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Abstract

Commodities play a pivotal role in global economies, influencing both developed and de-

veloping nations. This research delves into the ability to forecast the dynamics of price move-

ments within commodity sectors, uncovering interconnections between the returns. Such

insights are essential for optimizing resource allocation, potentially guiding decisions along

the entire commodity value chain, from producers upstream to traders in the midstream

and ultimately to consumers downstream. This research explores how Principal Component

Analysis (PCA) aids in identifying connections between commodities, leading to more ac-

curate estimations. It further extends the PCAs with kernel capturing non-linear movement

and reduces forecasts errors. The study evaluates model performance across three distinct

stages: return, volatility, and Value at Risk (VaR) forecasts. It provides a comprehensive

analysis of all applications of the models. Ultimately, the research demonstrates the pres-

ence of complexity in the short run with reductions in forecasts errors for complex models.

These methods perform especially well during period of high volatility where the inclusion

of a Kernel has mixed effects, further improving accuracy over a simple PCA under certain

conditions. It also shows cluster of commodities in reaction to complexity.

1 Introduction

The Commodity Global Value Chain is the core of today’s economy. Primary commodities serve

as crucial inputs in all production processes (Fally & Sayre, 2018). This chain not only ensures

the sustenance of the global economy by delivering essential soft commodities like food to areas

of need but also propels economic advancement through fuelling innovation. All this brings high

interest from researchers seeking to understand its implications more comprehensively.

In addition to its pivotal role for producers and consumers, traders occupy an important po-

sition in the midstream. They face the challenge of balancing supply and demand, with primary

commodities accounting for approximately 16% of world trade, as highlighted in the research by

Fally and Sayre (2018). Understanding the difficulties of this chain is paramount for creating

value and ensuring its success. Furthermore, Ge and Tang (2020) discovered that commodity

returns can robustly predict GDP growth in the subsequent quarter. They underscored the

significance of comprehending commodity prices. Their study concluded that commodity prices

can serve as leading indicators of economic growth. An increase in commodity prices and basis

values result in a stronger future economy. These findings underscore the critical importance of

understanding the dynamics of commodity prices in driving economic growth.

Now, this research delved into the interconnections among various commodities. Building

on Palaskas and Varangis (1991) which supported the hypothesis of co-integrated movement in

price. Now, this research employs Principal Component Analysis (PCA) to identify common

factors and reduce noise. We may assume that the price of fuel may impact the prices of soft

commodities due to the use of fuel for transporting goods from production to consumption,

but this study seek to discover and quantify impacts. It employs PCA, and implements Kernel

tricks, to aim to uncover non linear relationships. This tricks introduces non-linear links in a

PCA (Hofmann, Schölkopf & Smola, 2008). It has already proved improvement in the field

of macroeconomics (Kutateladze, 2022). This is supported by some work documenting the

superiority of nonlinear models in the context of time series (Teräsvirta, Tjøstheim & Granger,
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1994). Hereon, this research seeks to implement and reduce noise for more precision in return

and financial instrument forecasts.

Samuelson (2016) lays down the foundations, proving with a general stochastic model for

price change that price differences are random if not completely independent of the previous

differences. This has brought focus to long-term forecasting of commodities. Hereon, the bench-

mark of our analysis is structured in similar fashion reflecting simplicity of the returns. In

addition, Tolmasky and Hindanov (2002) focused on its use for risk management, particularly

addressing the long-term high volatilities of raw materials that require analysis of price move-

ments crucial for correct contracts. In the case of petroleum spreads, Girma and Paulson (1998)

explored statistical relationships and seasonalities with the purpose of testing trading rules.

According to them, the relationship concerning inter-commodity spreads can be complex and

difficult to understand, and there is a lack of concrete theoretical foundation that can explain

the behavior of these spreads. This is the focus of our research.

Ye, Zyren and Shore (2005) found that the short-run demand elasticity of commodities is

much lower than the short-run inventory elasticity in the United States. Short-term volatility

is not as pronounced as in other industries. Indeed, consumption can be quite well anticipated

in the short term. Additionally, they observed that the production elasticity is virtually zero.

Their reasoning suggests that in this raw sector of the industry, short-term actions are often

impractical. However, it’s worth noting that their research is constrained by their assumption

of ’normal market circumstances’. This assumption has been challenged, particularly in recent

times, such as during conflicts in the Middle East, where volatility expectations for petrol surged

in response to the news, contradicting their assumption. Nevertheless, the key takeaway is that

prices deviations are sourced beyond supply and demand. Now, this research delves into other

drivers within the domain of commodities. Furthermore, a sub sample analysis is conducted, it

reveals the model’s varying reactions and adaptability to both ’normal and non-normal market

circumstances’ over time.

Utilizing more complex models, the research investigates whether identifying interrelation-

ships between commodities reduce errors in volatility and return forecasts. Extending on

Tolmasky and Hindanov (2002) research, this research also aims to increase precision in Value

at Risk (VaR) forecasting. VaR is a widely used risk management tool in finance that quantifies

the potential loss in value of an investment portfolio over a defined period for a given confid-

ence interval (Duffie & Pan, 1997). It provides an estimate of the maximum loss that might be

expected, thus helping investors and financial institutions manage and control the level of risk

they are taking.

Ultimately, this research demonstrates the benefits of incorporating PCA for forecasting re-

turns and related financial instruments. It also highlights the improvements from using a kernel

trick to address non-linear relationships. Additionally, it emphasizes the potential for more pre-

cise short-term forecasts. However, it shows that long-term forecasts are more challenging for

complex models to outperform the historical average. Finally, some commodity cluster react

differently to the addition of complexity.

Moving forward, the research delves deeper into specific methodologies and empirical analyses
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to address the question. Section 2 summarize the data employed for the research. Then, Sec-

tion 3 explains the theoretical frameworks of the advanced statistical techniques used. Finally,

the results are shared in Section 4 followed by the conclusion and future research directions in

Section 5.

2 Data

The data used in this research are commodity prices since 1990. This information is publicly

available on the International Monetary Fund (IMF) website, facilitating replication. The data-

set is updated on a monthly basis by the IMF. Its strength lies in its broad coverage and diverse

sources. Soft commodities such as food and beverage prices are obtained from the United States

Department of Agriculture and from the International Coffee/Cacao/Tea Organization respect-

ively. Metals data are sourced from a combination of the London Metal Exchange and the ICE

Benchmark Administration. Energy prices are acquired from Refinitiv and Argus.

For ease of comparison and comprehension, the data is reported in indexes. The Primary

Commodity Price Index (PCPI) have for base year 2016. Furthermore, the IMF collection

methods are helping the analysis. Indeed, all indexes are computed from Unites States Dollars

(USD) prices helping in scaling, key for the success of PCA.

However, there are some limitations. The analysis focuses on worldwide prices, acknow-

ledging that commodity prices can vary significantly due to factors beyond supply and demand,

such as quality and origin. Despite these variations, the increasing importance of trade, as high-

lighted by Fally and Sayre (2018), emphasizes the significance of examining cost changes and

the benefits of commodity trading. Their research also underscores the low price elasticity of

demand due to difficulty in finding substitutes. Low price elasticity of supply, and high disper-

sion of natural resources across countries, suggest a convergence of worldwide prices. Therefore,

studying world prices holds importance in the literature.

Here is a resume of the collected data used in the research and their meaning:

• Ifood : Food Price Index includes Cereal, Vegetable Oils, Meat, Seafood, Sugar, Apple

(non-citrus fruit), Bananas, Chana (legumes), Fishmeal, Groundnuts, Milk (dairy), To-

mato (veg) (recorded in USD/mt)

• Ibeverage : Beverage Price Index includes Coffee, Tea, and Cocoa (recorded in cts/kg)

• Imetals : Base Metals Price Index includes Aluminum, Cobalt, Copper, Iron Ore, Lead,

Molybdenum, Nickel, Tin, Uranium and Zinc (recorded in USD/mt)

• Ipre.metals : Precious Metals Price Index includes Gold, Silver, Palladium and Platinum

(recorded in USD/troy ounce)

• Igas : Natural Gas Price Index includes European, Japanese, and American Natural Gas

(recorded in USD/MMBtu)

• Icoal : Coal Price Index includes Australian and South African Coal (recorded in USD/t)
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• Ioil : Crude Oil (petroleum), Price index is the average of three spot prices; Dated Brent,

West Texas Intermediate, and the Dubai Fateh (recorded in USD/bbl)

This research focuses on a grouped dataset to facilitate the initial application of the methods

and to reduce computational demands. An additional analysis, detailed in the appendix, applies

the same method to Oil indexes using the complete dataset provided by the IMF, demonstrating

the potential for further enhancements.

Figure 1 presents a plot of the time series, showing the overall increasing price indexes

over time. Two spikes are noticeable in the plot, corresponding to two notable time spans:

the financial crisis of 2008 and the COVID-19 pandemic in the early 2020s. Both periods

experienced high inflation driven by negative impacts on the supply chain and the fragility of

the financial system. However, while both crises significantly impacted the economy, the 2020

crisis has unique features due to the worldwide pandemic and the aggressive fiscal and monetary

responses.

Figure 1: Time Series of Commodities Indexes

Co-movements are confirmed by Figure 1, Table 1 displays the correlation between the series.

The overall high numbers support co-movement hypothesis (Palaskas & Varangis, 1991).
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Table 1: Correlation Matrix of the Indexes

Ifood Ibeverage Imetals Ipre.metals Igas Icoal Ioil
Ifood 1 0.78 0.93 0.94 0.68 0.80 0.91

Ibeverage 0.78 1 0.74 0.76 0.43 0.59 0.67

Imetals 0.93 0.74 1 0.89 0.62 0.71 0.90

Ipre.metals 0.94 0.76 0.89 1 0.52 0.69 0.80

Igas 0.68 0.43 0.62 0.52 1 0.86 0.73

Icoal 0.80 0.59 0.71 0.69 0.86 1 0.73

Ioil 0.91 0.67 0.90 0.80 0.73 0.73 1

Table 2 shows a summary statistic of the indexes. It indicate that energy commodities have

a higher average index and significantly higher standard deviations. This is also apparent in

their wide range (max-min). Secondly, the food sector appears much less extreme with relatively

low indexes and the lowest standard deviations. Finally, the metal sector is the most diverse.

Precious metals have lower indexes and standard deviations compared to base metals.

Table 2: Summary Statistic of the Indexes

Food Beverage Metal Pre. Metal Gas Coal Oil

Mean 90,6 83,9 109,0 75,0 145,7 109,5 117,4

Std 27,1 27,6 58,4 46,5 99,5 88,8 66,3

Min 55,1 35,2 36,4 22,5 43,9 33,6 24,1

Max 165,7 219,5 238,8 181,4 893,1 577,6 275,4

3 Methodology

This section details the research methodology. It starts with an overview of the data prepro-

cessing steps, followed by a description of the models employed to extract returns forecasts used

for forecasting volatility to further compute the Value at Risk (VaR). Subsequently, it explains

the method used to compare the divergence between different approaches.

3.1 Data Manipulation

This research focuses on commodity prices, Samuelson (2016) established properties of returns.

To achieve stationary and correct distributions in the data, log-returns are considered. Let the

log-return at time t be log(Pt) − log(Pt−1) where Pt is the price of the commodity at time t.

However, it’s important to note that indexes are collected rather than direct prices. Nonetheless,

since the base is common within a time series, applying the same function to indices yields the
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correct return and thus does not bias interpretation.

log(It)− log(It−1) = log

(
Pt

P2016

)
− log

(
Pt−1

P2016

)
= log(Pt)− log(P2016)− log(Pt−1) + log(P2016)

= log(Pt)− log(Pt−1)

= rt

As both stationary and correct distribution are required assumptions for further models, it has

to be verified. In this research, the Augmented Dickey Fuller (ADF) (Dickey & Fuller, 1979)

(Dickey & Fuller, 1981) test is used. It tests the null hypothesis (H0) that the time series has

a unit root. The time series can be considered statistically stationary if H0 is rejected. It is

achieved by estimating the following equation by Ordinary Least Squares (OLS):

∆rt = αrt−1 +

p∑
i=1

βi∆rt−i + ϵt

where p is the number of lag differences included. The longest statistically significant lag is

selected, using the BIC. More explanation on the BIC are given further down the research.

Then, by testing for significance of the coefficient α from its t-statistic and comparing it to the

Dickey Fuller critical value (Cheung & Lai, 1995) the H0 may be rejected.

To test for normality, the research employs a Jarque-Bera test (Jarque & Bera, 1980). It is

a statistical test that assesses whether sample data have the 3rd and 4th moment, respectively

the Skewness (S) and Kurtosis (K), matching a normal distribution. The null hypothesis (H0)

tests that the data are normally distributed. The Jarque-Bera test statistic (JB) is defined as:

JB =
n

6

(
S2 +

(K − 3)2

4

)
∼ χ2

2

Under the null hypothesis of normality, the JB statistic follows a chi-squared distribution with

2 degrees of freedom.

To test for a Student-t distribution in the returns, a Kolmogorov-Smirnov test (Massey Jr,

1951) is employed. It compares actual returns to the Student-t fitted distributions. It measures

the maximum difference between the empirical cumulative distribution of the returns and the

hypothetical cumulative distribution of the Student-t. The empirical distribution is derived from

the characteristics of the returns. The test evaluates the goodness of fit.

3.2 Modeling of the Returns

The following subsection explains how, at each time t, forecasts returns for horizons of 1, 6, and

12 months are computed. This is accomplished using a rolling window of 10 years minus the

forecast horizon.
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3.2.1 Benchmark

Initially, a benchmark is established. The non-random component (estimated return) is assigned

to be equal to the mean of previous returns, denoted by µ. This can also be obtained by con-

ducting an Ordinary Least Squares (OLS) regression of the time series on a constant term. Such

a procedure is similar to the initial phase of a two-step Generalized AutoRegressive Conditional

Heteroskedasticity (GARCH) estimation with a constant. Breaking down the process into two

steps facilitates comparison with subsequent models.

3.2.2 Principal Component

The next model is based on simple Principal Component Analysis (PCA). PCA is a statistical

technique used for dimensionality reduction in data analysis. It identifies patterns in data, finds

the directions of maximum variance (principal components), and projects the data onto these

components. It reduces the number of dimensions and preserves most of the information. Simple

PCA focuses on linear relationships.

Additionally, for an initial exploration of non linearity, PC2 and SPC are used. On the one

hand, PC2 is identical to the previous model with the addition of the squares of factor estimates

in the forecasting equation. On the other hand, SPC (Bai & Ng, 2017), applies the standard

PCA algorithm to the original set of variable augmented by its square.

Finally, kernel tricks are implemented in the remaining models to tackle non linearity. It

allows for the expansion of dimensions of the factors in terms of a Kernel function. This function

maps the original data non linearly into a high-dimensional space using subset function: φ(·) :
R → F . Here, F denotes the feature space and R is the set of returns. Let the Kernel function

k(ri, rj) equal φ(rj)
′φ(ri). This reflects common factors between data points. The result is

a Kernel function where: k(., .) : R × R → R. The kernel matrix K is created such that

{K}ij = φ(rj)
′φ(ri). One key note is that φ(·) does not have to be known, as for a valid Kernel,

there always exist a corresponding φ(·). For a Kernel function to be valid, it musts be positive-

definite, meaning
∫ ∫

f(ri)k(ri, rj)f(rj) dri drj ≥ 0 for any square-integrable function f . In this

research the following valid kernel are employed (Kutateladze, 2022):

1. Sigmoid Kernel:

k(ri, rj) = tanh(γ(r′irj) + 1)

2. Radial Basis Function (RBF) Kernel:

k(ri, rj) = e−γ∥ri−rj∥2

3. Quadratic polynomial (poly(2)) Kernel:

k(ri, rj) = (r′irj + 1)2

Where the parameters γ are determined over a grid of values by time series cross-validation.

More details on that are provided below.

Furthermore, to model the series, an Autoregressive Diffusion Index (ARDI) model is em-

ployed. The AR part allows for lags of the dependant to be include, it is a key aspect of time
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series. The DI part allows for addition of factor and their laggs in the equation. It is computed

mathmaticaly as

rt+h = βh
0 +

Ph
t∑

p=1

βh
Y,prt−p+1 +

Mh
t∑

m=1

βh ′
F,mFt−m+1 + ϵt+h (1)

Where P h
t , M

h
t , K

h
t are the number of lags of the target variable, the number of lags of

factors, and the number of factors, respectively. Such that, the factor Ft−m+1 and the loading

βh
F,m are Kh

t × 1 vectors. Finally, rt+h are commodity returns.

The modeling of the (K)PCA on the commodity return dataset has been applied in such a

way: First, depending on the forecast horizons the indexes are scaled to apply direct forecast;

∆horLog(I). Simultaneously, the factors are created from the simple returns and transformed

with respect to the correct PCA method.

Second, the correct lags are identified. It is achieved by looping over each possible combin-

ation of lags, updating the dataset accordingly, and fitting the dataset with OLS according to

Equation 1. Hereon, the Bayesian Information Criterion (BIC) is computed. It evaluates the

trade-off between goodness of fit and model simplicity. It is computed as −2ln(L) + k ∗ ln(n).
The first part values better fits, it is computed from the likelihood function (L). This reflects

the likelihood of certain parameters given observed outcomes is the same as the probability of

those outcomes given the parameters. That is, an increase in the error variance decreases the

likelihood function. The second part is the penalty given to complex models, computed from

the number of parameters (k) and the number of observations (n). The combination of lags that

minimizes the BIC is chosen.

Optionally, if different hyperparameters are available (e.g., for Kernels with Sigmoid and

RBF functions), Gamma is determined over a grid of values using time series cross-validation.

Specifically, the latest five available observations are consecutively predicted, and the hyperpara-

meter that minimizes the average error is selected. The hyperparameter grid for γ is defined as

γ ∈ {10z | z ∈ [−6,−3] with a step size of 0.5}. These small values are used to scale. For the

Sigmoid Kernel, γ scales the dot product between observations. For the RBF Kernel, γ scales

the distance between observations.

Finally, the optimal model is used to make h-step ahead forecasts. By retrieving the coeffi-

cients and updating the dataset according to the method, horizon and lags, the model is fitted

and the forecast is generated.

3.3 Volatility Modeling - GARCH

In this subsection, the foundation of the GARCH method for modeling and forecasting volatility

are elucidated (Bollerslev, 1986). The conditional distribution of returns rt is defined as rt =

f(xt)+εt, where xt represents factors and f(.) denotes the loading function. For the benchmark,

the f(.) is the mean and for other models it is the ARDI model, Equation 1. The error term ε

follows: E(εt|It−1) = 0 and E(ε2t |It−1) = σ2
t , where It−1 = {rt−1, rt−2, . . .}. This formulation

allows for an alternative expression of the returns: rt = f(xt) + ztσt, where zt ∼ iid D(0, 1).

The differences between the models arise from the variation in f(xt) and differences in the
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parameterization of the distribution D. Additionally, potential differences may arise from the

return distribution as previously explained, where skewed-Normal and Student’s t-distributions

are considered.

Now, the GARCH(1,1) model (Bollerslev, 1986) describes volatility (σ2) as:

σ2
t = ω + αε2t−1 + βσ2

t−1

The rationale behind this lies in volatility clustering, indicating that σ2
t is closely linked to σ2

t−1

and the squared previous unexpected return (rt−1 − µ)2 = ε2t−1. To ensure σ2
t ≥ 0 for all t, the

loading parameters are required to follow ω > 0, α > 0, and β ≥ 0.

3.4 Value at Risk

Hereon, with an expected volatility, Values at Risk (VaR) are computed. VaR are the minimum

return that could occur over a given time period with a specified probability. It essentially is a

quantile of the distribution of returns. For any 0 < q < 1, the VaR at 100∗(1−q)% for a specific

period is the return that is expected to be exceeded with probability 1− q. It is computed as:

VaRt(1− q, h) = r̂t+h + zqσt+h,

where ˆrt+1 is the expected return, zqσt+h the quantile value and h the horizon. In this

research, q ∈ {0.01, 0.05, 0.10} is used. It represent respectively a confidence level of 99%, 95%

and 90%.

3.5 Comparative Evaluation

This research compares model’s performances at three distinct steps. This approach helps

determine if incorporating models and interconnections into return forecasting instruments helps

capture deviations.

First, the capacity of predicting the returns are evaluated by the Mean Squared Prediction

Error (MSPE). That is the average of the squared differences between the returns forecast and

the actual returns, it is given by:

MSPE =
1

T

T∑
t=t0

(rt − r̂t)
2

where T is the final date of the available range, rt is the actual return at time t, r̂t is the

predicted return for time t.

To gain insights into the different models’ adaptability over various periods, the cumulative

sum of squared forecast error differentials similar to Pettenuzzo and Timmermann (2017) is

analysed. Mathematically, at time t, it is represented as:

CSSEDt =

t∑
τ=0

(e2τ,1 − e2τ,2)

where: e2τ,i is the squared forecast error of model i at time τ . This approach allows to assess
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how model’s forecast accuracy evolves over time compared to another model.

Secondly, the MSPE of the volatility forecasts are computed using the squared daily return

as proxy for the true conditional variance (Brownlees, Engle & Kelly, 2011):

MSPE =
1

T

T∑
t=1

(σ2
t − r2t )

2

where T is the final date of the available range, σ2
t is the volatility forecast at time t and r2t is

the return squared at time t.

In addition, to account for the proxy, a robust methods explained in Patton (2011) is used.

This involves computing the QLIKE loss function for the forecasted volatility and the proxy

(squared returns). To apply this function, certain assumptions are required: the returns must

follow either a normal distribution or a Student’s t-distribution with a degree of freedom higher

than 2. Then, let ui,t = L(σ̂2
t , h) be the output of the loss function for model i at time t, where

L(σ̂2
t , h) = log(h)+

σ̂2
t
h , withe forecast and the proxy as inputs. Then, the Diebold–Mariano–West

for equal predictive accuracy of the benchmark and the different models is applied to assess

precision of the models compare to the benchmark.

Finally, the conditional coverage of the VaR forecasts is tested. To assess the accuracy of

the VaR forecasts as in Kupiec et al. (1995), the indicator function is defined as:

It+1 =

1 if rt < VaRt(1− q, 1)

0 if rt ≥ VaRt(1− q, 1)

such that It+1 indicates ’violations’ of the VaR. Correctly specified VaR should have correct

unconditional coverage. It allows to test for the following null hypothesis (H0): P (It+1 = 1) =

E(It+1) = q. This null hypothesis is tested using a Likelihood Ratio test (Kupiec et al., 1995).

Given independence, the likelihood function for interval forecasts with coverage probability

p = P [It+1 = 1] is given by:

L(p; IT , IT−1, . . . , I1) = P [IT = iT , IT−1 = iT−1, . . . , I1 = i1]

= P [IT = iT ]P [IT−1 = iT−1] · · ·P [I1 = i1]

= (1− p)T0pT1 ,

where T1 =
∑T

t=1 it, T0 = T − T1.

Furthermore, the Likelihood Ratio (LR) test compares the likelihood under the null p = q

with the likelihood under the alternative p = π, where π is to be estimated with maximum likeli-

hood. Under the null hypothesis of correct unconditional coverage p = q: L(q; IT , IT−1, . . . , I1) =

(1 − q)T0qT1 . Under the alternative hypothesis, p = π for some π ̸= q: L(π; IT , IT−1, . . . , I1) =

(1− π)T0πT1 . The maximum likelihood estimate of π is equal to:

π̂ = P̂ [It+1 = 1] =
T1

T0 + T1
.
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The likelihood ratio test of correct unconditional coverage is computed as:

LRuc = −2 log

(
L(q; IT , IT−1, . . . , I1)

L(π̂; IT , IT−1, . . . , I1)

)
∼ χ2(1).

Then the test statistic is compared to the critical values of the Chi-Square distribution with

1 degree of freedom at a 5% confidence level.

4 Results

4.1 Data Manipulation

Figure 2 shows the commodities returns over time. Visually the expected results from the

transformations appears achieved. There is no more long increase in the series like in Figure

1, but only sudden spikes fluctuating around the mean. This supports possible stationary.

Furthermore, the Figure shows alternating periods of large and small movements in prices. This

known as volatility clustering, it supports the use of GARCH model in volatility forecasting.

Furthermore, similar patterns appears between commodities further supporting co-movement.
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Figure 2: Time Series of Commodity Returns

Additionally, Figure 3 displays density plots of the returns. The observations indicate that

the returns mostly appear to adhere to a more controllable distribution with a mean around

0. Food seems to be slightly skewed. However, their standard deviation exhibits fluctuations,

further justifying the use of GARCH model for each series.

Figure 3: Density Plot of Commodity Returns

Table 3 shows the summary statistic of the returns. It confirms visual assumptions where

means fluctuate around zeros but are overall slightly positive. Furthermore, standard deviations

and ranges diverge between the returns. On the one hand, the Jarque Bera test returns small

p-values, it implies the data does not follow normal distributions. This supports the presence
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of fat tails. On the other hand, KS test for the fit to a t-distribution shows high p-values.

This indicates that there is no significant difference between the different returns and the t-

distribution at a 5% significance level. In other words, the data can be considered to follow the

t-distribution, hence this is specified in the modelling of volatility using GARCH. Furthermore,

the degrees of freedom are relatively high supporting fat tails. Finally, all p-values of the ADF

test are lower than .05. That is strong evidence against the null hypothesis of the test. The

time series does not have a unit root, hence are likely stationary.

Table 3: Summary Statistics of Commodity Returns

Food Beverage Metal Pre. Metal Gas Coal Oil

Mean 0,002 0,004 0,004 0,005 0,002 0,003 0,004

Std 0,029 0,050 0,049 0,035 0,106 0,074 0,085

Min -0,129 -0,162 -0,220 -0,135 -0,667 -0,379 -0,507

Max 0,151 0,303 0,149 0,145 0,376 0,345 0,293

p values:

JB <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001

Student-t

(df)

0,857

(7)

0,958

(4)

0,718

(9)

0,451

(9)

0,960

(2)

0,197

(2)

0,430

(4)

ADF <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001

4.2 Modeling

Table 4 presents the relative MSPEs of different return forecasts. The benchmark model serves

as the base for each horizon and series.
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Table 4: Relative MSPEs of Returns Forecasts

Each value represents the ratio of overall out-of-sample MSPE of the returns from the different models compare

to the benchmark. Values in green, lower than one, imply lower forecasts errors from the model. Values in red

imply the opposite. The forecasts are h-step ahead and are computed from a rolling window of length 120

months minus the horizon.

Horizons

(Months)
PCA SPC PC2

KPCA

poly

KPCA

sigmoid

KPCA

rbf

1 0.769 0.873 0.786 0.802 0.769 0.768

6 1.020 1.083 1.035 1.166 1.020 1.019Food

12 1.208 1.623 1.595 1.468 1.207 1.208

1 0.908 0.930 0.920 0.918 0.908 0.909

6 1.176 1.267 1.297 1.373 1.175 1.176Beverage

12 1.534 1.521 1.723 1.774 1.536 1.534

1 0.749 0.829 0.756 0.775 0.757 0.755

6 1.199 1.328 1.264 1.612 1.199 1.203Metal

12 1.439 1.529 1.748 1.810 1.444 1.441

1 0.925 1.020 0.978 0.992 0.917 0.920

6 1.226 1.287 1.239 1.261 1.218 1.225Pre. Metal

12 1.521 1.579 1.464 1.497 1.518 1.519

1 1.036 1.025 1.101 1.195 1.035 1.035

6 1.126 1.143 1.321 1.391 1.127 1.127Gas

12 1.010 2,305 1.578 1.782 1.009 1.010

1 0.780 0.811 0.822 0.773 0.783 0.781

6 0.873 0.926 0.932 0.889 0.874 0.873Coal

12 1.062 1509 1.247 1.174 1.063 1.063

1 0.790 0.896 0.823 0.863 0.789 0.790

6 0.889 1.088 2,609 5,001 0.913 0.899Oil

12 1.159 1.302 1.338 2,052 1.156 1.156

Long-run return forecasts proved more challenging to improve upon the benchmark. Most

relative MSPEs exceeds 1 as the forecast horizon reaches half a year. This suggests that in the

long run, the most accurate forecast is the average return of previous periods, aligning with

findings in inflation return literature (Stock & Watson, 2007). In the long run, simplicity is

key to estimating returns, as the Random Walk or Auto-Regressive models are often difficult to

outperform.

In the short term, however, more complex models shows improvements over simpler models.
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PCA-based models reduces MSPE in 6 out of 7 cases, and KPCA-based models further reduce

MSPE in 5 out of 6 cases. The use of KPCArbf forecasts reduces MSPE by about 24% for

food and metals, for 1-month horizon compared to the benchmark. Nevertheless, for metals,

a simple PCA model also achieves a notable increase in precision without requiring Kernel

methods. Additionally, SPC and PC2 models rarely outperformed all other models, contributing

minimally to accuracy.

The analysis suggests that adding PCA provides the most significant improvement, while

Kernel methods do not notably enhance overall forecast accuracy further. Although Kernel

methods sometimes increase overall accuracy, the overall improvement is not substantial enough

to justify the additional time and computational costs for now.

Regarding commodities, certain clusters emerged. Complex model for Gas, and precious

metals struggle to outperform the benchmark. Gas returns are the only ones where no model

surpassed the benchmark. Nick and Thoenes (2014) concluded that in the short-run natural

gas prices are affected by temperature and supply shocks. However, those characteristic are not

perceived by current model implying the difficulty to improve forecasts. Precious metals such

as gold are key for exchange rate and thus are strictly monitored making it hard to predict.

In this way, Hassani, Silva, Gupta and Segnon (2015) emphasized the difficulty to outperform

a Random Walk model. However, the model still manage to slightly reduce the forecast error.

Finally, for the remaining commodities more complex model helped increase accuracy over the

benchmark.

Now, Figure 4 and 5 present the Cumulative Sum of Squared Error differentials of the

benchmark against the PCA method for 1 month and 12 month ahead forecast respectively.

The Figure for 6 months ahead forecasts is stored in appendix.

Figure 4: Cumulative Sum of Squared Error of the Benchmark vs PCA on 1-Month Ahead
Forecasts
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Figure 5: CCSE of the Benchmark vs PCA model on 1-Month Ahead Forecasts

First, PCA performs poorly for gas return forecasts as it mainly remains negative. It exper-

iences a sudden spike in the beginning of the 2020s but is shortly followed by a drop, confirming

the non-predictive power of the model. However, for all other commodities, the PCA model

helps in reducing errors. Especially for oil, coal, and metals, it shows an overall increasing

trend, implying better forecasts over all periods. Upon closer inspection, there are two spikes

during the crises in 2008 and 2021. This indicates that the PCA model helps capture movements

and provides less error in a highly volatile environment.

Figure 5 showcases the power of the benchmark for long-run forecasts. This graph also

reflects drops in late 2009 and late 2022, indicating that the PCA model’s reaction to financial

crises negatively impacts long-run forecasts. From both figures, it can be concluded that the

focus on complexity is important mainly in the short run.

To further examine the addition of a kernel, Figure 6 shows the CSSE of the PCA model

against the KPCA model using the RBF kernel function.
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Figure 6: CSSE of the PCA vs KPCA rbf on 1-Month Ahead Forecasts

Figure 6 shows a mixed reaction to the addition of the kernel. First, the total range of

difference is relatively small (≃ 0.008), implying minimal differences in forecasts error between

the models. However, even if the slope appears flat over time, divergences appears around 2008

and 2022. Those divergences suggest different scales and adaptations to the movement by the 2

models. The kernel improves the accuracy for gas and precious metals but decreases it for the

remaining commodities. This is notable since these two commodities were previously classified

as the hardest to improve upon. These results suggest that the forecasting of these primitive

commodities could be enhanced beyond simple PCA with nonlinear modeling.

4.3 Volatility Modeling - Garch

Table 6 in the Appendix presents the relative MSPEs for the volatility forecasts. Although the

PCA and kPCA models appear to offer greater precision overall, no clear patterns emerge that

help identify the drivers of decreasing MSPEs.

Table 3 validates the assumptions necessary for conducting the DM test on volatility, showing

that all returns follow a t-distribution with degrees of freedom greater than or equal to 2.

Table 7 in Appendix, presents the p-values resulting from the test. All values are negative but

have an absolute value smaller than 1.96. It indicates that none of the results are statistically

significant at the 5% confidence level. Despite this, every t-statistic is negative, suggesting a

slight improvement in predictive accuracy over the benchmark.

In summary, the improvement in volatility forecasts for the models compared to the bench-

mark is mixed. Using MSPE as a factor does not provide much insight. However, accounting for

the proxy with a loss function shows some improvement towards complex models with negative

t-statistics. While these results are not statistically significant, they indicate the models are

heading in the right direction.
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4.4 Value at Risks

Figure 7: 1 Month VaR at 90% Confidence and Returns for Beverage Returns Using PCA

Figure 7 illustrates the 1-month VaR at 90% confidence for beverage returns, computed using

PCA. The graph demonstrates how the VaR responds to spikes in returns. It is observed that

each violation of the VaR occurs immediately after a sudden upward spike followed by a sharp

drop. It is interesting to test for correct coverage of the VaR forecasts. However, for future

application, this is notable and to be careful of while operating as this indicates that abrupt

changes in returns, especially when there is a rapid increase followed by a decline, are key

drivers of risk exposure in the beverage sector. Such behavior could imply that the market is

particularly reactive to sudden positive shocks, which are often followed by corrections. This

pattern highlights the importance of closely monitoring market conditions and the potential

for quick adjustments in risk management strategies. The results underscore the necessity for

dynamic risk models that can account for rapid fluctuations and their subsequent impacts on

VaR, ensuring more robust risk mitigation in highly volatile environments.

Table 5 shows the results of the LR test for correct coverage at 90% confidence. The test

results for 95% and 99% confidence levels are stored in the Appendix. They have qualitatively

similar insights.
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Table 5: P-Values of Correct Coverage Test for VaR at 90%

Each value represents the p-values of the LR test for correct coverage at a 90% confidence. Values colored in

green implies significant statistical proof for correct coverage. More details on the test are stored in

Methodology section.

Horizons

(Months)
Bench. PCA SPC PC2

KPCA

poly

KPCA

sigmoid

KPCA

rbf

1 0.068 0.945 0.333 0.6 0.236 0.945 0.945

6 0.765 0.871 0.945 0.6 0.69 0.871 0.871Food

12 0.161 0.259 0.333 0.008 0.455 0.259 0.259

1 0.871 0.523 0.871 0.871 0.523 0.378 0.523

6 0.057 0.378 0.378 0.945 0.057 0.523 0.523Beverage

12 0.765 0.69 0.765 0.945 0.765 0.69 0.69

1 0.333 0.333 0.042 0.161 0.236 0.333 0.333

6 0.6 0.106 0.042 0.014 0.042 0.106 0.068Metal

12 0.333 0.333 0.042 0 0.008 0.333 0.333

1 0.259 0.871 0.69 0.259 0.523 0.69 0.871

6 0.6 0.101 0.871 0.945 0.69 0.057 0.057Pre. Metal

12 0.101 0.106 0.871 0.455 0.945 0.106 0.106

1 0.106 0.333 0.945 0.945 0.6 0.333 0.333

6 0 0.004 0 0.002 0 0.001 0.002Gas

12 0 0 0 0 0 0 0

1 0.455 0.6 0.6 0.6 0.6 0.945 0.6

6 0.236 0.765 0.106 0.333 0.765 0.765 0.6Coal

12 0.03 0.101 0.455 0.6 0.69 0.167 0.101

1 0.161 0.945 0.236 0.523 0.871 0.945 0.945

6 0.106 0.455 0.333 0.945 0.455 0.333 0.333Oil

12 0.001 0.004 0 0.004 0 0.002 0.004

First, considering gas, previous conclusions indicated it is challenging to model and forecast.

Even though all models can produce correct VaR coverage at 1 month and 90% confidence, these

models, including the benchmark, do not seem to achieve correct coverage at higher confidence

levels or further horizon. For oil, similar patterns can be observed. Even if short to mid-term

VaR forecasts are plausible at 90% and 95% confidence levels, correct coverage does not seem

achievable. Difficulties of predicting correct volatility is reflecting in these commodities VaR.

However, in contrast to previous clustering, precious metals VaR appears to achieve correct

coverage. This may follow from precious metals being used in banks and thus monitored and
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not only due to match in supply and demand like Oil or Gas.

Nevertheless, for the remaining commodities, coverage have overall significance. Similar to

return forecast MSPEs, beverage, and food VaR show correct coverage. Once again PCA models,

along with KPCArbf and KPCAsigmoid, return significant VaR coverage most consistently.

5 Conclusion

The analysis reveals several significant findings concerning the efficacy of Kernel Principal Com-

ponent modeling in estimating returns across various commodities. The study highlights the

notable significance of complex models in short-term forecasts, while in the long run, benchmark

models utilizing historical averages proved challenging to surpass. Given the considerable volat-

ility inherent in commodity trading, influenced by a multitude of factors, further research might

benefit from focusing on even shorter time horizons. Moreover, incorporating macroeconomic

variables could enhance the precision of short-term reaction analysis to significant shocks. Links

to influencing factors are more pronounced in short term reactions.

Additionally, Principal Component demonstrates notable enhancement in prediction accur-

acy of the commodity returns compared to the historical average benchmark. Nevertheless,

incorporating complex models using a Kernel trick did not substantially augment the overall

capabilities beyond those of PCA. Given the computational demands and resource requirements

of such complex models, the simplicity and efficiency of PCA may be preferable. Nonetheless,

kPCA helps scale reactions during financial crisis and may be preferred in such times.

In addition, the research sheds light on the movement of various commodities within clusters.

Gaz returns proved difficult to improve, literature explains the need of external factors, further

supporting the need of additional variable for further research. Then, precious metals, even

with difficulties to outperformed in literature, complex models helps slightly decrease the forecast

error in the short run. For soft commodities, Beverage and Food return forecasts can be improved

over the benchmark by more than 10% and 23% respectively. Finally, Metal, Coil and Oil showed

improvements, even for mid term forecasts.

Then, the models show mixed improvement in volatility forecasts compared to the bench-

mark. MSPE as a factor is not very insightful, but incorporating a proxy with a loss function

shows some improvement in complex models with negative t-statistics. Although not statistic-

ally significant, these results suggest the models are progressing positively. However, this still

allowed for correct VaR coverage for most commodities at a 90% confidence level across all

models. Gas and oil stand apart with less precise coverage for long-run forecasts and require

more care when handled.
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A Bonus Analysis

This section highlights significant improvements that support the previous claims while address-

ing a broader scope. Specifically, this short analysis focuses on one-month-ahead forecasts, as

earlier research concluded that complexity appears in the short run, with one month being the

shortest timespan available. The difference from previous analysis arises from the inputs used

for modeling the PCAs, utilizing the entire dataset provided by the IMF. This significantly in-

creased computation time and power required but the scope is reduced to only Oil as it showed

possibility of improvement and due to its importance in the economy.

The first observation is that the Mean Squared Prediction Errors (MSPEs) decrease signi-

ficantly. The PCA model reduces MSPE by more than 60% and the KPCA model using the rbf

function reduces MSPE by more than 70% compared to the benchmark MSPE. (relative MSPE

to the benchmark are 0.386, and 0.279 respectively) Figure 8 and 9 illustrate the CSSE and

helps clarify the differences.

Figure 8: CSSE of the Benchmark vs PCA on 1m Ahead Forecasts

Figure 9: CSSE of the Benchmark vs KPCA rbf on 1m Ahead Forecasts
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The figures indicate overall increasing trends, demonstrating the success of the models in

reducing forecast errors. The slope is notably steeper than previous analysis highlighting the

significant improvement. Notably, there are steep increases during financial crises, highlighting

the models’ high capacities in highly volatile environments. However, compared to previous

analyses, both models appear to be less efficient in 2012.

Figure 10 compares the performance of the different PCA models, with notable differences

emerging in 2012. This suggests that the more complex model (kPCA) provides more precise

forecasts by reacting less aggressively. Both models captures factors that deviate the forecast

from the mean, although the benchmark scales it, allowing it to outperform in this specific 2012

situation.

Figure 10: CSSE of the PCA vs KPCA rbf on 1-Month Ahead Forecasts

B Extra Tables & Figures

Figure 11: CSSE of the Benchmark vs PCA on 6-Months Ahead Forecasts
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Table 6: Relative MSPEs of Volatility Forecasts

Each value represents the ratio of overall out-of-sample MSPE of volatility from the different models compare to

the benchmark. Values in green, lower than one, imply lower forecasts errors from the model. Values in red

imply the opposite. The forecasts are h-step ahead and are computed from a rolling window of length 120

months minus the horizon.

Horizons

(Months)
PCA SPC PC2

KPCA

poly

KPCA

sigmoid

KPCA

rbf

1 0.490 1.125 0.760 0.969 0.488 0.488

6 1.217 2.272 0.950 3.894 1.211 1.156Food

12 0.881 1.898 1.915 1.695 0.915 0.881

1 0.717 1.333 0.886 1.881 0.704 0.711

6 0.713 1.925 3.287 5.700 0.696 0.710Beverage

12 2.545 2.345 5.000 21.273 2.545 2.491

1 0.422 1.687 0.960 3.410 0.421 0.419

6 0.508 3.549 0.828 17.611 0.503 0.502Metal

12 0.688 2.847 2.591 7.179 0.760 0.706

1 1.499 6.247 4.629 3.557 1.483 1.326

6 0.675 1.619 1.738 1.553 0.632 0.675Pre. Metal

12 1.358 3.716 2.418 2.627 1.343 1.328

1 1.529 2.247 4.371 4.482 1.388 1.531

6 1.569 1.960 4.054 3.075 1.552 1.562Gas

12 0.681 2,305 3.024 5.893 0.714 0.672

1 1.067 0.823 1.172 1.252 1.086 1.049

6 0.587 0.753 0.794 0.815 0.499 0.518Coal

12 1.059 1509 1.050 1.428 1.081 1.069

1 0.385 1.382 1.525 2.786 0.385 0.384

6 1.435 3.310 2,609 5,001 1.426 1.422Oil

12 1.007 1.372 5.152 2,052 0.970 0.983
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Table 7: Diebold–Mariano t-statistics of equal predictive accuracy

Each value represents the t-statistic of the DM test equal predictive accuracy. A t-statistic greater than 1.96 in

absolute value indicates rejection of the null hypothesis of equal predictive accuracy at the 0.05 significance

level. A negative t-statistic suggests that the model’s forecast resulted in lower average loss compared to the

benchmark forecast.

Horizons

(months)
PCA SPC PC2

KPCA

poly

KPCA

sigmoid

KPCA

rbf

food

1 -0.353 -0.590 -0.345 -0.483 -0.350 -0.350

6 -0.376 -0.560 -0.441 -0.674 -0.375 -0.368

12 -0.114 -0.566 -0.705 -0.368 -0.122 -0.116

beverage

1 -0.155 -0.392 -0.201 -0.401 -0.158 -0.156

6 -0.043 -0.407 -0.309 -0.742 -0.032 -0.038

12 -0.242 -0.244 -0.562 -0.629 -0.239 -0.236

metal

1 -0.466 -0.616 -0.562 -0.773 -0.467 -0.465

6 -0.518 -1.228 -0.784 -1.478 -0.526 -0.522

12 -0.718 -1.160 -1.605 -1.604 -0.738 -0.737

pre. metal

1 -0.455 -0.577 -0.498 -0.559 -0.440 -0.446

6 -0.233 -0.338 -0.559 -0.484 -0.228 -0.234

12 -0.264 -0.161 -0.454 -0.177 -0.250 -0.258

gas

1 -0.424 -0.642 -1.178 -1.141 -0.423 -0.412

6 -0.683 -0.719 -0.906 -1.247 -0.700 -0.632

12 -0.300 -1.681 -1.097 -1.519 -0.321 -0.295

coal

1 -0.664 -0.506 -0.523 -0.608 -0.662 -0.662

6 -0.167 -0.315 -0.181 -0.344 -0.171 -0.170

12 -0.619 -0.984 -0.742 -0.734 -0.621 -0.622

oil

1 -0.685 -1.081 -0.969 -1.074 -0.686 -0.686

6 -0.641 -1.228 -1.525 -1.678 -0.618 -0.571

12 -0.598 -1.123 -1.020 -1.503 -0.577 -0.591
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Table 8: P-Values of Correct Coverage Test for VaR at 95%

Each value represents the p-values of the LR test for correct coverage at a 95% confidence. Values colored in

green implies significant statistical proof for correct coverage. More details on the test are stored in

Methodology section.

Horizons

(months)
Bench. PCA SPC PC2

KPCA

poly

KPCA

sigmoid

KPCA

rbf

1 0.013 0.607 0.163 0.837 0.416 0.607 0.607

6 0.094 0.268 0.094 0.026 0.026 0.268 0.268Food

12 0.013 0.607 0.094 0.003 0.163 0.607 0.607

1 0.094 0.837 0.837 0.911 0.436 0.837 0.837

6 0.133 0.133 0.436 0.66 0.006 0.133 0.133Beverage

12 0.258 0.911 0.416 0.911 0.416 0.911 0.911

1 0.163 0.026 0.001 0.013 0.013 0.013 0.013

6 0.268 0.094 0.026 0.026 0.163 0.094 0.051Metal

12 0.051 0.268 0.003 0 0.001 0.268 0.268

1 0.436 0.436 0.258 0.059 0.059 0.436 0.436

6 0.911 0.837 0.607 0.416 0.607 0.837 0.837Pre. Metal

12 0.133 0.013 0.268 0.051 0.094 0.006 0.013

1 0.006 0.026 0.026 0.163 0.094 0.026 0.026

6 0 0 0 0 0 0 0Gas

12 0 0 0 0 0 0 0

1 0.163 0.66 0.094 0.607 0.416 0.66 0.66

6 0.013 0.094 0.607 0.013 0.094 0.094 0.094Coal

12 0.133 0.133 0.911 0.607 0.133 0.258 0.133

1 0.006 0.163 0.026 0.268 0.416 0.163 0.268

6 0 0.006 0.001 0.051 0.013 0.003 0.006Oil

12 0 0 0 0 0 0 0
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Table 9: P-Values of Correct Coverage Test for VaR at 99%

Each value represents the p-values of the LR test for correct coverage at a 99% confidence. Values colored in

green implies significant statistical proof for correct coverage. More details on the test are stored in

Methodology section.

Horizons

(Months)
Bench. PCA SPC PC2

KPCA

poly

KPCA

sigmoid

KPCA

rbf

1 0.543 0.232 0.083 0.543 0.232 0.232 0.232

6 0.002 0.026 0 0.002 0.007 0.026 0.026Food

12 0 0.083 0 0.002 0.002 0.083 0.083

1 0.543 0.961 0.961 0.232 0.961 0.543 0.961

6 0.041 0.041 0.961 0.543 0.961 0.041 0.041Beverage

12 0.543 0.083 0.083 0.543 0.026 0.026 0.083

1 0.026 0.083 0.232 0.543 0.083 0.083 0.083

6 0.002 0.083 0.002 0.026 0.083 0.083 0.232Metal

12 0.002 0.232 0.007 0.007 0 0.232 0.232

1 0.406 0.406 0.041 0.406 0.406 0.961 0.406

6 0.232 0.083 0.026 0.002 0.007 0.083 0.083Pre. Metal

12 0.406 0.007 0.026 0 0.002 0.007 0.007

1 0.002 0 0 0.002 0.007 0 0

6 0 0 0 0 0 0 0Gas

12 0 0 0 0 0 0 0

1 0.007 0.026 0.083 0.007 0.026 0.026 0.026

6 0.002 0.007 0.002 0.026 0.002 0.026 0.026Coal

12 0.041 0.961 0.961 0.083 0.406 0.961 0.961

1 0 0.007 0.026 0.026 0.083 0.026 0.026

6 0 0 0 0 0 0 0Oil

12 0 0 0 0 0 0 0

At the 1% confidence level, the coverage is generally poor. This might be attributed to the sample

size of about 200, where deviations from two positive indicator functions may vary significantly,

even if the coverage is technically correct. More data would be required to accurately identify

its statistical significance.
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C Explanation of the Accompanying ZIP File

C.1 Inputs

The inputs used for the research are stored in the Excel file titled ’IMF Commodities since

1990’. The original data extracted from the IMF is located on the ’External Sheet’. The sheet

named ’Python’ contains the dataset used for analysis in Python, which includes only the indices

analyzed in the research. The ’Methodology’ sheet contains all important information regarding

the dataset. All of these files can be accessed on the IMF website, with the link provided in the

’Methodology’ sheet.

C.2 Code

All code is run on an Intel i5 computer with 16.0 GB (15.3 GB usable) of RAM. To implement the

code, the software environments Spyder is used with the programming language Python(3.11).

The code successfully completed in less than an hour (∼ 55min).

The code is stored in two files. The first file, ’Main’, contains the primary code that extracts

the inputs, displays summary statistics, and formats the data for application of the method.

This main code calls functions from the second file, ’Models’. The ’Models’ file contains the

code that applies the models to the returns as described in the methodology section of the

research. Finally, the main file utilizes these models to complete the remaining methodology

and generates outputs.

C.3 Outputs

The numerical outputs are saved in the Excel file ’ANALYSIS’, and the plots are stored in the

folder ’Plots’. All of these results are documented in the research paper.

D Replication of Original Thesis Paper

As this research is part of my Bachelor Thesis, for completeness, in this section I share the

original output showing the improvement of the MSPE of macroeconomic variable from the use

of non-linear PCA. In this case the PCA model is set as the benchmark.
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Table 10: Relative MSPE of the Used Models on Macroeconomic Variables (PCA is the bench-
mark model)

Horizons

(Months)
SPC PC2

kPCA

poly

kPCA

sigmoid

kPCA

RBF

RPInc.

1 1,033 1,013 1,077 1,001 1,000

3 1,319 1,174 2,297 0,989 0,997

6 1,531 1,271 3,160 0,965 0,998

9 1,858 1,086 2,535 0,883 0,932

12 1,375 1,250 1,970 0,889 0,937

18 1,165 38,160 2,206 0,838 0,927

24 1,198 19,446 1,328 0,869 0,989

Civil.

Employ.

1 1,026 0,987 1,431 1,002 1,000

3 1,476 1,136 1,627 0,983 0,976

6 1,638 1,218 2,737 0,924 0,945

9 2,255 1,281 2,044 0,921 0,932

12 1,916 1,478 1,798 0,908 0,938

18 1,315 20,826 1,627 0,917 1,003

24 1,362 386,273 1,670 0,914 0,970

Housing starts:

Privately

Owned

1 1,010 1,098 1,068 0,995 0,995

3 1,553 1,189 1,347 0,974 0,959

6 2,353 1,762 2,867 0,979 0,999

9 1,918 1,841 1,639 0,958 0,922

12 1,460 1,393 2,209 0,958 0,941

18 1,219 67,184 2,202 0,945 0,894

24 1,795 23,410 2,862 0,977 0,941

RPCons.

1 1,079 1,046 1,172 1,004 0,992

3 1,310 1,158 2,099 0,990 0,989

6 1,641 1,231 1,898 0,955 0,961

9 2,034 1,318 1,896 0,931 0,936

12 1,560 1,179 2,568 0,907 0,960

18 1,136 11,539 2,820 0,913 0,962

24 1,340 19,689 1,778 0,948 0,980

M1

Money Stock

1 1,066 1,345 1,966 1,007 0,989

3 1,596 1,464 3,999 0,963 0,999

6 1,371 1,133 2,665 0,927 0,966

9 1,544 1,199 2,626 0,918 0,957

12 1,710 2,520 2,526 0,931 0,976

18 1,484 27,087 2,106 0,898 0,952

24 1,317 157,372 1,601 0,830 0,983
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Table 11: (Continued) Relative MSPE of the Used Models on Macroeconomic Variables (PCA
is the benchmark model)

Horizons

(Months)
SPC PC2

kPCA

poly

kPCA

sigmoid

kPCA

RBF

Effect. Fed.

Funds Rate

1 0,926 1,228 1,317 0,992 1,039

3 1,482 1,347 2,258 0,925 0,978

6 3,126 1,398 3,885 0,836 0,954

9 2,674 2,336 2,824 0,850 0,912

12 2,417 1,220 1,330 0,865 0,962

18 1,771 9,057 2,841 0,809 0,933

24 2,223 23,787 1,674 0,795 0,891

CPI

1 1,044 1,193 1,629 0,990 0,997

3 2,034 1,660 3,014 1,019 1,060

6 2,272 1,205 3,915 0,942 1,010

9 1,361 1,932 1,955 0,966 1,014

12 1,323 1,548 1,475 0,954 0,980

18 1,352 12,581 1,319 0,952 0,950

24 1,317 34,103 1,233 0,954 0,956

S.P 500

1 1,123 1,113 1,619 0,989 1,000

3 1,333 1,279 1,748 0,968 0,988

6 2,031 1,429 2,533 0,934 0,970

9 2,088 1,681 2,350 0,871 0,968

12 2,088 1,981 2,038 0,863 0,945

18 1,585 41,795 1,420 0,813 0,832

24 2,044 43,136 1,340 0,875 0,944
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