CBOE VIX9D 0.94 0.69 76.18 3.63 25.31

Table 4: The fit of the (Realized) GARCH implied VIX9D on the CBOE VIX9D and various statistical properties. These
results are for the period January 3th 2011 to November 24th 2021. The meaning of the goodness of fit measures and statistical
properties are identical to those in Table 2.

4.3 Realized GARCH implied VIX1D

Moving on to the Realized GARCH implied VIX1D results, the estimated coefficients are given in Table

5. These results are for the period May 16th 2022 to May 31st 2024. Note that this is a relatively short

period, but necessary because of the trading history of the CBOE VIX1D.

Looking at the Realized GARCH model, the results of two different variants are shown. Firstly, there

is the case where just the returns and realized variance are used in estimation (i.e. ln LR and ln LX in

Equation 38). Secondly, we report the case where the CBOE VIX is included in estimation. There are no

major differences in estimation results between the two variants, but we do note that the standard errors

are substantially lower for the case where VIX is included. This implies that the estimations are more

efficient when the VIX is used in estimation.

For the univariate GARCH model that serves as a benchmark, it is noted that there is again a un-

realistically high equity risk premium λ of 0.29 when VIX is included in estimation. This is consistent

with the results in Section 4.1 for the VIX30D. However, compared to the case with just returns, there

is a decrease in β when VIX is used, which is inconsistent with the results in Section 4.1. While this

could be because of the fact that a different time period is used, it is highly probable that a lower VIX
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horizon is the cause of this. As the VIX1D is substantially more volatile and less persistent compared

to the VIX30D, it is not surprising to see a lower β (representing variance persistence) when the CBOE

VIX1D is used in estimation.
.

α0 α1 β λ τ1 τ2 δ1 δ2 γ ω ϕ σ ζ

RealGARCH

No VIX −0.68
(0.686)

- 0.99
(0.072)

0.05
(0.057)

−0.13
(0.014)

0.05
(0.009)

−0.14
(0.021)

0.04
(0.012)

0.21
(0.010)

−2.56
(3.519)

0.05
(0.362)

0.46
(0.014)

−5.00
(5.242)

Including VIX −0.76
(0.004)

- 0.99
(0.001)

0.05
(0.001)

−0.14
(0.001)

0.06
(0.000)

−0.15
(0.001)

0.05
(0.001)

0.22
(0.000)

−2.63
(0.016)

0.07
(0.002)

0.46
(0.001)

−5.03
(1.250)

GARCH

Returns 4.31e−7
(4.386e−7)

0.04
(0.014)

0.95
(0.015)

0.07
(0.044)

- - - - - - - - -

Including VIX 2.42e−6
(0.234e−6)

0.11
(0.004)

0.87
(0.004)

0.29
(0.036)

- - - - - - - - -

Table 5: Estimated coefficients for the (Realized) GARCH models for the period May 16th 2022 to May 31st 2024. These are
used to calculate the implied VIX1D. Standard errors are given in parentheses.

In Table 6, the fit of the implied VIX1D on the CBOE VIX1D is reported. Comparing the two cases

of the Realized GARCH implied VIX, there is a clear improvement in mean error for the inclusion of the

VIX. This is not surprising, as in estimation this difference is minimized when VIX is included. Other

measures such as the MAE and MSE show small relative enhancements in terms of fitting.

Another interesting comparison would be that between the Realized GARCH with just returns and

realized variance, and the univariate GARCH with just returns. This essentially shows the added value of

realized measures under the physical measure P . While the mean error is roughly the same, the MAE and

MSE show notable improvements, implying that the realized variance has some added value in pricing

the VIX using GARCH models. A last comparison is that between both models when VIX is included.

However, the Realized GARCH model implied VIX1D does not show any gains in fitting compared to

the regular GARCH model.

Looking at the statistical properties of all models, it can be seen that autocorrelations are substan-

tially overstated compared to the CBOE VIX1D. This can be explained by the fact that persistent volat-

ility (volatility clustering) is in the nature of GARCH models, implying relatively high autocorrelations.

However, in practise the VIX1D is highly volatile on a day-to-day basis, which is confirmed by the

relatively lower autocorrelations. Regarding the higher moments (variance, skewness and kurtosis), all

models understate them quite heavily, with the GARCH model using only returns is the worst performer.

All in all, the Realized GARCH implied VIX1D does not improve the performane of the univariate

GARCH model in terms of fitting the CBOE VIX1D. However, the coefficients of the GARCH model

are again distorted to fit the CBOE VIX1D, because the equity risk premium is unrealistically high. This

makes the Realized GARCH model more adequate in pricing the CBOE VIX1D, but it still cannot fit its

statistical properties.
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ME SD MAE MSE P-value AR1 AR10 Var Skew Kurt

RealGARCH

No VIX 1.27 3.87 2.64 16.57 0.0023 0.98 0.81 34.00 0.94 3.09

Including VIX 0.18 3.88 2.62 15.04 0.6736 0.98 0.81 37.32 0.93 3.08

GARCH

Returns 1.21 4.57 3.27 22.29 0.0018 0.99 0.94 26.07 0.62 1.95

Including VIX 0.13 4.05 2.76 16.43 0.7575 0.97 0.80 34.71 1.03 3.29

CBOE VIX1D 0.79 0.57 50.02 1.20 4.61

Table 6: The fit of the (Realized) GARCH implied VIX1D on the CBOE VIX1D and various statistical properties. These
resultsa are for the period May 16th 2022 to May 31st 2024. The meaning of the goodness of fit measures and statistical
properties are identical to those in Table 2.

In Figure 1, the CBOE VIX1D and Realized GARCH implied VIX1D are displayed together with

the daily realized volatility. As all variables are daily measures of volatility, it could be interesting to see

its relation visually. It is seen that, most of the time, the realized volatility understates both the CBOE

and implied VIX1D. The difference between the realized volatility and VIX1D can be interpreted as the

volatility premium. Another observation in this graph is that the implied VIX1D is not able to capture

the heavy spikes of the CBOE VIX1D, which is consistent with the statistical properties in Table 6.

Figure 1: This graph shows the time series for the CBOE VIX1D, the Realized GARCH implied
VIX1D (including VIX in estimation) and the daily annualized realized volatility.
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5 Conclusion

In this paper, multiple (Realized) GARCH option pricing models are used to calculate and price the

VIX at different time horizons. Specifically, the expected volatility for the next 30, 9 and 1 days are

investigated. This is done under the LRNVR of Duan (1995) for the GARCH, TGARCH and AGARCH

models, while an exponentially affine SDF is implemented in the case of the Realized GARCH model.

The coefficients of all models were estimated and used to calculate specific implied VIX formulas.

For the GARCH, TGARCH and AGARCH models, the research entails a replication of Hao and

Zhang (2013). Similar results are obtained, where these models understate the CBOE VIX when only

index returns are used in estimation, implying that this model is unable to capture the variance risk

premium. When the CBOE VIX is included in estimation, the coefficients are distorted to fit the CBOE

VIX, resulting in an unrealistic equity risk premium.

This research is extended using a more sophisticated model that implements realized measures: the

Realized GARCH model. With this model, the implied VIX for the next 9 (VIX9D) and 1 (VIX1D) days

are calculated and compared to the univariate GARCH model. For the VIX9D, the Realized GARCH

implied VIX9D including the VIX9D in estimation outperforms the GARCH implied VIX9D in terms

of both goodness of fit and certain statistical properties. Regarding the VIX1D, the Realized GARCH

implied VIX1D does not outperform the GARCH implied VIX1D. However, the coefficients of the

GARCH model are distorted to fit the VIX1D, while this is not the case for the Realized GARCH model.

Suggestions for further research includes further exploration of the VIX1D, as this index is relatively

new and spans a short time frame. The VIX1D only contains the expected volatility for the next day,

such that methods like high-frequency data (in other ways besides the Realized GARCH) or machine

learning could be implemented. Furthermore, one could also look at non-Gaussian GARCH models and

at the VIX measurement error in estimation that is not independent and identically distributed (as is in

Equation 20).
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Appendix A: Implied VIX Formulas

Rewriting the corresponding GARCH models into their SR-SARV(1) variants and substituting its para-

meters in Equation 12, gives the following implied VIX formulas (see Hao and Zhang (2013) for ad-

ditional details). For all models, n is the amount of trading days and the implied VIX is calculated

linearly:

V ixt = A+Bht+1 (A1)

GARCH:

A =
α0

1− η
(1−B),

B =
1− ηn

n(1− η)
, (A2)

η = α1(1 + λ2) + β.

TGARCH:

A =
α0

1− η
(1−B),

B =
1− ηn

n(1− η)
, (A3)

η = α1(1 + λ2) + β + θS.

S =
[ λ√

2π
e−

λ2

2 + (1 + λ2)N(λ)
]
,

where N(x) is the cdf of the normal distribution and ξ/
√
ht is independent and identically standard nor-

mal distributed.

AGARCH:

A =
α0

1− η
(1−B),

B =
1− ηn

n(1− η)
, (A4)

η = α1(1 + (λ+ κ)2) + β.
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Appendix B: Additional Graphs

(a) GARCH implied VIX using only returns vs
CBOE VIX.

(b) GARCH implied VIX using returns and VIX vs
CBOE VIX.

(c) TGARCH implied VIX using only returns vs CBOE
VIX.

(d) TGARCH implied VIX using returns and VIX vs
CBOE VIX.

(e) AGARCH implied VIX using only returns vs CBOE
VIX.

(f) AGARCH implied VIX using returns and VIX vs
CBOE VIX.

Figure 2: Graphs of the CBOE VIX versus all implied VIXes by various GARCH models. In all graphs, the
CBOE VIX is represented by the blue line, and the implied VIX by the dotted red line.
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Appendix C: Explanation of Programming Code

As mentioned in Section 4, all programming was done through MATLAB. In this part of the Appendix,

the code structure will be shortly explained. The code file consists of four folders, each representing

the estimation of either the GARCH, TGARCH, AGARCH or Realized GARCH models. The files

within these folders each follow a similar pattern. As the TGARCH and AGARCH files have identical

structures (except for the actual model characteristics of course), only the AGARCH model is discussed.

In the following paragraphs, the data, GARCH folder, AGARCH folder and Realized GARCH folder are

explained.

The data consists of three different files, each representing the different time periods that are provided

in Section 2. The file ’RawData’ belongs to the period for the regular VIX. This file consists of the

corresponding dates, S&P 500 closing prices, CBOE VIX closing prices and the daily risk free rates.

The file ’RawDataFreq’ represents the period for the VIX9D. This also includes the high-frequency

daily realized variances. Lastly, the file ’RawDataFreq1D’ belongs to the VIX1D and also contains the

daily realized variances.

The GARCH folder uses all three different datasets. The file ’GARCH Estimation’ is used to run all

code. All other files are used as functions and make the code structure more concise and simple. The

’GARCH Estimation’ file has comments that give a clear overview of the estimation procedures. Other

noticeable files are ’getSigmas’ (which returns the values of the variance process given parameter values)

and all the loglikelihood files (which returns the loglikelihood values for different estimation methods).

Note that the function ’fmincon’ in MATLAB is used to minimize the negative loglikelihood. Lastly,

the file ’constraint’ consist of the stationary constraint and the file ’getStatisticalProperties’ returns the

values that are given in Table 2, 4 and 6.

The AGARCH folder is easier and smaller compared to the GARCH folder. The AGARCH folder

only makes use of the ’RawData’ dataset and the main file that runs all code is called ’AGARCH

Estimation’. All other files are again used as functions and these are similar to that of the GARCH

folder.

The last folder is the Realized GARCH folder and it makes use of the datasets ’RawDataFreq’ and

’RawDataFreq1D’. The main file is ’RealGARCH Estimation’. The other files are functions, and most

of them are similar to those in the GARCH folder. Exceptions are the ’getF’ and ’getWholeRealVIX’

functions that return the F in Equation 39 and the implied VIX9D given certain parameters, respectively.

The latter is used in including the CBOE VIX9D in estimation.
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