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Abstract

The Arctic environment, weather, and temperature may all suffer as a result of the recent

sea ice changes, which also have significant implications for society and the economy. This

analysis was a replication of (F. X. Diebold, Rudebusch, Göbel, Coulombe & Zhang, 2022),

wherein linear carbon trends were used to project the arrival timings for NIFA and IFA. The

four different indicators of Arctic ice—area, extent, thickness and volume—are estimated

using univariate bivariate and multivariate models. These models consider the joint zero

restriction for obtaining and evaluating nearly ice-free Arctic years. The research additionally

looked into the possibility of advancement by utilising carbon capture and storage (CCS) -

a technique for trapping greenhouse gas emissions and keeping them out of the atmosphere-

which might foresee a bright future and delay the Nearly Ice Free Artic (NIFA) years. The

study concludes that since the first NIFA years are already anticipated to happen in a very

short period, CCS will not have any opportunity to grow and demonstrate its effectiveness.

As a result, there is unlikely to be a delay of more than three years. Yet, there could still be

hope for the Arctic’s future.
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1 Introduction

The Arctic region has an essential role in regulating and managing the planet’s climate. Albedo

feedback amplification loop is the phenomenon, known as the cycle that occurs when darker

open water, which absorbs sunlight, replaces more reflecting Arctic sea ice. This happens due

to ice loss caused by climate change and thus, eventually contributes to future climate change.

There has been a concerning decline in the amount, thickness, and volume of arctic sea ice

during the last few decades, and predictions indicate that the area may become seasonally ice-

free in the next decades (Dauginis & Brown, 2021). The global climate systems, biodiversity,

and human populations are all significantly impacted by this sharp decline, especially the mid-

latitude patterns of air circulation and precipitation (Sewall & Sloan, 2004). Consequently, this

is one of the most obvious and concerning signs of climate change. Moreover, climate change has

major worldwide economic implications, therefore the significance of this research goes beyond its

effects on the environment (Stern, 2008). Furthermore, a framework for assessing the economic

impacts of Arctic ice loss is necessary for understanding the broader effects of climate dynamics

in this area (Alvarez, 2020).

Understanding the dynamics of Arctic melting is essential for predicting future climate scen-

arios and developing strategies to mitigate the adverse effects of CO2 emissions from major

industrial sources on both the environment and economies. While renewable energy and ma-

terials efficiency could make a significant contribution to industrial emission reductions, their

joint potential is not enough to fully decarbonise the industrial sector. To reach net zero emis-

sions, (International Renewable Energy Agency (IRENA), 2024) supports countries to define

strategies where carbon capture and storage (CCS), carbon capture and utilisation (CCU) and

carbon dioxide removal (CDR) may play a role. CCS is broadly recognised as having the poten-

tial to deliver low carbon heat and power, decarbonising industry and, more recently, its ability

to facilitate the net removal of CO2 from the atmosphere (Bui et al., 2018). Therefore, this

can be addressed as one promising solution for dealing with this crisis. CCS is a technology

designed to capture carbon dioxide emissions from sources like power plants and manufactur-

ing activities and store it underground to prevent it from entering the atmosphere (Bahman,

Al-Khalifa, Al Baharna, Abdulmohsen & Khan, 2023). By preventing CO2 from entering the

atmosphere, CCS can significantly contribute to achieving net-zero emissions targets (Johnsen,

2017). Therefore, this research will seek an answer to the question of whether or not this is

possible to delay the arrival of the first NIFA years using CCS, and for how many years it is

possible to delay the arrival of the mentioned crisis.

This research will provide the methodology and results of using point, interval, and density

forecasts for four measures of Arctic sea ice coverage using area and extent, thickness, and volume

to employ probabilistic assessment of the timing of the Nearly ice-free arctic years that adopted

by (F. X. Diebold et al., 2022). Their research focused on projecting the timing of the first ice-

free September, as September is referred to as the month with the least seasonal ice and exploring

both an ice-free Arctic (IFA) and an effectively or nearly ice-free Arctic (NIFA) September. A

notable aspect of their analysis is the enforcement of the joint constraint that these measures

must simultaneously arrive at an ice-free Arctic where they sequentially considered pairwise

blends of area with each of the other indicators. They have implemented their constrained
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joint forecasting procedure in “carbon-trend” models that relate sea ice to atmospheric carbon

dioxide (CO2) concentration with this time series denoted as CO2C also in this research paper.

Moreover, by employing linear carbon trends for both carbon-space and time-space they relate

sea ice simply to time to project the future state of Arctic sea ice. This proposed study will

enhance the previously utilised constraint bivariate and unconstrained univariate models by

imposing the ”all indicators should be vanishing together” constraint and using a multivariate

constraint model. This approach aims to verify the consistency of their approaches and to make

probabilistic forecasts of the arrival years of NIFA and IFA.

There are multiple conceivable contribution levels described earlier in various literatures.

According to (Kocs, 2017), CCS can cut emissions from multiple sources, including stationary

sources like power plants and industries, accounting for 60% (15 billion tonnes) of total CO2

emissions annually. The International Energy Agency (IEA) Blue Map (Radcliffe, 2010) scenario

envisions a 19% contribution from CCS to global CO2 reductions by 2050, which would require

capturing, transporting, and storing over 8 gigatonnes (Gt) of CO2 annually by 2050. This

scenario also outlines a pathway to stabilise atmospheric CO2 concentrations at 450 parts per

million (ppm) by 2050. This concluded based on the present rate of 0.04 gigatonnes per annum

(Gtpa), it is estimated that to achieve net-zero by 2050, about 6 Gtpa of CO2 must be caught

and stored by 2040, and over 8 Gtpa by 2050.

Therefore, this research will assess the carbon-trend results when carbon is measured as

cumulative CO2 emissions (CO2E) as done in (F. X. Diebold et al., 2022). This will follow a

further assessment based on the adjusted emission scenarios which will use a framework that

has been suggested by IEA (Radcliffe, 2010). These will further be used to make probabilistic

forecasts of the arrival years of NIFA and IFA which will proceed the way of the research through

an answer.

The structure of the paper will be as follows: Section 2 earlier works of literature that

provide knowledge and insight to this study, Section 3 presents the variables and data used in

the study. Section 4 methodology of the methods that are used for estimation predictions and

probabilistic analysis. Section 5 discussion and illustration of the results that this research has

arrived at. Section 6 conclusion, which includes the study’s primary conclusions, limitations,

and recommendations for further research.

2 Literature

Previously in this field, climate models have made significant contributions to the understanding

of the global and Arctic climates by capturing several drivers at high temporal and geographic

precision. Thus, climate models were most likely to be taken into consideration for use in Arctic

study. (Shen, Duan, Li & Li, 2021) assessed the capabilities of CMIP5 and CMIP6 models

in simulating Arctic sea ice cover, finding that while CMIP6 models have reduced some biases

seen in CMIP5, significant discrepancies remain, particularly during the summer months. Al-

though these models have been highly valuable in understanding how the climate varies, they

have shown limitations in terms of accurately predicting the loss of Arctic sea ice and frequently

underestimating the magnitude of the recent reduction (Stroeve et al., 2012)and (Rosenblum

& Eisenman, 2017). (F. Diebold & Rudebusch, 2022b) suggests that highly simplified dynamic
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time series models can provide the same or even outperform the statistical projections of struc-

tural models. Such approaches are particularly useful for forecasting select climate outcomes

because fundamental details of climate dynamics are not well understood, as evidenced by the

diverse projections from various CMIP6 climate models (Notz & SIMIP, 2020). In particular,

smaller-scale econometric and statistical models have proven useful for forecasting Arctic sea

ice (Lei, Yuan, Ting & Li, 2016) and (F. Diebold & Rudebusch, 2022b) demonstrated how well

they can estimate summer Arctic sea ice concentration. A collection of research involving mod-

elling the Arctic decrease using sea ice thickness and volume (Stroeve & Notz, 2018) as well as

sea-ice coverage (Stroeve et al., 2012). Consequently, in-depth evaluation and analyses of the

modelling and measuring methodologies will be entailed. This study will evaluate the models by

applying the methodology used in (F. X. Diebold et al., 2022) and additionally, it also combines

multivariate modelling of the indicators with the all-in-one vanishing constraint. Combining

multiple indicators of a latent variable can lead to better estimates by reducing the impact of

measurement errors in each indicator (Joreskog, 1970) and (Goldberger, 1972). Consequently,

by combining all of the individual indicators into a multivariate model, a better assessment and

understanding of the dynamics of the sea ice can be obtained, given that the indicators have

different measurement errors.

Carbon capture and storage (CCS) is broadly recognised as having the potential to play a

key role in meeting climate change targets, delivering low carbon heat and power, decarbonising

industry and, more recently, its ability to facilitate the net removal of CO2 from the atmosphere

(Bui et al., 2018). Furthermore, utilising Life Cycle Assessments (LCA), several studies have

investigated the environmental impacts of Carbon Capture and Storage (CCS) technologies. A

complex weighting approach for LCAs was created by (Johnsen, 2017), particularly for amine-

based post-combustion CCS in the Arctic. This approach provides an extensive framework

for assessing the environmental trade-offs of CCS technology by examining the consequences of

climate change, toxicity, and resource depletion, among other environmental categories. Building

on this framework, (Bahman et al., 2023) offered an in-depth analysis of CCS technology used

in various sectors. According to their research, CCS can significantly decrease CO2 emissions,

helping the world reach its 2050 net-zero emission goals. Through the demonstration of case

scenarios, they have highlighted the importance of CCS in mitigating the effects of climate

change and highlight its useful applications. The implementation of CCS in the high Arctic

presents both opportunities and constraints (Lubrano Lavadera et al., 2018). The paper drew

attention to the distinct environmental circumstances found in the Arctic, which need specialised

strategies for ensuring the effective implementation and monitoring of CCS technologies.

Probability assessments of the timing of an ice-free Arctic, an outcome with vital economic

and climate consequences (Jahn, Randall, Holland & Senior, 2016). While earlier studies primar-

ily used LCA approaches, this study report provides a statistical and probabilistic evaluation

method to analyse the influence of CCS on postponing an ice-free Arctic. Through the integ-

ration of Shared Socioeconomic Pathways (SSP) scenarios and CO2 concentration levels, this

probabilistic evaluation technique offers a more thorough and dynamic evaluation of the possible

effects of CCS in the Arctic. This methodology provides an in-depth assessment of the environ-

mental implications of CCS implementations in the Arctic region by evaluating the probabilities
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and uncertainties related to such implementations. This gives an enhanced understanding of

how CCS technology could be able to mitigate the effects of climate change in the Arctic. This

is also essential for understanding the long-term effectiveness of CCS as a climate mitigation

strategy and its role in preserving the unique and delicate Arctic ecosystem.

3 Data

This study will evaluate the four main measurements of Arctic sea ice: extent, area, volume,

and thickness. The seasonal minimum of these indicators—that is, the monthly average for

September—is the focus of our investigation. A detailed explanation regarding to calculation of

the satellite observations can be obtained from (F. X. Diebold et al., 2022).

The whole procedure for data gathering and adjustment process for the required data set

follows the approach used in the (F. X. Diebold et al., 2022). The National Snow and Ice

Data Center’s Sea Ice Index monthly dataset, Version 3, Dataset ID G02135, is the source

of the data utilised for both Area and Extend. Initially, the pole hole was filled by applying

an area adjustment of 1.19 × 106km2 to the SIA from the sample start to July 1987, 0.31 ×
106km2 from September 1987 to December 2007, and 0.029 × 106 km2 from January 2008

to the present, adopting the guidelines of (F. X. Diebold et al., 2022). The thickness data,

which comes from PIOMAS at the Polar Science Centre and is published every day, has been

converted into monthly averages. PIOMAS also provides sea ice volume data; it estimates the

total volume of sea ice by combining surface coverage and thickness data. In particular, as

Thickness×Area. Several sea-ice indicators, including sea-ice area (SIA), sea-ice extent (SIE),

sea-ice thickness (SIT), and sea-ice volume (SIV), are used in this study. Annual data from

September encompassing the years 1979 to 2021 are used. Beginning in 1979, data preprocessing

creates a new index that represents the year. It is noteworthy to emphasise that the CO2

emission and CCS portions of the study will make use of the measurements from 1979 to 2023.

Future years will be left for prediction and adjustment. Additionally, making sure the variables

of interest have no missing values is essential.

3.1 CO2 Concantration

The NOAAGlobal Monitoring Laboratory 20 provides historical CO2 atmospheric concentration

data (in parts per million, PPM) for the years 1979 to 2021. CO2 is measured at Mauna Loa

Observatory, Hawaii. Values from the SSP Public Database (Version 2.0) are used for the Shared

Socioeconomic Pathways (SSP) Scenario for the years 2022-2100. Each scenario is derived from

the IAM Scenarios spreadsheet following (F. X. Diebold et al., 2022). Between 2005 and 2100,

there are eleven data points in each of the three scenarios. For the years 2022-2100, missing

data points were filled with linear interpolation. As a direct indicator of the quantity of heat-

trapping gases in the atmosphere, which plays a major role in the melting of Arctic ice, the

atmospheric CO2 concentration (CO2C) is provided. Direct air sampling is used to measure

this concentration, and there is very little measurement error. Through the consideration of

many potential socioeconomic changes and accompanying greenhouse gas emissions, the SSP

scenarios provide a comprehensive framework for assessing future climate change implications.
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This can be observed from the Figure 1.

3.2 CO2 Concentration under different SSPs

Figure 1: Atmospheric CO2 Concentration Scenarios for Carbon Capture and Storage

3.3 CO2 Emission

The study replicated in this paper uses cumulative CO2 emissions data from (Rogelj et al., 2021),

with processing carried out according to previous procedures (F. X. Diebold et al., 2022). While,

emissions from changes in land use are based on estimates of deforestation, CO2 emissions are

computed indirectly from statistics on energy, fuel usage, and cement manufacturing.

The Carbon Capture and Storage Scenario from the IAM Scenarios spreadsheet is incorpor-

ated using values from the SSP Public Database (Version 2.0) for the years 2022-2100, just as

it was done previously. Data was only available for SSP2 4.5 and SSP1 2.6 so this procedure

only followed for them. Eleven data points covering the years 2005 to 2100 were supplied, with

yearly measurements in megatonnes (Mt/year). As a result, the data points were converted to

gigatonnes on an annual basis. Data was zero before 2030 when it was utilised as a starting point

in 2030. For the missing data points from 2030 to 2100 to apply to our cumulative emission in

our data set, they were filled in using linear interpolation to create a cumulative version of the

data.

In the direction of the International Energy Agency’s (IEA) Blue Map scenario (Radcliffe,

2010), the SSP5 8.5 and SSP3 7.0 scenarios were developed. With a specific target of 6 gigatonnes

per annum (Gtpa) of CO2 to be caught and stored by 2040, the current amount is set at 0.04

Gtpa. 8 Gtpa by 2050, with further increases predicted up to the year 2100 based on the

supposition that technology will advance and allow for greater capture, with the pace of progress

fluctuating with time. 10 Gbps by 2060, 16 Gbps by 2070, 20 Gbps by 2080, 25 Gbps by 2090,

and 30 Gbps by 2100 are the next targets. Once again, those data points were interpolated,

created a cumulative format,

Figure 2 illustrates scenarios for CO2 emissions and scenarios with changes for CCS:
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(a) CO2 Emission Scenarios (b) CO2 Emission Scenarios for CCS

Figure 2: Comparison of CO2 Emission Scenarios

Findings from (Blackford, 2022) indicate that only massive, catastrophic leaks would ser-

iously harm the ecosystem. Furthermore, to guarantee the safety of CO2 storage operations,

comprehensive risk assessment frameworks that combine modelling and experimental methods

are necessary (Gholami, Raza & Iglauer, 2021). This indicates that there is a low chance of a

leak, making it unimportant to take into account in this study.

4 Methodology

The models and methods used to evaluate the specific relation between four Arctic sea indicators

and atmospheric CO2 concentration using the linear carbon trend, as previously described in

the work (F. X. Diebold et al., 2022), are described in this section.

4.1 Carbon-Trend Model

Numerous studies, including (Johannessen, 2017), have already established a linear empirical

link between CO2 and the observed Arctic sea-ice area.

The identical linear carbon-trend relationship will be used in this study to assess the linear

empirical relationships between observed arctic sea-ice indices, including coverage (measured by

area and extent), volume, and thickness. This linear carbon-trend relationship is fitted by the

observed data, which may be expressed as follows:

xt = α+ βCO2t + ϵt (1)

xt represents the four indicators: area, extent, thickness, and volume. CO2Ct represents the

atmospheric CO2 concentration, and ϵt indicates deviations from the linear fit. The regression

intercept, α, is used to calibrate the sea-ice coverage, whereas the slope, β, measures the Arctic

carbon reaction. A negative value for β represents the shrinking covering of Arctic sea ice as

greenhouse gases accumulate in the atmosphere.

This work computes linear carbon trends in the Time-Space and Ice-Carbon Spaces. Accord-

ing to the Carbon-Space model, SIA will only decrease proportionately in response to increases

in CO2C; rather, it will respond linearly to CO2C. The predicted trends of CO2C concentra-

tions over time are followed by non-linear curvatures in the SSP scenarios. Consequently, the
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estimated sea-ice time trend will be decreasing at an increasing rate due to a growing rate of

increase in the concentration of CO2 over time. To address the non-linear temporal trend issue,

this study uses the same fitted linear relationship as sea ice indicators to CO2 concentration to

pass the non-linear concentration schedule given by the SSP scenarios. The positive aspect of

this is that it converts linear elements in ice-carbon space into nonlinear elements in ice-time

space.

4.1.1 Unconstrained Univariate Model

We consider four related sea ice measures in this model: sea ice volume (SIVt) at time t,

sea ice area (SIAt), sea ice thickness (SITt), and sea ice extent (SIEt). Every one of these

measurements is expressed as a function of the CO2 concentration CO2Ct; the error term is ϵt,

the intercept is α, and the coefficient for the CO2 concentration is β.

SIAt = αa + βa · CO2Ct + ϵt

SIEt = αe + βe · CO2Ct + τt

SITt = αt + βt · CO2Ct + κt

SIVt = αv + βv · CO2Ct + υt

(2)

Seemingly Unrelated Regression (SUR) is the method used because these metrics are likely

to be interrelated. To produce more accurate and efficient parameter estimations, the SUR

model takes into consideration any possible correlations between the error terms (epsilont)

of the various equations (Beasley, 2008). (See the estimation method section for a thorough

description of the estimation method and technique.)

This structure allows the estimation of each linear regression individually using the ordinary

least squares (OLS) approach because all equations share the same regressor (C02 concentration).

By doing this, the SUR framework is used to account for the interdependencies between each sea

ice measure and the CO2 concentration, essentially capturing the linear relationship between

each of them. The impact of CO2 concentration on several aspects of sea ice dynamics is

better-understood thanks to this thorough modelling technique.

4.1.2 Constrainted Bivariate Models

Using a combined modelling approach in the bivariate models ensures that zero sea-ice measures

are taken simultaneously by modelling two or more sea-ice indicators concurrently. For instance,

the bivariate linear carbon trend model is given by:

xt = αx + βx · CO2Ct + ϵxt

yt = αy +

(
αyβx

αx

)
· CO2Ct + ϵyt

(3)

Here, depending on the scenario being assessed, yt can represent extension, thickness, or

volume, but xr always illustrates the Area indication. The measures will all reach zero at the

same time thanks to this combined restriction. The linear regression regressors are no longer

the same in this joint model. To produce more accurate and efficient parameter estimates, the
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Seemingly Unrelated Regression (SUR) estimation process takes into consideration any possible

correlations between the error components of the various equations. This method helps in

understanding the interdependent effects of CO2 concentration on two sea ice indicators at

once.

4.1.3 Multivariate Constraint Model

xt = αx + βx · CO2Ct + ϵxt

yt = αy +

(
αyβx

αx

)
· CO2Ct + ϵyt

zt = αz +

(
αzβx

αx

)
· CO2Ct + ϵzt

wt = αw +

(
αwβx

αx

)
· CO2Ct + ϵwt

(4)

The Area, Extent, Thickness, and Volume indicators are represented by the symbols xt, yt,

zt, and wt, in this case. The simultaneous zeroing of all measures is guaranteed by this joint

constraint. Each indicator’s error terms are ϵit (where i can be area, extension, thickness, or

volume). Due to the same reasoning as bivariate constraint models, it uses the same estimation

process as SUR regression (see the next subsection for a thorough explanation).

4.1.4 Estimation Method

Our primary concern is efficiency in estimation and accounting for correlated error terms in

separate equations. Therefore, the Seemingly Unrelated Regression (SUR) model is suitable for

our analysis. The SUR model offers several advantages. The Seemingly Unrelated Regression

(SUR) model provides significant efficiency gains when error terms across different equations

are correlated. This is particularly useful because it leads to more accurate estimates than in-

dependent estimation of each equation. Additionally, the SUR model allows for the estimation

of separate regression equations for each dependent variable, offering flexibility and improved

model fit. By accounting for correlated errors, the SUR model enhances the precision of estim-

ated coefficients, which is crucial for studies involving common influencing factors, such as CO2

concentration affecting sea ice indicators (Saraceno, Alqallaf & Agostinelli, 2021).

In this paper, we replicate the estimation process using the SUR model to account for the

potential correlations between the error terms of different sea ice indicators. By using the SUR

model, we aim to obtain more efficient estimates compared to estimating each equation separ-

ately. For the univariate case, estimation can be carried out separately for each indicator using

Ordinary Least Squares (OLS) regressions since they all have the same regressor. However, given

that the SUR model involves potentially heteroskedastic and correlated errors across equations,

we use the Feasible Generalized Least Squares (FGLS) estimation method. This approach allows

for consistent and efficient estimation of the model parameters, taking into account the correla-

tion structure of the residuals. The estimation process using the SUR model involves several key

steps. First, it is essential to handle constraints by ensuring that the sea ice measures simultan-

eously reach zero, thereby imposing a joint constraint on the model. Next, the specified model

is used to predict the values of the dependent variables. Following prediction, the residuals
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(errors) for each equation are calculated. These residuals are then used to construct the error

matrix.

To estimate the covariance matrix Ω of the error terms, we apply m regressions, one per

unit, to estimate βj by OLS, where j = 1, · · · ,m. Let ei be the n × 1 vector of OLS residuals

for unit i; then the (co)variances σij are estimated by sij =
1
n

∑n
t=1 eitejt. The mn×mn matrix

Ω̂ is estimated by replacing σij in Ω by sij .

The FGLS estimator, bFGLS, is computed by substituting the estimated covariance matrix

Ω̂ into the GLS estimator formula:

bFGLS = (XT Ω̂−1X)−1XT Ω̂−1y

where X is the matrix of regressors, and y is the vector of dependent variables.

In R, the FGLS estimation for the SUR model can be performed using the nlsystemfit()

function with the method specified as ”SUR”. The function nlsystemfit(method = "SUR")

handles the estimation, incorporating the described steps of the FGLS method.

4.2 Probabilistic assessment of Sea-Ice Disappearance

To assess the variability and uncertainty in the predictions. Employment of bootstrap simula-

tions method involves repeatedly resampling the data with replacement, refitting the models to

each bootstrap sample, and generating a distribution of possible future scenarios. The steps in

the bootstrap method include generating a bootstrap sample by random sampling with replace-

ment from the original dataset, fitting the probabilistic model to the bootstrap sample, predicting

future values using the refitted model, and repeating these steps a large number of times (e.g.,

1000 iterations) to build a distribution of predictions. The results from the bootstrap simulations

are analyzed to calculate the probabilistic distribution of Nearly Ice-Free Arctic (NIFA) years.

This involves applying a function to each bootstrap sample to identify the year when the Arctic

becomes ice-free (i.e., ice thickness or extent drops to zero) and summarizing the distribution

of predicted NIFA years to derive key statistics such as mean, standard deviation, median, and

confidence intervals. Finally, the results from the probabilistic model and bootstrap simulations

are combined to provide a detailed analysis, comparing the predicted NIFA years under different

scenarios, such as with and without CCS interventions. This methodology provides a robust

framework for predicting Arctic ice dynamics in response to CO2 concentration changes and

management interventions, balancing simplicity and complexity to ensure both interpretability

and accuracy in the predictions.

5 Results

This section will provide the results for the carbon concentration, carbon emission, and emission

scenario for the incorporation of CCS. R-version 4.3.3 is used to conduct the results in the tables

and figures.
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Figure 3: Univariate and Bivariate Models in CO2 Concentration For Carbon-Space Under
SSP3.70

Observation and fitted line estimates for several models utilising regression techniques that

were previously described for each model in the Figure 3 section of Methodology. SIA, SIE,

SIT, and SIV are denoted by the colours black, blue, red, and green, respectively. Regular

downward-sloping lines were fitted to the sample data to represent linear carbon trends, while

irregular lines were used to observe the indicators. Two sea-ice measurements are shown against

the atmospheric CO2 concentration (CO2C) in each graph.

As desired replication findings, Figure 3 displays estimates of the linear carbon trend for

SIA, SIE, SIT, and SIV (displayed on the left side) as well as the bivariate combinations (dis-

played on the right side) from 1979 to 2021. The figure is illustrated by the earlier findings by

(F. X. Diebold et al., 2022). As anticipated, there has been a downward trend in both the thick-

ness and coverage of Arctic sea ice, although there has been a greater trend in volume throughout

the sample. The 90% interval projections based on simulation and 1000 bootstraps produced

results that were somewhat predicted. Certain intervals are always broader than others because

the models are restricted in the expectation domain not in their shock variances.

Additionally, it was noted that using 10 seeds for the bootstrap algorithm (refer to Appendix
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seeds produced a far less diverse upper-lower bound for observation, making the confidence

interval visuals appear smoother and more in line with the findings of (F. X. Diebold et al.,

2022). Moreover, using the (inverse) concentration schedule SSP3 7.0 of Figure 1 and the fitted

carbon trends of Figure 3, the implied time trends are derived. As a result, a time in ice-time

space corresponds to every concentration in ice-carbon space. (See Appendix for figures.)

Figure 4: Multivariate Model For CO2 Concentration in Carbon-Space under SSP3 7.0

All indicators reaching IFA constraint for the multivariate model with all sea indicators

(Multi) from 1970–2023 are shown in Figure 4. In simulation-based 90% interval forecasts,

the unstable widening of the intervals was once again observed using 1000 bootstrap. The

combined model for the right side of the graphs in Figure 3 is displayed in Figure as the combined

representation of the bivariate models of each indicator combination of other indicators with SIA.

The Table 1 contained a summary of the qualitative observations and interpretations of the

models in Figure3 and Figure 4. The projected b values and all R2 values yield two d.p. and

the same significant value. The bivariate constrained estimated first-IFA concentrations are 509

ppm, 488 ppm, and 445 ppm when SIA is modelled in combination with SIE, SIT, and SIV.

This demonstrates alignment with earlier results (F. X. Diebold et al., 2022). Moreover, it is

worthwhile to mention that the SIA is computed using the definition of being below 1 km found

in the current literature including (Stroeve & Notz, 2018). Nevertheless, no similar definitions

of practically ice-free concentrations for SIT and SIV exist in the literature, therefore we only

address the first NIFA in SIA.
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Table 1: September Arctic Sea-Ice Indicators: Linear CO2 Carbon Trend Estimates and Pro-
jections (Under SSP3 7.0)

First IFA First NIFA (Area)

Model b̂ R2 CO2C (ppm) year CO2C (ppm) year

Unconstrained Univariate Models

SIA −0.04 0.84 488 2039 464 2033
(0.003)

SIE −0.04 0.80 514 2045
(0.003)

SIT −0.01 0.86 484 2038
(0.001)

SIV −0.17 0.90 437 2026
(0.009)

Constrained Bivariate Models

SIA+SIE −0.03 0.82 509 2044 480 2037
(0.003)

SIA+SIT −0.04 0.84 487 2039 460 2032
(0.002)

SIA+SIV −0.06 0.58 444 2028 430 2024
(0.003)

Constrained Multivariate Model

Multi −0.05 0.73 464 2033 444 2028
(0.003)

Among all indicators only the SIV indicator blended with SIA is greater than the first NIFA

carbon levels in the multivariate model. Additionally, the multivariate model shows lower levels

of carbon concentration for both the first IFA and the NIFA when compared to the baseline

bivariate model of SIE with SIA. This corresponds to earlier NIFA and IFA years estimated

using a multivariate model.

The range of the anticipated first-IFA concentrations is reduced by the bivariate constrained

blending of SIA with the other indicators (F. X. Diebold et al., 2022); hence, a multivariate

model will also be applied to the same circumstance. The limited bivariate range is 509 ppm -

444 ppm = 65 ppm, while the univariate IFA range is established as 514 ppm - 437 ppm = 77

ppm. Using a multivariate model, the remaining carbon budget for the IFA year is 464 ppm -

426 ppm = 38 ppm, given that the carbon concentration level in 2023 is 426 ppm.

Additionally, the remaining carbon budget for the NIFA year is estimated to be 444 ppm

- 426 ppm = 18 ppm, which is significantly less than the budget determined by the paper

(F. X. Diebold et al., 2022) using the univariate SIA model. Whereas, it is noticeable that

the multivariate model’s IFA concentration level matches the NIFA year of the SIA univariate

model.
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Figure 5: Univariate and Bivariate Models For CO2 Emission in Carbon-Space a Under SSP3.70

CO2 emission under CCS interventions is shown in Figure 6, and the CO2 emissions-based

carbon-trend results are shown in Figure 5.(To view the implied carbon trends in ice-time space,

see Appendix.) The emission estimates correspond quite well with the previous conclusions

based on the concentration, which is to be expected given that the CO2 concentration and

emission are not expected to display distinct patterns. As a result, the emissions’ linear carbon

trend seems to fit each measure of Arctic sea ice well. Figure 10 (see Appendix) has the same

conclusions that apply to the multivariate model account for CO2 emission numbers as well as

for CCS for carbon and time-space.
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Figure 6: Univariate and Bivariate Models For CO2 Emission CCS Scenarios in Carbon-Space
a Under SSP3.70

There is an overall increase in the NIFA and IFA years Table1 when carbon capture and

storage scenarios are used. In addition, projections and estimations of sea-ice indicators such as

CO2 emissions without the use of CCS Table 5 (see Appendix) shows slightly different from the

previous study was expected as this study used observations up to 2023 instead of 2021. Main

findings include the corresponding CO2E for the first NIFA (univariate SIA) of 3350 Gt, which,

when compared to the current cumulative emissions of approximately 2593 Gt under SSP3 7.0,

indicates that only two years will remain before the carbon budget drops to approximately 757

gt. Previously, it obtained 776 gt by taking the present year 2021 as the point at which the

Arctic Ocean will almost entirely be free of ice.

Additionally, in the first NIFA years, bivariate and multivariate models indicate a 10-year

delay for SIE when combined with the SIA model, a 6-year delay for SIT with the SIA and

multivariate model, and only a 3-year delay for SIV with the SIA model. Delays in the first

IFA years in constrained bivariate and multivariate models are generally greater compared to

those in the first NIFA years. This is not as strange as first thought because, according to

the International Energy Agency’s (IEA) Blue Map Scenario, over 8 Gtpa of carbon dioxide
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could be captured by 2050. This amount has the potential to drastically affect the level of

CO2 concentration. In contrast, the SSP3 7.0 scenario’s emission levels will be high enough to

experience the first NIFA years even before 2050. The fact that 0.04 Gtpa to 6 Gtpa are still

effective even under SSP3 7.0 suggests that while the delay may not be sufficiently significant

to cause the NIFA years to be greatly delayed, it is still noticeable.

Table 2: September Arctic Sea-Ice Indicators: Linear CO2 Carbon Trend Estimates and Pro-
jections for utilisation of CCS as CO2 Emission (Under SSP3 7.0)

First IFA First NIFA (Area)

Model b̂ R2 CO2C (ppm) year CO2C (ppm) year

Unconstrained Univariate Models

Area −0.0022 0.83 3829 2047 3350 2038
(0.00015)

Extent −0.0024 0.79 4326 2056 NA NA
(0.00018)

Thickness −0.0008 0.85 3775 2046 NA NA
(0.00005)

Volume −0.0093 0.90 2888 2029 NA NA
(0.00048)

Constrained Bivariate Models

SIE+SIA −0.0019 0.81 4214 2054 3667 2044
(0.00014)

SIT+SIA −0.0022 0.83 3774 2046 3349 2038
(0.00012)

SIV+SIA −0.0034 0.59 3091 2033 2787 2027
(0.00018)

Constrained Multivariate Model

Multivariate −0.0030 0.73 3222 2046 2906 2034
(0.00015)

5.1 Probabilistic Assessment of Sea-Ice Disappearance and Comparison with

the CCS scenarios

Assessing the approximations to their whole probability distributions is the aim of this section.

In contrast to our previous first NIFA point projections, the random variation is also considered

here. As a result, in addition to evaluating the mean, median, and mode of the first-NIFA

distributions, other moments and associated statistics (such as standard deviation, skewness,

kurtosis, and the percentiles for the left and right tails) may additionally be evaluated.
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Table 3: September Arctic Sea-Ice Indicators: Probability Distributions of SIA First September
NIFA Years

Mean Median Mode SD Skew Kurt 5% 20% 80% 90%

SSP5 8.5
SIE+SIA 2031 2031 2031 3.29 -0.33 2.79 2025 2028 2034 2036
SIT+SIA 2030 2031 2031 2.30 -0.56 3.15 2026 2029 2032 2034
SIV+SIA 2024 2024 2023 1.55 0.68 2.97 2022 2023 2025 2027
Multi 2028 2028 2028 1.99 0.37 2.78 2025 2026 2030 2031

SSP3 7.0
SIE+SIA 2033 2033 2034 3.15 -0.31 2.97 2027 2030 2036 2038
SIT+SIA 2031 2031 2032 2.41 -0.48 3.12 2026 2029 2033 2034
SIV+SIA 2024 2024 2023 1.57 0.65 2.88 2022 2023 2025 2027
Multi 2028 2028 2028 2.05 0.39 2.83 2025 2026 2030 2032

SSP2 4.5
SIE+SIA 2037 2037 2036 4.36 -0.28 2.73 2029 2033 2041 2044
SIT+SIA 2034 2035 2034 3.25 -0.38 3.15 2028 2032 2037 2039
SIV+SIA 2025 2025 2023 2.12 0.68 3.27 2022 2023 2027 2029
Multi 2030 2030 2029 2.64 0.31 2.72 2026 2028 2032 2035

SSP1 2.6
SIE+SIA 2044 2043 2041 9.98 1.51 8.24 2030 2036 2050 2061
SIT+SIA 2039 2039 2038 5.78 0.30 3.26 2029 2034 2043 2048
SIV+SIA 2025 2025 2025 2.43 0.78 3.45 2022 2023 2027 2030
Multi 2032 2032 2029 3.50 0.44 2.79 2027 2029 2035 2038

The Table 3 indicates some discrepancies between your replication and the original study.

Specifically, in every scenario, the pair of coverage SIE and SIA reveal somewhat unrelated

findings, but most significantly in SSP1 2.6.

Considering the deterministic trend, these shocks might be viewed as random variables that

introduce variability. The shocks often follow a probability distribution, like the normal distri-

bution, and can be either positive or negative. However, the failure to acquire identical findings

may be due to ignorance about the distribution. To effectively represent the random changes,

more information, presumptions, and processing resources are needed when including stochastic

shocks. Not having enough knowledge about the stochastic shocks inclusion methodology there-

fore might be the reason for the inconsistency in the results. The research was conducted using

the bootstrapping approach, which involves resampling the residuals with replacement. The

cause for the discrepancy may be due to the inclusion of seeds in the (F. X. Diebold et al., 2022)

study, or not knowing about the resampling methodology with enough detail. The main finding,

nevertheless, is that the 80% probability of having a nearly ice-free Arctic by 2033 is for model

SIT with SIA consistently obtained, as well as the central tendencies of the distributions of

NIFA years in Table 3 for all mean, mode, and median are generally being a bit earlier than the

corresponding years in Table 1. Furthermore, in the best-case scenario with an 80% confidence
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interval, the latest first NIFA was continuously attained by SIE with the SIA model.

According to the multivariate model, there is an 80% probability that the first NIFA will

occur by 2030. This forecast agrees with the 80% mean of the first NIFA years. (which was de-

termined by using the second column from the right’s mean). Regarding the CO2 concentration

results, they were, according to the Table 6(see Appendix), at least as consistent with earlier

studies as the CO2 emission probability distribution during the first NIFA years of the SIA.

Table 4: September Arctic Sea-Ice Indicators: Probability Distributions of SIA First September
NIFA Years

Mean Median Mode SD Skew Kurt 5% 20% 80% 90%

SSP5 8.5
SIE+SIA 2037 2037 2039 3.96 -0.46 2.78 2029 2033 2040 2042
SIT+SIA 2034 2035 2036 3.22 -0.51 2.82 2028 2032 2037 2039
SIV+SIA 2027 2026 2026 1.95 0.61 2.96 2024 2025 2028 2030
Multi 2030 2030 2029 2.48 0.21 2.97 2026 2028 2032 2034

SSP3 7.0
SIE+SIA 2037 2038 2038 4.37 -0.31 2.72 2029 2034 2041 2044
SIT+SIA 2035 2035 2036 3.42 -0.47 2.78 2028 2032 2038 2040
SIV+SIA 2027 2026 2026 1.97 0.63 2.94 2024 2025 2028 2030
Multi 2030 2030 2029 2.57 0.24 2.99 2026 2028 2032 2034

SSP2 4.5
SIE+SIA 2041 2041 2045 4.98 -0.30 2.63 2032 2036 2045 2048
SIT+SIA 2037 2038 2039 4.11 -0.51 2.84 2029 2034 2041 2043
SIV+SIA 2027 2027 2026 2.36 0.75 3.36 2024 2025 2029 2032
Multi 2032 2032 2033 3.22 0.07 2.45 2027 2029 2034 2037

SSP1 2.6
SIE+SIA 2046 2046 2047 8.94 1.24 8.13 2034 2038 2052 2061
SIT+SIA 2041 2041 2042 5.90 0.06 2.91 2031 2035 2046 2050
SIV+SIA 2028 2027 2026 2.65 0.85 3.67 2024 2025 2030 2033
Multi 2033 2033 2033 3.78 0.15 2.64 2027 2029 2036 2039

The panels of Figure 6 projections display the carbon-space depicted confidence intervals for

integrating CCS, along with their quantitative insights and Table 2 illustrations. The appendix

Figure 12 and Figure 13 have indicated projections for time-space and multivariate models under

carbon and time-space, respectively. Results under the CCS situations shown in Table 4 are

evaluated probabilistically.

NIFA by 2036 with a confidence level of less than 80% was noted. This only leads to a three-

year delay. Furthermore, in 80% of SSP circumstances, the NIFA arrival delay is three years.

Changing the 95% percentage does not take into consideration any further delays. Furthermore,

the Mean Mode Median for all situations, both separately and collectively, demonstrates the

3-year delay once more, except for the 5-year mode increase in SSP2 4.5.
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6 Conclusion

This study enhanced the analysis by applying and assessing the impact and potential delay that

could result from the use of carbon capture and storage techniques. It also successfully replicated

previous findings on the predictability of disappearing Arctic sea ice using joint zero-constraint

carbon trends.

The findings indicate that, even in the case of carbon capture and storage scenarios, it is not

possible to postpone the first NIFA years by a considerable amount. This is because, with the

first NIFA predicted to occur in the mid-30s, CCS will not have had enough time to develop and

capture significant amounts during that particular time frame. It is not possible to postpone

the first NIFA for longer than three years, even when the emission level drops to zero with CCS.

The highly optimistic ”net zero by 2050” SSP1 2.6 scenario is still the only one that can delay

significantly the occurrence of the first NIFA years. Governments are committed to preventing

global average temperature increases to well below 2°C over pre-industrial levels, ideally below

1.5°C, as doing so would greatly reduce the risks and effects of climate change (IPCC 2018). To

maintain it and stop NIFA from arriving for more than three years is not possible even with

the CCS approach. However, CCS remains a viable strategy for maintaining the Arctic’s full

seasonal disappearance; alternatively, it can be employed to postpone the appearance of a new

NIFA or to prevent the achievement of the initial IFA.

Nevertheless, the study’s reliance on historical data and linear models may not fully capture

every aspect of Arctic ice dynamics, and the inclusion of specific scenarios increases uncertainty.

Undoubtedly, there are a lot of neglected components like climate feedback models, such as

albedo Arctic sea-ice reduction, that could have an impact on how accurate our point and

interval projections are. Some of these factors could accelerate or slow the melting of sea ice,

but this research does not address them. These include tipping points related to methane release

from permafrost melting (Chylek et al., 2022) that may encourage an even steeper decline in

sea ice, and extreme internal variation that may cause a warming hiatus (Miller & Nam, 2020)

that slows loss. Although the CCS scenarios are generated and employed by the theoretical

framework, the research conducted in this paper does not encounter the uncertainty surrounding

them. Global agreements, financial incentives, and regulatory changes all have a significant role

in the deployment of these technologies; nevertheless, geopolitical and economic factors that

may influence the acceptance and implementation of CCS are not taken into account in this

study.

Future research should examine the long-term effects of CCS beyond the mid-30s, especially

its capacity to preserve the seasonal retreat of Arctic ice and postpone the advent of successive

NIFA years, to enhance our understanding of and efficacy of climate intervention strategies.
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Lubrano Lavadera, P., Kühn, D., Dando, B., Lecomte, I., Senger, K. & Drottning, Å. (2018).
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A CO2 Concentration

Figure 7: Univariate and Bivariate Models For Carbon-Space using 10 seeds (under SSP3 7.0)
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Figure 8: Univariate and Bivariate Models For Time-Space (under SSP3.70)

Figure 9: Multivariate Models For Carbon and Time-Space (under SSP3 7.0)
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B CO2Emission

Figure 10: Univariate and Bivariate Models Time-Space (Under SSP3.70 )

Figure 11: Multivarate Models For Carbon and Time-Space (Under SSP3.70 )
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Table 5: September Arctic Sea-Ice Indicators: Linear CO2 Carbon Trend Estimates and Pro-
jections (Under SSP3 7.0)

First IFA First NIFA (Area)

Model b̂ R2 CO2C (ppm) year CO2C (ppm) year

Unconstrained Univariate Models

Area −0.0022 0.83 3721 2045 3350 2038
(0.00015)

Extent −0.0024 0.79 4159 2053 NA NA
(0.00018)

Thickness −0.0008 0.85 3721 2045 NA NA
(0.00005)

Volume −0.0093 0.90 2888 2029 NA NA
(0.00048)

Constrained Bivariate Models

SIE+SIA −0.0019 0.81 4242 2052 3684 2043
(0.00014)

SIT+SIA −0.0022 0.83 3805 2045 3332 2037
(0.00012)

SIV+SIA −0.0034 0.59 3108 2033 2790 2027
(0.00018)

Constrained Multivariate Model

Multivariate −0.0030 0.73 3275 2036 2946 2030
(0.00015)
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Table 6: September Arctic Sea-Ice Indicators: Probability Distributions of SIA First September
NIFA Years

Mean Median Mode SD Skew Kurt 5% 20% 80% 90%

SSP5 8.5
SIE+SIA 2036 2037 2039 3.75 -0.49 2.89 2029 2033 2039 2042
SIT+SIA 2034 2035 2035 3.07 -0.54 2.89 2028 2032 2037 2038
SIV+SIA 2027 2026 2026 1.93 0.60 2.99 2024 2025 2028 2030
Multi 2030 2030 2029 2.41 0.18 2.89 2026 2028 2032 2034

SSP3 7.0
SIE+SIA 2037 2037 2038 4.07 -0.42 2.71 2029 2033 2040 2043
SIT+SIA 2034 2035 2036 3.28 -0.50 2.79 2028 2032 2037 2039
SIV+SIA 2027 2026 2026 1.95 0.63 2.99 2024 2025 2028 2030
Multi 2030 2030 2029 2.49 0.19 2.95 2026 2028 2032 2034

SSP2 4.5
SIE+SIA 2040 2040 2039 4.75 -0.22 2.63 2031 2036 2044 2047
SIT+SIA 2036 2037 2038 3.87 -0.39 2.70 2029 2033 2040 2042
SIV+SIA 2027 2027 2026 2.30 0.66 3.12 2024 2025 2029 2031
Multi 2031 2031 2031 2.90 0.19 2.83 2027 2029 2034 2036

SSP1 2.6
SIE+SIA 2045 2044 2047 8.00 0.55 3.85 2033 2038 2051 2058
SIT+SIA 2040 2040 2041 5.21 0.066 2.83 2030 2035 2045 2048
SIV+SIA 2028 2027 2026 2.51 0.66 3.10 2024 2025 2030 2032
Multi 2032 2032 2031 3.51 0.27 2.80 2027 2029 2035 2039
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C CO2 Emission CCS Scenarios

Figure 12: Univariate and Bivariate Models Time-Space (Under SSP3.70 )

Figure 13: Multivarate Models For Carbon and Time-Space (Under SSP3.70 )
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