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Abstract

This paper investigates if model averaging (MA) performs better than model selection

(MS) using two approaches. First a simulation study is conducted, where, in a nested model

setting, Mallows model averaging (MMA) and jackknife model averaging (JMA) are used as

the MA techniques and the Akaike Information Criterion (AIC) and Bayesian Information

Criterion (BIC) are used as the MS techniques. In this simulation, MA seemed to have a clear

advantage over MS. Then I compared MS to MA when applied to US house prices. Ordinary

Least Squares (OLS), Ridge, Lasso and Elastic Net have been used as MS techniques and

equal weights, Bayesian model averaging (BMA), Smoothed AIC (SAIC), MMA and JMA

have been used as MA techniques. MA had a small but insignificant advantage over MS due

to a high sample size and fit.

1 Introduction

The problem that I will investigate is the following: does model averaging (MA) outperform

model selection (MS)? First, I will look at this question from a theoretical perspective by con-

sidering a simulation study based on Peng & Yang (2022), which has some assumptions about

the independent variables and their corresponding coefficients. Then I will investigate if the

results from the simulation also hold when considering an empirical application, namely when

forecasting the prices of houses in the US (see section 2 for more details about this dataset).

For the simulation study, the best model will be selected based on the Akaike Information

Criterion (AIC) and Bayesian Information Criterion (BIC) in a nested model setting, which

simply means the best model is chosen based on fit when considering different numbers of

variables within the same model, here just a linear regression estimated by Ordinary Least

Squares (OLS). For the MA part of the simulation study Mallows model averaging (MMA) as

opposed in Hansen (2007) and jackknife model averaging (JMA) based on Hansen & Racine

(2012) will be considered. In Hansen & Racine (2012), it is mentioned that when the errors

are homoskedastic, JMA and MMA perform almost the same, but that JMA has an advantage

when the errors are heteroskedastic. Therefore JMA and MMA will be compared under both

homoskedastic and heteroskedastic conditions.

For the empirical application, the MS procedure changes to choosing the best model between

different models. These different models are OLS, Lasso, Ridge and Elastic Net, which will be

explained in 3.1. There will be no explicit variable selection as in the simulation study because

the penalized regression methods (Lasso, Ridge and Elastic Net) shrink parameters to 0 and

thus perform variable selection by themselves. The best model in-sample will be determined

based on the model (OLS, Lasso, Ridge or Elastic Net) with the lowest value for the AIC and

BIC. This model will serve as a benchmark for the other models out-of-sample based on the Root

Mean Squared Error (RMSE). For the MA part, which will be described in 3.2, different types of

weights will be considered: equal weights, Bayesian Model Averaging (BMA) and smoothed AIC

(SAIC) as opposed in Hansen (2008). Then MMA will also be added, as well as JMA. It should

be noted that for JMA and MMA there will still be a nested model approach, while the other

MA techniques take an average of the MS techniques. Regarding the performance of the MA

methods, I expect JMA and MMA to perform the best, because they have proven to be optimal

according to Hansen & Racine (2012) and Hansen (2007), respectively. To determine the best

1



model out-of-sample, the modified version of the Diebold-Mariano test as opposed in Harvey et

al. (1997) will be used to compare the performances between the MS and MA methods.

To get an improved forecasting accuracy for housing prices is not only of scientific relevance,

but it is also of interest for practical applications because it provides a way for sellers to estimate

how much their property is worth and for buyers to estimate how much they should be paying

for their future home. In the past, house prices have been forecasted using a variety of variables.

Most of them have been applied in a time series context. For example in Kishor & Marfatia

(2018), the house prices of the OECD countries have been forecasted using Autoregressive (AR)

and Vector Autoregressive (VAR) models, which use the past values of the prices to predict their

current values. In Chen et al. (2014), macroeconomic variables such as the inflation rate and

the federal funds rate have been used to forecast US house prices. Using these kinds of variables

does not make sense in a non time series context, since this will just serve as a constant since for

example the inflation is the same for each observation. So when you are trying to forecast house

prices in a non time series context, you will have to use another sort of variables, for example

the characteristics of the house. This has already been applied in Fotheringham et al. (2015) for

London house prices. In this case, however, only OLS and a geographically weighted regression

(GWR) have been used. Forecasting US house prices using MS and MA has already been applied

in Bork & Møller (2015). In this paper they use dynamic MS and MA, which is about changing

coefficients in the context of time series. However, they also do not use penalized regressions

as a MS method, so using this might provide new insights into the forecasting of house prices.

Research on using penalized regressions together with macroeconomic variables as predictors

for US house prices can be found in Gupta et al. (2010). Combining some of these ideas to

use penalized regressions together with MA and the characteristics of the house as explanatory

variables in a non-time series context might provide new insights into the forecasting of house

prices in the US.

The remainder of the paper adheres to the following structure. In Section 2 we describe the

dataset. Section 3 discusses the methodology. Section 4 provides the computational results for

the simulation study and the application to the US house prices. Lastly, in Section 5 we end

with a conclusion and discussion.

2 Data

The dataset for the empirical part about the US house prices is available on Kaggle1 and contains

information obtained from Zillow, an American real-estate company, about 24521 houses. Note

that this user also uploaded a cleaned dataset and a dataset where the rows for the houses for

which not all information was available are dropped. These datasets will not be used and a

slightly different data cleaning process will be executed, which will be described in A.1. After

this data cleaning process, there are 16743 houses left. The variables in the original dataset

before the cleaning are the following:

1. State: The state in which the property is located. Includes all US states except Hawaii.

1The link to the dataset can be found here: https://www.kaggle.com/datasets/febinphilips/us-house

-listings-2023?select=original extracted df.csv
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For each of the 49 remaining states2, a binary variable will be created and will be added

to the regression except for one of the states to avoid multicollinearity. This variable will

be included in the intercept.

2. City: The city where the property is situated.

3. Street: The street address of the property.

4. Zipcode: The postal code associated with the property.

5. Latitude: The latitude coordinates of the property.

6. Longitude: The longitude coordinates of the property.

7. Bedroom: The number of bedrooms in the house.

8. Bathroom: The number of bathrooms in the house.

9. Area: The total area of the house in square feet.

10. PPSq(Price Per Square Foot): The cost per square feet of the property.

11. LotArea: The total land area associated with the property, either in acres or square feet.

12. ConvertedLot: The total land area associated with the property in acres.

13. LotUnit: The unit of total land area, either acres or square feet.

14. MarketEstimate: Estimated market value of the property in Dollars. This value is

estimated using Zillow’s own algorithm.

15. RentEstimate: Estimated rental value of the property in Dollars. This value is estimated

using Zillow’s own algorithm.

16. Price: The listed price of the property in Dollars.

Not all of these variables are useful for forecasting the price. For example the lot unit of a

property is not expected to have any effect on the price. Therefore, I only use the variables for

which I have a good reason to include them. These variables are: State, Latitude, Longitude,

Bedroom, Bathroom, Area, ConvertedLot and RentEstimate. For RentEstimate and

Price the natural logarithm is taken, for reasons described in A.1. The mean, standard deviation

(Std. Dev), minimum (Min) and maximum (Max) of these variables after the data cleaning can

be found in table 1, for both the training set and test set based on a 70/30 percent split.

2A list of the abbreviations can be obtained from: https://en.wikipedia.org/wiki/List of states and

territories of the United States
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Variable Type
Training set Test set

Mean Std. Dev Min Max Mean Std. Dev Min Max

Price Real number 12.73 0.77 7.82 18.15 12.72 0.76 6.21 17.69

Latitude Real number 39.97 5.88 25.98 64.95 39.97 5.93 25.45 65.04

Longitude Real number -92.63 17.26 -161.77 -67.02 -92.78 17.44 -154.49 -67.26

Bedroom Integer 3.41 1.12 0 36 3.35 1.02 0 12

Bathroom Integer 2.42 1.18 0 30 2.40 1.11 0 14

Area Real number 2127.94 1655.98 1 99990 2100.46 1483.90 1 50738

ConvertedLot Real number 3.91 86.01 0 7500 21.67 1239.79 0 87517

RentEstimate Real number 7.69 0.51 4.98 12.27 7.69 0.49 4.61 11.65

Table 1: Summary statistics of the variables for the training and test set.

The randomization seems quite good, since most of the variables have similar statistics for

the training and test set. Except for ConvertedLot, which seems to have a much higher mean

and standard deviation in the test set. However, this is caused by one observation with a very

high value of 87517, so the randomization seems still pretty good. The variable State is not

represented as a number and thus not included in the table, but is converted into a binary

variable for each different state.

There are a few variables which are not included in the analysis because of the following

reasons. The variablesCity, Street and Zipcode will not be included because dummy encoding

this would just result in too many variables as the original dataset contains 5804 cities, 20464

streets and 9806 zipcodes. Also, the location of each house is already taken into account by

the Latitude and Longitude variables. PPSq will not be included because this is simply

Price divided by Area and in practice you would have to know the price in advance to include

this variable, which is unreasonable since you are trying to predict the price of a property.

MarketEstimate will not be included because it may cause multicollinearity, since it has a

correlation of more than 0.99 with the price.

3 Methodology

In this section, the models and techniques which are used to answer the research questions are

used. First, we discuss the MS and MA methods which are used. Then, k-folds cross-validation

and the hyperparameter tuning which is used will be explained. Last, the Diebold-Mariano test

will be briefly discussed.

3.1 MS methods

First, the methods that are used for model selection will be described. The notation is based

on Altelbany (2021). The most simple model, a linear regression model estimated by OLS, will

first be described. Because this model is the most simple of the MS methods, it will be used

as a benchmark for the others models. If we assume that we have n houses and p explanatory
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variables, this model can be described by the following equation:

yi = β0 +

p∑
j=1

βjxij + ϵi, i = 1, . . . , n (1)

where yi is the independent variable, here the logarithm of the price for house i, ϵi is the error for

house i and xij is the value of the jth explanatory variable for house i, with βj its corresponding

coefficient, where β0 corresponds with the intercept. The coefficients β can be obtained by

estimating the following equation:

min
β


n∑

i=1

(yi − (β0 +

p∑
j=1

βjxij))
2

 . (2)

In this paper a lot of different variables will be used. Not all of them will have a significant

effect on the price. Therefore, three types of penalized regressions will be used. Note again that

the penalized regressions are used to build the model and are not MS methods themselves like

AIC and BIC. But the choice will be between the different methods. First, a Ridge regression

will be used, which shrinks the parameters towards 0. In a Ridge regression, a penalty term

λ ≥ 0 will be added to the regression such that the coefficients β will be obtained by the following

equation:

min
β


n∑

i=1

(yi − (β0 +

p∑
j=1

βjxij))
2 + λ

p∑
j=1

β2
j

 . (3)

Ridge regression can not shrink parameters to exactly 0, therefore I will also use a Lasso

regression, which is very similar to Ridge regression and estimates the coefficients β by the

following equation:

min
β


n∑

i=1

(yi − (β0 +

p∑
j=1

βjxij))
2 + λ

p∑
j=1

|βj |

 . (4)

The last penalized regression method is Elastic Net regression, which is essentialy a com-

bination of Ridge and Lasso. This method adds another parameter γ, where 0 ≤ γ ≤ 1, to the

minimization such that coefficients β are obtained by the following equation:

min
β


n∑

i=1

(yi − (β0 +

p∑
j=1

βjxij))
2 + λ

γ p∑
j=1

|βj |+ (1− γ)

p∑
j=1

β2
j

 . (5)

It should be noted that Lasso and Ridge are just special cases of Elastic Net. Setting γ = 0

corresponds with a Ridge regression and γ = 1 corresponds with a Lasso regression. Regarding

the performance of the 4 MS methods, I expect Elastic Net to perform the best out-of-sample.

If the grid of γ is correctly specified, this model should outperform the others because the others

models are just special cases of Elastic Net.

When estimating these penalized regressions, k-folds cross-validation with k equal to 10

is used within the training data. For a more detailed explanation about what k-folds cross-

validation is, see 3.3.
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3.2 MA methods

3.2.1 Equal weights, BMA and SAIC

The MA methods which use a non-nested model approach will first be described. The notation

which is used, is based on Hansen (2008). The predicted values using MA will be used to evaluate

out-of-sample performance, therefore we can also call this a forecast combination. Let ŷmi be

the forecast for house i using MS method m, where m = 1, . . . ,M . Then the model average

forecast for house i, ŷMA
i , is given by:

ŷMA
i =

M∑
m=1

wmŷmi , (6)

where wm is the weight assigned to MS method m. Note that this notation was very general for

linear forecast combinations. We will now apply it to our specific context.

First, when considering equal weights, this corresponds basically with wm = 1/M . This

model is included as a benchmark for the other MA methods, because it is simple and has a

straightforward interpretation. Second, BMA will be used where the weights are equal to:

wm =
exp(−1

2BICm)∑M
l=1 exp(−

1
2BICl)

, (7)

where BICm = km ln(n)− 2 ln(L̂m) is the BIC for model m, with km the number of variables in

model m and ln(L̂m) the log-likelihood for model m. The same can be done for SAIC:

wm =
exp(−1

2AICm)∑M
l=1 exp(−

1
2AICl)

, (8)

where AICm = 2km − 2 ln(L̂m) is the AIC for model m. For the application, the AIC and BIC

will also be used as MS methods to determine which of the 4 models proposed in 3.1 performs

the best within the training data. How the log-likelihood for each MS method is calculated will

be described in A.2. They will also be used as model selection criteria in the simulation study.

3.2.2 MMA

The Mallows criterion for the MA estimator is given by:

Cn(W ) = (Y −XM B̂)′(Y −XM B̂) + 2σ2k(W ), (9)

where Y = (y1, . . . , yn)
′, XM is a n × kM matrix, where M is the largest fitted model order.

The estimated coefficients are given by B̂ =
∑M

m=1wm

(
B̂m

0

)
, where B̂m = (X ′

mXm)−1X ′
mY

and wm denotes the weight assigned to model m. In practice, σ2 is unknown, so it is often

replaced with a sample estimate: σ̂2
M = (n−M)−1(Y −XM B̂M )′(Y −XM B̂M ). Last, k(W ) =∑M

m=1wmkm is the effectice number of parameters.

To get the weight vector W = (w1, . . . , wM )′, we need to minimize (9). However, there is no

closed-form solution, so we rewrite this equation as follows: let ē = (ê1, . . . , êM ) be the n ×M
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matrix collection of the residuals, where êm is the n × 1 residual vector from the mth model,

and let K = (k1, . . . , kM )′ be the M × 1 vector of the number of parameters in the M models.

Then (9) equals

Cn(W ) = W ′ē′ēW + 2σ2K ′W. (10)

3.2.3 JMA

JMA, also known as leave-one-out cross-validation, minimizes a slightly different criterion than

MMA. It minimizes:

CVn(W ) = W ′SnW, (11)

where Sn = 1
n ẽ

′ẽ is a M × M matrix which consists of the cross-products of the collection of

jackknife residual vectors ẽ = (ẽ1, . . . , ẽM ). The jackknife residual vector for the m’th estimator

is ẽm = Y − µ̃m, where µ̃m = (µ̃m
1, . . . , µ̃m

n) is the m’th jackknife estimator. Here, µ̃m
i =

xim
′
(
X

(−i)
m

′X
(−i)
m

)−1
X

(−i)
m

′Y (−i), since we are using linear regression as our model for the true

data. In this notation X
(−i)
m and Y (−i) denoted the matrices Xm and Y with the i’th row deleted,

and xim is the i’th row of Xm.

Applying the procedure described above would require to run n separate regressions, which

would require a lot of computional power and runtime. Fortunately, there is a more simple

way to apply this procedure using the hat matrix Pm = X ′
m(X ′

mXm)−1X ′
m. The least squares

residual vector is defined as êm = Y − PmY . The jackknife residual vector can then be written

as ẽm = Dmêm, where Dm is the n× n diagonal matrix with the i’th diagonal element equal to

(1− hiim)−1, where hiim = xim
′
(
X

(−i)
m

′X
(−i)
m

)−1
x
(−i)
m is the i’th diagonal element of Pm.

3.3 k-folds cross-validation and hyperparameter tuning

To tune the hyperparameters λ and γ for the penalized regressions, k-folds cross-validation is

used (Jurafsky & Martin (2023)). To get a reliable performance outcome for our test data, the

data is splitted into a training set and a test set based on a 70/30 percent split. In k-folds

cross-validation, we choose a number k, and partition our data into k disjoint subsets called

folds, devsets or validation sets. Now we choose one of those k folds as a test set, train our

classifier on the remaining k−1 folds, and then compute the error rate on the test set, for which

we will use MSE. Then we repeat with another fold as the validation set, again training on the

other k − 1 folds. We do this sampling process k times and average the test set error rate from

these k runs to get an average Mean Squared Error (MSE). This process is visualized in figure

1 for k = 10.
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Figure 1: Visualization of k-folds cross-validation with k = 10 (Jurafsky & Martin (2023)).

Hyperparameter tuning is a necessary process for the penalized regressions since their per-

formance depends on the choice of the hyperparameters. Using cross-validation helps to choose

the optimal value for these hyperparameters by ensuring that the model’s performance is con-

sistent across different subsets of the data.

We make an a priori selection for λ for the Ridge and Lasso regression and for λ and γ for

Elastic Net. For Ridge and Lasso, a (100 × 1) grid for λ is used to obtain the solutions to (3)

and (4), respectively. For Elastic Net, a (100×11) grid for (λ, γ) will be used to get the solution

to (5). The optimal values for the hyperparameters are determined by the MSE.

3.4 Diebold-Mariano test

To compare the out-of-sample performances of the MS and MA methods, the modified version

of the Diebold-Mariano test as opposed in Harvey et al. (1997) will be used. We will first explain

the original Diebold-Mariano test as described in Diebold & Mariano (2002). Note that h, the

number of steps ahead forecasted, is in our case equal to 1 since we are not dealing with a time

series. So we will apply every formula directly in our specific context to avoid cumbersome

formulas.

Suppose we have 2 methods that produce forecasts for observations i = 1, . . . , n, then we

will denote their forecasting errors for observation i as e1i and e2i, respectively. Assuming that

we will compare their squared errors, we define

di = e21i − e22i, i = 1, . . . , n (12)

as the difference in forecasting accuracy for observation i. We will define

d̄ =
1

n

n∑
i=1

di (13)

as the sample mean of di and

V (d̄) =
1

n2

n∑
i=1

(di − d̄)2 (14)
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as the sample variance of di. The Diebold-Mariano statistic is then calculated as follows:

DM =
d̄√
V (d̄)

. (15)

Under the null hypothesis of equal predictive accuracy, this statistic follows a standard normal

distribution. The modification of this test statistic for the case of h = 1 is as follows:

DM* =

√
n− 1

n
DM. (16)

Under the null hypothesis, this modified Diebold-Mariano test statistic follows a Student’s t

distribution with n− 1 degrees of freedom. In case of large n, this distribution is approximately

equal to the normal distribution.

4 Results

In this section, the results are presented. First, a simulation study will be conducted in section

4.1. Subsequently, in section 4.2, we will apply the MS and MA methods described in section 3

to the dataset of US houses as described in section 2. All experiments and models are runned on

a computer with processor AMD Ryzen 7 5700U and with a RAM of 16.0 GB. An exhaustive list

of the specific software and packages used can be found in Appendix A.3. A brief explanation

of the files of the code can be found in Appendix A.4.

4.1 Simulation

4.1.1 Simulation set-up

Before diving into the outcomes of our simulation study, we will first explain its set-up. We will

use AIC and BIC as MS methods and MMA and JMA as described in 3.2.2 and 3.2.3 as the

MA methods, and compare their out-of-sample MSE’s, with MMA serving as the benchmark

method. AIC and BIC will be compared to MMA under homoskedastic error terms as in Peng

& Yang (2022). Then, we will investigate the differences between JMA and MMA under both

homo- and heterskedastic conditions, since JMA has an advantage over MMA when the error

terms are heteroskedastic according to Hansen & Racine (2012).

Suppose the data come from the linear regression model yi = µi + ei =
∑pn

j=1 βjxji + ei, i =

1, . . . , n, where pn = ⌊5n2/3⌋ and x1i = 1 for all i. The remaining xji are independently generated

from a standard normal distribution. The random errors ei are independent and identically

distributed from a normal distribution with mean 0 and variance σ2, and are independent of

the xji’s. The R2 = V ar(µi)/V ar(yi) is controlled in the range of [0.1,0.9] via σ the following

formula:

σ =

√√√√(1/R2 − 1)

pn∑
j=2

β2
j . (17)

The derivation of this formula can be found in section A.5. For the coefficients βj , we consider

two different cases:
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1. Slowly decaying coefficients: βj = j−α1 and α1 is set to be 1, 1.5 or 2.

2. Fast decaying coefficients: βj = exp(−α2j) and α2 is also set to be 1, 1.5 or 2.

These coefficients rely on the following assumption.

Assumption 1: The coefficients satisfy
∑∞

j=1 β
2
j < ∞. And the regressors are ordered from

most important to least important.

We consider Mn nested approximating models with the sth model comprising of the first s

regressors for 1 ≤ s ≤ Mn. For this Mn, we rely on our second assumption.

Assumption 2: The maximum model size Mn is large enough to include the optimal single

model m∗
n so that m∗

n ≤ Mn ≤ pn < n.

All candidate models are estimated by OLS and for the MS part, the best model is the one

with the lowest AIC or BIC value. This can be seen as the training part. For this best model

within the training sample, we will draw 10000 new independent covariate values and use this as

a test sample. We will compare the predictive accuracy of the models by calculating the MSE

for each model in the test sample, and dividing the MSEs of the MS methods and JMA by the

MSE of MMA to get a fair comparison. We replicate this process 1000 times to get a reliable

estimate of our final normalized MSE.

We investigate the effects of n,R2 and α on relative performances of MS and MA in two

different ways. First, we will use the approach from Hansen (2007) which compares the MSEs

as a function of the R2 for different n. The different sample sizes that will be used are 50, 150

and 400 and Mn is set to be 11, 16, 22, respectively, under these three different sample sizes.

The results of this first approach are displayed in figures 2 and 3.

The second approach examines the relative MSEs as a function of n for different R2, here

0.25, 0.5 and 0.75. For n, we use 11 points between 50 and 1000 based on a logarithmic scale. In

order to include the optimal model, Mn is set to be 3
(

n
σ2

) 1
2α1 in case 1, where the coefficients are

slowly decaying, and 4.5
α2

log
(

n
σ2

)
in case 2, where the coefficients are decaying fast. The results

of this second approach are shown in figures 4 and 5.

4.1.2 Simulation results

The simulation results are shown in figures 2, 3, 4 and 5. It should be noted that in each figure

the first row corresponds with α = 1, the second row with α = 1.5 and the third row with α = 2.

For figures 2 and 3, the plots in each column correspond with a different sample size, either 50,

150 or 400. For figures 4 and 5, the plots in each column correspond with a different R2, either

0.25, 0.5 or 0.75. Figures 2 and 4 correspond with slowly decaying coefficients, and figures 3 and

5 correspond with fast decaying coefficients.
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Figure 2: Normalized MSEs for different R2 for AIC, BIC and MMA when βj = j−α1 with α1 = 1 in
row 1, α1 = 1.5 in row 2 and α1 = 2 in row 3.

Figure 3: Normalized MSEs for different R2 for AIC, BIC and MMA when βj = exp(−α2j) with α2 = 1
in row 1, α2 = 1.5 in row 2 and α2 = 2 in row 3.
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When looking at figures 2 and 3, it is clear that MMA provides better forecasts than AIC.

When the coefficients are slowly decaying (figure 2), we see that this advantage in forecasting

accuracy diminishes when R2 gets larger and vanishes when α1 = 1. This might happen because

the potential of MA is limited my the max model size Mn. But overall, MA seems to have a

significant advantage over MS. When we consider fast decaying coefficients in figure 3, MMA

still has a sizeable advantage over AIC, but the differences are more ambigu for different values

of the R2.

When comparing MMA to BIC, we can see that BIC perform always worse than MMA

when the coefficients are slowly decaying (figure 2). When the coefficients are decaying fast,

some strange patterns can be observed. If α2 is large, BIC performs better than MMA for some

sample sizes and R2’s, but sometimes it also performs a lot worse than MMA. For example when

n = 400, α2 = 2 and R2 = 0.4, BIC performs worse by around 60%, but if we increase the R2 to

0.7 or 0.8, BIC performs a lot better than MMA. Such patterns have been previously observed

and discussed by Liu & Yang (2011).

When considering figures 4 and 5, the same kind of patterns appear. When the coefficients

are decaying slowly in figure 4, there appears to be a same kind of performance gap as in figure

2. From figure 4, we should also note that AIC seems to have an increasing advantage over BIC

when the sample size increases (Liu & Yang (2011)).

In figure 5, the gap between AIC and MMA seems to close as we increase n. Just as in figure

3, BIC beats MMA for some sample sizes, but most of the time MMA still performs better.

When α2, the rate of decay of the coefficients, increases, the best model size m∗
n decreases and

MS uncertainty is lower, which causes MS to be preferred in such situations. This can be seen in

the bottom row of figure 5, where α2 = 2. Here, BIC performs better than MMA for a certain

range of the sample sizes. At a finite sample size, BIC might be preferred over AIC, according

to Liu & Yang (2011). However, from figure 5, we can see that these differences do not follow a

monotonic pattern. BIC performs a lot worse than AIC for some sample sizes and AIC seems

to give more consistent forecasts.

Last of all, it should be noted that these results do not seem to perfectly be in line with

Peng & Yang (2022). Figures 2 and 3 look similar to their first two figures, only the differences

between MS and MA are a bit more extreme in figure 3 than in their second figure, but the

general patterns seem to be similar. However, there are some big differences when comparing 4

and 5 with their third and fourth figures. Especially when the sample size is at its smallest, MS

seems to be a lot worse than MMA. When n = 50, R2 = 0.75 and α = 1, AIC performs more

than 19 times worse than MMA in figure 4, and AIC performs almost 13 times compared to

MMA in figure 5. The general patterns in these figures still hold with a sufficiently big enough

sample size, but for small sample sizes there seems to be something that Peng & Yang (2022)

did not mention in their description of the simulation study.

From the simulation study, the following results can be derived. When the coefficients

are slowly decaying, MA seems to have a reasonable advantage over MS. However, when the

coefficients are decaying fast, BIC outperforms MMA in a few cases, but it can also perform a

lot worse when changing the sample size a little bit. AIC seems to perform worse than MMA

for almost all sample sizes and R2’s, but their differences are decreasing when considering high
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sample sizes. AIC provides more consistent forecasts than BIC, and their difference increases

when the sample size increases and the coefficients are slowly decaying. There were also some

huge differences in forecasting accuracy compared to Peng & Yang (2022) for very small sample

sizes in figures 4 and 5.

Figure 4: Normalized MSEs for different n for AIC, BIC and MMA when βj = j−α1 with α1 = 1 in row
1, α1 = 1.5 in row 2 and α1 = 2 in row 3.
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Figure 5: Normalized MSEs for different n in case 2 for AIC, BIC and MMA when βj = exp(−α2j) with
α2 = 1 in row 1, α2 = 1.5 in row 2 and α2 = 2 in row 3.

I will now turn to the differences in forecasting accuracy of the MA methods: JMA and

MMA. As mentioned before, according to Hansen & Racine (2012), JMA and MMA perform

similarly when the errors are homoskedastic, but JMA performs better when the errors are

heteroskedastic. Therefore the simulation process described in 4.1.1 changes slightly, since we

want to compare JMA and MMA under both homo- and heteroskedastic conditions. The errors

σ are no longer controlled via (17) using the R2 and coefficients βj . Based on Hansen & Racine

(2012) the following assumptions on σ are made: when the errors are homoskedastic, we will

assume that σi = 1 for all i and when the errors are heteroskedastic, we will assume that

σi = x22i for all i. Note that x2i follows a standard normal distribution, so x22i follows a chi-

squared distribution with one degree of freedom, which has a mean of 13. Thus, on average,

these errors should be comparable with the errors under homoskedastic conditions. Since we now

no longer care about the R2, we will only compare JMA to MMA for different n. Note that for

the calculation of Mn when comparing for different n, we need σ2. Under heteroskedastic error

terms, this σ2 differs for each observation, so we will just use σ2 = 1 to get a fair comparison

between homo- and heteroskedastic errors. The results of comparing JMA to MMA when the

coefficients are slowly decaying are presented in figure 6. In figure 7, we compare JMA to

MMA when the coefficients are decaying fast. Note that in both figures the first row of figures

corresponds with homoskedastic errors and the second row corresponds with heteroskedastic

errors.

3This information about the chi-squared distribution has been obtained from: https://en.wikipedia.org/

wiki/Chi-squared distribution
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Figure 6: Normalized MSEs for different n for JMA and MMA when βj = j−α1 under homoskedastic
errors in the first row and under heteroskedastic errors in the second row.

When looking at figure 6, we can see that JMA has a slight advantage over MMA when

the errors are homoskedastic, but this advantage is decreasing as the sample size gets larger

and cannot even be visually seen for most sample sizes. When the errors are heteroskedastic,

this pattern changes a bit. When α1 is small, we see the same pattern as before, only the

advantage of JMA is bigger for small sample sizes. When we increase α1 to 1.5 and 2, JMA

performs significantly worse than MMA for large sample sizes. When we consider fast decaying

coefficients in figure 7, the differences between JMA and MMA are still small for homoskedastic

errors, but now MMA seems to have a small advantage for larger values of α2. When the errors

are heteroskedastic, JMA seems to have a big advantage over MMA for large values of α2. When

α2 is small, the same pattern as before can be observed, namely that the advantage of JMA

over MMA decreases as the sample size gets larger. For the 3 biggest sample sizes used, MMA

is even better than JMA in this case.

In Hansen & Racine (2012), they only compared JMA to MMA and some other methods for

small sample sizes, with a maximum of 100 observations. They arrived at the conclusion that

JMA is always better than MMA, but they are wrong since as the sample size gets large enough

and α increases, MMA performs better when the coefficients are decaying slowly. Although they

used a slightly different way to get the coefficients βj , they are still decaying slowly. It should

also be noted that they only showed the results for α = 0.5 and that their results for α = 1 and

1.5 can be obtained on request from the authors. Maybe MMA outperformed JMA for these

larger values of α, but these results are not shown on purpose.
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Figure 7: Normalized MSEs for different n for JMA and MMA when βj = exp(−α2j) under homoskedastic
errors in the first row and under heteroskedastic errors in the second row.

4.2 US house prices forecasting

Now lets look at the application of forecasting house prices in the US, using the dataset described

in section 2. First of all, I will compare the in-sample performance of the MS methods described

in 3.1. The settings for the penalized regressions are as follows: the grid for λ exists of 100

points between 10−6 and 106 based on a logarithmic scale and the grid for γ consists of the

following values: (0, .01, .05, .1, .3, .5, .7, .9, .95, .99, 1). I have chosen the maximum number

of iterations to be 1000 and the tolerance level to be 10−4.

Tuning the hyperparameters of the penalized regressions led to the following outcomes,

presented in table 2. Note that there is no value for γ present for Ridge and Lasso, since these

methods only contain λ as a hyperparameter.

Method λ γ

Ridge 6.136 NA

Lasso 1.150×10−4 NA

Elastic Net 2.656×10−4 0.3

Table 2: Outcomes of hyperparameters after tuning.

When comparing these hyperparameters, the first thing that stands out is the value of λ,

when comparing Ridge to Lasso. The hyperparameter is very small for Lasso compared to Ridge.

This means that Lasso will be very close to OLS, and that Ridge penalizes the coefficients a lot.
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So I expect a big difference between Ridge and OLS, and a small difference between Lasso and

OLS. The second thing to note is the value of γ. Because it is 0.3, it means that more weight is

put on Ridge compared to Lasso. Which again shows why Ridge will probably perform better

out-of-sample than Lasso.

We will also compare the in-sample performance of the MS methods based on their AIC and

BIC, which are presented in table 3.

Method AIC BIC

OLS 12909.89 13322.55

Ridge 12939.06 13351.73

Lasso 12913.00 13325.68

Elastic Net 12912.59 13325.26

Table 3: Outcomes of the in-sample AIC and BIC of the MS methods.

When comparing the AIC and BIC values for the different methods, we see that OLS comes

out as the best method, since it has the lowest value for the AIC and BIC for all the methods.

Thus it will serve as a benchmark for the other methods out-of-sample. This is as expected

because OLS is optimal in-sample. The log-likelihood for the penalized regressions is punished

by a penalty term, causing the log-likelihood to be lower, and thus the AIC and BIC to be

higher. The calculation of all the log-likelihoods is described in A.2.

One might wonder, if OLS is optimal, what is then the advantage of using penalized re-

gressions? Because OLS is optimal in-sample, this might lead to overfitting, causing the out-of-

sample forecasts to be inaccurate. Therefore we also use penalized regressions and MA methods.

The out-of-sample RMSE for the different MS and MA methods described in section 3 are given

in table 4, together with the Diebold-Mariano test statistic and its corresponding p-values in

parentheses, where OLS is the model to be compared with.

Method RMSE DM-test

MS

OLS 0.426753

Ridge 0.426611 1.689(0.091)

Lasso 0.426667 0.840(0.401)

Elastic Net 0.426641 1.301(0.193)

MA

Equal weights 0.426646 1.815(0.070)

BMA 0.426704 1.961(0.050)

SAIC 0.426704 1.961(0.050)

MMA 0.426476 1.828(0.068)

JMA 0.425083 0.763(0.445)

Table 4: Out-of-sample RMSE for the different MS and MA methods, together with the Diebold-Mariano
test.

When comparing the different MS and MA methods, a few things stand out. First of all,

the penalized regressions perform better than OLS when considering the RMSE, as expected,
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implying that OLS has overfitted in-sample. Lasso performs pretty similar to OLS because of its

low value for λ. Out of the different MS methods, Ridge performs the best, but it still does not

provide a significant improvement over OLS at the 5% significance level. It is also interesting

to see that Elastic Net does not outperform Ridge and Lasso, which indicates that the grid for

γ might not be optimal. Second of all, the MA methods all perform better than OLS when

looking at the RMSE, with JMA performing the best by quite a margin. However, when we test

if these improvements are significant by means of the Diebold-Mariano test, only BMA and SAIC

provide significant improvements when considering a 5% significance level. When considering

a 10% significance level, all MA methods except JMA give significantly better forecasts than

OLS. One thing that might seem strange at first, is that BMA and SAIC provide worse forecasts

compared to MMA and JMA when considering the RMSE, but that they have a lower p-value

than MMA for the Diebold-Mariano test. This is the case because BMA and SAIC have a

lower forecasting variance and provide forecasts closer to those of OLS. These methods have a

forecasting variance V (d̄) of 4.56× 10−10, while MMA has a forecasting variance of 1.67× 10−8.

For MMA and JMA, it should also be noted that the variables ought to be ordered in terms

of relevance. For the simulation study in 4.1, this was no problem because the coefficients βj

were ordered from high to low, thereby representing their relevance. When applying MMA and

JMA to a real dataset, I have decided to use the absolute value of the in-sample t-statistics

of the OLS method to represent the relevance of variable. The in-sample coefficients, standard

errors, t-statistics and p-values can be found in A.6.

In conclusion, JMA provides the best forecasts out-of-sample when considering the RMSE,

but due to a high variance in the forecasting difference with OLS, it is not significantly better

than OLS. SAIC and BMA do provide significant better forecasts when considering the Diebold-

Mariano test. However, all these differences in forecasting accuracy are very small, as the first

2 digits of all RMSEs are the same and OLS already provides pretty accurate forecasts.

5 Conclusion

In this paper, I have delved into the field of the comparison between MA and MS estimators.

My aim was to determine whether MA outperforms MS in a nested model setting. First, I have

compared these two approaches in a simulation study with MMA and JMA as the MA techniques

and AIC and BIC as the MS techniques. This comparison has been applied using slowly and fast

decaying coefficients. When the coefficients were slowly decaying, MA had a clear advantage

over MS. This advantage also existed when the coefficients were decaying fast and AIC was the

MS criterion. On the other hand, when the coefficients were decaying fast while using BIC as

the MS criterion, MS seemed to have some advantage over MMA. But this advantage was very

sensitive to the sample size, so MMA would still be preferred in practice. Then, JMA has been

compared to MMA. With homoskedastic error terms, JMA and MMA performed very similar.

However, when the error terms were heteroskedastic and the coefficients were slowly decaying,

JMA only performed better for small sample sizes. When the coefficients were decaying fast,

JMA had an significant advantage over MMA for a sufficiently large rate of decay.

Second, MA was compared to MS when applied in practice to US house prices. Here, I have

used OLS, Ridge, Lasso and Elastic Net as the MS methods, and equal weights, BMA, SAIC,
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MMA and JMA have been used as the MA methods. MA gave some advantage over MS, but

their differences were very small, which might have been due to the high sample size. So in

practice when your sample size is big enough, there is no real difference in using MS versus MA.

For further research, I suggest comparing MS to MA using different datasets where the

sample size is much smaller than here. This might highlight the advantage of MA over MS

even more. I also suggest applying more sophisticased methods for predictions, namely using

Machine Learning methods. You could use Tree Based Methods such as Random Forests and

Gradient Boosting. These methods have the advantage that they are interpretable and combine

the predictions of multiple trees, and therefore do a kind of model averaging themselves. The

disadvantage of using these methods is that they are prone to overfitting and are complex.

My thesis also has its limitations. First of all, the results in the theoretical framework might

not hold when applying it in practice. So its usage for predictions in the real world might be

limited. Second of all, a lot of predictions in real-life have to be made in the context of time

series. So the model used for predicting house prices in a certain year might not be applicable

when considering a different year. The same holds for the location. Characteristics of the house

such as the area might matter more for American houses than for European houses.
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A Appendix

A.1 Data cleaning

First of all, we remove the variables City, Street, Zipcode, PPSq, LotArea, LotUnit and

MarketEstimate, since they are excluded from the data analysis. Then, houses with an

unrealistic price of less than 1, are removed from the dataset. Subsequently, the houses which

have a missing value for Price, RentEstimate or Area are removed. After that, the houses

which reported that they have an area of 0 are discarded, since having an area of 0 is not

possible. Furthermore, the missing values for Bedroom, Bathroom and ConvertedLot are

filled in with 0. This is done because some houses might not have a garden or the bed might be

in the living room because the house is so small. Last of all, the natural logarithm is taken of the

variables RentEstimate and Price is taken because of two reasons. First, the distribution of

the price is likely to be left-skewed, and taking the logarithm makes it more symmetric (making

it more likely for the residuals to be normally distributed). Second, by taking the logarithm, we

reduce the influence of outliers on our results. For each different state of the variable State, a

new dummy variable is created and added to the dataframe. To avoid multicollinearity, there is

no dummy for the state of Alaska. This variable is thus included in the intercept.

A.2 Log-likelihood calculation MS methods

To calculate the log-likelihood for a linear regression, we refer to Heij et al. (2004). We first

need to refer back to the the Probability Density Function (PDF) of the normal distribution for

a single observation i:

L̂i = (2πσ2)−1/2exp

(
− 1

2σ2
(yi − xiβ)

2

)
. (18)

Then, assuming we have n independent observations, the likelihood function for a linear regres-

sion is calculated using the product of the individual likelihood functions:

L̂ =

n∏
i=1

L̂i = (2πσ2)−n/2exp

(
− 1

2σ2

n∑
i=1

(yi − xiβ)
2

)
. (19)

Then, taking the natural logarithm of L̂ results in the following expression:

ln(L̂) = −n

2
ln(2π)− n

2
ln(σ2)− 1

2σ2

n∑
i=1

(yi − xiβ)
2. (20)

Using the fact that the estimator for σ2 is σ̂2 = 1
n

∑n
i=1(yi − xiβ)

2, we arrive at our final

expression for the log-likelihood:

ln(L̂) = −n

2
[ln(2π) + ln(σ̂2) + 1]. (21)

For the penalized regression methods, we need to add a penalty term to the log-likelihood such

that it becomes equal to ln(L̂) minus the penalty term. The same penalty as in the minimization

criteria described in 3.1 is used, so for a Ridge regression, the penalty term is equal to λ
∑p

j=1 β
2
j .
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A.3 Software and packages

Table 5 shows the software and packages used in this paper.

Table 5: Software and packages used in this paper.

Software/Package name: Version: Usage:

Python 3.11.7 Estimate every simulation setting and every application model.
pandas 2.1.4 Data structures.
numpy 1.26.4 Array processing.
statsmodels 0.14.0 Estimating linear regressions and Diebold-Mariano test.
scikit-learn 1.2.2 Calculating MSEs, train-test split, cross-validation and estimating

penalized and linear regressions.
matplotlib 3.8.0 Creating plots.
qpsolvers 4.3.2 Solving the optimization problems for MMA and JMA.

A.4 Explanation of the code

This section gives a short explanation of the main files which are used to get the results in this

thesis.

• ’Simulation.ipynb’: this file performs the whole simulation study described in 4.1 and is

thus used to create figures 2, 3, 4, 5, 6 and 7.

• ’Application.ipynb’: this file applies MS and MA to the dataset of the US house prices

described in section 2. These results can be found in 4.2 and are summarized in tables 2,

3 and 4.

A.5 Derivation σ2

The derivation for σ2 given R2 and the coefficients is as follows:

R2 = V ar(µi)/V ar(yi)

R2 = V ar(µi)/(V ar(µi + ei))

R2 = V ar(µi)/(V ar(µi) + V ar(ei)))

V ar(ei) = (1/R2 − 1)V ar(µi)

σ2 = (1/R2 − 1)V ar(

pn∑
j=1

βjxji)

σ2 = (1/R2 − 1)

pn∑
j=1

β2
jV ar(xji)

σ2 = (1/R2 − 1)

pn∑
j=2

β2
j .

Between the first and the second line, we used the formula yi = µi + ei. Between the second

and the third line, we used the fact that the error terms are independent of the xji’s and thus

also independent of µi. Between the fourth and fifth line, we used the fact that the variance

22



of the error terms is equal to σ2 and the formula µi =
∑pn

j=1 βjxji. Between the fifth and the

sixth line, we used the fact that the xji are generated independent from each other. And last,

in between the sixth and the seventh line, we used the fact that the xji are generated from a

standard normal distribution, and thus have a variance equal to 1. Except for the intercept x1i,

which has a variance of 0. Therefore the summation start from β2.

A.6 In-sample OLS results

In table 6, the in-sample coefficients, standard errors, t-statistics and p-values of OLS can be

found. The variables are ordered in terms of importance based on the absolute value of their

t-statistics, with the constant first to make sure that we always include a constant when applying

JMA and MMA.
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Variable Coefficients Standard error t-statistic p-value

Constant 5.515 0.401 13.766 0.000

RentEstimate 0.899 0.011 79.519 0.000

Bathroom 0.105 0.005 19.513 0.000

Area 4.382×10−5 3.39×10−6 12.942 0.000

Bedroom -0.025 0.005 -5.456 0.000

State ID 0.333 0.102 3.275 0.001

Latitude -0.011 0.004 -2.890 0.004

State CO 0.3295 0.126 2.619 0.009

State CA 0.278 0.115 2.411 0.016

State MS -0.403 0.167 -2.406 0.016

State MT 0.243 0.102 2.368 0.018

ConvertedLot 1×10−4 4.52×10−5 2.228 0.026

Longitude -0.005 0.002 -2.149 0.032

State TX -0.309 0.156 -1.980 0.048

State UT 0.210 0.114 1.846 0.065

State LA -0.303 0.167 -1.815 0.070

State MA 0.308 0.190 1.622 0.105

State OK -0.240 0.148 -1.618 0.106

State WA 0.128 0.084 1.521 0.128

State AL -0.260 0.172 -1.511 0.131

State IL -0.235 0.156 -1.508 0.132

State DE 0.248 0.185 1.343 0.179

State RI 0.252 0.191 1.319 0.187

State OH -0.2015 0.168 -1.198 0.231

State NY -0.203 0.184 -1.101 0.271

State NH 0.200 0.190 1.052 0.293

State KS -0.146 0.144 -1.013 0.311

State IN -0.161 0.161 -0.999 0.318

State MO -0.135 0.150 -0.897 0.370

State AZ 0.116 0.135 0.861 0.389

State NM -0.112 0.136 -0.829 0.407

State MI -0.131 0.161 -0.817 0.414

State WV -0.141 0.175 -0.806 0.420

State ND -0.099 0.125 -0.796 0.426

State WI 0.119 0.150 0.789 0.430

State OR 0.067 0.093 0.725 0.468

State CT 0.127 0.188 0.674 0.500

State NE -0.086 0.138 -0.622 0.534

State SD 0.076 0.125 0.609 0.543

State WY 0.068 0.117 0.578 0.563

State ME 0.109 0.194 0.562 0.574

State AR -0.083 0.156 -0.528 0.598

State KY -0.086 0.166 -0.518 0.605

State SC -0.079 0.181 -0.435 0.664

State IA -0.060 0.144 -0.418 0.676

State PA -0.073 0.180 -0.406 0.685

State FL 0.062 0.188 0.331 0.741

State VT 0.056 0.186 0.299 0.765

State VA 0.032 0.181 0.179 0.858

State TN -0.030 0.168 -0.178 0.859

State NV 0.017 0.117 0.142 0.887

State MN 0.020 0.140 0.141 0.888

State GA -0.016 0.176 -0.092 0.927

State NJ 0.014 0.186 0.076 0.939

State NC 0.008 0.180 0.043 0.966

State MD -0.001 0.181 -0.005 0.996

Table 6: Outcomes of in-sample OLS, with the variables ordered in terms of relevance.
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