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Abstract

This paper investigates models for estimating and forecasting the CBOE VIX. The

GARCH option pricing model largely underestimates the VIX, thus we investigate the per-

formance of autoregressive models, Extreme Gradient Boosting (XGBoost) models and a

Local Linear Forest (LLF) model. The research utilizes data from January 2, 1990, to Au-

gust 10, 2009, to develop point and directional forecasts. Results show that GARCH models

perform poorly when only returns are considered, but accuracy improves with the inclu-

sion of VIX data. Autoregressive models perform better due to high autocorrelation in the

VIX series, while the Heterogeneous Autoregressive (HAR) model exhibits the lowest mean

squared error, handling outliers effectively. The XGBoost model using short-, intermediate-,

and long-term average VIX prices yields the lowest mean absolute prediction error of 4.77%,

while the LLF model achieves the lowest mean absolute error and performs well based on

the aforementioned performance measures. In predicting the direction of the VIX, the XG-

Boost model incorporating VIX moving averages achieves the highest accuracy at 55.38%.

However, its performance does not demonstrate statistically significant improvement over a

naive prediction model that consistently forecasts downward movement.
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1 Introduction

Forecasting stock market volatility is a topic of interest for many people in society. Investors

want to know the level of uncertainty in the future they have to account for now to make prof-

itable decisions whereas hedge funds can manage their risk exposure and implement strategies

to mitigate potential losses. On another note, it would be almost impossible to price an option

contract without having an impression of the future fluctuations of the underlying stock. In the

literature, authors have agreed that volatility follows a stochastic process and popular models

developed by Heston (1993) and Stein and Stein (1991) have been developed based on this as-

sumption. With the recent advances in machine learning, a new world of models has opened.

They often excel in predictive accuracy compared to the aforementioned traditional models.

This research seeks to improve forecasts of volatility indices of the American stock market by

considering the volatility implied by Generalized AutoRegressive Conditional Heteroskedasti-

city (GARCH) option pricing models (Duan, 1995), Autoregressive Integrated Moving Average

(ARIMA) models, the Heterogeneous Autoregressive (HAR) model by Corsi (2009), and the

tree-based Extreme Gradient Boosting (XGBoost) model and Local Linear Forest (LLF) model.

The research on forecasting the American volatility index is of great importance due to its

potential to enhance decision-making for investors and risk managers, thereby improving both

financial stability and returns. This study addresses a significant gap in the existing literature

by exploring the predictive power of machine learning models compared to traditional GARCH

and autoregressive models. Ultimately, forecasting the volatility indices of different markets

is thus not only of scientific relevance, but also has vital implications for policymakers, hedge

funds, and investors. Hence, the problem statement of this paper is as follows: how do GARCH,

autoregressive, and tree-based machine learning models compare in predicting the CBOE VIX

and what is the impact of incorporating average prices on their predictive performance?

This paper also focuses on forecasting a volatility index instead of the volatility of a stock.

It is important to note the difference between forecasting volatility and forecasting a volatility

index. Forecasting volatility has been mainly important in the context of pricing derivatives,

and options in particular. Poon and Granger (2003) provide a comprehensive review of the

findings of 93 papers on volatility forecasting, where volatility is defined as the standard deviation

of a set of observations, such as a stock. Although volatility can be used as a measure of

risk, it also appears as an input for important option pricing formulas as seen in Black and

Scholes (1973). Conversely, S. A. Degiannakis (2008) was the first to propose modelling the

CBOE VIX—a volatility index that measures the constant 30-day expected volatility of the U.S.

stock market—as a dependent variable, rather than using either interday conditional volatility

or intraday realized volatility. The distinction between volatility and the volatility index is

significant because the VIX encapsulates market expectations of the S&P 500’s volatility, which

can be influenced by investor sentiment and market conditions.

As mentioned before, the literature on volatility models is tightly connected to pricing op-

tions. Perhaps the most influential paper is by Black and Scholes (1973), where the theoretical

valuation formula for options is derived. This paper opened the floor for more discussion on op-

tion pricing models, such as the class of stochastic volatility models. Wiggins (1987) models the

volatility of returns as a stochastic process and provides a comparison to the Black-Scholes model
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while testing its empirical robustness when not all assumptions hold while Heston (1993) derives

a closed-form solution for the price of a European call option again under the assumption of

stochastic volatility. Realized volatility models, such as the one by Andersen, Bollerslev, Diebold

and Labys (2003), incorporate high–frequency intraday data into the measurement, modelling,

and forecasting of volatility. However, not all stylized facts for asset returns were captured in

these models. For example, the phenomenon of volatility clustering was not yet captured, nor

was the negative correlation between stock returns and volatility. This is where GARCH models

come into play. The GARCH models (Engle & Bollerslev, 1986) gained popularity due to their

ability to capture the phenomenon of volatility clustering and the fat tails of the returns.

The first ideas about using GARCH models in the context of pricing options were proposed

by Duan (1995). Given that an asset follows a GARCH process, a locally risk-neutral valuation

relationship (LRNVR) can be developed to determine the price of an option on this asset. Heston

and Nandi (2000) also took on this idea and captured both the stochastic nature of volatility

and the correlation between volatility and spot returns. To connect the GARCH models to

fitting the CBOE VIX, Hao and Zhang (2013) derive the formulas for the implied VIX of the

GARCH models, but they concluded that the class of GARCH models fails to fit the VIX under

the LRNVR. Soon after, Christoffersen, Feunou, Jacobs and Meddahi (2014) developed a new

type of affine discrete-time model that allows for closed-form option valuation formulas using

the conditional moment-generating function, which is a special case of the model developed

by Heston and Nandi, and outperformed the GARCH model by capturing the volatility of

variance. More recently, W. Zhang and Zhang (2020) found an adjustment of the LRNVR that

was proposed by Duan (1995) which resulted in the GARCH option pricing model being able to

capture the negative variance risk premium, which they failed to do in 2013.

Given the large growth in volatility trading, recent literature also focused on forecasting

volatility as well as volatility indices instead of only assessing the fit. Ahoniemi (2008) models

the CBOE VIX, whereafter forecasts are produced using an ARIMA(1,1,1) model including

exogenous regressors. If one were to trade options based on the forecasts of this paper, a positive

return would be obtained. However, similar to S. A. Degiannakis (2008), adding GARCH terms

did not improve forecasts. Liu, Guo and Qiao (2015) suggest using GARCH(1,1), GJR, and

Heston–Nandi models for this goal but also experienced that the VIX forecasts were again too

low and unable to incorporate the variance risk premium. H. Wang (2019) adds VIX components

to the HAR model (Corsi, 2009) to model the realized volatility of several stock markets resulting

in an improvement in predictive performance over the AR(1) benchmark. Moving away from

the model-based approaches, S. Degiannakis, Filis and Hassani (2018) was the first to apply the

non-parametric Singular Spectrum Analysis in the context of forecasting volatility indices for

multiple markets, including the EURO STOXX 50 volatility index (VSTOXX) for Europe. More

recently, Wu, He and Xie (2023) established a promising future for the REGARCH-MIDAS-RA

model for forecasting, as opposed to more traditional GARCH models.

With the recent popularity of machine learning, S. Wang, Li, Liu, Chen and Tang (2024)

implemented several machine learning methods such as Extreme Gradient Boosting (XGBoost)

and Neural Networks to forecast next-day returns of VIX constant-maturity futures. Similarly,

Prasad, Bakhshi and Guha (2023) implemented several deep learning methods to predict the VIX
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for India, resulting in highly accurate predictions. Taking into account that the computation

methodology is the same for the India VIX as for the CBOE VIX, the tree-based methods

proposed in this paper could have a promising future, which is also supported by Kleen and

Tetereva (2022) who used Local Linear Forests (LLF) to forecast realized volatility for S&P 500

stocks.

The remainder of this paper will be as follows. Section 2 explains the source and structure of

the data, and provides summary statistics. The models, estimation methods and performance

measures are discussed in Section 3, along with an explanation of risk-neutral valuation and

properties of the VIX as a time series. Results are presented in Section 4, along with a discussion

on the model performance. Finally, Section 5 summarizes this paper’s findings and presents

suggestions for further research.

2 Data

To assess the goodness-of-fit and predictive performance of the volatility indices implied by the

models, this paper compares them to measures for investor’s expected volatility for the American

market. In order, the prices of the S&P 500 index and the corresponding CBOE VIX index will

be investigated, obtained respectively from the Wharton Research Data Services1 and the CBOE

website2. As a risk-free rate in the GARCH models, the daily 3-month U.S. Treasury Bills rate is

used and is obtained from the Federal Reserve Website3. This research uses data from January

2, 1990, to August 10, 2009, for fitting the models in accordance with Hao and Zhang (2013),

while forecasting is done on data from August 11, 2009, to August 10, 2010.

Summary statistics for the data are shown below. Note that for the S&P 500, the summary

statistics for the log returns are given as the data only appears in this form in the GARCH

option pricing models.

Variable Mean St.Dev. Min Max Skewness Kurtosis

VIX 20.22 8.41 9.31 80.86 7.24 0.12

S&P 500 0.0002 0.01 -0.09 0.11 -0.19 12.25

T-Bill 3.85 1.85 0 7.99 -0.24 -0.64

Table 1: Summary statistics for the data from January 2nd 1990 to August 10th 2009.

3 Methodology

This section discusses the concept of risk neutrality and the structure and estimation of the

GARCH models. Furthermore, the VIX time series is inspected and the specification of the

ARIMA, HAR, XGBoost, and Local Linear Forest (LLF) models is proposed.

1Wharton Research Data Services. (2024). WRDS. Retrieved May 23, 2024, from ht-
tps://wrds.wharton.upenn.edu

2CBOE Exchange, Inc. (2024). Retrieved May 23, 2024, from
https://www.cboe.com/tradableproducts/vix/vixhistoricaldata/

3S&P Dow Jones Indices LLC, S&P 500 [SP500], Retrieved May 23, 2024, from FRED, Federal Reserve Bank
of St. Louis; https://fred.stlouisfed.org/series/SP500
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3.1 Locally risk-neutral valuation relationship

Duan (1995) derived the Locally Risk-Neutral Valuation Relationship (LRNVR), which changes

the probability measure from a physical to a risk-neutral one. This allowed him to derive a

formula for the implied VIX, which could be used in practice to model the CBOE VIX. This

subsection discusses why this change in probability measures is needed and how it changes the

GARCH models.

The conventional approach to pricing options often involves considering both probabilities:

the risk-neutral probability measure Q, under which investors behave as if they were risk-neutral,

and the real-world probability measure P, which describes the actual probabilities of events as

perceived by investors with risk included. Considering the complex nature of the GARCH(p, q)

processes, it is deemed necessary to introduce a specific condition related to variances under the

risk-neutral measure. The LRNVR specifies that the one-period ahead conditional variance is

invariant to a change in probability measure, which means that

V arP(ln(
Xt

Xt − 1
)|ϕt−1) = V arQ(ln(

Xt

Xt − 1
)|ϕt−1). (1)

The LRNVR has several implications for the GARCH processes under measures P and Q. First,

under the physical measure, the returns are equal to

ln
Xt

Xt−1
= r + λ

√
ht −

1

2
ht + ϵt, (2)

where

ϵt|ϕt−1 ∼ N(0, ht),

and the volatility process is equal to

ht = α0 +

q∑
i=1

αiϵ
2
t−i +

p∑
i=1

βiht−i, (3)

while the LRNVR implies the returns under the risk-neutral measure follow

ln
Xt

Xt−1
= r − 1

2
ht + ξt, (4)

where

ξt|ϕt−1 ∼ N(0, ht),

and the volatility process equals

ht = α0 +

q∑
i=1

αi(ξt−i − λ
√

ht−i)
2 +

p∑
i=1

βiht−i, (5)

where Xt is the price of the asset, r is the constant interest rate, λ is the risk premium, and

ϕt is the information set of all information up to and including time t. Both ϵt and ξt are

error terms but under different measures. One can see that the GARCH process remains largely

intact concerning local risk neutralization. However, the conditional variance process under

the risk-neutralized pricing measure, is not a GARCH process. To see this, we look at the
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innovations ϵ2t−i under the P measure and (ξt−i − λ
√
ht−i)

2 under the Q measure. Under the

physical measure, the variance innovation is driven by q central chi-square random variables

with one degree of freedom, whereas, in the GARCH process under the risk-neutral measure,

the chi-square random variables are not central anymore. After factoring out
√
ht−i from the

parentheses and recognizing that ξt−i√
ht−i

follows a standard normal distribution, we find that the

equity premium λ is the noncentrality parameter. Thus, while the risk is locally neutralized

under the pricing measure Q, the process driving the conditional variance is still influenced by

the equity premium λ. Despite the presence of the equity premium under the LRNVR in the

volatility process, Hao and Zhang (2013) argue that no premium for volatility risk is compensated

under the LRNVR framework.

3.2 GARCH option pricing models

Under the assumption that the S&P 500 follows a Square-Root Stochastic Autoregressive Volat-

ility process with one lag, abbreviated SR-SARV(1) (Meddahi & Renault, 2004), under measure

Q, we can derive closed-form formulas for the implied VIX for three different GARCH specifica-

tions. Namely, according to Hao and Zhang (2013), the implied VIX at time t is a linear function

of the conditional variance of the next period. In this paper, we consider three cases of SR-

SARV(1) processes: GARCH(1,1), AGARCH(1,1), and TGARCH(1,1). The latter two models

capture the leverage effect, which suggests that large negative returns have a greater effect on

future volatility than positive returns of the same magnitude. As opposed to the AGARCH

model, the TGARCH model creates different regimes depending on the sign of the shock from

the past period. In detail, they take the forms of the following:

GARCH(1,1):

Physical measure: ht = α0 + α1ϵ
2
t−1 + β1ht−1 (6)

LRNVR: ht = α0 +

q∑
i=1

α1(ξt−1 − λ
√
ht−1)

2 +

p∑
i=1

β1ht−1 (7)

TGARCH(1,1)

Physical measure: ht = α0 + α1ϵ
2
t−1 + θϵ2t−11(ϵt−1 < 0) + β1ht−1 (8)

LRNVR: ht = α0 + (ξt−1 − λ
√
ht−1)

2 + [α1 + θ1(ξt−1 − λ
√
ht−1 < 0] + β1ht−1 (9)

AGARCH(1,1)

Physical measure: ht = α0 + α1(ϵt−1 − θ
√

ht−1)
2 + β1ht−1 (10)

LRNVR: ht = α0 + α1(ξt−1 − λ
√
ht−1 − θ

√
ht−1)

2 + β1ht−1 (11)

3.3 Estimation

As in the paper by Hao and Zhang (2013), the GARCH models are estimated using the method

of Maximum Likelihood. However, the authors do not specify the initial parameters, nor the
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explicit optimization method they use to maximize the likelihood function. Therefore, the start-

ing parameters used in this paper can be found in section A.2 in the Appendix, and estimation

was done by the interior point algorithm. There will be three different likelihood functions that

need to be maximized: one using the S&P return dataset only, one using the VIX dataset only,

and one using both. For the estimation using only returns, the estimation is done under the

physical measure, resulting in the log-likelihood function

ln(LR) =
−T

2
ln(2π)− 1

2

T∑
t=1

{ln(ht) + [ln(Xt/Xt−1)− r − λ
√
ht +

1

2
ht]

2/ht}, (12)

where T is the total number of time steps and ht corresponds to the GARCH, AGARCH or

TGARCH process under the physical measure.

Similarly, the log-likelihood corresponding to the CBOE VIX only using the risk-neutral measure

is equal to

ln(LV ) =
−T

2
ln(2πŝ2)− 1

2ŝ2

T∑
t=1

(V IXMkt
t − V IXImp

t )2, (13)

where ŝ2 denotes the variance of the difference between the market VIX and the implied VIX.

When using joint parameter estimation, the log-likelihood function becomes

ln(LT ) = ln(LR) + ln(LV ), (14)

which we use when we estimate the GARCH models with both returns and VIX data. During

the estimation procedure, we have the following stationary conditions for the parameters: for

the GARCH(1,1) process

α1(1 + λ2) + β1 < 1,

for the TGARCH(1,1) process

α1(1 + λ2) + β1 + θ[
λ√
2π

e−
λ2

2 + (1 + λ2)N(λ)] < 1,

and for the AGARCH(1,1) process

α1(1 + (λ+ θ)2) + β1 < 1.

Note that even when we maximize the likelihood under the physical measure, the stricter sta-

tionary conditions under the risk-neutral measure are used.

3.4 GARCH Implied VIX

The CBOE VIX reflects investors’ expectation of S&P 500’s volatility over the next 30 calendar

days (or 21 trading days), which yields the following formula:(
V IXt

100

)2

= EQ
t

[
1

τ0

∫ t+τ0

t
h̃sds

]
, (15)
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where τ0 = 30 calendar days or 21 trading days. This paper follows the procedure of calculating

the VIX as the mean of the variance in the next n subperiods of the following 30 calendar days

(or 21 trading days) as in Hao and Zhang (2013), which means for data with daily frequency

that τ0 = n = 21 and hence

V IXt =
1

n

n∑
k=1

EQ
t [ht+k], (16)

with ht+k for the corresponding SR-SARV(1) process under the risk-neutral measure. After the

estimation of the models, we get the following VIX formulas:

V IXt = A+Bht+1 (17)

A =
α0

1− η
(1−B),

B =
1− ηn

n(1− η)
,

where for the GARCH model

η = α1(1 + λ2) + β1,

for the TGARCH model

η = α1(1 + λ2) + β1 + θS,

where S = [ λ√
2π
e− λ2

2 + (1 + λ2)N(λ)] if ut = ξt/
√
ht follows i.i.d. standard normal.

Finally, for the AGARCH model

η = α1[1 + (λ+ θ)2] + β1.

Essentially, the outcomes of equation 17 are compared to the CBOE VIX.

3.5 ARIMA models

A popular method, among others used by Ahoniemi (2006), to fit and forecast the VIX index

is using Autoregressive Integrated Moving Average (ARIMA) models. Including autoregressive

terms, moving average terms, and differencing operations, this model creates a linear equation

to forecast future values of a time series. The ARIMA(p, d, q) model is defined as follows by

Kotu and Deshpande (2018):

yt = I + µ+ α1yt−1 + ...+ αpyt−p + ϵt + θ1ϵt−1 + ...+ θqϵt−q, (18)

where yt is the value of the VIX index at time t, µ is a constant, and ϵt is the error term at

time t. I indicates that the data has been differenced d times in order to obtain stationary data,

which is needed for accurate modelling. The idea of this model is based on serial correlation:

the autoregressive part accounts for the autocorrelation of order p in the time series, while the

moving average part models the dependence on the error of the past q data points.
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3.5.1 Time series inspection

This subsection discusses some properties of the VIX time series along with implications for

the ARIMA model. Using this information, one can first guess what ARIMA models would be

appropriate for modelling the CBOE VIX. To start the analysis, we plot the time series of the

CBOE VIX index from January 2nd 1990 to August 10th 2009 in Figure 1, its differences in

Figure 2 along with the autocorrelation function (ACF) and the partial autocorrelation function

(PACF) in Figure 3 and Figure 4.

Figure 1: Closing prices of the VIX from Janu-
ary 2nd 1990 to August 10th 2009.

Figure 2: Difference of the VIX from January
2nd 1990 to August 10th 2009.

Figure 3: ACF of the VIX data. Figure 4: PACF of the VIX data.

Visual inspection of the time series shows that the conditional volatility is not constant, but

changes over time. Especially in 2008, the VIX was at the highest level it had been to date,

which can be attributed to the global financial crisis. A quick look at the ACF shows that the

time series exhibits long-term dependency. Furthermore, the Augmented Dickey-Fuller (ADF)

test is performed to investigate if this time series is stationary. The null hypothesis is that there

is a unit root present in the data, which means that at least one α is equal to 1. The test

statistic is −4.389 with a p-value smaller than 0.01, so the null hypothesis is rejected. The same

conclusion is drawn from an ADF test on the differenced series. Hence, stationarity cannot yet

be rejected which corresponds to the result obtained in Saha, Malkiel and Rinaudo (2019).

To fit an appropriate ARIMA model, an algorithm by Hyndman and Athanasopoulos (2018)

is implemented in R using the auto.arima function from the ‘forecast’ package made by Hyndman

and Khandakar (2008). This algorithm evaluates different ARIMA(p, d, q)specifications and

selects the one with the lowest Akaike Information Criterion (AIC) as the best. The exact

algorithm can be found in Section A.6 in the Appendix. The result of the Hyndman-Khandakar
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Algorithm is an ARIMA(3, 1, 3) model, where (as visible from d = 1) first-differencing is applied.

Although the level data is stationary, differencing can lead to more parsimonious models by

reducing the need for high-order AR or MA terms as would be needed in the levels model

regarding the slowly decreasing ACF.

3.6 Benchmarks

This research considers two benchmarks. To begin with, an ARIMA(1,0,0) (which simplifies to

an AR(1) model) is estimated for comparison with other models. It is described as

yt = µ+ α1(yt−1 − µ), (19)

where µ is the constant mean. This approach is also taken by H. Wang (2019), who describes it

as the no-predictability benchmark.

Moreover, we view the Heterogeneous Autoregressive (HAR) model of Realized Volatility

(RV) by (Corsi, 2009) with the following specification:

RVt = c+ α1RVt−1 + α2RVt−1,5 + α3RVt−1,22 + ϵt, (20)

where RVt−1,L = 1
L

∑L
j=1RVt−j(L = 5, 22). It can be argued that this model for realized

volatility is also applicable to model the VIX directly. Namely, the HAR model is designed to

capture the heterogeneous nature of volatility over different time scales: the first lag represents

the daily scale, where L = 5, and L = 22 represent weekly and monthly time periods respectively.

The VIX, being a measure of expected market volatility, inherently reflects the market’s view

on volatility over different horizons. Therefore, we use the following variant of the HAR model

for the VIX:

V IXt = c+ β1V IXt−1 + β2
1

5

5∑
i=1

V IXt−i + β3
1

22

22∑
i=1

V IXt−i + ϵt. (21)

3.7 Tree-based methods

3.7.1 Decision trees

Figure 5: Visualization of a decision tree.

A decision tree is a flowchart-like struc-

ture where each internal node represents

a decision based on the value of a fea-

ture, each branch represents the outcome

of the decision, and each leaf node repres-

ents a final prediction or outcome. De-

cision trees are used for both classifica-

tion and regression tasks. They partition

the data into subsets based on the feature

values, making the decision-making process interpretable and easy to visualize. A visualization

of a decision tree and its nodes can be found in Figure 5. However, one single decision tree can

be prone to overfitting, which means the algorithm fits very closely to the training data but
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cannot generalize to a new dataset. Therefore, it may not always provide the best predictive

performance. The solution will be explained next.

3.7.2 XGBoost

Extreme Gradient Boosting, abbreviated XGBoost (Chen & Guestrin, 2016), is a tree-based

method which implements boosting, a machine learning technique for regression and classific-

ation problems. It builds models sequentially, where each new model attempts to correct the

errors of the previous models. As opposed to other tree-based methods, XGBoost is efficient in

the sense that it has lower running times.

Figure 6: A general architecture of XGBoost
(Y. Wang et al. (2019)).

Boosting combines weak learners, such as de-

cision trees, sequentially to create one good

model. Figure 6 visualizes the gradient boost-

ing algorithm. First, the algorithm builds one

decision tree based on the input, which in

the case of this research will be the VIX in-

dex and possibly some macroeconomic time

series. Then, the second tree when added to

the first should minimize the loss, which we

choose to be minimization of the squared dif-

ferences between the predicted values and the

actual values, effectively reducing the Mean Squared Error (MSE). This is done while finding the

direction in which the loss function declines the fastest. Now, the first two models are combined

into one model with a lower MSE than the initial model by taking the averages of the two trees.

This can be done for a finite number of iterations until residuals have been minimized as much as

possible. The resulting model will then be used to make predictions. XGBoost has no problem

handling seasonality and trends in time-series data. The algorithm is implemented in R using

the ‘xgboost’ package by Chen et al. (2024).

3.7.3 Local linear forests

Local Linear Forests (LLF), as described by Friedberg, Tibshirani, Athey and Wager (2020),

combine the predictive power of decision trees and local regression. Essentially, they use a ran-

dom forest, which combines the results of multiple decision trees into one prediction, to generate

weights that can serve as a kernel for local linear regression, which results in an estimation of

the form(
µ (x0)

θ̂ (x0)

)
= argminµ,θ

{
n∑

i=1

αi (x0) (Yi − µ (x0)− (xi − x0) θ (x0))
2 + λ ∥θ (x0)∥22

}
, (22)

where x0 is the input location for prediction, xi is a vector of features for point i, Yi is the

outcome, µ(x0) is the local average, θ(x0) is the slope, αi is the weight obtained from the

random forest, and λ is the ridge parameter used for regularization. Considering the promising

literature on the (linear) HAR model, and the fact that the effect of the previous-day VIX value

can be different in times of a recession and an expansion, the LLF model could be an appropriate
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fit. In addition, Kleen and Tetereva (2022) recently applied the local linear forest in realized

volatility forecasting for 186 S&P 500 stocks using HAR models at the leaves, which resulted in

superior forecasting performance. The method is implemented in R using the ‘grf’ package by

Tibshirani, Athey, Sverdrup and Wager (2024).

3.7.4 Tuning and fitting

The XGBoost and LLF model require several hyperparameters that need to be tuned. For train-

ing and tuning, the data from January 2, 1990, to August 10, 2009, will be used following Hao

and Zhang (2013). Testing (or forecasting) will be done using the data from August 11, 2009,

to August 10, 2010 as in the other models. The hyperparameters are tuned on the training set

by time series cross-validation. This means creating several folds within the training set, where

each fold is again split into a train set and a test set straight after each training window. A

visualization of the procedure for 3 folds can be found in Figure 7, where the data in green would

be the data from August 11, 2009 onwards. This paper uses a separation of the training data

into 5 folds. Consequently, for each fold the model is trained using the data in the fold’s training

window, and its performance is evaluated using the data in the fold’s testing window. Hence,

for one set of hyperparameters we evaluate the performance on 5 the test sets indicated in light

blue in Figure 7. This procedure is repeated for a grid of hyperparameters, for which we want

to find the ones that yield the lowest Root Mean Squared Errors (RMSE) in the fold’s test sets.

Using this approach, the model can get accustomed to data it has not seen before, thus reducing

the risk of overfitting. The parameters that need to be tuned, including a definition, their val-

ues in the tuning grid, and the optimal value are shown in Table 9 in Section A.4 in the Appendix.

Figure 7: Cross validation on time series data.

After the hyperparameters have been tuned

using the 5 folds of the data from January

1990 to August 2009, it is time to fit the mod-

els to this same part of the data, which corres-

ponds to the entire training period. For the

XGBoost model, this is done using two differ-

ent approaches, and thus using two different

sets of features the model has to use for mak-

ing predictions. The first model is built upon

the previous value of VIX itself. For the first

point forecast, we use the trained model to make a one-step-ahead prediction. After that, the

forecast is saved and the true value of the VIX for that day is appended to the training set.

Thus, for the second day, a forecast is made using the true VIX closing price of the first day,

without retraining the XGBoost model. This is repeated for one year consisting of 252 trading

days. The other approach is inspired by Y. Zhang (2022). The author uses the 5-day, 15-day,

and 30-day average stock price, modelled again using a moving window, as predictors for a set

of stock prices. In contrast, where the author uses stock prices, this paper uses the VIX and

the same average prices as in the HAR model, namely the 1-day, 5-day, and 22-day average

VIX. Considering short, intermediate, and long trends altogether, these features summarize the
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overall sentiment and trends in volatility that the model needs to capture. The phenomenon

of volatility clustering, where periods of large volatility tend to also be followed by periods of

large volatility, will also be captured using these lag effects by averaging past values, providing

the model with a way to account for them without explicitly lagging the series multiple times.

This method will be defined as the Rolling VIX Average Price (RVAP) for the remainder of this

paper. The LLF model will only be estimated using this method.

3.8 Forecasting

To assess the model performance, the data is split into two subsets; a training set and a testing

set as described in Section 3.7.4. To assess the predictive performances of the models, this

research averages the performance measures of each model for each testing set. As performance

measures, the Mean Error (ME), Mean Absolute Error (MAE), Mean Squared Error (MSE),

and Mean Absolute Percentage Prediction Error (MAPE) will be used. All these metrics serve

a different purpose. The mean error can identify whether the model systematically over- or

underpredicts the VIX, while the mean absolute error looks at the average size of the errors.

Furthermore, a high mean squared error indicates that the model is unsuited for handling outliers

and the mean absolute percentage prediction error provides an intuitive measure of the average

difference between the forecasts and the true values. The measures are calculated as follows.

ME =

∑n
i=1 yi − ŷi

n
,

MAE =

∑n
i=1 |yi − ŷi|

n
,

MSE =

∑n
i=1(yi − ŷi)

2

n
,

MAPE =
n∑

i=1

1

n
|yi − ŷi

yi
| ∗ 100%,

where yi is the observed VIX, ŷi is the prediction of the VIX and the VIX implied by the model

in the case of GARCH. Finally, n is the size of the test set.

4 Results

4.1 GARCH models

This section discusses the fit of the GARCH models estimated on the VIX time series. Below,

Table 2 shows the Maximum Likelihood estimates of the parameters, along with the standard

errors in parentheses. This is a replication of the results from Hao and Zhang (2013). Note that

these values depend on the optimization algorithm and the selected initial parameters, hence

they differ (only very slightly) from the ones presented in Hao and Zhang (2013) even though

the same method was implemented. The initial parameters for this research are presented in the

Appendix. Also following their paper, the AGARCH model using VIX only was not estimated

considering λ and θ play the same role. Hence, the model cannot be identified and comes down

to the regular GARCH model.
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Model & data α0 α1 β1 θ λ

GARCH

Returns 7.0633e-7 0.0635 0.9313 - 0.0529

(1.7032e-7) (0.0070) (0.0074) (0.0135)

VIX 1.7189e-6 0.0367 0.9388 - 0.7888

(0.03823e-6) (0.0008) (0.0015) (0.0297)

Both 1.6871e-6 0.0471 0.9499 - 0.2071

(0.0402e-6) (0.0010) (0.0011) (0.0122)

TGARCH

Returns 1.0899e-6 0.0016 0.9322 0.1094 0.0234

(0.1783e-6) (0.0053) (0.0071) (0.0116) (0.0142)

VIX 1.6118e-6 0.0022 0.9530 0.0456 0.4204

(0.0447e-6) (0.0025) (0.0018) (0.0024) (0.0380)

Both 1.5225e-6 0.0038 0.9599 0.0613 0.0777

(0.0416e-6) (0.0016) (0.0010) (0.0023) (0.0128)

AGARCH

Returns 1.1338e-6 0.0554 0.8799 1.0127 0.0154

(0.1725e-6) (0.0055) (0.0105) (0.0937) (0.0143)

Both 1.7203e-6 0.0393 0.9345 0.7738 0.0162

(0.0469e-6) (0.0010) (0.0016) (0.0308) (0.0142)

Table 2: Maximum Likelihood estimates of GARCH models using returns, VIX or both. In
parentheses are standard errors.

In line with the findings of Hao and Zhang (2013), the most interesting aspect of Table 2 is

that the equity risk premium parameter λ increases when VIX is included (either alone or with

returns) in the estimation procedure. To illustrate the impact, for the TGARCH model the

equity risk premium increases from 0.0234 to 0.4204 when only VIX is used, which is almost

18 times as large. This result suggests that incorporating VIX, which shows the market’s

expectation of volatility, leads to investors requiring a higher compensation for taking on the

risk of investing. Another notable finding is the rather large persistence parameter β1, and the

corresponding low values of α0 induced by the stationary condition constraints presented in

Section 3.3. On one hand, the high value suggests that shocks in volatility have a long-lasting

effect while the increasing value of β1 when VIX is also considered raises the long-run variance

of the GARCH processes under the risk-neutral measure.

Now that the parameters are estimated, the implied VIX of the GARCHmodels can be calculated

using Equation 17. Table 3 shows how the implied VIX fits the CBOE VIX in levels for the

three GARCH models investigated from January 2, 1990, to August 8, 2009.
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Table 3: GARCH model fit of the VIX levels.

Model & data ME Std.Err. MAE MSE RMSE P-value

GARCH

Returns 3.58 3.32 4.00 23.85 4.88 0.0000

VIX 0.11 3.08 2.36 9.49 3.08 0.4904

Both 0.2625 3.22 2.39 10.45 3.23 0.1162

TGARCH

Returns 3.76 3.25 4.06 24.71 4.97 0.0000

VIX 0.10 3.05 2.33 9.33 3.05 0.5332

Both 0.27 3.08 2.31 9.56 3.09 0.1060

AGARCH

Returns 3.46 3.22 3.79 22.33 4.73 0.0000

Both 0.26 3.08 2.34 9.54 3.09 0.1141

This table shows how the implied VIX fits the CBOE VIX in levels for the three GARCH models investigated

during the period from January 2, 1990 to August 8, 2009. The error is calculated as the CBOE VIX minus the

implied VIX. The mean error (ME) calculates the daily average error between the implied VIX and the CBOE

VIX. The standard error (Std.Err.) calculates the standard deviation of the error. The mean absolute error

(MAE) calculates the daily average absolute error between the implied VIX and the CBOE VIX. The mean

squared error (MSE) calculates the daily average squared error between the implied VIX and the CBOE VIX.

The root mean squared error (RMSE) calculates the square root of the mean squared error. The p-value is for

the null hypothesis that the means of the implied VIX and the CBOE VIX are equal.

When only returns are regarded, the mean error calculated as the difference between the CBOE

VIX and the implied VIX is high, but decreases when VIX is included too. Also taking into

account the p-values, we can thus conclude that the implied VIX is significantly lower than the

CBOE VIX for all three GARCH models when only returns are considered. Hao and Zhang

(2013) acknowledge this to the GARCH models being unable to capture the variance premium.

In contrast, when VIX data is considered the performance becomes significantly better, but Hao

and Zhang (2013) argue that the parameters are distorted to match the levels of the VIX. Their

more elaborate results show that the statistical properties of the VIX are still not captured well

by the GARCH models. Furthermore, the AGARCH model demonstrates superior performance

across all evaluation metrics while also showing a small standard error. This shows that the

AGARCH model accurately captures the leverage effect as opposed to the GARCH model, and

the improvement over the TGARCH model could be attributed to its flexibility as opposed to

the regime-switching nature of the TGARCH model.
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(a) GARCH (b) TGARCH

(c) AGARCH

Figure 8: Comparison between the implied VIX and the CBOE VIX (estimated with returns).

4.2 XGBoost, ARIMA, and HAR models

This section discusses the fit of the XGBoost, ARIMA, and HAR models on the VIX time series.

Table 4 shows the parameter estimates for the AR(1), ARIMA(3,1,3), and HAR models.

Model µ α1 α2 α3 θ1 θ2 θ3

AR(1) 20.2157 0.9843 - - - - -

(1.3238) (0.0025) - - - - -

ARIMA(3,1,3) - -1.0997 0.1734 0.5391 0.9896 -0.4265 -0.6759

- (0.0643) (0.0706) (0.0491) (0.0595) (0.0588) (0.0480)

c β1 β2 β3

HAR 0.2066 0.8387 0.1283 0.0229 - - -

(0.0558) (0.0146) (0.0190) (0.0102) - - -

Table 4: Estimates of the AR(1), ARIMA(3,1,3), and HAR models. In parentheses are standard
errors.

We discuss a few noteworthy findings. To begin with, for the ARIMA models, we see that the α1

coefficient is very close to one, indicating a high persistence in the VIX time series as confirmed

by the slowly decreasing autocorrelation function shown in Figure 3. Specifically, the current

value of the series is almost the same as the previous value, with only a small amount of random

variation. Second, the absence of an intercept for the ARIMA(3,1,3) model can be explained by

the differencing of the data indicated by d = 1 in the ARIMA(p, d, q) specification. Differencing
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the data removes trends and makes the series stationary, which often results in a mean closer

to zero thereby reducing the need for a high intercept to fit the model. It is also interesting

that the α1 coefficient for this model is negative. This indicates that a positive change in one

period might be followed by a negative change in the next for the differenced time series. This

typically relates to the concept of mean reversion, which suggests that asset prices will eventually

return to their long-term mean or average. While the VIX is not a stock, this phenomenon is

also believed to occur for volatility as shown by Fouque, Papanicolaou and Sircar (2000). The

results of the hyperparameter tuning for the XGBoost model and LLF model can be found in

Table 9 in the Appendix. Table 5 shows the fit of the models to the CBOE VIX with the same

performance measures as Table 3.

Model & data ME Std.Err. MAE MSE RMSE P-value

AR(1) 0.0014 0.02 0.92 2.18 1.48 0.9931

ARIMA (3,1,3) 0.0024 0.02 0.91 2.11 1.45 0.9886

HAR -2.35e-16 0.02 0.91 2.12 1.46 1

XGBoost (RVAP) 0.10 0.01 0.28 0.34 0.58 0.5322

XGBoost (VIX) 0.12 0.007 0.23 0.24 0.49 0.4678

LLF 0.007 0.02 0.88 1.98 1.41 0.9681

Table 5: Autoregressive and XGBoost model fit of the VIX levels.

We see that all models show no significant difference in mean from the CBOE VIX as shown by

the p-value column. Furthermore, the (partially) linear models show a MAE from 0.88 to 0.92,

while it is much lower for the XGBoost models.

4.3 Forecasting

This section discusses the predictive performance of the models. Table 6 shows the out-of-sample

performance for the period 11 August 2009 to 10 August 2010, which is equal to 252 trading

days. In contrast, Figure 9 shows the VIX forecasts for the new period.

(a) Autoregressive models (b) XGBoost models (c) GARCH models
(both returns and VIX)

Figure 9: Forecasts of the models from August 11, 2009, to August 10, 2010.
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Model & data ME MSE MAE MAPE St.Err.

GARCH

Returns 5.59 40.79 5.67 24.47% 3.10

VIX 1.97 14.99 2.98 13.78% 3.34

Both 2.35 15.46 2.98 14.04% 3.16

TGARCH

Returns 4.89 33.66 4.98 29.98% 3.13

VIX 1.61 13.26 2.74 12.29% 3.27

Both 1.58 12.56 2.63 11.77% 3.18

AGARCH

Returns 5.02 38.32 5.36 33.92% 3.63

Both 2.10 15.61 3.09 14.54% 3.36

XGBoost

RVAP 0.15 4.25 1.24 4.77% 0.13

VIX 0.18 4.29 1.25 4.83% 0.13

LLF

RVAP 0.01 4.14 1.24 4.84% 0.13

ARIMA(3,1,3)

VIX -0.02 4.16 1.26 4.92% 0.13

AR(1)

VIX 0.04 4.17 1.25 4.85% 0.13

HAR

VIX 0.02 4.12 1.25 4.85% 0.13

Table 6: Performance measures for 252 days forecasts.

In line with Table 3, even in terms of forecasting the GARCH class models perform the worst

when only returns are included, with mean errors of 5.59, 4.89 and 5.02 for the GARCH, TG-

ARCH, and AGARCH models respectively. However, when VIX is included the performance

improves, and the mean errors halve. In contrast, the forecasting performance of the TGARCH

model when both returns and VIX are considered is better than the model when only VIX is con-

sidered, but only slightly: the MSE differ by only 0.7, which is not much. It can be concluded

that the GARCH models have little predictive power, which was to be expected considering

their fit. Again, the true VIX is undervalued, and the variance premium is thus not accurately

captured. This can also be seen in Figure 9 for the GARCH models with both returns and VIX.

Moving towards the other models, we observe that the ARIMA(3,1,3) model and the AR

model show similar performance. This can be attributed to the high autocorrelation in the time

series, as established in Figure 3. Even simple models that rely heavily on past values can perform

quite well when future values are strongly correlated with past values. This also reduces the

performance gap between simple autoregressive models and complex machine learning models:

the XGBoost models’ MAE and MAPE are lower or equal to the MAE of the autoregressive

models, especially the XGBoost RVAP model yields the lowest MAPE of 4.77%. However, they
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are worse at handling outliers as can be seen from the high MSE: the squaring of the errors

emphasizes the larger discrepancies, so a lower MSE suggests fewer large errors. However, the

LLF model also yields the lowest MAE and its MSE is lower than the other tree-based models,

suggesting the linearity in the leaf nodes of the trees could be an improvement. The HAR model,

originally meant to model realized volatility, is certainly promising too considering it has the

lowest MSE of 4.12.

To assess if there is a significant difference in predictive performance between the (of the

benchmarks best performing) HAR model and the other models, we perform Diebold-Mariano

tests for the HAR model against all other models. The null hypothesis is that both predictions

have the same accuracy, while the alternative hypothesis specifies that the HAR model is more

accurate than the other. Table 8 in the Appendix shows that the HAR model makes significantly

better predictions than the three GARCH models while the p-values for the other models do

not suggest rejection of the null hypothesis.

In conclusion, models using VIX data including both short-, intermediate-, and long-term

averages tend to perform best in forecasting the VIX, although there is no significant difference

between the benchmark HAR model and the machine learning models. The GARCH models

are not suited for forecasting and are significantly worse than the HAR model. The XGBoost

models have lower or equal MAE compared to autoregressive models but struggle with outliers.

In contrast, the LLF model also yields the lowest MAE among tree-based models while its ability

to handle outliers is better.

4.4 Directional Forecasting

Considering the similar predictive performance of the models, it is also interesting to analyze

their performance in forecasting the direction of the VIX. The GARCH models will not be

considered in this section as they have little predictive performance. The evaluation is done by

creating the confusion matrix consisting of true positives (down,down), true negatives (up,up),

false positives (down,up), and false negatives (up,down) and calculating several performance

measures. The outcomes can be seen below in Figure 10 and Table 7.

Prediction Down Up

Down 96 62

Up 53 40

(a) XGBoost (VIX)

Prediction Down Up

Down 97 60

Up 52 42

(b) XGBoost (RVAP)

Prediction Down Up

Down 94 59

Up 55 43

(c) HAR

Prediction Down Up

Down 92 57

Up 57 45

(d) AR(1)

Prediction Down Up

Down 88 56

Up 61 46

(e) ARIMA(3,1,3)

Prediction Down Up

Down 93 58

Up 56 44

(f) Local Linear Forest

Figure 10: Confusion matrices for different models.
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Table 7: Performance measures for the confusion matrices.

Model Accuracy P-value [Acc >NIR] Sensitivity Specificity

AR(1) 0.5458 0.9453 0.6174 0.4412

ARIMA(3,1,3) 0.5339 0.9763 0.5906 0.4510

HAR 0.5458 0.9453 0.6309 0.4216

XGBoost (VIX) 0.5498 0.9297 0.6242 0.4412

XGBoost (RVAP) 0.5538 0.9109 0.6510 0.4118

LLF 0.5458 0.9453 0.6242 0.4314

The accuracy is measured as the sum of true positives (down,down) and true negatives (up,up) divided by the

total number of forecasts. The p-value is of the null hypothesis that the accuracy and the No Information

Rate (NIR), taken to be the largest class percentage in the data, are equal. The sensitivity is calculated as

TruePositive
TruePositive+FalseNegative

and the specificity as TrueNegative
TrueNegative+FalsePositive

.

As seen from Table 7, the XGBoost model with the moving averages of short-. intermediate-,

and long-term VIX values has the highest accuracy and predicts the direction accurately more

than 55% of the time. However, the p-value suggests that the model is not significantly better

than the “kitchen sink” approach of always predicting the largest percentage class, which, in

this case, is the VIX going down. After the XGBoost model with only the lagged VIX, The

AR(1), HAR, and LLF models come in third and achieve an accuracy of 54.58%. Moreover, the

ability to correctly predict downward movements of the VIX (measured by sensitivity) is better

than the ability to predict upward movements, which is indicated by the higher sensitivity for

all models. This could be attributed to the fact that there are more downward movements than

upward movements in the time series considering “down” is the largest percentage class.

5 Conclusion

This paper investigated various models for estimating and forecasting the CBOE VIX index,

focusing on the performance of GARCH models under the Locally Risk-Neutral Valuation Re-

lationship (LRNVR) and alternative autoregressive models and tree-based machine learning

models. The inclusion of short-, intermediate-, and long-term average levels of the VIX was also

examined by implementing a HAR model and including the terms as regressors for the XGBoost

and LLF models instead of the lagged VIX. After estimation and hyperparameter tuning based

on data from January 2, 1990, to August 10, 2009, we used the models to make both point and

directional forecasts for 1 step ahead for 252 consecutive trading days.

We observed that the GARCH models have different specifications under the physical and

risk-neutral measure, and accounting for this difference is crucial in the estimation procedure

with S&P 500 returns, VIX, or both time series. By utilizing Maximum Likelihood estimation,

we derived formulas for the VIX implied by the GARCH models.

Although the VIX time series is non-stationary, we estimated an AR(1) model and obtained

an ARIMA(3,1,3) model using the Hyndman-Khandakar algorithm as benchmarks along with

the HAR model with moving average VIX levels for 1, 5, and 22 trading days.

As mentioned before, this research also considers two tree-based methods that can capture
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non-linear relationships. The XGBoost model is estimated for both the lagged VIX time series

and employs the same moving average approach as the HAR model, while the LLF model will

only use the latter.

In line with the findings of Hao and Zhang (2013), numerical results for the three GARCH

specifications reveal that including VIX in the estimation process significantly increases the

equity risk premium parameter λ. Furthermore, the long-lasting effects of volatility shocks are

highlighted by the magnitude persistence parameter and it is found that the inclusion of the

VIX time series in the estimation process results in the means of the implied VIX and CBOE

being equal as opposed to when only returns are considered.

Out-of-sample forecasts made for the period August 11, 2009, to August 10, 2010 show that

GARCH models perform poorly when only returns are considered, but their accuracy improves

substantially with the inclusion of VIX data. On the other hand, the autoregressive models

perform much better due to the high autocorrelation in the VIX series, which also reduces the

performance gap with the more complex machine learning models. Among the models evaluated,

the HAR model exhibits the lowest mean squared error, suggesting superior handling of outliers

and large discrepancies. The LLF model comes close in terms of MSE and obtains the lowest

MAE, while the XGBoost model with short-, intermediate-, and long-term moving averages

yields the lowest mean absolute percentage prediction error. However, a Diebold-Mariano test

indicated the forecasts of the HAR model and these other models are not significantly different.

Finally, in forecasting VIX direction, the XGBoost model including VIX moving averages

achieves the highest accuracy of 55.38% though its performance is not statistically significantly

better than a naive prediction model that always predicts downward movement. The AR(1),

HAR, and LLF models show an accuracy of 54.58%, while all models have higher sensitivity for

predicting VIX declines, indicating a general proficiency in forecasting downward movements.

A limitation of this research lies in the parameter tuning of the machine learning models.

This was achieved using a 5-fold time series cross-validation. However, despite this method,

there is still a considerable amount of randomness involved in estimating the models, and thus

its performance is difficult to evaluate. In addition, a larger grid of hyperparameters could have

been considered. Moreover, in addition to directional and 1-day ahead forecasting, we could

have also evaluated different time periods or multi-day ahead forecasts to make the results more

robust.

Along the aforementioned points, further research can explore several areas to enhance the

understanding and forecasting of the VIX index. Including more explanatory variables such as

macroeconomic indicators, S&P 500 stock data, and global financial indices might improve model

accuracy and would lay the ground for interesting variable importance analyses. Furthermore,

exploring more sophisticated machine learning techniques can capture more complex patterns

in the VIX time series. For example, the approach by Kleen and Tetereva (2022) of employing

a panel of HAR models instead of individual HAR models resulting in pooled estimators would

have already been a great idea for improvement.
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A Appendix

A.1 Code

The code is attached in the zip file. To make the code fully understandable, I will explain a

few things from the code in this Appendix. First, the code for the historical estimation of the

GARCH model is done with a modified version of code by Espejo (2024). The AGARCH and

TGARCH models were then based on the modified GARCH model but written by myself, along

with files for transforming the data and running. The Matlab code consists of the following files:
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• DateConverter: load the data and make sure the dates are transformed into the right

format. The dataset has already been cleaned to get the right time period. Run this first.

• DateConverterNew: same as the above, but will load the data for the forecasting period.

One should run this after DateConverter to also obtain the total period.

• Modelsneeded: a class with methods that all GARCH models use. It has a constructor,

a function for plotting the implicit VIX, a function for estimating model parameters and

a function to convert the T-Bill rates to the format used in Hao and Zhang (2013).

• garch, agarch, and tgarch: these classes specify the likelihoods for the different models

and the structure of the forecasts. They inherit Modelsneeded.

• RunningScript: this is the file we run the code in, as to be seen in Section A.2.

The rest of the models were implemented in R, with the corresponding packages mentioned in

this paper. The code in the R-markdown files can be run sequentially, and there are instructive

comments placed where needed. The R-code consists of the following files:

• DataCleaning: obtain the right time period from the VIX, S&P 500, and T-Bill dataset.

The final clean datasets will also be attached in the zip folder such that one does not have

to run this file.

• AR(1) model: fits the AR(1) model as described in the text. Includes additional code

for the confusion matrix.

• ARIMA(3,1,3) model: fits the ARIMA(3,1,3) model using the auto.arima function.

Includes additional code for the confusion matrix.

• HAR(1) model: fits the HAR(1) model as described in the text. Includes additional

code for the confusion matrix.

• XGBoost (VIX): fits the XGBoost model using the lagged VIX time series. A seed is

set at the beginning to make the results reproducible. Includes additional code for the

confusion matrix.

• XGBoost (RVAP): fits the XGBoost model using the moving averages of the VIX time

series. A seed is set at the beginning to make the results reproducible. Includes additional

code for the confusion matrix.

• PlottingGarch: used to make the plots in Figure 9. The data of the predictions that

should be loaded will be provided in the zip folder.

• Diebold-Mariano: used to perform the Diebold-Mariano tests as seen in Table 8. The

required data is provided in the zip file.

23



A.2 Start parameters of the GARCH models

This code was run to estimate the GARCH models. The initial parameters used in the op-

timization algorithm are α0, α1, β1, θ, and λ respectively. Each model is run by changing the

garch model specification in line 2 to either garch, agarch, or tgarch, and removing the %-sign

from the corresponding line of code.

1 %Estimate the garch model

2 garch_model = garch(SP500_total , TrBill_total , VIX_total , 1990,

1, 2, 2009, 8, 10, 252);

3

4 %GARCH

5 %modelestimates(garch_model ," Returns " ,[10^ -7 ,0.1 ,0.3 ,0.001]);

6 %modelestimates(garch_model ,"VIX " ,[10^ -7 ,0.1 ,0.3 ,0.7]);

7 %modelestimates(garch_model ," ReturnsVIX " ,[10^ -7 ,0.01 ,0.3 ,0.001])

;

8

9 %AGARCH

10 %modelestimates(garch_model ," Returns

" ,[10^ -7 ,0.05 ,0.88 ,1.01 ,0.01]);

11 %modelestimates(garch_model ," ReturnsVIX

" ,[10^ -7 ,0.03 ,0.9 ,0.01 ,0.77]);

12

13 %TGARCH

14 %modelestimates(garch_model ," Returns " ,[10^ -7 ,0.1 ,0.9 ,0.1 ,0.02]);

15 %modelestimates(garch_model ,"VIX " ,[10^ -7 ,0.2 ,0.3 ,0.02 ,0.03]);

16 %modelestimates(garch_model ," ReturnsVIX

" ,[10^ -7 ,0.004 ,0.9 ,0.04 ,0.4]);

A.3 Diebold-Mariano test

GARCH TGARCH AGARCH XGBOOST(RVAP) XGBOOST(VIX) LLF ARIMA(3,1,3) AR(1)

P-value 4.608e-12 8.714e-10 2.883e-15 0.1171 0.2590 0.4047 0.3363 0.4036

Table 8: P-values of the Diebold-Mariano tests.

A.4 Parameter tuning of the XGBoost models

Parameter Description Values checked Returns RVAP

nrounds Number of trees to build 50, 100, 150 100 50

max depth Maximum depth of one tree 4, 6, 8 4 4

colsample bytree Fraction of features sampled for each tree 0.5, 0.75, 1 0.75 1

eta The learning rate, which controls the step size at each iteration 0.01, 0.05, 0.1 0.05 0.1

gamma Minimum loss reduction required at every split 0, 0.1, 0.2 0.2 0.2

min child weigth Minimum sum of instance weights required in each child node during the tree building process 1, 3, 5 5 5

subsample Fraction of training data sampled for each tree 0.6, 0.8, 1 0.6 0.6

Table 9: Hyperparameter tuning for the XGBoost model.
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A.5 Parameter tuning of Local Linear Forest model

The following parameters were tuned for the Local Linear Forest model. The description is taken

from the documentation of the ‘ll regression forest’ function in the R-package ‘grf’ (Tibshirani

et al., 2024). All other parameters are set to the default values indicated in the aforementioned

package.

Parameter Description Values checked RVAP

num.trees Number of decision trees in the forest 2000 2000

mtry Number of variables tried for each split of a tree 1, 2, 3 1

alpha Controls the maximum imbalance of a split 0.01, 0.05, 0.1 0.1

min.node.size A target for the minimum number of observations in each tree leaf 5, 10, 15 15

imbalance.penalty Controls how harshly imbalanced splits are penalized 0, 0.25, 0.5 0

honesty.fraction The fraction of data that will be used for determining splits 0.5 0.5

honesty.prune.leaves Prunes the estimation sample tree such that no leaves are empty TRUE TRUE

Table 10: Hyperparameter tuning for the LLF model.

A.6 Hyndman-Khandakar Algorithm

Algorithm 1 Hyndman-Khandakar Algorithm for Automatic ARIMA Modelling

1: Step 1: Determine the number of differences
2: Set 0 ≤ d ≤ 2 using repeated KPSS tests.
3: Step 2: Choose the values of p and q by minimizing AICc
4: (a) Initial Model Fitting
5: Fit the following four initial models:
6: ARIMA(0, d, 0)
7: ARIMA(2, d, 2)
8: ARIMA(1, d, 0)
9: ARIMA(0, d, 1)

10: if d ≤ 1 then
11: Fit ARIMA(0, d, 0) without a constant.
12: end if
13: Select the model with the smallest AIC as the current model.
14: (b) Stepwise Model Selection
15: repeat
16: Consider variations of the current model by:
17: Varying p and/or q by ±1 , ensuring 0 ≤ p ≤ 5 and 0 ≤ q ≤ 5 manually set to limit

the amount of lags.
18: Including/excluding a constant.
19: Evaluate these variations and select the model with the smallest AIC.
20: Update the current model to the best model found in this step.
21: until No model with a lower AIC is found
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