
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis Econometrics and Operations Research

Analysing the Performance of ℓ1-Regularised

Regression Techniques for the Graphical Modelling of

High-Dimensional Binary Data

Eefje Goes (598773)

Supervisor: D.J.W. Touw

Second assessor: dr. F. Frasincar

Date final version: 1st July 2024

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.

Abstract

Analysing high-dimensional binary data is crucial in finding relations between variables

in various fields, including medical research. Graphical modelling is a useful tool for such

analyses, but it poses challenges due to the high-dimensional and binary nature of the data.

This paper presents and evaluates alternative methods for constructing graphical models us-

ing ℓ1-regularised regression techniques, namely Lasso and Adaptive Lasso (AL), combined

with bootstrap aggregating (bagging). The performance of these methods is tested on simu-

lated data with varying underlying dependence structures and measured using the Structural

Hamming Distance (SHD) and the Youden index. Besides that, a sensitivity analysis of one

of the parameters is conducted to evaluate its effect on model performance. A comparative

analysis highlights the trade-offs associated with the models and their parameter settings,

offering insight into their practical suitability for varying data conditions. The findings

highlight the importance of context-specific model and parameter choices, balancing certain

trade-offs based on the application’s needs.

1 Introduction

In the field of medical research, the analysis of data is fundamental in discovering the causes,

solutions, and effects of diseases and treatments. However, these medical datasets often present

challenges, particularly in the form of high-dimensionality, where a large number of variables

is accompanied by a relatively small number of observations. This imbalance can hinder the

analysis of finding meaningful associations between variables and can lead to issues such as

overfitting, multicollinearity, and model instability (Breiman, 1996b).

Graphical models emerged as a useful tool for handling complex data structures in various

fields, including medical research (Tsai & Camargo Jr, 2009). Graphical models (Lauritzen,

1996) are constructed based on the conditional dependence between variables. In these graphs,

the nodes represent variables, and their conditional dependent relations are represented by edges,

providing a clear visualisation of the underlying structure of the data. However, traditional

graphical modelling methods may struggle with overfitting and instability in high-dimensional

settings, which calls for the use of ℓ1-regularised regression techniques (Meinshausen & Bühl-

mann, 2006).

This paper builds on the work of Strobl, Grill and Mansmann (2012), who adapted these

regularised methods for binary data. Strobl et al.’s research serves as the starting point of

the research and methods in this study. While some of their methodological approaches are

replicated, this paper extends their methods, applies them to various data conditions, and

examines the impact of different parameter settings.

This study aims to analyse the performance of various graphical models in estimating the

conditional dependency structures of variables within high-dimensional binary data. Specifically,

different ℓ1-regularised regression methods are used, including Lasso, Adaptive Lasso (AL),

and their bootstrap aggregated variants. These methods perform variable selection as a result

of the penalties they apply, which is useful in high-dimensional settings to discern important

relations between variables and prevent overfitting (Tibshirani, 1996; Zou, 2006). This paper

investigates the accuracy of the different ℓ1-regularised methods in estimating true edge sets

in various underlying data conditions, the impact of bootstrap aggregating (bagging) on model

1

performance and consistency, and the effect of different optimisation criteria and parameter

settings.

Accurate modelling of high-dimensional binary data is essential for developing reliable pre-

dictive tools in the medical field, such as predicting patient outcomes or treatment responses.

These models must be able to handle complex dependencies and data features without losing

accuracy. As ℓ1-regularised techniques are useful in high-dimensional settings due to their vari-

able selection, it is essential to analyse how methods like Lasso and AL perform in graphical

modelling under these settings. Furthermore, the impact of bagging is of interest as it can im-

prove model accuracy and stability (Breiman, 1996a), which could lead to more reliable results

in practical applications.

By comparing Lasso, AL, and their bagged variants, this study seeks to evaluate how these

methods perform in different data conditions, including varying levels of dependency strength

and sparsity. Applying the models to different underlying data structures will give insight into

their robustness and applicability across various realistic situations. Understanding the strengths

and weaknesses of each model under these varying conditions provides insight into their practical

use and helps with model selection for specific types of data.

This study contributes to the field of graphical model estimation by offering a comprehensive

analysis of the Lasso, AL, and their bagged versions under various data conditions. It investigates

whether bagging can improve model performance and stability, specifically in high-dimensional

and binary settings. This study also investigates the effect of different optimisation criteria and

parameter settings and offers practical recommendations for their optimal selection as well as

the optimal selection of models based on their characteristics. This paper aims to add insight

into how to most effectively use graphical models for high-dimensional, binary data.

The findings underscore the importance of selecting the appropriate regularised regression

techniques and tuning parameters to effectively uncover dependency structures. Especially in

high-dimensional datasets, these choices affect performance and depend on the application’s

needs. The findings also highlight the potential advantages of bagging in enhancing model

performance under various data conditions.

The rest of this paper is structured as follows: Section 2 reviews relevant literature, providing

an overview of previous research and this paper’s contribution to the literature. Section 3 details

the methodology employed in this study. Section 4 outlines the data-generating process and

methods for the different data conditions. Section 5 presents the findings from the analysis,

offering insight into the different models and their characteristics. Finally, Section 6 discusses

the key findings and implications and provides suggestions for future research.

2 Literature Review

Graphical models have been widely used and studied for many different fields and applications.

Initially focusing on Gaussian graphical models (GMMs) for continuous multivariate data with

a multivariate normal distribution, the models have evolved to accommodate high-dimensional

datasets and binary data, addressing the limitations of traditional statistical methods.

Dempster (1972) introduced covariance selection for GMMs, which refers to the estimation of

conditional independence through the inverse covariance matrix. The zero entries of this matrix

2

indicate conditional independence between variables, allowing for the construction of graphical

models. However, his proposed method, which iteratively estimates the inverse covariance matrix

using conditional independence tests, is computationally inefficient for high-dimensional data.

To address this, Wong, Carter and Kohn (2003) propose a more efficient Bayesian method for

Gaussian-distributed data, improving the applicability of GMMs in high-dimensional settings.

Despite these advancements, there is a need for methods that extend beyond Gaussian data and

are applicable to other data types, such as binary data.

The introduction of the Least Absolute Shrinkage and Selection Operator (Lasso) by Tibshir-

ani (1996) has been a significant contribution to the analysis of high-dimensional data. Lasso’s

ℓ1-penalty provides variable selection by shrinking some coefficients to zero, which is valuable

for constructing sparse graphical models in high-dimensional contexts. This method has been

extended to graphical models by Meinshausen and Bühlmann (2006), who propose using Lasso

for neighbourhood selection. The neighbourhood of a variable refers to the set of variables

directly connected to it by edges indicating all the direct conditional dependencies. By fitting

Lasso regressions for every variable and using all others as predictors, the non-zero entries in the

inverse covariance matrix were efficiently and consistently identified, even in high-dimensional

settings. This method provides an improvement in computational efficiency over traditional

selection techniques.

Further enhancements to the Lasso have been developed to address its limitations and expand

its applicability. The Adaptive Lasso (AL), introduced by Zou (2006), is a two-step procedure

where a Lasso regression is run with penalty weights determined by the estimated coefficients

of an initial regression. This method was created to address the inconsistency of the Lasso in

certain situations and its bias in even simple regression settings (Fan & Li, 2001). Unlike the

Lasso, the AL possesses oracle properties under certain conditions, meaning it can estimate the

true model as if it were known in advance. Zhou, van de Geer and Bühlmann (2009) show that

the AL is consistent in modelling high-dimensional GMMs.

Yuan and Lin (2007) develop a penalised-likelihood method for GMMs that employs an ℓ1-

penalty along with constraints for positive definiteness and symmetry of the precision matrix.

They propose using the BIC for parameter tuning, a selection criterion also used in this study.

Their results highlight the trade-off between sensitivity and specificity, controlled by the choice

of parameters. The finding on this trade-off provides motivation to investigate the sensitivity

and specificity of the models explored in this paper, along with the effects of parameter settings

on these values.

Surprisingly, Friedman, Hastie and Tibshirani (2010a) found that in sparse settings, simple

estimation methods perform as well as or even better than more complex methods for estimating

the true edge set. This finding highlights the importance of investigating the use of different

models and levels of model complexity and their performance.

Another method of describing the conditional relations between variables is to estimate the

partial correlation matrix. Krämer, Schäfer and Boulesteix (2009) propose to use the AL to

estimate this matrix, alongside Ridge and Partial Least Squares regressions. Although this

method of estimation is not used in this paper, it does show the use of ℓ1-penalties in identifying

conditional relations.

3

All previously mentioned literature apply their models and methods to continuous data.

However, Strobl et al. (2012) adapt the method of Meinshausen and Bühlmann (2006) for bin-

ary data and investigate the performance of a logistic Lasso and bootstrap aggregated Lasso

(Bolasso) on high-dimensional data. Their findings suggest that bootstrap aggregating can

improve the performance of graphical models in high-dimensional data. The Bolasso was intro-

duced by Bach (2008), where it is shown that this method provides consistent variable selection

and improves upon the variable selection of Lasso. Strobl et al.’s methods provide a foundation

for the approaches used in this paper. Furthermore, both Strobl et al.’s and Bach’s results

motivate the use of bagging in this study to evaluate whether it can improve model consistency

under the investigated data conditions.

Additionally, Ravikumar, Wainwright and Lafferty (2010) propose a method of neighbour-

hood estimation based on ℓ1-regularised logistic regression. They analyse their method for

high-dimensional binary data and find that it succeeds at consistent and simultaneous neigh-

bourhood estimation, reaffirming the potential of ℓ1-regularised methods for estimating complex

dependencies in binary datasets.

While this paper follows the general direction and methods of previous literature, it provides

a comprehensive analysis of ℓ1-regularised regression methods, including Lasso, AL, and their

bootstrap aggregated variants in high-dimensional binary data. This study contributes to ex-

isting literature by offering insight into the performance of these graphical models in different

data conditions and provides practical recommendations for selecting the most effective model

and parameter settings.

3 Methodology

In this section, the methodologies employed to analyse the conditional dependencies among

high-dimensional binary data using ℓ1-regularised regression techniques are described. These

methodologies are based on the work of Strobl et al. (2012).

3.1 Graphical Models

Graphical models provide a useful tool for presenting and analysing the dependencies among

variables. In this paper, the focus is specifically on binary random variables and how their

conditional dependencies can be modelled using graph-based methods.

Consider a p-dimensional vector containing binary random variables

X = (X1, . . . , Xp),

where each Xi ∈ {0, 1} for i = 1, . . . , p. The dependencies between these variables can be

displayed in a graph G = (V,E) with V = {1, . . . , p} the set of nodes representing variables,

and E the set of edges representing conditionally dependent relations.

Two variables are conditionally independent when their relationship remains unchanged

when conditioning on a third variable. Mathematically, variables X and Y are conditionally

independent given Z if P (X|Y,Z) = P (X|Z). In other words, Y does not contribute any

additional information about X once Z is known. This relation can be written as X ⊥⊥ Y |Z.

4

In the graph, this conditional independence between two variables implies the absence of an

edge between the two corresponding nodes. Mathematically, for two variables Xa and Xb:

(a, b) ̸∈ E ⇐⇒ Xa ⊥⊥ Xb |XV \{a,b},

where a, b ∈ V .

The neighbourhood nea of a node a then consists of all nodes b that are directly connected

to a by an edge. Formally, nea = {b ∈ V \ {a} : (a, b) ∈ E}. This means that Xa is condition-

ally independent of all remaining variables given those in its neighbourhood nea. This can be

expressed as:

Xa ⊥⊥ {Xi : ∀Xi ∈ V \ nea} |nea.

To estimate the neighbourhoods of all nodes, ℓ1-regularised regression techniques are used.

With this approach, each variable Xa is regressed on all remaining variables XV \{a}. The

non-zero coefficients in the regression then indicate which variables are conditionally dependent

on Xa. Let βa denote the vector of coefficients obtained from regressing Xa on all the other

variables. The neighbourhood of node a can then be defined as

nea = {b ∈ V : βa,b ̸= 0}. (1)

This means that if βa,b is non-zero, there is an edge between nodes a and b, indicating a condi-

tional dependent relation between variables Xa and Xb.

The edge set E is then constructed based on these estimated neighbourhoods. In this paper,

only undirected edges are considered, which represent a two-way relation between variables

without a specific direction of influence.

Two definitions can be used to set up this undirected edge set based on the neighbourhoods,

namely the AND-rule and the OR-rule. The AND-rule specifies that an edge is only present in

the edge set when two nodes are in both of the other’s neighbourhood:

E = {(a, b) : a ∈ neb ∧ b ∈ nea}.

The OR-rule is more lenient and one-sided, where edges are present when at least one of the

nodes is in the other’s neighbourhood:

E = {(a, b) : a ∈ neb ∨ b ∈ nea}.

3.2 Regularised Regression Techniques

Regularised regression methods like Lasso and AL are useful in high-dimensional settings as they

can select relevant variables while avoiding overfitting. These methods incorporate ℓ1-penalties

into their regression to shrink some coefficients towards zero, performing variable selection. This

subsection explains these methods and discusses their implementation and parameter optimisa-

tion.

5

3.2.1 Lasso

Given a binary variable Y and a set of independent variables X, the logistic regression expresses

the log-odds of Y as a linear combination of the predictors:

log

(
πi

1− πi

)
= β0 + β1x1,i + · · ·+ βpxp,i,

where πi = P (Yi = 1|Xi) denotes the probability that Yi equals 1 given the predictors, and

(β0, β1, . . . , βp) are the coefficients to be estimated. This can be rewritten as:

πi =
exp(β0 + β1x1,i + · · ·+ βpxp,i)

1 + exp(β0 + β1x1,i + · · ·+ βpxp,i)
.

To estimate the parameters, typically the likelihood function is maximised. This is translated

to minimising the negative log likelihood function:

l(β) = −
N∑
i=1

yi log(πi) + (1− yi) log(1− πi).

Lasso (Tibshirani, 1996) adds a penalty to this equal to the regularisation parameter λ

times the absolute values of the coefficients βj . Thus, to obtain estimates for β, the following is

minimised for Lasso:

−
N∑
i=1

yi log(πi) + (1− yi) log(1− πi) + λ

p∑
j=1

|βj |,

where λ is the regularisation parameter that controls the strength of the penalty. As λ increases,

more coefficients are driven towards zero, selecting a smaller subset of variables and therefore

controlling the size of the neighbourhood. This variable selection of the Lasso makes it suitable

for constructing neighbourhoods in graphical models by identifying important relations among

variables.

3.2.2 Adaptive Lasso

While Lasso presents a robust tool for variable selection, it may not always yield optimal results,

especially when dealing with variable relations that have different levels of strength. Adaptive

Lasso (Zou, 2006) addresses this by incorporating weighted ℓ1-penalties based on the estimated

coefficients from an initial regression. These weights are added to the negative log likelihood

function, and then β is estimated by minimising

−
N∑
i=1

yi log(πi) + (1− yi) log(1− πi) + λ

p∑
j=1

wj |βj |,

with wj the weights defined as wj = 1/
∣∣∣β̂j,MLE

∣∣∣γ . These weights use the estimated coefficients

β̂j,MLE from an initial regression run with MLE, and γ > 0 adjusts the weights. In this paper,

the choice of γ is equal to 1.

6

3.2.3 Optimal Regularisation Parameter

The performance of regularised regression methods heavily depends on the choice of the reg-

ularisation parameter λ. Selecting an optimal λ is crucial to balancing model complexity and

goodness-of-fit. This optimisation is done using several methods, including cross-validation

(CV), the Akaike information criterion (AIC), and the Bayesian information criterion (BIC).

These optimisation techniques have been previously used and suggested in works such as Gao,

Pu, Wu and Xu (2009), Strobl et al. (2012), and Yuan and Lin (2007).

Specifically, k-fold cross-validation is used where the data is split into k subsets and sub-

sequently trained and tested on k − 1 and 1 subset, respectively. This process is repeated k

times, where each subset is used as the test set once and the optimal λ is chosen based on the

average performance metric across all folds. In this paper, the choice of k is equal to 10. This

method provides robust estimates of model performance and helps prevent overfitting.

AIC evaluates the models based on their likelihood and a penalty for the number of para-

meters. The formula for the AIC is as follows:

AIC = 2k − 2 log(L),

where k is the number of parameters and L is the maximised likelihood of the model. AIC

balances goodness-of-fit with model complexity.

BIC is similar to AIC but applies a stronger penalty for the number of parameters. It is

computed as:

BIC = k log(n)− 2 log(L),

where n is the sample size. BIC places more emphasis on model simplicity, often leading to the

selection of more parsimonious models than AIC.

The R package glmnet is used for the implementation of these regularised regression methods

(Friedman, Hastie & Tibshirani, 2010b)(v4.1-8). This package provides efficient algorithms for

fitting Lasso and AL models and includes tools for parameter tuning using CV.

3.3 Bootstrap Aggregating

Bootstrap aggregating, also known as bagging, is a method that aims to enhance model per-

formance by reducing variance and improving accuracy and stability (Breiman, 1996a). It works

by creating multiple subsets of the original data by sampling with replacement and running the

regression methods on each of these subsets. The final model prediction is then an aggregate of

the predictions from the different subsets.

In the context of graphical models, bagging can be used to improve the stability of neigh-

bourhood estimation from the ℓ1-regularised regression methods. A similar approach to Strobl

et al. (2012) is used for bagging to construct neighbourhoods. However, they only use Lasso,

and this paper extends their methodology by including AL. The algorithm is as follows:

1. Generate B bootstrap samples from the original data by sampling with replacement. Each

sample is the same size as the original dataset, but observations may appear more than

once.

7

2. For every bootstrap sample, fit ℓ1-regularised regression models for each variable using

all others as predictors with CV-optimised λ and obtain estimated coefficients β for each

model.

3. For each variable Xa, identify its neighbourhood based on the non-zero coefficients β

from the regression. Specifically, for a variable Xa, the neighbourhood is defined as in

equation (1) from Section 3.1.

4. Calculate the fraction µa,b for each pair of nodes (a, b) representing how often node b is in

the neighbourhood of node a across the B bootstrap samples.

5. Define the neighbourhood of node a as nea = {b : µa,b ≥ πcut}, where πcut is a certain

cut-off value. This threshold determines the minimum frequency with which a node must

appear in the bootstrap neighbourhoods to be included in the final neighbourhood.

6. Using the estimated neighbourhoods as defined above, construct the edge set E as de-

scribed in Section 3.1. The edges then represent the estimated conditional dependencies

between variables.

This process involves two parameters, namely the number of bootstrap samples B and the

cut-off value πcut. As Strobl et al. (2012) found that the number of bootstrap samples B has

the least amount of impact on model performance with a slight increase in performance with

higher B, the only value used for B in this study is 200.

Unlike Strobl et al. (2012), this paper treats πcut as a parameter to be tuned. Due to time

constraints, rather than performing cross-validation, the optimal πcut is chosen by iteratively

going through πcut values and selecting those that attain the highest Youden index for a given

dataset and edge set definition (AND-rule or OR-rule). For this optimisation, all values between

0 and 1 with steps of 0.05 are used as candidates. These same values are used for a sensitivity

analysis to evaluate the impact of πcut on model performance.

To implement this bagging algorithm, the R package boot is used (Davison & Hinkley,

1997)(v1.3-30).

3.4 Performance Measures

To evaluate the performance of models in identifying the correct structure of a graphical model,

the estimated edges are compared to a true edge set constructed based on the known underlying

conditional dependence structure. This comparison uses the concepts of positives and negatives,

along with their true and false classifications, which are necessary to assess model accuracy.

In the context of graphical models, there are positive and negative edges. Positives are edges

that represent a conditionally dependent relation between variables in the true graph. Negatives

are absent edges that represent conditional independence between variables.

When estimating these true edges and the underlying dependence structure, there are four

possible outcomes:

• True positive: an edge that is present in both the true graph and the estimated graph.

8

• False positive: an edge that is incorrectly included in the estimated graph but is not

present in the true graph.

• True negative: an absent edge that is correctly not present in the estimated graph and

the true graph.

• False negative: an edge that exists in the true graph but is not included in the estimated

graph.

Understanding these outcomes is important in evaluating the accuracy of the estimated edge set

compared to the true one. To assess this accuracy, this paper uses the same two performance

measures as Strobl et al. (2012), namely the Structural Hamming Distance (Tsamardinos, Brown

& Aliferis, 2006) and the Youden index (Youden, 1950).

The Structural Hamming Distance (SHD) measures the number of edge transformations

needed to transform the estimated graph into the true graph. These edge transformations

include insertions and deletions. Therefore, this measure counts the number of false negatives

and false positives, and a lower score is preferred. However, the SHD alone might not provide

a complete picture, especially in sparse graphs where there are many absent edges, and models

that predict fewer edges still achieve a relatively low SHD by avoiding false positives but miss

many true edges.

To complement SHD and get a more balanced evaluation, the Youden index is also used. This

index combines sensitivity and specificity to provide a more complete view of model performance.

Sensitivity (true positive rate) is defined as the ratio of positives that are correctly identified

by the model. It measures the model’s ability to detect true edges and is calculated as follows:

Sensitivity =
true positives

true positives + false negatives
.

Specificity (true negative rate) is the ratio of negatives that are correctly not identified by the

model. It measures the model’s ability to detect true absent edges and avoid false edges and is

calculated as

Specificity =
true negatives

true negatives + false positives
.

The Youden Index (J) then combines these two metrics and provides a single measure:

J = sensitivity + specificity− 1.

The Youden index ranges from -1 to 1, where 1 signifies a perfect estimation, 0 suggests the

model’s performance is not better than random selection, and -1 implies the model performs

worse than random selection. The Youden index is valuable as it measures the trade-off between

sensitivity and specificity, offering insight into the model’s ability to correctly identify both

positives and negatives.

9

4 Data

This section describes the datasets used to evaluate the performance of the ℓ1-regularised re-

gression models. First, a basic data-generating process (DGP) is set up to examine the models’

performance under ideal conditions. Subsequently, a simulation study is conducted to explore

the models’ robustness and effectiveness in more complex, high-dimensional scenarios with vary-

ing levels of sparsity and dependency strength.

4.1 Basic DGP

To evaluate the performance of the different models, they are first applied to a generated dataset

with a simple, predefined correlation structure. The aim is to validate the models proposed

by Strobl et al. (2012) and to investigate whether the models work as expected under ideal

circumstances before applying them to more complex data structures.

At this point, the data is binary but not yet high-dimensional. This simplicity of the correl-

ation and data structure ensures that the nature and accuracy of the models can be observed

without the effects of high-dimensionality and more complicated dependency structures.

A correlation matrix is defined to represent the relations among variables. This matrix

ensures clear and interpretable conditional relations that form the true underlying graphical

model. Based on this predefined correlation matrix, several binary datasets are generated.

Figure 1: The true graphical model for the basic DGP. This graph is defined by the inverse
covariance matrix which is constructed based on the correlation matrix given in Table 2 in Appendix B.

The true graphical model corresponding to the used correlation matrix can be seen in Fig-

ure 1. In this graph, the nodes represent the variables, and the edges represent the conditional

dependencies between these variables. This is a clear visualisation of the ideal structures the

models are expected to estimate.

To evaluate the consistency of the models’ performance, 100 datasets are generated from this

same correlation matrix, with each dataset containing 5 variables and 1000 observations. With

this high ratio of observations to variables, the model performance can be reliably assessed for

ideal conditions.

10

4.2 Simulation Study

To see how the models perform under less ideal conditions and how they react to different

dependence structures, a simulation study is conducted. This time, the data is binary and

high-dimensional, with varying levels of sparsity and strength of dependencies.

As mentioned earlier, the inverse covariance matrix, often referred to as the precision matrix,

is used to identify the conditional independent relations among variables. Given a set of random

variables X1, . . . , Xp, the covariance matrix Σ presents the covariances between variable pairs.

The inverse of this matrix, Σ−1, provides insight into conditional dependencies. Specifically, if

the (i, j)-th element of Σ−1 is zero, then the corresponding variables Xi and Xj are conditionally

independent given all other variables. These zero entries in the precision matrix translate to

an absence of edges in the graphical model, which is why this matrix is essential in graphical

modelling.

To explore how the different models respond to varying dependence structures, datasets are

generated based on predefined precision matrices with certain characteristics. These datasets

have a relatively small number of observations compared to the number of variables to imitate

the often-found high-dimensionality of medical data.

The level of sparsity and the absolute size of the non-zero values in the precision matrix are

varied to create different circumstances under which the models are tested. Sparsity refers to

the fraction of zero entries in the matrix. A sparse matrix has a larger fraction of zero entries,

meaning most variables are conditionally independent of one another, whereas a dense matrix

has a smaller fraction of zero entries and therefore more conditionally dependent variables. The

absolute value of the non-zero entries can represent the strength of these conditional dependent

relations. Low values represent weak relations and higher values indicate strong relations.

The combinations used in this study are sparse-low (few, weak relations) and dense-high

(many, strong relations). The setting of a sparse-low precision matrix corresponds to a situation

where most variables are conditionally independent of each other, except for a few weak relations.

This data condition will test how well the models perform at identifying subtle dependencies

amongst much noise and their ability to discern meaningful relations in sparse, high-dimensional

datasets. On the other hand, the dense-high setting corresponds to a situation with many,

relatively strong conditional dependencies among variables. This data condition studies the

models’ ability to identify conditional dependencies in high-dimensional datasets where they

receive a lot of strong signals.

The correlation matrix is created from the precision matrix once it has been set up, and

the binary datasets are subsequently generated using it. The used sparse-low and dense-high

precision matrices can be found in Tables 3 and 4 in Appendix B, respectively. Each of the

100 datasets consists of 10 variables and 50 observations, such that they are relatively high-

dimensional. At the same time, the relatively small number of variables and observations en-

sures the computational feasibility of running and analysing all models with different parameter

settings.

11

5 Results

This section presents the results of the analysis following the methodology described in previous

sections. First, the performance of the models under ideal conditions is described, then under

sparse-low and dense-high conditions, and finally, a sensitivity analysis of the bagging parameter

πcut is performed. All models and analyses are implemented in R (v4.3.3).

5.1 Basic DGP

Figure 2 shows the SHD values for the models under the basic DGP, as described in Section 4.1.

For each model, the left box represents the results with the AND-rule and the right box with

the OR-rule. The thick black lines represent the median SHD value of each model across 100

simulations, and the red line marks the median value across all models and datasets. The bagged

variants of the Lasso and AL are denoted as Bolasso and Boal, respectively.

As explained in Section 3.4, SHD is defined as the number of edge transformations needed to

get the true edge set from the estimated set. Therefore, an SDH value of 0 represents a perfect

estimation, and higher values indicate more discrepancies between the estimated and true edge

sets.

Figure 2: Box plot of the SHD for all models in the basic DGP. The left, light-grey boxes
represent the AND-rule and the right, dark-grey boxes represent the OR-rule. The thick black lines are
the median values of the individual models, and the red line is the overall median across all models and
simulation runs. The first six models are the Lasso and AL models using the different λ optimisation
criteria, and the last two are the bagging models with B = 200 and optimised πcut.

From Figure 2, it is evident that most models have perfect or near-perfect estimations in this

basic setting, especially when the AND-rule is applied. The AL is generally more accurate and

consistent than Lasso, both with and without bagging. The Boal models outperform most other

models with superior accuracy and consistency, particularly when comparing the models under

the OR-rule. AL’s better performance over Lasso can be attributed to its adaptive weighting,

which provides more robust variable selection. This adaptive weighting also helps AL models

maintain better performance under the OR-rule compared to Lasso, which tends to select too

many edges due to the one-sided requirement, leading to false positives. In contrast, AL’s

12

adaptive weights filter out weak signals, reducing false positives.

Both Lasso and AL benefit from bagging in terms of consistency, likely due to their more

stable variable selection. Among the non-bagging models, the best performance is observed

with CV and BIC for optimising λ in Lasso and AL, respectively. The difference in optimal

selection criteria between Lasso and AL may be because of their different penalty schemes:

AL benefits from a criterion focusing on model complexity (BIC), while Lasso benefits from a

criterion minimising prediction errors (CV).

Lasso-AIC is the only model that does not achieve a median SHD of 0 with the AND-rule,

indicating it selects too many edges, increasing the SHD and reducing specificity. This could be

due to AIC’s smaller penalty on model complexity compared to BIC, leading AIC to prefer more

parameters and, consequently, more edges. The same trend is observed in AL models, where

AIC is less consistent and slightly less accurate under the OR-rule than BIC. For these simple

datasets with few variables and dependencies, BIC’s stronger penalty yields better performance,

though in more complex settings, this penalty could produce a too conservative model.

All bagging models except the Bolasso-OR have perfect estimations in all simulation runs.

Table 1 below shows the average tuned πcut values of these models. It can be seen that Boal

tends to have lower optimal thresholds than Bolasso, indicating that Boal is better at picking

up relevant signals in this basic setting and can provide perfect estimations even with less strict

values of πcut. On the other hand, Bolasso-OR requires quite a strict threshold for optimal

performance but still shows relatively inaccurate estimations. This model selects too many edges

under the one-sided definition of the OR-rule, meaning it often mistakenly picks up irrelevant

signals under this setting even with strict threshold values.

Model Average πcut

Bolasso-AND 0.741
Bolasso-OR 0.960
Boal-AND 0.432
Boal-OR 0.629

Table 1: Average tuned πcut values for the basic DGP. The models are the bagging models using
the AND and OR- rules.

Across all models, the AND-rule outperforms the OR-rule in terms of accuracy and consist-

ency, as the OR-rule tends to select too many edges, leading to more false positives and a higher

SHD. A box plot of the obtained Youden indices can be found in Figure 9 in Appendix B and

supports the results discussed above.

5.2 Sparse-Low Conditions

In this subsection, the results found after applying the models to datasets generated from a

sparse and low-value precision matrix are presented and discussed.

Figure 3 below presents the SHD values of the models for these sparse-low datasets. Again,

the thick black lines are the median SHD values of the individual models, and the red line is

the overall median. The light-grey boxes represent the models using the AND-rule, and the

dark-grey boxes are the ones using the OR-rule.

13

Figure 3: Box plot of the SHD for all models in the sparse-low conditions. The left, light-grey
boxes represent the AND-rule and the right, dark-grey boxes represent the OR-rule. The thick black
lines are the median values of the individual models, and the red line is the overall median across all
models and simulation runs. The first six models are the Lasso and AL models using the different λ
optimisation criteria, and the last two are the bagging models with B = 200 and optimised πcut.

It can be seen that the bagging models exhibit less consistent performance compared to non-

bagging models and generally have slightly less accurate SHD values. This inconsistency could

be due to the bagging parameter πcut being optimised based on the Youden index, potentially

negatively affecting the SHD scores. Among the non-bagging models, those using AIC as the λ

selection criterion have the highest SHD values, especially with the OR-rule. This is likely due

to AIC’s smaller penalty on model complexity, resulting in the selection of too many edges and

more false positives. BIC, with its stricter penalty, performs best for non-bagging models under

sparse-low conditions when considering the SHD as a measure.

However, only looking at the SHD might not accurately reflect model performance, especially

in sparse matrices where there are few positives and models predicting only negatives can still

achieve relatively low SHD values. Thus, the Youden index is also considered to assess how well

the models identify true positives. Figure 4 below contains the box plot of the Youden indices.

As mentioned in Section 3.4, an index of 1 indicates perfect estimations, whereas with an index

of 0, model estimations are no better than random.

In terms of the Youden index, bagging models generally outperform non-bagging models,

showing better accuracy and consistency than when using SHD as a measure. Some of the

non-bagging models have quite a large spread in Youden indices, with even negative values,

indicating worse than random performance. Unlike the basic DGP, there is little difference in

performance between the Lasso and AL, except for a somewhat larger spread in values for the

AL. The high-dimensional and sparse nature of the data may hinder AL’s ability to accurately

estimate the weights, making its weighted penalty not much more effective than Lasso’s equal

penalty in these conditions.

The non-bagging models generally exhibit low sensitivity and high specificity as they select

too few edges. The more conservative models (using BIC or AND-rule) maintain lower SHD

and high specificity values but miss many true positives, reducing sensitivity. Less conservative

14

Figure 4: Box plot of the Youden index for all models in the sparse-low conditions. The
left, light-grey boxes represent the AND-rule and the right, dark-grey boxes represent the OR-rule. The
thick black lines are the median values of the individual models, and the red line is the overall median
across all models and simulation runs. The first six models are the Lasso and AL models using the
different λ optimisation criteria, and the last two are the bagging models with B = 200 and optimised
πcut.

models (using AIC or OR-rule) tend to have slightly higher Youden indices due to more true

positives but also achieve higher SHD values and introduce more false positives.

The bagging models provide a better balance between the true positive and true negative

rates, which might make them the most fitting in this setting. However, if the aim is to minimise

false positives, they might not be as appropriate due to their low level of accuracy and consistency

when considering the SHD. In this case, the more conservative non-bagging models might be

preferred despite their lower sensitivity. The choice of model and optimisation criterion depends

on this trade-off between sensitivity, specificity, and consistency, where a choice can be made

based on the application’s aim and the loss of false positives and negatives.

5.3 Dense-High Conditions

In this subsection, the results found after applying the models to datasets generated from a

dense and high-value precision matrix are presented and discussed. Figures 5 and 6 below show

the box plots of the SHD values and Youden indices for all models, respectively.

In this setting, bagging models again show less consistent SHD values but now also gener-

ally have lower values than non-bagging models, indicating better performance. The difference

between Lasso and AL is more pronounced, especially when applying bagging. The non-bagging

models employing AIC also have relatively low SHD values due to their less conservative nature

and selection of more edges, benefiting them in this dense setting.

From Figure 6, bagging models outperform non-bagging models in terms of Youden indices,

showing more accurate performance and more consistency than with SHD as a measure. The

lack of accuracy of the AL compared to Lasso could be because of the dense setting, where many

positives and high non-zero values cause the AL to over-penalise significant variables, missing

relevant relations. Lasso, without bias from weights, distributes these strong signals evenly,

15

leading to fewer exclusions and higher Youden indices.

Figure 5: Box plot of the SHD for all models in the dense-high conditions. The left,
light-grey boxes represent the AND-rule and the right, dark-grey boxes represent the OR-rule. The thick
black lines are the median values of the individual models, and the red line is the overall median across
all models and simulation runs. The first six models are the Lasso and AL models using the different λ
optimisation criteria, and the last two are the bagging models with B = 200 and optimised πcut.

Figure 6: Box plot of the Youden index for all models in the dense-high conditions. The
left, light-grey boxes represent the AND-rule and the right, dark-grey boxes represent the OR-rule. The
thick black lines are the median values of the individual models, and the red line is the overall median
across all models and simulation runs. The first six models are the Lasso and AL models using the
different λ optimisation criteria, and the last two are the bagging models with B = 200 and optimised
πcut.

Considering the non-bagging models, in the previous setting, less conservative non-bagging

models gained in Youden index due to the increase in sensitivity being greater than the loss

in specificity. This does not always seem to be the case in this dense-high setting, where the

use of OR-rule on top of the already less conservative AIC causes a decrease in Youden index.

The SHD values for these models remain relatively low due to many edges being selected, but

now the gain in sensitivity is smaller than the loss in specificity as too many false positives are

16

introduced. This difference in trade-off between the sparse and dense settings is because in the

sparse setting, the gain in sensitivity is relatively larger, as finding the few true positives there

are will boost the model’s performance. However, in the dense setting where there are already

quite a few true positives, the marginal gain in sensitivity is smaller.

In the dense-high setting, bagging models outperform non-bagging models in both SHD and

Youden indices, making them an appropriate choice of model. This suggests that bagging is

particularly beneficial in this setting. The choice between Lasso and AL is also more straight-

forward, with Lasso showing better performance in these data conditions.

5.4 Sensitivity Analysis of πcut

In the previous subsections, the threshold πcut was optimised based on the Youden index. How-

ever, this procedure does not give much insight into how different πcut values affect model

performance. To investigate this effect, a sensitivity analysis is performed under both sparse-

low and dense-high conditions. The πcut values range from 0 to 1 in increments of 0.05, and the

Youden index is used to compare performance across values and conditions. SHD is less suitable

for this due to it being more dependent on the underlying dependency structure. Figure 7 shows

the average Youden indices of the bagging models across 100 simulations at different threshold

values. The left graph displays the results under sparse-low conditions and the right graph under

dense-high conditions.

Figure 7: Average Youden indices of all bagging models and πcut’s. The left graph shows the
results under sparse-low conditions and the right one under dense-high conditions. The different
bagging models and rules are represented by different colours.

Starting from a πcut value of 0, all edges are selected, leading to a sensitivity of 1, a specificity

of 0, and a Youden index of 0. As the threshold value increases, estimations become more

conservative, with increasing specificity and a slight drop in sensitivity until an optimal trade-off

is reached at certain πcut values. Beyond these peaks, models become more conservative, leading

to higher specificity but even lower sensitivity, decreasing the Youden index. At πcut = 1.00,

nearly all estimates are negative, and the Youden index is back close to 0.

The bagging models perform better in dense-high conditions across almost all values of πcut,

especially Bolasso. In sparse-low conditions, the models struggle to detect the weak, sparse

17

relations, making them more suited for situations where relations among variables are strong

and dense. Another difference is that average optimal πcut values appear lower for sparse-low

conditions, peaking before or around 0.50, while for dense-high conditions, peaks are around

or slightly above 0.50. This could suggest that weak conditional relations in sparse precision

matrices require a lower threshold to still accurately detect these relations. Notably, at their

optimal cut-off value, all models achieve higher specificity than sensitivity in most simulation

runs, indicating better performance at estimating true negatives compared to true positives.

It also shows that the Bolasso models are more accurate than Boal, specifically in dense-high

conditions with moderate values of πcut. For lower threshold values, the AND-rule is preferred,

whereas for higher, more strict thresholds, the OR-rule outperforms. In other words, a loose

threshold is better accompanied by a strict edge set definition, and vice versa.

Though some models and threshold values attain better performance in terms of the average

Youden index, the choice of model and parameter setting still depends on the context. Lower

values of πcut have a higher sensitivity but introduce more false positives, while higher values

provide better specificity but lead to more false negatives. Model selection depends on these

trade-offs and the relative loss of false positives versus false negatives.

Figure 8 shows the Youden indices for the bagging models using a πcut of 0.90 and their

optimal values based on the highest average Youden indices as shown in Figure 7. Table 5 in

Appendix B presents these optimal values of πcut that are now set beforehand rather than tuning

the threshold as done in previous sections. The threshold value of 0.90 was chosen based on the

works of Bach (2008) and Strobl et al. (2012), where this value is proposed and used as a soft

threshold.

Figure 8: Box plot of the Youden index for the bagging models using 0.90 and optimal
thresholds. The left graph shows the results under sparse-low conditions and the right one under
dense-high conditions. The left, light-grey boxes represent the AND-rule, and the right, dark-grey boxes
represent the OR-rule. The thick black lines are the median values of the individual models, and the
red line is the overall median across all models and simulation runs.

This figure reaffirms that the models perform better in dense-high conditions and that

Bolasso generally outperforms Boal. However, the optimal thresholds, although providing better

average Youden indices, result in less consistent performance, including more negative scores.

This variability may be due to lower values being more susceptible to noise and irrelevant sig-

nals, leading to mixed performance across simulations. Thus, the choice of cut-off value not only

depends on balancing sensitivity and specificity but also on the desired consistency.

18

6 Conclusion

This study explores the use of ℓ1-regularised regression techniques in identifying the conditional

dependence structure in high-dimensional binary data. By focusing on the performance of

different models, including Lasso, Adaptive Lasso, and their bagged variants, under various

data conditions and parameter settings, a comprehensive analysis is presented on how these

models can be applied. The results give insight into the effectiveness and trade-offs associated

with the models, particularly in different data conditions.

Under ideal conditions, the models demonstrate high accuracy, with AL outperforming Lasso

and bagging stabilising variable selection. In the sparse-low setting, bagging models show the

best balance between sensitivity and specificity. However, if minimising false positives is of

importance, more conservative non-bagging models would be more appropriate despite lower

sensitivity. There is a trade-off between sensitivity, specificity, and consistency, which is not as

present in dense-high conditions. In this setting, the bagging models are more of an obvious

choice, with Lasso outperforming AL.

The sensitivity analysis of πcut for the bagging models shows the effect of the threshold value

on performance and highlights the trade-off between sensitivity and specificity. Lower thresholds

improve sensitivity by identifying more true positives but at the cost of more false positives,

whereas higher thresholds provide better specificity but miss many true edges, especially in the

sparse-low setting. It was also concluded that the bagging models might be better suited for

dense-high conditions and are better at identifying true negatives than true positives.

The results highlight the importance of model selection and parameter tuning according to

the context in which they will be applied. Especially in more complex data structures, it was

seen that the choice of model and settings is dependent on the application. Based on the losses

associated with false negatives and positives, an appropriate choice can be made regarding the

model’s score on sensitivity versus specificity. Another consideration is the need for consistent

performance, in which higher threshold values for the bagging models might be preferred.

Future studies could explore the use of ℓ1-regularised techniques other than the ones presen-

ted in this paper. There have been many adaptations of the Lasso that could potentially work

well in detecting the underlying dependence structures. Additionally, for the AL, the effect of

different values and optimisation schemes for the parameter γ could be investigated. Another

direction of research would be to try to improve performance by combining the strengths of the

different models presented here and finding a better trade-off between sensitivity, specificity, and

consistency.

This study provides a comparative analysis of various models and their ability to identify

conditional dependent relations across different data conditions. The findings highlight the

necessity of a context-specific choice of model and parameter settings and provide useful insights

for both practical applications and further research.

19

References

Bach, F. R. (2008). Bolasso: model consistent lasso estimation through the bootstrap. In

Proceedings of the 25th international conference on machine learning (pp. 33–40).

Breiman, L. (1996a). Bagging predictors. Machine learning , 24 , 123–140.

Breiman, L. (1996b). Heuristics of instability and stabilization in model selection. The annals

of statistics, 24 (6), 2350–2383.

Davison, A. C. & Hinkley, D. V. (1997). Bootstrap methods and their application (No. 1).

Cambridge university press.

Dempster, A. P. (1972). Covariance selection. Biometrics, 157–175.

Fan, J. & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle

properties. Journal of the American statistical Association, 96 (456), 1348–1360.

Friedman, J., Hastie, T. & Tibshirani, R. (2010a). Applications of the lasso and grouped lasso

to the estimation of sparse graphical models (Tech. Rep.). Technical report, Stanford

University.

Friedman, J., Hastie, T. & Tibshirani, R. (2010b). Regularization paths for generalized linear

models via coordinate descent. Journal of statistical software, 33 (1), 1.

Gao, X., Pu, D. Q., Wu, Y. & Xu, H. (2009). Tuning parameter selection for penalized likelihood

estimation of inverse covariance matrix. arXiv preprint arXiv:0909.0934 .

Krämer, N., Schäfer, J. & Boulesteix, A.-L. (2009). Regularized estimation of large-scale gene

association networks using graphical gaussian models. BMC bioinformatics, 10 , 1–24.

Lauritzen, S. L. (1996). Graphical models (Vol. 17). Clarendon Press.

Meinshausen, N. & Bühlmann, P. (2006). High-dimensional graphs and variable selection with

the lasso.

Ravikumar, P., Wainwright, M. J. & Lafferty, J. D. (2010). High-dimensional ising model

selection using 1-regularized logistic regression.

Strobl, R., Grill, E. & Mansmann, U. (2012). Graphical modeling of binary data using the lasso:

a simulation study. BMC medical research methodology , 12 , 1–13.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society Series B: Statistical Methodology , 58 (1), 267–288.

Tsai, C.-L. & Camargo Jr, C. A. (2009). Methodological considerations, such as directed

acyclic graphs, for studying “acute on chronic” disease epidemiology: chronic obstructive

pulmonary disease example. Journal of clinical epidemiology , 62 (9), 982–990.

Tsamardinos, I., Brown, L. E. & Aliferis, C. F. (2006). The max-min hill-climbing bayesian

network structure learning algorithm. Machine learning , 65 , 31–78.

Wong, F., Carter, C. K. & Kohn, R. (2003). Efficient estimation of covariance selection models.

Biometrika, 90 (4), 809–830.

Youden, W. J. (1950). Index for rating diagnostic tests. Cancer , 3 (1), 32–35.

Yuan, M. & Lin, Y. (2007). Model selection and estimation in the gaussian graphical model.

Biometrika, 94 (1), 19–35.

Zhou, S., van de Geer, S. & Bühlmann, P. (2009). Adaptive lasso for high dimensional regression

and gaussian graphical modeling. arXiv preprint arXiv:0903.2515 .

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American statistical

20

association, 101 (476), 1418–1429.

21

A Programming code

This section gives an overview of the steps and functions implemented in R to obtain the results.

First, the algorithm for the non-bagging models:

1. Define functions to calculate the performance measures, AIC, and BIC. These functions

are detailed in Algorithms 1, 2, and 3, respectively.

2. Set parameters including the number of variables, level of sparsity, range of precision

matrix values, number of observations of each dataset, number of datasets, and marginal

probabilities of binary variables.

3. Create the precision matrix based on the parameters from the previous step. This matrix

is used to set up the true edge set and the correlation matrix for data generation.

4. For the number of datasets, do the following:

4.1 Generate the binary variables based on certain parameters from Step 2 and the cor-

relation matrix from Step 3.

4.2 For every variable, do the following:

4.2.1 Run an ℓ1-regularised regression (Lasso or AL) using all others as predictors and

one of the three λ optimisation criteria: CV, AIC, or BIC. This is done using the

glmnet() and cv.glmnet() functions from the R-package glmnet.

4.2.2 Identify and store the non-zero coefficients, as these represent dependent rela-

tions.

4.3 Create the edge set based on these non-zero coefficients and one of the edge set

definitions (AND/OR) as defined in Section 3.1.

4.4 Calculate the performance measures using the function defined in Step 1, the true

edge set from Step 3, and the estimated edge set from Step 4.3.

5. Compute and display the (average) results.

The algorithm for the bagging models:

1. Define functions to calculate the performance measures, AIC, and BIC. These functions

are detailed in Algorithms 1, 2, and 3, respectively.

2. Set parameters the including number of variables, level of sparsity, range of precision matrix

values, number of observations of each dataset, number of datasets, marginal probabilities

of binary variables, number of bootstrap samples, and threshold value candidates.

3. Create the precision matrix based on the parameters from the previous step. This matrix

is used to set up the true edge set and the correlation matrix for data generation.

4. For the number of datasets, do the following:

4.1 Generate the binary variables based on certain parameters from Step 2 and the cor-

relation matrix from Step 3.

22

4.2 Define an ℓ1-regularised regression function (Lasso or AL) for bagging where all other

variables are used as predictors and λ is optimised using one of the three criteria: CV,

AIC, or BIC. This is done using the glmnet() and cv.glmnet() functions from the

R-package glmnet.

4.3 Generate the bootstrap samples and apply the function from Step 4.2. This is done

using the boot() function from the R-package boot.

4.4 Calculate the neighbourhood percentages representing how often nodes are in each

other’s neighbourhood across all bootstrap samples.

5. Define and run a function for the optimisation of the threshold value where, for every

dataset, the optimal value is found by iteratively going through the set threshold value

candidates from Step 2 and selecting those that achieve the highest Youden index based

on the given edge set definition (AND/OR). This function is detailed in Algorithm 4.

6. Compute and display the final (average) results using the optimised threshold values from

Step 5.

Below are some of the functions used in the steps described above. First is the function to

calculate the performance measures described in Section 3.4.

Algorithm 1: Calculate performance measures

Input: True edge set matrix, true edge set; Estimated edge set matrix, edge set

Output: SHD, Sensitivity, Specificity, Youden index

/* Extract upper triangles to avoid counting double */

1 true upper ← true edge set[upper.tri(true edge set)];

2 estimated upper ← edge set[upper.tri(edge set)];

/* Compute SHD */

3 SHD ← sum(true upper ̸= estimated upper);

/* Calculate true/false positives/negatives */

4 TP ← sum(true upper ∧ estimated upper);

5 FP ← sum(¬true upper ∧ estimated upper);

6 TN ← sum(¬true upper ∧ ¬estimated upper);

7 FN ← sum(true upper ∧ ¬estimated upper);

/* Compute sensitivity, specificity, and the Youden index */

8 Sensitivity← TP
TP+FN ;

9 Specificity← TN
TN+FP ;

10 J ← Sensitivity + Specificity− 1;

11 return SHD, Sensitivity, Specificity, and J ;

23

Next are the two functions to calculate the AIC and BIC scores from an ℓ1-regularised

regression fit.

Algorithm 2: Calculate AIC (Akaike Information Criterion)

Input: ℓ1-regularised model fit, fit

Output: AIC value

/* Extract negative log likelihood, number of estimated parameters, and

number of observations */

1 tLL← −deviance(fit);
2 k ← fit.df ;

3 n← fit.nobs;

/* Compute AIC */

4 AIC ← −tLL+ 2× k;

5 return AIC;

Algorithm 3: Calculate BIC (Bayesian Information Criterion)

Input: ℓ1-regularised model fit, fit

Output: BIC value

/* Extract negative log likelihood, number of estimated parameters, and

number of observations */

1 tLL← −deviance(fit);
2 k ← fit.df ;

3 n← fit.nobs;

/* Compute BIC */

4 BIC ← log(n)× k − tLL;

5 return BIC;

24

Lastly, the function used to optimise the bagging parameter πcut based on the Youden index.

Algorithm 4: Optimise πcut based on the Youden index

Input: Rule for edge set definition (“AND” or “OR”), rule; true edge set,

true edge set; list of results containing neighborhood percentages, results; set

of πcut value candidates, pi cuts

Output: List of optimal πcut values and corresponding best performance,

(optimal pi cut, best performance)

/* Initialise vectors to store output */

1 optimal pi cut← numeric(n datasets);

2 best performance← numeric(n datasets);

3 for i← 1 to n datasets do

/* Extract neighbourhood percentage and number of variables,

initialize the best metric */

4 neighbourhood percentage← results[[i]]$neighbourhood percentage;

5 n← ncol(neighbourhood percentage);

6 best metric← −∞;

7 for pi cut ∈ pi cuts do

8 edge set← matrix(0, n, n);

9 for j ← 1 to n do

/* Identify neighbours and edge set */

10 neighbours← which(neighbourhood percentage[j,] ≥ pi cut);

11 edge set[j, neighbours]← 1;

12 end

/* Create final edge set based on given rule */

13 if rule is “OR” then

14 final edge set← edge set+ t(edge set);

15 final edge set[final edge set > 1]← 1;

16 else

17 final edge set← edge set× t(edge set);

18 end

/* Calculate performance measures using final edge set and function

as given in Algorithm 1 */

19 measures← calculate performance measures(true edge set, final edge set);

20 if Youden index greater than best metric then

21 best metric← measures$J ;

22 optimal pi cut[i]← pi cut;

23 end

24 end

25 best performance[i]← best metric;

26 end

27 return optimal pi cut, best performance

25

B Tables and figures

X1 X2 X3 X4 X5

X1 1 0.5 0 0 0.5
X2 0.5 1 0 0 0
X3 0 0 1 0.5 0
X4 0 0 0.5 1 0
X5 0.5 0 0 0 1

Table 2: The correlation matrix for the ideal data conditions. Based on this matrix the
datasets for the simple DGP are generated.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 1.4800 -0.0460 0.3117 0.0994 -0.1131 0.0000 0.0000 -0.0982 0.0000 0.0000
X2 -0.0460 1.4800 0.0000 0.0000 -0.1112 0.0000 -0.1005 0.0000 0.1403 0.0000
X3 0.3117 0.0000 1.4800 0.0000 0.0000 0.0000 -0.0666 0.0000 0.0000 0.0000
X4 0.0994 0.0000 0.0000 1.4800 0.0000 0.0000 0.1108 -0.0124 0.0000 0.0000
X5 -0.1131 -0.1112 0.0000 0.0000 1.4800 0.0000 -0.0806 0.0000 0.0000 0.0000
X6 0.0000 0.0000 0.0000 0.0000 0.0000 1.4800 0.0000 0.0000 0.0000 -0.1201
X7 0.0000 -0.1005 -0.0666 0.1108 -0.0806 0.0000 1.4800 0.0000 0.4038 0.0000
X8 -0.0982 0.0000 0.0000 -0.0124 0.0000 0.0000 0.0000 1.4800 0.0000 0.0000
X9 0.0000 0.1403 0.0000 0.0000 0.0000 0.0000 0.4038 0.0000 1.4800 0.0000
X10 0.0000 0.0000 0.0000 0.0000 0.0000 -0.1201 0.0000 0.0000 0.0000 1.4800

Table 3: The sparse-low precision matrix. This matrix defines the true dependency structure the
models aim to uncover where the non-zero entries represent conditionally dependent relations. Based on
this matrix the datasets for the sparse-low conditions are generated.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 20.8320 -1.5000 1.2272 3.0000 -0.2368 5.7877 3.0000 -4.6627 -0.2171 0.9838
X2 -1.5000 20.8320 1.5000 0.0000 -1.5000 0.0000 0.0000 -10.6895 3.2534 1.5000
X3 1.2272 1.5000 20.8320 0.4156 -4.7261 -5.7167 0.5945 4.0143 -4.3453 1.5000
X4 3.0000 0.0000 0.4156 20.8320 7.4763 0.0000 -1.0464 -3.2730 -1.5000 -1.5000
X5 -0.2368 -1.5000 -4.7261 7.4763 20.8320 -2.8078 -4.1795 0.0000 -1.5000 1.9016
X6 5.7877 0.0000 -5.7167 0.0000 -2.8078 20.8320 -2.3719 4.0639 1.5000 -0.0006
X7 3.0000 0.0000 0.5945 -1.0464 -4.1795 -2.3719 20.8320 0.0000 5.0478 10.5935
X8 -4.6627 -10.6895 4.0143 -3.2730 0.0000 4.0639 0.0000 20.8320 1.5000 2.3315
X9 -0.2171 3.2534 -4.3453 -1.5000 -1.5000 1.5000 5.0478 1.5000 20.8320 1.3720
X10 0.9838 1.5000 1.5000 -1.5000 1.9016 -0.0006 10.5935 2.3315 1.3720 20.8320

Table 4: The dense-high precision matrix. This matrix defines the true dependency structure the
models aim to uncover where the non-zero entries represent conditionally dependent relations. Based on
this matrix the datasets for the dense-high conditions are generated.

26

Figure 9: Box plot of the Youden index for all models in the basic DGP. The left, light-grey
boxes represent the AND-rule and the right, dark-grey boxes the OR-rule. The thick black lines are the
median values of the individual models and the red line is the overall median across all models and
simulation runs. The first six models are the Lasso and AL models using the different λ optimisation
criteria, and the last two are the bagging models with B = 200 and optimised πcut.

sparse-low model optimal πcut

Bolasso-AND 0.35
Bolasso-OR 0.50
Boal-AND 0.35
Boal-OR 0.45

dense-high model optimal πcut

Bolasso-AND 0.45
Bolasso-OR 0.55
Boal-AND 0.40
Boal-OR 0.55

Table 5: Optimal πcut values for all bagging models and data conditions. These optimal
values are based on the highest average Youden index across simulation runs for πcut values ranging
from 0 to 1 with increments of 0.05.

27

	Introduction
	Literature Review
	Methodology
	Graphical Models
	Regularised Regression Techniques
	Lasso
	Adaptive Lasso
	Optimal Regularisation Parameter

	Bootstrap Aggregating
	Performance Measures

	Data
	Basic DGP
	Simulation Study

	Results
	Basic DGP
	Sparse-Low Conditions
	Dense-High Conditions
	Sensitivity Analysis of cut

	Conclusion
	Programming code
	Tables and figures

