
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis Econometrics and Operations Research

Optimizing Clustering in High Dimensional Data:

Preliminary vs. Integrated Feature Selection

Kiki Zinken (563979kz)

Supervisor: C. Cavicchia

Second assessor: H. Deng

Date final version: 29th June 2024

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.

Abstract

This research examines the combined efficacy of clustering and feature selection, aim-

ing to address the limitations created by high-dimensional data and thereby improve the

clustering performance. Two approaches are compared: a two-step approach that performs

feature selection before clustering and an integrated approach that embeds feature selection

into the clustering process. In the two-step approach, feature selection is conducted using

either the Laplacian score or the first order incremental search of the Max-Relevance and

Min-Redundancy criteria (mRMR), followed by k-means or convex clustering, implemented

using the Alternating Minimization Algorithm (AMA). In the integrated approach, sparse

k-means and sparse convex clustering are applied, utilizing the Sparse AMA (S-AMA). Sim-

ulated data is used to systematically evaluate these methods across various data settings

and noise levels. The results demonstrate that preliminary feature selection significantly im-

proves clustering performance for k-means clustering. In contrast, the integrated approach

encounters difficulties when the noise level increases. Conversely, for convex clustering, both

AMA and S-AMA perform poorly, limiting conclusive findings on the impact of feature se-

lection. These findings highlight the effectiveness of embedding feature selection into the

k-means clustering process when considering high-dimensional data.

1 Introduction

The amount of high-dimensional data publicly available on the internet has greatly increased

in recent years, making the extraction of meaningful patterns from this data a pressing issue.

Identifying these patterns can be accomplished through clustering, a fundamental unsupervised

learning method, categorizing similar data points into coherent clusters (Kaufman & Rousseeuw,

2009). Specifically, convex clustering (Hocking, Joulin, Bach & Vert, 2011; Lindsten, Ohlsson &

Ljung, 2011; Pelckmans, De Brabanter, Suykens & De Moor, 2005) has shown its importance.

It formulates the clustering as a convex optimization problem, ensuring stability and conver-

gence towards a global optimum. Another well-known clustering method is k-means clustering

(MacQueen, 1967), which iteratively partitions the dataset into k distinct subsets by minimizing

the variance within each cluster.

The effectiveness of convex clustering and k-means clustering still falls short when handling

high-dimensional data with numerous uninformative features. These features have the potential

to conceal the true data structure, leading to suboptimal clustering outcomes. Feature selection

has demonstrated efficacy in enhancing the performance of machine learning models, by identi-

fying and retaining solely the most informative features (Kumar & Minz, 2014; Li et al., 2017;

Cai, Luo, Wang & Yang, 2018), indicating that the addition of feature selection could benefit

convex clustering.

Recently, B. Wang, Zhang, Sun and Fang (2018) introduced sparse convex clustering, which

integrates feature selection into convex clustering, using the Sparse Alternating Minimization

Algorithm (S-AMA), resulting in significant improvement for high-dimensional data. This is

not the only work on simultaneously performing clustering and feature selection. Witten and

Tibshirani (2010) introduced sparse k-means clustering, extending traditional k-means clustering

by incorporating a feature selection mechanism that assigns weights to features, promoting

sparsity to identify and retain only the most relevant features for clustering, again showing

1

superior performance for high-dimensional data.

This research examines the combined efficacy of enhancing clustering with feature selection,

aiming to address the limitations posed by high-dimensional data and enhance the overall efficacy

of the clustering process. This is investigated by comparing two approaches. First, an integrated

approach that simultaneously performs feature selection and clustering, which is implemented

using S-AMA and sparse k-means. Second, a two-step approach that performs feature selection

before convex clustering. This approach is considered, since literature suggests that in case of

high-dimensional data it can outperform embedded feature selection (Liu & Yu, 2005; Saeys, Inza

& Larranaga, 2007; Bolón-Canedo, Sánchez-Maroño & Alonso-Betanzos, 2013). The objective

is to determine the optimal framework by evaluating cluster quality, which has not yet been

determined in previous work.

For the two-step approach, the original convex clustering method (Pelckmans et al., 2005;

Hocking et al., 2011; Lindsten et al., 2011), implemented using AMA, and the traditional k-

means clustering (MacQueen, 1967) are used for creating the groupings, while unsupervised

feature selection is used to handle the uninformative features of the high-dimensional dataset,

to make a fair comparison with the sparse clustering models. The Laplacian score is used as

unsupervised feature selection method, which concerns the local structure of the data. He,

Cai and Niyogi (2005) introduce a Laplacian score method for feature selection. The method

evaluates the relevance of features based on their locality preserving power by assigning the

Laplacian score to each feature. The importance of the features is then based on this score,

where a lower score indicates a more informative feature.

Additionally, supervised feature selection is used in the two-step approach, to determine the

effect on clustering performance when the labels are included in the feature selection process.

A first-order incremental search of the minimum-redundancy-maximum-relevance (mRMR) cri-

terion, as introduced by Peng, Long and Ding (2005), is considered for supervised feature selec-

tion. This method uses mutual information to determine a subset of features that maximizes

the relevance of the features for determining the cluster, while simultaneously minimizing the

redundancy of features in the subset, ensuring an optimal feature subset.

Simulated data is used in order to control the dimensionality and noise levels precisely. This

controlled environment allows for a systematic comparison of the clustering methods across

different scenarios. By manipulating these parameters, evaluating and identifying which methods

perform best under specific conditions becomes possible, providing insights into their strengths

and weaknesses.

The rest of the paper is structured in the following manner. First an overview of related

work is provided in Section 2. Then a detailed description of the utilized datasets is provided in

Section 3, followed by an explanation of the used models in Section 4. Finally, Sections 5 and 6

provide the results and conclusion, respectively.

2 Related Work

This study focuses on the clustering of high-dimensional data. Various clustering methods

have been developed over the years, starting with some traditional clustering models, which

utilize a greedy approach. Hierarchical clustering is one of the earliest traditional clustering

2

algorithms (Ward Jr, 1963). This organizes data into a hierarchy of clusters in a bottom-up

or top-down method (Murtagh & Contreras, 2012) or a hybrid method (Vichi, Cavicchia &

Groenen, 2022). Not long after k-means clustering was developed, which is considered to be one

of the simplest and most popular clustering algorithm. The clustering is based on centroids,

assigning the data to K clusters (MacQueen, 1967). Later the Gaussian Mixture Model (GMM)

gained prominence in clustering, by modelling the distribution of the data as a mixture of

several Gaussian distributions (Hastie, Tibshirani, Friedman & Friedman, 2009). GMM enables

soft clustering, meaning that a data instance can belong to multiple clusters with different

probabilities. These traditional clustering algorithms are susceptible to instabilities due to their

non-convex optimization formulations.

Recently, convex clustering has emerged to address these instability issues (Hocking et al.,

2011; Lindsten et al., 2011; Pelckmans et al., 2005) by formulating clustering as a convex optim-

ization problem. The objective function is defined in such a way that convergence to a global

optimum is ensured, leading to more stable and predictable solutions because of its convex

optimization. Additionally, convex optimization techniques can be used for convex clustering,

facilitating efficient and adaptable applications. These techniques are specifically useful for high-

dimensional and noisy datasets as they create robust clusters. Alternating Direction Method

of Multiplier (ADMM) is one of these convex optimization techniques. ADMM creates smaller

and easier solvable sub-problems of the original problem (Glowinski & Marroco, 1975; Gabay

& Mercier, 1976; Boyd, Parikh, Chu, Peleato & Eckstein, 2011). Another useful convex optim-

ization technique is the Alternating Minimization Algorithm (AMA), alternating which part of

the objective function is minimized (Tseng, 1991).

However, the performance of all these clustering methods are suboptimal for high-dimensional

data with various uninformative features, since these features can hide the true data structure.

Dealing with these uninformative features is mostly handled by feature selection, which identifies

and retains solely the most informative features (Kumar & Minz, 2014; Li et al., 2017; Cai et al.,

2018). Feature selection can be performed before clustering or incorporated into the clustering

procedure, which is referred to as preliminary feature selection and integrated feature selection,

respectively.

2.1 Preliminary Feature Selection

Several feature selection methods are defined in literature for performing feature selection be-

fore clustering. These can be split into supervised, unsupervised and semi-supervised models

(Cai et al., 2018). Supervised models make use of labeled data to determine an optimal feature

subset, while unsupervised solely relies on the local structure of the data without using labels.

Semi-supervised models combine labeled and unlabeled data for determining the feature subset.

Unsupervised feature selection is utilized in this study for the comparison of the preliminary

and integrated feature selection, as in the integrated approach the labels are not used. Addi-

tionally, supervised feature selection for the two-step approach is used and compared with the

unsupervised two-step approach.

3

2.1.1 Unsupervised Feature Selection

Unsupervised feature selection methods aim to improve clustering accuracy by finding a feature

subset that remains the local structure of the data. Several methods have been created over

time, varying in their way to select features. Dash and Liu (1999) introduced an unsupervised

method to chose the feature subset using entropy to determine feature relevance. The entropy

measures the randomness or uncertainty within the data, helping to find features that contain

significant variability. Then the trace criterion is used to select the most important feature

subset.

Another popular and easily applicable method is introduced by Mitra, Murthy and Pal

(2002). In their method the maximum information compression index is used to determine the

similarity between features, assessing the amount of information retention achieved by combining

features. The aim is to retain features that are informative and not redundant.

The Laplacian score is another popular criteria for preliminary unsupervised feature selec-

tion. He et al. (2005) proposed a method where the Laplacian score it used to determine feature

importance. The method is based on the principle that instances within the same cluster should

be in close proximity to one another. This research focuses on the Laplacian score for unsu-

pervised feature selection as it effectively preserves the local data structure by measuring the

effect of each feature on the similarity relationship among neighboring instances. As this method

ensures a feature subset that aids in forming well-defined, cohesive clusters, it is particularly

suitable for clustering tasks.

2.1.2 Supervised Feature Selection

Supervised feature selection is based on the principle of evaluating the relevance or correlation

between each feature and the target classification, aiming to find the optimal feature subset that

maximizes the classification accuracy. A well known subset selection method is Correlation-

based Feature Selection (CFS), introduced by (Hall, 2000), using heuristic approaches to select

features with high correlation towards the target class and low inter-correlation between the

selected features.

ReliefF (Kononenko, 1994) uses the Euclidean distance as correlation index and weights the

features based on their ability to differentiate instances of different classes. This is an extension

of Relief (Kira & Rendell, 1992), supporting multi-class problems.

Instead of considering the correlation of the features, information measures for relevance

and redundancy can be used. A classical feature selection criterion for relevance and redund-

ancy analysis using mutual information is Max-Relevance and Min-Redundancy (MRMR). This

criterion can then be implemented using a first-order incremental search, creating the mRMR

approach, introduced by Peng et al. (2005). This approach is specifically chosen for its ability

to balance relevance and redundancy effectively, which is crucial in high-dimensional data where

many features might be correlated or irrelevant.

Sometimes conditional mutual information is used, which considers the impact of selected

features on the classification performance of candidate features, addressing the limitation of

mutual information-based methods like mRMR, which only minimize feature-feature mutual

4

information. However, mRMR often results in superior performance due to its theoretical first-

order optimality, resulting in the preference for mRMR.

2.2 Integrated Feature Selection

In other related work it is considered to simultaneously use clustering and feature selection.

Some of these methods follow a model-free strategy, such as Witten and Tibshirani (2010), Sun,

Wang and Fang (2012), and Y. Wang, Fang and Wang (2016). Conversely, others adopt a model-

based approach, as demonstrated by Raftery and Dean (2006), Pan and Shen (2007), S. Wang

and Zhu (2008), Xie, Pan and Shen (2008), and Guo, Levina, Michailidis and Zhu (2010). Sun

et al. (2012) introduced sparse k-means clustering, incorporating feature selection into k-means

clustering. It allows identification and focus on the most relevant features for clustering, thus

improving performance and interpretability for high dimensional data.

As all of these methods use a non-convex optimization formulation, they encounter the same

instabilities as the traditional clustering models mentioned above. However, these methods do

provide very strong numerical performance. In order to benefit from the numerical performance

of these methods, while also addressing their instability issues, B. Wang et al. (2018) created

sparse convex clustering. This was then implemented using the Sparse ADMM (S-ADMM) and

Sparse AMA (S-AMA) algorithms, where it was shown that S-AMA surpasses S-ADMM in

computational time and performance. The S-AMA model also outperforms convex clustering

methods as well as k-means clustering for high-dimensional data, resulting in the choice of

S-AMA when using sparse convex clustering.

Due to the inclusion of k-means clustering in this study, the sparse k-means clustering (Sun

et al., 2012) is considered to enable a comparison of preliminary and integrated feature selection

for k-means.

3 Data Simulation

This research is conducted with simulated data, as in this manner the data can be controlled.

The goal is to find out whether a preliminary or an integrated approach of combining clustering

with feature selection performs better for high dimensional data with lots of noise. In the

simulated data, the level of noise can be controlled, making it ideal for this study.

In order to simulate data several spherical settings are used, resulting in four simulated

datasets. The simulated datasets consists of n = 60 observations with the number of features p

being 150 or 500. The number of clusters K is set either to 2 or 4. The datasets are constructed

in such a way that the first 20 features are informative, resulting in the other p − 20 features

being uninformative.

The data instances xij , where i ∈ {1, . . . , n} ∧ j ∈ {1, . . . , p}, are generated in the following

manner. For each i, a cluster label Zi is sampled from the uniform distribution ranging from 1

to K. The informative features are generated from MNVp(µK(Zi), I20), where MNVp denotes

a p-dimensional multivariate normal distribution and µK(Zi) is depended on the number of

clusters, as seen in (1) and (2). The µ in (1) and (2) regulates the distance between cluster

centers. In this context, a large µ indicates well-separated clusters, whereas a small µ indicates

5

overlapped clusters.

µ2(Zi) = µ120I(Zi = 1)− µ120I(Zi = 2) (1)

µ4(Zi) =(µ1T10,−µ1T10)
T)I(Zi = 1) + (−µ1T10,−µ1T10)

T)I(Zi = 2)

+ (−µ1T10, µ1
T
10)

T)I(Zi = 3) + (µ1T10, µ1
T
10)

T)I(Zi = 4)
(2)

Lastly, The non-informative features, also known as noise features, are generated using the

standard normal distribution N (0, σ). In this research various values for σ will be considered to

determine the performance of the methods with different noise levels, starting with σ = 1 for a

low noise level, followed by σ = 1.5 for a medium noise level and σ = 2 for a high noise level.

When using the low noise level of σ = 1, the data simulation follows B. Wang et al. (2018).

In summary, four simulation settings are considered, where for each setting the σ values 1,

1.5 and 2 are used. Setting 1: K = 2, n = 60, p = 150 and µ = 0.6, setting 2: K = 2, n = 60,

p = 500 and µ = 0.7, setting 3: K = 4, n = 60, p = 150 and µ = 0.9 and setting 4: K = 4,

n = 60, p = 500 and µ = 1.2.

4 Methodology

The focus of this study lies on comparing two ways of incorporating feature selection into

clustering to optimize the clustering performance for high-dimensional data. The first option

is to use feature selection before clustering, referred to as the two-step approach. The feature

selection methods are discussed in Section 4.1 and the clustering methods in Section 4.2 Then

in Section 4.3 the second approach is discussed, namely the integrated approach, where feature

selection is embedded into the clustering process, often referred to as sparse clustering.

4.1 Preliminary Feature Selection

The two step approach consists of the following steps. First, feature selection is employed

to decrease the feature dimensionality. Second, clustering is employed to predict the target

classification. This section focuses on the feature selection of the two step approach. The

unsupervised feature selection is handled by the Laplacian Score, while the supervised feature

selection is handled by mRMR, explained in Sections 4.1.2 and 4.1.1, respectively.

4.1.1 Laplacian Score

The Laplacian score (He et al., 2005) is used to handle unsupervised feature selection in the two

step approach. The Laplacian score represent the locality preserving power of a feature, where

a lower value results in the feature being in the feature subset. This is fundamentally based on

Laplacian Eigenmaps (Belkin & Niyogi, 2001) and locality preserving projection (He & Niyogi,

2003). The Laplacian score of the j’th feature is denoted by ℓj and the i’th sample of the j’th

feature by xij . First a nearest neighbor graph G is created with n nodes, where the i’th node

6

is denoted by xi. An edge is placed between nodes i1 and i2 if xi1 and xi2 are ”close”, meaning

xi1 is among k nearest neighbors of xi2 or xi2 is among k nearest neighbors of xi1 .

Then the weight matrix S is created, modelling the local data structure by capturing the

similarities between adjacent data points, where a higher value indicates a stronger proximity

between the data points. Whenever nodes i1 and i2 are connected, si1,i2 is calculated according

to (3), where t is set to 0.1 as this is suitable constant for the simulated data in this research.

If i1 and i2 are not connected, si1,i2 is put to zero.

si1,i2 = exp

(
−∥xi1 − xi2∥2

t

)
(3)

The Laplacian score for feature j can then be calculated following (4), where for feature j it

holds that xj = [x1j , . . . , xnj]
T , D = diag(S1 with 1 a vector of size n containing ones. Using

this information the graph Laplacian L (Chung, 1997) can be calculated: L = D− S.

ℓj =
x̃T
j Lx̃j

x̃T
j Dx̃j

, where x̃j = xj −
xT
j D1

1TD1
1 (4)

After providing a Laplacian score for all features, the ultimate feature subset still needs to

be determined. As a lower Laplacian score indicates a more important feature, the Laplacian

scores are ordered from small to large. Then the number of features contained in the subset,

denoted by f , is chosen using an iterative procedure, starting at f = 5 increasing till f = p in

steps of 5. At each step, a feature subset of size f is created, containing the m features with

the lowest Laplacian score. Clustering is then performed using this subset, employing either k-

means or AMA. The clustering performance is evaluated using the Adjusted Rand Index (ARI),

introduced by (Hubert & Arabie, 1985), and the optimal number of features f is determined

based on the highest ARI.

4.1.2 mRMR

The mRMR criterion for first-order incremental feature selection (Peng et al., 2005) is used to

handle supervised feature selection in the two step approach. Feature selection methods aim to

find a subset of features that are equipped to find the clustering optimally. When considering

the input data X = {xj , j = 1, . . . , p} with n instances and p features, this translates to finding

the subspace Rm of feature space Rp that optimally characterizes the target classification c, with

f the number of selected features.

Often the optimal characterization is determined by selecting the features with the highest

relevance to target classification c, called maximal relevance (Max-Relevance). The relevance is

usually characterized in terms of mutual information, measuring the dependency of variables.

The mutual information of two random variables x and y is expressed via their probability

density functions p(x), p(y) and p(x,y):

I(x, y) =

∫ ∫
p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy (5)

The m selected features xj need to have the largest mutual information I(xj, c), individually, as

7

this reflects the largest dependency on the target classification. The Max-Relevance is then cal-

culated by searching the features that satisfy (6), where D(S, c) represents the joint dependency
of the features in set S on target class c.

maxD(S, c), where D =
1

|S|
∑
xj∈S

I(xj , c) (6)

If two features are highly depended, the classification performance does not change much if

one of them is removed. As the features chosen by Max-Relevance can have a rich redundancy,

meaning that the dependency between these features is large, the minimal redundancy (Min-

Redundancy) condition in 7 is added to select mutually exclusive features, where R(S) represents
the redundancy in feature set S.

minR(S), where R(S) = 1

|S|2
∑

xj ,xk∈S
I(xj ,xk) (7)

The mRMR criterion is defined as Φ(D,R), shown in (8), by combining the Max-Relevance

and Min-Redundancy constraints, described above. Following this maximization, ensures the

optimization of D and R simultaneously.

maxΦ(D,R), where Φ = D −R (8)

In practice, incremental search methods can be employed to identify the features that are

nearly optimal. When feature subset Sf−1, containing f−1 features, is known, the task changes

to selecting the f ’th feature from the set X − Sf−1. This is achieved by selecting the feature

that maximizes Φ(D,R), resulting in the following optimization:

max
xk∈X−Sf−1

I(xk, c)−
1

f − 1

∑
xj∈Sf−1

I(xk,xj)

 (9)

Determining the number of features f of the feature subset is handled in the following

manner. A sequence with various options for f is made, starting at 5 increasing till p, the total

number of features, in steps of 5. Then for all these possible f values the mRMR procedure

is followed to determine the optimal feature subset. This subset is then used in the chosen

clustering method, either k-means or AMA. The clustering performance is then determined by

the ARI (Hubert & Arabie, 1985), where the highest index determines the number of features

f .

4.2 Clustering Methods

The second step of the two-step approach is clustering. Clustering is either handled by k-means

clustering or convex clustering, explained in Sections 4.2.1 and 4.2.2, respectively.

8

4.2.1 K-means Clustering

K-means clustering is a well known unsupervised learning algorithm, introduced by MacQueen

(1967), partitioning the dataset into K clusters, where data points are assigned to clusters

based on the nearest centroid. The objective of k-means is to minimize the within-cluster sum

of squares (WCSS), calculated according to (10), where Ck denotes the set of data instances

assigned to cluster k and µk the centroid of cluster k.

WCSS =
K∑
k=1

∑
xi∈Ck

∥xi − µk∥2, where µk =
1

|Ck|
∑

xi∈Ck

xi, ∀k = 1, . . . ,K (10)

Specifically, k-means seeks to partition the observations into K clusters in such a manner

that the WCSS is minimal. This results in the optimization problem (11), which is solved by

an iterative algorithm. This algorithm is explained in detail in Appendix A.1.

min
{C1,...,CK}

K∑
k=1

∑
xi∈Ck

∥xi − µk∥2 (11)

4.2.2 Convex Clustering

Convex clustering is a recently proposed method (Pelckmans et al., 2005; Hocking et al., 2011;

Lindsten et al., 2011), solving the minimization problem provided by (12). Here X ∈ Rn×p is a

data matrix with n instances and p features. This minimization aims to predict A ∈ Rn×p.

min
A∈Rn×p

1

2

n∑
i=1

∥xi − ai∥22 + γ
∑
i1<i2

∥ai1 − ai2∥q (12)

Here Ai is the i’th row of A, γ the tuning parameter and ∥.∥q is the Lq-norm of a vector with

q ∈ {1, 2,∞}. The fused-lasso penalty, the second term, encourages identical rows in the solution

Â. Whenever two rows are identical, they are regarded as members of the same cluster. The

number of unique rows in Â equals the number of estimated clusters, which is controlled by the

tuning parameter γ. If γ = 0, there are no identical rows in Â, resulting in every instance being

a cluster by itself. When γ increases, Â contains some identical rows, demonstrating the fusion

process. If γ is sufficiently large, all rows in Â are identical, implying that there is one single

cluster for all instances. The solution Â depends on γ, providing a unique solution for each γ

as the objective function in (12) is strictly convex.

A modification of convex clustering (12) is created by allowing an adaptive penalization

through the addition of weights wi1,i2 ≥ 0 to the fused-lasso penalty, as shown in (13).

min
A∈Rn×p

1

2

n∑
i=1

∥xi − ai∥22 + γ
∑
i1<i2

wi1,i2∥ai1 − ai2∥q (13)

Convex clustering is implemented using AMA in the same manner as Chi and Lange (2015),

explained in Appendix A.3. This algorithm determines the weights wi1,i2 by integrating the

k-nearest-neighbors method with Gaussian kernel. In particular, the weight between instance

pair (i1, i2) is calculated according to wi1,i2 = ιki1,i2 exp−ϕ∥xi1 − xi1∥22, where ιki1,i2 equals 1 if

9

instance i1 is among the k nearest neighbors of instance i2 or conversely, and 0 otherwise. This

weight selection performs effectively for a wide range of ϕ when k is small, resulting in the choice

of fixing k at 5 and ϕ at 0.5.

The parameter γ is tuned using the Adjusted Rand Index (ARI) method, as outlined by

B. Wang et al. (2018). Initially, a coarse grid search is conducted to explore different γ values.

Following this, 50 bootstrap samples are utilized to compute the average ARI, thereby improving

the robustness of the parameter tuning process. This approach aligns with stability selection

techniques, which aim to find parameters that produce consistent clustering outcomes despite

slight variations in the training data.

4.3 Sparse Clustering Methods

In the integrated approach, feature selection is handled during the clustering process, for which

the integrated approaches of k-means clustering and convex clustering are utilized to make a

fair comparison between the two-step approach and the integrated approach. This results in the

implementation of sparse k-means clustering and sparse convex clustering, which are explained

in Sections 4.3.1 and 4.3.2, respectively.

4.3.1 Sparse K-means Clustering

Witten and Tibshirani (2010) introduced sparse k-means clustering in order to improve clustering

accuracy for high dimensional data. In order to formulate sparse k-means clustering, Witten

and Tibshirani (2010) rewrote the WCSS of k-means to the formula represented in (14). Here

nk denotes the number of observations in cluster k and Ck represents set containing the indices

of the observations in cluster k. The dissimilarity measure between two observations (i1, i2)

along feature j is denoted by di1,i2 , which is calculated using the squared Euclidean distance:

di1,i2,j = ∥xi1,j − xi2,j∥2.

WCSS =

K∑
k=1

1

nk

∑
i1,i2∈Ck

p∑
j=1

di1,i2,j (14)

The between-cluster sum of squares (BCSS), introduced by Witten and Tibshirani (2010),

can then reframe the minimization of WCSS to the maximization of BCSS, where the BCSS is

calculated according to (15).

BCSS =

p∑
j=1

 1

n

n∑
i1=1

n∑
i2=1

di1,i2,j −
K∑
k=1

1

nk

∑
i1,i2∈Ck

di1,i2,j

 (15)

Sparse k-means clustering is created by the addition of weights wj , corresponding to the

weight for feature j, and tuning parameter s to the optimization problem, resulting in the

following optimization:

max
C1,...,CK ,w


p∑

j=1

wj

 1

n

n∑
i1=1

n∑
i2=1

di1,i2,j −
K∑
k=1

1

nk

∑
i1,i2∈Ck

di1,i2,j


subject to ∥w∥2 ≤ 1, ∥w∥1 ≤ s, wj ≥ 0 ∀j

(16)

10

The weights wj can be interpreted as the contribution of feature j to the resulting sparse

clustering, where a large value indicates a great contribution of feature j to the clustering

solution, while wj = 0 means that feature j is excluded from the clustering. Determining which

features are excluded is done using the lasso penalty on w: ∥w∥1 ≤ s. This ensures the sparsity,

when the tuning parameter s is small. In this manner, some of the weights wj equal zero, and will

thus not influence the clustering outcome. The tuning parameter s should satisfy 1 ≤ s ≤ √
p.

The optimization is handled by an iterative algorithm, with the value of the tuning parameter

s determined using a permutation approach. In the iterative algorithm, the feature weights w

are determined, followed by the clustering. Appendix A.2 explains these procedures in detail.

4.3.2 Sparse Convex Clustering

B. Wang et al. (2018) introduces sparse convex clustering, starting with a reformulation of (13)

in order to easily add the sparsity to the objective function. The data matrix X is denoted

in feature-level as column vector: X = (x1, . . . ,xp), with xj = (x1j , . . . , xnj)
T ∀j = 1, . . . , p.

The matrix A is also denoted in feature-level as column vector: A = (a1, . . . ,ap). Without

loss of generality, B. Wang et al. (2018) assumes that the feature vectors are centered, meaning∑n
i=1 xij = 0 ∀j = 1, . . . , p. Now (13) can be rewritten to (17) using simple algebra as well as

the introduction of E = {l = (i1, i2) : 1 ≤ i1 < i2 ≤ n}.

min
A∈Rn×p

1

2

p∑
j=1

∥xj − aj∥22 + γ
∑
l∈E

wl∥ai1 − ai2∥q (17)

Let Â = (â1, . . . , ân)
T = (â1, . . . , âp) be the solution of (17) for a given γ. Just as for

convex clustering the instance-level row estimates âi, i = 1, . . . , n determine the cluster structure,

meaning that two identical rows of Â belong to the same cluster. On the other hand, the

instance-level column estimates âj , j = 1, . . . , p determine the feature importance, meaning that

feature j is not informative whenever âj has identical components. As the feature vectors are

centered, feature j is not informative if and only if ∥âj∥22 =
∑n

i=1 â
2
ij = 0.

Within high dimensional clustering, there is a desire to incorporate sparsity into convex

clustering, resulting in a sparse solution Â with exact 0’s for some of its columns. To eliminate

uninformative features and achieve a sparse solution, B. Wang et al. (2018) integrates an adaptive

group-lasso penalty (Yuan & Lin, 2006; H. Wang & Leng, 2008) into objective function (17),

which is then referred to as sparse convex clustering. Specifically, sparse convex clustering solves

(18), where tuning parameters γ1 and γ2 control the cluster size and number of informative

features, respectively. The group-lasso penalty contains the weight uj , crucial for adaptively

penalizing the features.

min
A∈Rn×p

1

2

p∑
j=1

∥xj − aj∥22 + γ1
∑
l∈E

wl∥ai1 − ai2∥q + γ2

p∑
j=1

uj∥aj∥2 (18)

Sparse convex clustering is implemented using S-AMA following the implementation of

B. Wang et al. (2018), explained in Appendix A.4. This algorithm determines the weights

wi1,i2 by integrating the k-nearest-neighbors method with Gaussian kernel in the same manner

as in AMA (see Section 4.2.2). The weights uj are set to 1/∥â(0)j ∥2, with â
(0)
j the estimate of aj

11

in (18) using γ2 = 0. These weights were used by B. Wang et al. (2018) and Zou (2006) regarding

the adaptive group-lasso penalty. This selection of weights penalizes informative features less,

while penalizing uninformative features more. Consequently, it improves clustering accuracy

and variable selection performance to its non-adaptive counterpart.

The parameters γ1 and γ2 are tuned using the Adjusted Rand Index (ARI) method, as

outlined by B. Wang et al. (2018). Initially, a coarse grid search is conducted to explore different

γ1 values, while a fine grid search is conducted for γ2. Following this, 50 bootstrap samples are

utilized to compute the average ARI, thereby improving the robustness of the parameter tuning

process. This approach aligns with stability selection techniques, which aim to find parameters

that produce consistent clustering outcomes despite slight variations in the training data.

In accordance with B. Wang et al. (2018), the weights wi1,i2 and uj are rescaled to have

a total sum of 1/
√
p and 1/

√
n, respectively. This adjustment guarantees that the optimal

tuning parameters γ1 and γ2 fall within a relatively robust interval, independent of the feature

dimension and sample size. This rescaling serves only for convenience and does not impact the

final clustering path.

5 Numerical Results

In this section the empirical findings of this research are presented. The focus is on comparing

clustering methods for high-dimensional data, particularly examining the impact of integrated

and preliminary feature selection on clustering performance. To facilitate a comprehensive

comparison, first clustering without feature selection is performed using k-means and convex

clustering (handled by AMA). Subsequently, the clustering is enhanced with either prelimin-

ary or integrated feature selection. Preliminary feature selection is handled by the Laplacian

score (unsupervised) or by mRMR (supervised), followed by either k-means clustering or AMA,

making it a two-step approach. Integrated feature selection is handled using sparse k-means

clustering and sparse convex clustering (handled by S-AMA).

As the focus is on determining which methods perform best for high-dimensional data with

possibly lots of noise, various simulated datasets are considered. The following four simulation

settings are considered, where for each setting the σ values 1, 1.5 and 2 are used for different

noise levels. Setting 1: K = 2, n = 60, p = 150 and µ = 0.6, setting 2: K = 2, n = 60, p = 500

and µ = 0.7, setting 3: K = 4, n = 60, p = 150 and µ = 0.9 and setting 4: K = 4, n = 60,

p = 500 and µ = 1.2. In order to have stable results, all methods are run on 200 simulated

datasets for each setting, taking the average and standard deviation to discuss the performance.

To evaluate clustering performance, we use the Adjusted Rand Index (ARI), as introduced by

Hubert and Arabie (1985). The ARI measures the similarity between two data clusters, adjusting

for random chance. The ARI ranges from −1 to 1, where 1 indicates perfect agreement between

clusters, 0 indicates the level of agreement expected by random chance, and negative values

indicate less agreement than expected by random chance. The ARI is particularly useful for

assessing cluster quality as it accounts for the possibility of random clustering matches.

In addition to ARI, the False Negative Rate (FNR) and False Positive Rate (FPR) are

considered to provide a complete evaluation of the clustering methods. Low values of FNR and

12

FPR indicate better cluster separation and assignment accuracy, complementing the insights

provided by ARI.

5.1 Exclusion of AMA and S-AMA

Throughout the simulations of the four settings, both AMA and S-AMA consistently resulted

in an ARI of zero, indicating that the produced clusters are random. This means that either

all data instances belong to separate clusters or all data instances belong to the same cluster.

Various gamma grids were explored, collectively containing thousands of values, to optimize the

performance of AMA and S-AMA. However, despite this thorough exploration, all configurations

yielded an ARI of zero, confirming that these algorithms were unable to form meaningful clusters

for the simulated high-dimensional datasets.

For AMA, this outcome was expected. It is well known and documented that convex clus-

tering algorithms like AMA struggle with high-dimensional data due to their sensitivity to noise

and the curse of dimensionality. Thus, the inability to effectively cluster high-dimensional data

is a known limitation of AMA.

However, the poor performance of S-AMA was unexpected. S-AMA is designed to improve

clustering performance for high-dimensional data by integrating sparsity, with an expectation of

better cluster performance. S-AMA was implemented using the guidelines provided by B. Wang

et al. (2018), as explained in Section 4.3.2. Using these guidelines, S-AMA consistently results in

an ARI of zero, while B. Wang et al. (2018) indicates that it should provide an ARI between 0.8

and 1. This underperformance can be explained in two parts: parameter selection and sparsity

weight calculation.

First, B. Wang et al. (2018) does not provide clear instructions on the selection of the grids

for γ1 and γ2, making it difficult to find appropriate values. Their research does state that γ1

can be found using a coarse grid and γ2 using a fine grid. Many optional grids have been used

in this study for both γ1 and γ2. For γ1 various values have been used ranging from 0.1 to

100. To determine γ2 linear and exponential ranges have been used, resulting in the exploration

of γ2 values ranging from 0.005 till 10, 000. However, all of these values result in an ARI of

zero. As the tuning parameters γ1 and γ2 significantly impact the clustering performance, it is

challenging to achieve optimal clustering without additional insights.

Second, the calculation of the sparsity weights u should result in a higher weight for un-

informative features compared to informative ones, thereby ensuring a higher penalization for

uninformative features. According to B. Wang et al. (2018), these weights should be calculated

using uj = 1/∥â(0)j ∥2, with â
(0)
j being the estimate of aj when γ2 = 0. However, this approach

does not necessarily guarantee the higher penalization of uninformative features, as u is solely

determined by the initial estimate of A using γ2 = 0, which may not accurately capture the

true informativeness of features whenever γ2 is not zero. Since the sparsity weights u play a

crucial role in determining the importance of features, an inaccurate calculation can influence

the clustering performance negatively by prioritizing uninformative features over informative

features.

Furthermore, the GitHub page1 of B. Wang et al. (2018) provides an example of implementing

1The GitHub page can be found using the following link: https://github.com/elong0527/scvxclustr

13

S-AMA. In this example, the values of γ1 and γ2 are provided instead of computed using the

method described in their paper. Additionally, the weights u are not calculated using the

described approach. Rather, a vector is created with value 0.5 for informative features and

1 for uninformative features, deviating from their own proposed calculation. Since researches

typically depend on published methodologies to reproduce and validate results, these deviations

undermine the ability of other researchers to replicate and extend the findings.

The identified discrepancies, along with the absence of a robust method to determine tuning

parameters and sparsity weights, results in the underperformance of S-AMA. Since the sparsity

weights deviate from the intended structure, the S-AMA procedure potentially mimics the beha-

vior of the AMA procedure, undermining the benefits of integrating sparsity into the clustering

process.

Given the consistent poor clustering performance of AMA and S-AMA for the high-dimensional

data settings, these algorithms have been excluded from further analysis. Additionally, this res-

ults in the exclusion of the two-step approach using AMA, as there can not be a comparison of

the integrated and preliminary approach. The subsequent results focus on k-means clustering

and its variations with preliminary and integrated feature selection.

5.2 Clustering Performance K-means

This section discusses the clustering performance of various k-means methods. To ensure a fair

comparison between preliminary and integrated feature selection, unsupervised feature selection

is utilized. This analysis includes the clustering performance of k-means, sparse k-means and

Laplacian k-means, as discussed in Section 5.2.1. Additionally, Section 5.2.2 examines the effects

of using supervised feature selection compared to unsupervised feature selection in a two-step

approach, where the supervised feature selection is handled by mRMR.

5.2.1 Preliminary vs. Integrated Unsupervised Feature Selection

As previously emphasized, this research focuses on determining the best way to enhance cluster-

ing with feature selection. In order to achieve this, two approaches are used: performing feature

selection before clustering (preliminary feature selection) or performing feature selection during

clustering (integrated feature selection). Specifically, this part of the study compares k-means

clustering combined with the Laplacian score and sparse k-means clustering against traditional

k-means clustering.

Figure 1 shows the average ARI for the methods over the four data simulation settings. For

each data simulation the average ARI is shown for different noise levels: low noise level (σ = 1),

medium noise level (σ = 1.5) and high noise level (σ = 2). Here it is important to remember that

setting 1 and 2 consists of 2 clusters, while settings 3 and 4 consists of 4. For all these methods,

K is preliminary put to either 2 or 4 based on the data simulation. Another key difference in

the settings, is the number of features. For simulation 1 and 3 this is 150, while for simulation

2 and 4 this is 500.

14

Figure 1: Average ARI of k-means, Laplacian k-means and sparse k-means for
multiple simulation settings and noise levels.

When looking at the low level of noise (σ = 1), it is clear that all three methods work

very well. For all simulation settings k-means combined with the Laplacian score provides the

highest ARI. For simulation 1 and 2, the traditional k-means and sparse k-means provide very

close ARI values compared to the Laplacian k-means, where the sparse k-means is a bit higher

than the regular k-means. For simulations 3 and 4, we observe a slight decline in the ARI of

traditional k-means and sparse k-means compared to simulations 1 and 2. This is expected,

as clustering high-dimensional data with 4 clusters instead of 2 increases complexity and noise

sensitivity. Additionally, the curse of dimensionality and challenges in feature relevance make it

more difficult to accurately distinguish clusters, resulting in a lower ARI.

Whenever the noise level is increased, to either a medium (σ = 1.5) or a high (σ = 2) level,

Laplacian k-means still provides good clusters, as the ARI remains quite high. A steeper decrease

in ARI is shown whenever there are 150 features compared to 500 features, because Laplacian k-

means, a two-step approach where the Laplacian score is used to determine the optimal subset of

features, benefits from a larger feature pool. This allows it to identify and select the most relevant

features more effectively, leading to higher ARI values even with increased dimensionality. The

ARI decreases a bit more when the noise is increased, but Laplacian k-means still provides the

best clustering performance of the three methods.

In contrast, when considering k-means and sparse k-means clustering for either the medium

(σ = 1.5) or high (σ = 2) noise level, a rapid decrease in the ARI occurs. As the increased noise

obscures the clear separation between clusters, it becomes harder to accurately assign data

instances, resulting in a lower clustering accuracy. The graph even shows that sparse k-means

results in a slightly smaller ARI compared to traditional k-means. Sparse k-means handles

15

high-dimensional data by selecting a subset of features, which can be done overly aggressive

under noisy conditions. When this happens, relevant features for the clustering can be omitted,

resulting in a poorer clustering performance compared to traditional k-means, which uses all

features and could still capture some relevant information regardless of the noise.

When considering 2 clusters for k-means and sparse k-means, a rapid decrease is shown in

ARI with an increase in number of features, due to the curse of dimensionality which amplifies

noise sensitivity and dilutes the relevance of meaningful features. However, when considering

4 clusters, there is a steeper decrease in ARI for simulation 3 with 150 features compared

to simulation 4 with 500 features, as the increased number of clusters in a moderately high-

dimensional space intensifies the challenges of cluster separation and noise sensitivity more

acutely than in an extremely high-dimensional space, where feature dilution somewhat stabilizes

the clustering process.

Additional analysis of the FNR and FPR, included in Appendix B, shows that Laplacian

k-means consistently results in lower FNR and FPR across different noise levels and dimensional

settings. This indicates that Laplacian k-means not only results in a high overall clustering ac-

curacy (as indicated by ARI) but also transcends in maintaining cluster integrity and separation,

making less errors in data instance assignment to the true clusters.

Furthermore, Laplacian k-means shows lower variability in most cases compared to tradi-

tional k-means and sparse k-means clustering, as shown by the smaller standard deviation of

the ARI, FNR and FPR, included in Appendix B. This indicates that Laplacian k-means has

a more consistent performance, further supporting the robustness and reliability of Laplacian

k-means in providing high-quality clusters.

Overall, these observations confirm that Laplacian k-means is the superior method when

considering high-dimensional data with possible noise, as it consistently provides a higher ARI

with lower variability while maintaining lower FNR and FPR. It effectively selects informative

features across different levels of noise and dimensional settings, demonstrating its robustness

in feature selection and clustering accuracy.

5.2.2 Preliminary Feature Selection - Supervised vs. Unsupervised

In addition to the comparison of preliminary and integrated feature selection, a comparison

is made between supervised and unsupervised feature selection. This comparison can only be

done for the two-step approach, as the integrated approach selects features during clustering,

making it unsupervised. The unsupervised preliminary feature selection is again handled by the

Laplacian score, while the supervised one is handled by mRMR. Both are then combined with

k-means to compare clustering performance.

The clustering performance of these two methods is again compared using the ARI, shown in

Figure 2 for the various data settings and noise levels. Remember that settings 1 and 3 contain

150 features, while settings 2 and 4 contain 500 features. The number of clusters varies per data

simulation and is directly used as K in k-means clustering, which equals 2 for simulation 1 and

2 and 4 for simulation 3 and 4. There are three noise level options, namely low (σ = 1), medium

(σ = 1.5) and high (σ = 2).

16

Figure 2: Average ARI of Laplacian k-means and mRMR k-means for multiple
simulation settings and noise levels.

Surprisingly, across all data simulations and noise levels, Laplacian k-means and mRMR k-

means show similar results. Since mRMR k-means uses the clustering labels to perform feature

selection, it is expected to outperform Laplacian k-means, which does not use these labels. Figure

2 indicates that mRMR k-means performs better than Laplacian k-means, but the difference is

minimal.

The similarity in results between these two methods can possibly be explained by the determ-

ination of the number of features retained after feature selection. This number is determined by

running the algorithm across various options, selecting the one that results in the highest ARI.

As both methods aim to maximize the ARI, the performance of these methods are naturally

aligned, making the similar results less surprising.

Table 1 provides insights into the number of features selected by each method for various

simulation settings and noise levels. For the low noise level, both methods select approximately

20 features, which is the number of informative features in the simulated data. As the noise

increases, the number of selected features increases as well. This is expected, as higher noise can

make some uninformative features seem relevant. Still the number of selected features remains

close to the 20 informative features, indicating that both methods effectively select the number

of features by maximizing the ARI.

17

Table 1: Average number of selected features of Laplacian k-means and mRMR
k-means for multiple simulation settings and noise levels

Low Noise Medium Noise High Noise

Methods Mean St. Dev. Mean St. Dev. Mean St. Dev.

Simulation 1 Laplacian k-means 20.6 16.9 32.6 24.5 34.3 25.4

mRMR k-means 20.5 19.6 34.2 25.6 34.4 22.9

Simulation 2 Laplacian k-means 18.3 32.0 33.4 48.2 33.0 23.4

mRMR k-means 13.9 6.0 35.7 38.1 36.9 33.0

Simulation 3 Laplacian k-means 22.7 11.4 28.5 12.7 31.7 17.8

mRMR k-means 24.7 17.5 31.0 16.8 29.6 12.1

Simulation 4 Laplacian k-means 21.1 23.6 28.2 19.6 30.0 13.9

mRMR k-means 19.1 4.8 29.3 18.7 31.9 17.5

The high standard deviation in the selection of features indicates significant variability across

the 200 runs, suggesting that the chosen number of features can fluctuate considerably depending

on the specific noise conditions and data structure. This means that the number of selected

features should depend on the specific data at hand in order to generate optimal clusters.

Overall, these findings suggest that the benefits of supervised feature selection in the two-

step approach are minimal compared to unsupervised preliminary feature selection. This implies

that using clustering labels in mRMR does not significantly improve clustering compared to the

unsupervised feature selection by the Laplacian score. However, it is also possible that the

local data structure and the process of determining of the number of selected features, based

on maximizing the ARI, are more critical for clustering performance than the type of feature

selection used.

6 Conclusion

Throughout this study, the combined efficacy of feature selection and clustering to enhance

clustering performance for high-dimensional data is explored. Two approaches are considered:

preliminary feature selection, performed before clustering, and integrated feature selection, em-

bedding feature selection in the clustering process. Preliminary feature selection uses either the

Laplacian score (unsupervised) or mRMR (supervised), followed by clustering via k-means or

convex clustering, implemented using AMA. Integrated feature selection is managed by sparse

k-means and sparse convex clustering, implemented using S-AMA.

The findings indicate that for k-means clustering, both Laplacian k-means and mRMR k-

means outperform traditional k-means and sparse k-means across various data settings and noise

levels. The results of sparse k-means clustering show that the integrated method struggles with

increased noise, often resulting in lower clustering performance than traditional k-means. How-

ever, the preliminary methods are particularly effective for high-dimensional data, maintaining

strong clustering performance even with additional noise. The performance gap between super-

vised and unsupervised preliminary feature selection is minimal, suggesting that both approaches

are effective.

Conversely, for convex clustering, a similar conclusion can not be drawn, as AMA and S-

18

AMA are excluded from the research due to their consistent poor clustering performance. This

poor performance resulted from discrepancies and the lack of a robust method for determining

tuning parameters and sparsity weights.

Future research should extend these methodologies to unlabeled data, requiring to replace

ARI by alternative performance measures. Additionally, it would be beneficial to determine the

number of clusters K in k-means clustering using a permutation approach rather than setting

it manually, potentially increasing the robustness of the results.

References

Belkin, M. & Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for embedding

and clustering. Advances in neural information processing systems, 14 .

Bolón-Canedo, V., Sánchez-Maroño, N. & Alonso-Betanzos, A. (2013). A review of feature

selection methods on synthetic data. Knowledge and information systems, 34 , 483–519.

Boyd, S., Parikh, N., Chu, E., Peleato, B. & Eckstein, J. (2011). Distributed optimization and

statistical learning via the alternating direction method of multipliers. Foundations and

Trends® in Machine learning , 3 (1), 1–122.

Cai, J., Luo, J., Wang, S. & Yang, S. (2018). Feature selection in machine learning: A new

perspective. Neurocomputing , 300 , 70–79.

Chi, E. C. & Lange, K. (2015). Splitting methods for convex clustering. Journal of Computa-

tional and Graphical Statistics, 24 (4), 994–1013.

Chung, F. R. (1997). Spectral graph theory (Vol. 92). American Mathematical Soc.

Dash, M. & Liu, H. (1999). Handling large unsupervised data via dimensionality reduction. In

1999 acm sigmod workshop on research issues in data mining and knowledge discovery.

Gabay, D. & Mercier, B. (1976). A dual algorithm for the solution of nonlinear variational

problems via finite element approximation. Computers & mathematics with applications,

2 (1), 17–40.

Glowinski, R. & Marroco, A. (1975). Sur l’approximation, par éléments finis d’ordre un, et la

résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. Re-

vue française d’automatique, informatique, recherche opérationnelle. Analyse numérique,

9 (R2), 41–76.

Guo, J., Levina, E., Michailidis, G. & Zhu, J. (2010). Pairwise variable selection for high-

dimensional model-based clustering. Biometrics, 66 (3), 793–804.

Hall, M. A. (2000). Correlation-based feature selection of discrete and numeric class machine

learning.

Hastie, T., Tibshirani, R., Friedman, J. H. & Friedman, J. H. (2009). The elements of statistical

learning: data mining, inference, and prediction (Vol. 2). Springer.

He, X., Cai, D. & Niyogi, P. (2005). Laplacian score for feature selection. Advances in neural

information processing systems, 18 .

He, X. & Niyogi, P. (2003). Locality preserving projections. Advances in neural information

processing systems, 16 .

19

Hocking, T. D., Joulin, A., Bach, F. & Vert, J.-P. (2011). Clusterpath: An algorithm for

clustering using convex fusion penalties. In 28th international conference on machine

learning (p. 1).

Hubert, L. & Arabie, P. (1985). Comparing partitions. Journal of classification, 2 , 193–218.

Kaufman, L. & Rousseeuw, P. J. (2009). Finding groups in data: an introduction to cluster

analysis. John Wiley & Sons.

Kira, K. & Rendell, L. A. (1992). A practical approach to feature selection. In Machine learning

proceedings 1992 (pp. 249–256). Elsevier.

Kononenko, I. (1994). Estimating attributes: Analysis and extensions of relief. In European

conference on machine learning (pp. 171–182).

Kumar, V. & Minz, S. (2014). Feature selection. SmartCR, 4 (3), 211–229.

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J. & Liu, H. (2017). Feature

selection: A data perspective. ACM computing surveys (CSUR), 50 (6), 1–45.

Lindsten, F., Ohlsson, H. & Ljung, L. (2011). Clustering using sum-of-norms regularization:

With application to particle filter output computation. In 2011 ieee statistical signal

processing workshop (ssp) (pp. 201–204).

Liu, H. & Yu, L. (2005). Toward integrating feature selection algorithms for classification and

clustering. IEEE Transactions on knowledge and data engineering , 17 (4), 491–502.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations.

In Proceedings of the fifth berkeley symposium on mathematical statistics and probability

(Vol. 1, pp. 281–297).

Mitra, P., Murthy, C. & Pal, S. K. (2002). Unsupervised feature selection using feature similarity.

IEEE transactions on pattern analysis and machine intelligence, 24 (3), 301–312.

Murtagh, F. & Contreras, P. (2012). Algorithms for hierarchical clustering: an overview. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery , 2 (1), 86–97.

Pan, W. & Shen, X. (2007). Penalized model-based clustering with application to variable

selection. Journal of machine learning research, 8 (5).

Pelckmans, K., De Brabanter, J., Suykens, J. A. & De Moor, B. (2005). Convex clustering

shrinkage. In Pascal workshop on statistics and optimization of clustering workshop.

Peng, H., Long, F. & Ding, C. (2005). Feature selection based on mutual information criteria

of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on pattern

analysis and machine intelligence, 27 (8), 1226–1238.

Raftery, A. E. & Dean, N. (2006). Variable selection for model-based clustering. Journal of the

American Statistical Association, 101 (473), 168–178.

Saeys, Y., Inza, I. & Larranaga, P. (2007). A review of feature selection techniques in bioin-

formatics. bioinformatics, 23 (19), 2507–2517.

Sun, W., Wang, J. & Fang, Y. (2012). Regularized k-means clustering of high-dimensional data

and its asymptotic consistency.

Tibshirani, R., Walther, G. & Hastie, T. (2001). Estimating the number of clusters in a data

set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 63 (2), 411–423.

Tseng, P. (1991). Applications of a splitting algorithm to decomposition in convex programming

20

and variational inequalities. SIAM Journal on Control and Optimization, 29 (1), 119–138.

Vichi, M., Cavicchia, C. & Groenen, P. J. (2022). Hierarchical means clustering. Journal of

Classification, 39 (3), 553–577.

Wang, B., Zhang, Y., Sun, W. W. & Fang, Y. (2018). Sparse convex clustering. Journal of

Computational and Graphical Statistics, 27 (2), 393–403.

Wang, H. & Leng, C. (2008). A note on adaptive group lasso. Computational statistics & data

analysis, 52 (12), 5277–5286.

Wang, S. & Zhu, J. (2008). Variable selection for model-based high-dimensional clustering and

its application to microarray data. Biometrics, 64 (2), 440–448.

Wang, Y., Fang, Y. & Wang, J. (2016). Sparse optimal discriminant clustering. Statistics and

Computing , 26 , 629–639.

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the

American statistical association, 58 (301), 236–244.

Witten, D. M. & Tibshirani, R. (2010). A framework for feature selection in clustering. Journal

of the American Statistical Association, 105 (490), 713–726.

Xie, B., Pan, W. & Shen, X. (2008). Variable selection in penalized model-based clustering via

regularization on grouped parameters. Biometrics, 64 (3), 921–930.

Yuan, M. & Lin, Y. (2006). Model selection and estimation in regression with grouped variables.

Journal of the Royal Statistical Society Series B: Statistical Methodology , 68 (1), 49–67.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American statistical

association, 101 (476), 1418–1429.

A Algorithms

In this Appendix the algorithms used for clustering and sparse clustering are explained in detail.

Starting with the k-means clustering algorithm in Appendix A.1, followed by the algorithm for

sparse k-means clustering in Appendix A.2, which also includes a algorithm for finding the

tuning parameter. Afterwards AMA, used for convex clustering, and S-AMA, used for sparse

convex clustering, are explained in Appendices A.3 and A.4, respectively.

A.1 K-means

As previously mentioned, k-means clustering employs an iterative algorithm to partition a data-

set into K clusters by assigning data instances to the nearest centroid. This Appendix focuses

on explaining this iterative algorithm, resolving the following minimization:

min
{C1,...,CK}

K∑
k=1

∑
xi∈Ck

∥xi − µk∥2 where µk =
1

|Ck|
∑

xi∈Ck

xi, ∀k = 1, . . . ,K (19)

In order to solve this minimization K centroids are randomly initialized: {µ0
1, . . . ,µ

0
K}.

Then each data instance xi is assigned to its nearest centroid following (20), creating K clusters:

{C1, . . . , CK}.

Cm
k = {xi : ∥xi − µm

k ∥2 ≤ ∥xi − µm
k ∥2, ∀k ∈ 1, . . . ,K} (20)

21

Next, the centroid µk is updated to equal the mean of all data instances contained in cluster

k according to (21), which is done for all K clusters.

µm+1
k =

1

|Cm
k |

∑
xi∈Cm

k

xi (21)

The algorithm runs until convergence, meaning it stops when the assignment of data instances

to clusters remains the same, or when the centroids change very little, below a predefined

threshold. The complete algorithm can be defined as follows:

Algorithm 1 Implementing k-means clustering

1. Initialize {µ0
1, . . . ,µ

0
K}.

2. For i = 1, . . . , n, assign xi to a cluster based on the nearest centroid µm
k :

Cm
k = {xi : ∥xi − µm

k ∥2 ≤ ∥xi − µm
k ∥2, ∀k ∈ 1, . . . ,K}

3. For k = 1, . . . ,K, do
µm+1
k = 1

|Cm
k |

∑
xi∈Cm

k
xi

4. Repeat Steps 2-3 until convergence.

A.2 Sparse k-means

Implementing sparse k-means consists of two step. First, a permutation approach is used to

determine the tuning parameter. Then, this tuning parameter is used in an iterative procedure

to determine the feature weights and clusters. These steps are explained in Appendices A.2.1

and A.2.2.

A.2.1 Selection of the Tuning Parameter

The tuning parameter s is quite important for obtaining good clusters using sparse k-means

clustering. The tuning parameter s determines the L1 bound on the feature weights w in (16).

Determining the value of s is a complicated procedure, as s can not be chosen in such a way that

it maximizes the objective function in (16), since the objective increases with an increase in s.

Instead, a permutation approach was introduced by Witten and Tibshirani (2010) to determine

the tuning parameter.

First, B permuted datasets (X1, . . . ,XB) are generated by independently permuting the

instances of each feature to the original dataset X, to assess the significance of different tuning

parameters. Subsequently, a sequence of candidate tuning parameters S is introduced. For every

sc ∈ S, the objective O(sc) obtained by performing sparse k-means with tuning parameter sc

on dataset X is calculated. Additionally, the objective is calculated for the permuted datasets

{Xb : b = 1, . . . , B}, where the objective is denoted by Ob(sc).

The optimal tuning parameter is then determined through the gap statistic (Tibshirani,

Walther & Hastie, 2001), which evaluates clustering performance on the original data compared

to clusters generated from random data not containing subgroups. The gap statistic is calculated

for every sc ∈ S according to (22), where the highest gap statistics determines the value of the

tuning parameter. This assessment remains robust as the features in the permuted datasets are

22

uncorrelated with each other, even when strong correlations exist among features in the original

data X.

Gap(sc) = log(O(sc))−
1

B

B∑
b=1

log(Ob(sc)) (22)

In this research B, the number of permuted datasets, is set to 50 to ensure robust determ-

ination the tuning parameter. The sequence S containing possible tuning parameters is based

on the criteria that 1 ≤ s ≤ √
p, where p represents the number of features. This comprises 50

values, enabling a comprehensive exploration of potential tuning parameters.

A.2.2 Iterative Algorithm

After determining the tuning parameter s, an iterative algorithm is used to determine the

clusters, summarized in Algorithm 2. In the optimization of sparse k-means, as shown in (16),

a weight is assigned to each feature, based on its contribution to the increase in BCSS, iterating

until convergence. First, the optimization is completed using fixed feature weights, meaning

w1 = . . . = wp = 1√
p . This results it the optimization of (16) with respect to C1, . . . , CK ,

following (23). This is done using the standard k-means algorithm on the dissimilarity matrix

(n×n) with element (i1, i2) =
∑p

j=1wjdi1,i2 . The optimization is thus simplified to a clustering

problem, using a weighted dissimilarity measure.

min
C1,...,CK


K∑
k=1

1

nk

∑
i1,i2∈Ck

p∑
j=1

wjdi1,i2

 (23)

Second, the optimization is completed for fixed C1, . . . , CK , assigning weights to the features

based on the BCSS, prioritizing features with a larger BCSS. This means that (16) is optimized

with respect to w holding C1, . . . , CK fixed. According to Witten and Tibshirani (2010) the

feature weights w can then be calculated in the following manner:

w =
S(h+,∆)

∥S(h+,∆)∥2
, where hj =

1

n

n∑
i1=1

n∑
i2=1

di1,i2 −
K∑
k=1

1

nk

∑
i1,i2∈Ck

di1,i2 (24)

Here, h+ denotes the positive part of h and S the soft-thresholding operator defined by S(h+,∆) =

sign(h+(|h+| −∆)+. The ∆ value depends on whether ∥w∥1 is smaller than the tuning para-

meter s or not. Whenever ∥w∥1 < s, ∆ is put to zero, otherwise ∆ > 0 is chosen to yield

∥w∥1 = s.

Algorithm 2 Implementing sparse k-means clustering

1. Initialize w as wj =
1√
p for j = 1, . . . , p

2. Complete optimization for fixed w with respect to C1, . . . , CK :

minC1,...,CK

{∑K
k=1

1
nk

∑
i1,i2∈Ck

∑p
j=1wjdi1,i2

}
3. Complete optimization for fixed C1, . . . , CK with respect to w, resulting in:

w = S(h+,∆)
∥S(h+,∆)∥2

4. Repeat Steps 2-3 until convergence.

23

This algorithm iterates until convergence. However, the convergence will generally not lead

to the global optimum of (16), as k-means clustering is used whenever the feature weights are

fixed, and k-means generally does not lead to the global optimum (Witten & Tibshirani, 2010).

A.3 AMA

Convex clustering is implemented using AMA, as introduced by Chi and Lange (2015). First,

a recast of the convex clustering optimization in (13) is introduced by (25), where E = {l =
(i1, i2) : 1 ≤ i1 < i2 ≤ n}.

min
A∈Rn×p

1

2

n∑
i=1

∥xi − ai∥22 + γ
∑
l∈E

wl∥v∥

s.t. vl = ai1 − ai2

(25)

The minimization of the objective in (25) is equivalent to minimizing the Lagrangian function

in (26). Here V denotes the matrix (v1, . . . ,v|E|), Λ denotes the matrix (λ1, . . . ,λ|E|) and v

denotes a small constant.

Lv(A,V,Λ) =
1

2

n∑
i=1

∥xi − ai∥22 + γ1
∑
l∈E

wl∥vl∥q

+
∑
l∈E

⟨λl,vl − ai1 + ai2⟩+
v

2

∑
l∈E

∥vl − ai1 + ai2∥22
(26)

As the join minimization of the Lagrangian function over A and V is often challenging,

AMA simplifies the minimization problem by minimizing the Lagrangian one block of variables

at a time:

Am+1 = argmin
A

Lv(A,Vm,Λm)

Vm+1 = argmin
V

Lv(A
m+1,V,Λm)

λm+1
l = λm

l + v(vm+1
l − am+1

i1
+ am+1

i2
), l ∈ E

(27)

These blocks of variables need to be updated throughout the process. AMA updates A by

minimizing the ordinary Lagrangian (v = 0), resulting in:

Am+1 = argmin
A

1

2

n∑
i=1

∥xi − ai∥22 +
∑
l

⟨λm
l ,vl − ai1 + ai2⟩ (28)

Since this minimization can be separated for each ai, this minimization can be simplified to:

am+1
i = xi+

∑
i1=i λ

m
l −

∑
i2=i λ

m
l , as shown by Chi and Lange (2015). Furthermore, an update

of V is not necessary, as A is independent of V.

The update of Λ is defined by Chi and Lange (2015) as λm
l = PCl

[λm−1
l − v(ami1 − ami2)],

with Cl defined by Cl = {λl : ∥λl∥† ≤ γ1wl}. They defined PC(z) as the projection onto the set

C = {y : ∥y∥†} with respect to the norm ∥.∥†. Note that ∥.∥† is the dual norm of ∥.∥q, which is

referred to as the fusion penalty.

These updates are iterated until convergence to determine a final solution for A and Λ. The

convergence of AMA is assured, provided that v remains reasonably small (Chi & Lange, 2015).

24

Algorithm 3 Implementing convex clustering using AMA

1. Initialize Λ0, m = 1, 2,
2. For i = 1, . . . , n, do

ami = xi +
∑

i1=i λ
m−1
l −

∑
i2=i λ

m−1
l

3. For l ∈ E , do
λm
l = PCl

[λm−1
l − v(ami1 − ami2)], where Cl = {λl : ∥λl∥† ≤ γ1wl}

4. Repeat Steps 2-3 until convergence.

A.4 S-AMA

In this part of the Appendix the efficient optimization approach S-AMA (B. Wang et al., 2018)

is discussed, using a similar computational strategy as Chi and Lange (2015) for AMA. For the

implementation of S-AMA, the objective function in (18) is rewritten to (29).

min
A∈Rn×p

1

2

p∑
j=1

∥xj − aj∥22 + γ1
∑
l∈E

wl∥vl∥q + γ2

p∑
j=1

uj∥aj∥2

s.t. vl = ai1 − ai2

(29)

Equivalently, the Lagrangian function (30) can be minimized. Using V to denote the matrix

(v1, . . . ,v|E|), Λ to denote the matrix (λ1, . . . ,λ|E|) and v as a small constant.

Lv(A,V,Λ) =
1

2

p∑
j=1

∥xj − aj∥22 + γ1
∑
l∈E

wl∥vl∥q + γ2

p∑
j=1

uj∥aj∥2

+
∑
l∈E

⟨λl,vl − ai1 + ai2⟩+
v

2

∑
l∈E

∥vl − ai1 + ai2∥22
(30)

Simultaneously handling feature-level and observation-level vectors in the new objective func-

tion presents additional challenges compared to the original algorithms introduced by Chi and

Lange (2015). Still, splitting the minimization of the augmented Lagrangian problem by altern-

atively addressing one block of variables at a time works well:

Am+1 = argmin
A

Lv(A,Vm,Λm)

Vm+1 = argmin
V

Lv(A
m+1,V,Λm)

λm+1
l = λm

l + v(vm+1
l − am+1

i1
+ am+1

i2
), l ∈ E

(31)

Next, we discuss the detailed updating implementations for A, V and Λ, summarized in

Algorithm 4 (B. Wang et al., 2018). S-AMA solves A by treating v = 0, resulting in the change

of Lv to L0 in (31). Updating A requires to solve the p group-lasso problems as denoted in (32)

(B. Wang et al., 2018).

min
aj

1

2
∥xj − aj∥22 + γ2uj∥aj∥2 ∀j = 1, . . . , p. (32)

The group lasso problem can be solved using the Karush-Kuhn-Tucker (KKT) conditions

(Yuan & Lin, 2006), leading to the closed-form solution for (32): âj =
(
1− γ2uj

∥zj∥2

)
+
zj , where

25

zj = xj +
∑

l∈E λjl(ei1 −ei1)
2 and (z)+ = max{0, z}. The solution âj are still centered for every

j. A detailed derivation of the closed form solution is provided by B. Wang et al. (2018). Note

that the closed form solution of Â is independent of V, indicating that an update of V is not

necessary.

In order to update Λ, PC(z) is defined as the projection onto C = {y : ∥y∥†} with respect

to the norm ∥.∥†, where ∥.∥† is the dual norm of ∥.∥q, defining the fusion penalty. B. Wang et

al. (2018) shows that the update of Λ can be reduced to λm
l = PCl

[λm−1
l − v(ami1 − ami2)] using

Cl = {λl : ∥λl∥† ≤ γ1wl}.
To achieve a definitive solution for A and Λ, the updates must be iterated until convergence.

B. Wang et al. (2018) investigated this aspect, demonstrating that the convergence of S-AMA

is guaranteed as long as the positive constant v remains within reasonable bounds.

Algorithm 4 Implementing sparse convex clustering using S-AMA

1. Initialize Λ0, m = 1, 2,
2. For j = 1, . . . , p, do

zmj = xj +
∑

l∈E λ
m−1
lj (ei1 − ei2)

amj =
(
1− γ2ui

∥zmi ∥2

)
+
zmj

amj = amj − āmj 1n, where āmj = 1Tna
m
j /n

3. For l ∈ E , do
λm
l = PCl

[λm−1
l − v(ami1 − ami2)], where Cl = {λl : ∥λl∥† ≤ γ1wl}

4. Repeat Steps 2-3 until convergence.

B Performance Metrics for K-means Clustering Methods

In this Appendix several performance metrics are shown for traditional k-means clustering,

sparse k-means clustering and k-means clustering enhanced with either the Laplacian score or

mRMR in a two step approach. The performance metrics are denoted for the four data settings

as well as the three noise levels: low (σ = 1), medium (σ = 1.5) and high (σ = 2). The data

settings are summarized as: setting 1: K = 2, n = 60, p = 150 and µ = 0.6, setting 2: K = 2,

n = 60, p = 500 and µ = 0.7, setting 3: K = 4, n = 60, p = 150 and µ = 0.9 and setting 4:

K = 4, n = 60, p = 500 and µ = 1.2.

Table 2 provides the average ARI for each method when running 200 trials over the different

simulation sets and noise levels. The ARI should be high for good clustering. The highest ARI

is shown in bold. The standard deviation of the ARI is also provided, which should be low. The

lowest standard deviation is made bold. For both the mean and standard deviation, the second

best value is denoted in underscore.

2The vectors ei1 and ei2 are n-dimensional unit vectors: all components are zero, expect the i1 and i2
component, respectively, equaling 1.

26

Table 2: Average ARI of k-means, Laplacian k-means, mRMR k-means and sparse
k-means for the multiple simulation settings and noise levels.

Low Noise Medium Noise High Noise

Methods Mean St. Dev. Mean St. Dev. Mean St. Dev.

Simulation 1 K-means 0.951 0.055 0.475 0.266 0.137 0.154

Laplacian k-means 0.992 0.024 0.855 0.093 0.619 0.144

mRMR k-means 0.995 0.017 0.878 0.082 0.649 0.130

Sparse k-means 0.961 0.053 0.432 0.257 0.092 0.141

Simulation 2 K-means 0.942 0.096 0.251 0.235 0.065 0.110

Laplacian k-means 0.999 0.009 0.947 0.058 0.769 0.129

mRMR k-means 0.999 0.007 0.953 0.056 0.782 0.112

Sparse k-means 0.985 0.033 0.238 0.254 0.053 0.104

Simulation 3 K-means 0.845 0.156 0.331 0.119 0.128 0.074

Laplacian k-means 0.993 0.018 0.785 0.097 0.449 0.104

mRMR k-means 0.997 0.012 0.831 0.087 0.485 0.104

Sparse k-means 0.906 0.129 0.279 0.128 0.095 0.070

Simulation 4 K-means 0.874 0.178 0.387 0.121 0.135 0.072

Laplacian k-means 1.000 0.005 0.964 0.037 0.787 0.094

mRMR k-means 1.000 0.000 0.976 0.031 0.810 0.094

Sparse k-means 0.850 0.236 0.355 0.234 0.072 0.071

Table 3 provides the average FNR for each method when running 200 trials over the different

simulation sets and noise levels. The FNR should be low for good clustering. The lowest FNR

is shown in bold. Additionally, the second best FNR is underlined. The standard deviation of

the FNR is also provided, which should be low. The lowest standard deviation is made bold,

while the second best is underlined.

27

Table 3: Average FNR of k-means, Laplacian k-means, mRMR k-means and sparse
k-means for the multiple simulation settings and noise levels.

Low Noise Medium Noise High Noise

Methods Mean St. Dev. Mean St. Dev. Mean St. Dev.

Simulation 1 K-means 0.024 0.027 0.248 0.125 0.408 0.075

Laplacian k-means 0.004 0.011 0.069 0.044 0.181 0.068

mRMR k-means 0.002 0.008 0.058 0.039 0.168 0.063

Sparse k-means 0.019 0.025 0.271 0.123 0.434 0.070

Simulation 2 K-means 0.028 0.044 0.354 0.111 0.443 0.058

Laplacian k-means 0.001 0.005 0.025 0.028 0.110 0.061

mRMR k-means 0.000 0.003 0.023 0.027 0.104 0.053

Sparse k-means 0.007 0.016 0.364 0.123 0.452 0.054

Simulation 3 K-means 0.091 0.084 0.453 0.085 0.600 0.058

Laplacian k-means 0.005 0.012 0.146 0.066 0.374 0.073

mRMR k-means 0.002 0.008 0.116 0.059 0.350 0.071

Sparse k-means 0.064 0.088 0.494 0.094 0.629 0.052

Simulation 4 K-means 0.063 0.087 0.412 0.089 0.597 0.054

Laplacian k-means 0.000 0.003 0.025 0.026 0.146 0.064

mRMR k-means 0.000 0.000 0.016 0.021 0.129 0.064

Sparse k-means 0.094 0.152 0.435 0.167 0.645 0.054

Table 4 provides the average FPR for each method when running 200 trials over the different

simulation sets and noise levels. The FPR should be low for good clustering. Additionally, the

standard deviation of the FPR is provided, which should also be low. The lowest FPR and

standard deviation are shown in bold, while the second best values are underlined.

28

Table 4: Average FPR of k-means, Laplacian k-means, mRMR k-means and sparse
k-means for the multiple simulation settings and noise levels.

Low Noise Medium Noise High Noise

Methods Mean St. Dev. Mean St. Dev. Mean St. Dev.

Simulation 1 K-means 0.025 0.028 0.269 0.140 0.441 0.083

Laplacian k-means 0.004 0.012 0.073 0.047 0.193 0.074

mRMR k-means 0.002 0.009 0.061 0.042 0.177 0.065

Sparse k-means 0.019 0.027 0.287 0.130 0.459 0.072

Simulation 2 K-means 0.029 0.050 0.383 0.124 0.476 0.063

Laplacian k-means 0.001 0.005 0.026 0.029 0.117 0.066

mRMR k-means 0.000 0.003 0.023 0.028 0.111 0.058

Sparse k-means 0.007 0.016 0.386 0.129 0.480 0.055

Simulation 3 K-means 0.046 0.055 0.175 0.034 0.226 0.024

Laplacian k-means 0.002 0.004 0.054 0.025 0.142 0.029

mRMR k-means 0.001 0.003 0.042 0.022 0.132 0.029

Sparse k-means 0.024 0.033 0.185 0.033 0.230 0.021

Simulation 4 K-means 0.044 0.066 0.162 0.035 0.222 0.024

Laplacian k-means 0.000 0.001 0.009 0.009 0.053 0.024

mRMR k-means 0.000 0.000 0.006 0.008 0.047 0.024

Sparse k-means 0.043 0.070 0.170 0.062 0.236 0.022

29

