
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis Econometrics en Operations Research

Determining the Optimal Number of Clusters in Time

Series Clustering Using Elastic Distance Functions

Luc Braks (588744)

Supervisor: drs. J. Durieux

Second assessor: M.F.O. Welz

Date final version: 1st July 2024

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.



Abstract

The growing interest in clustering time series data across various disciplines has spurred

research into innovative methods. The majority of time series clustering techniques utilize

traditional clustering algorithms like k-means and k-medoids, which require the number of

clusters k to be known prior to clustering. This study focuses on determining the number

of clusters in a time series dataset using three model selection methods: silhouette, Davies-

Bouldin (DB) and Calinski-Harabasz (CH). This analysis is conducted in combination with

partitional clustering algorithms that employ elastic distance measures. This study com-

mences with an in-depth analysis on five elastic distance functions using the UCR time

series archive. The findings of this study indicate that k-medoids combined with the time

warp edit (TWE) distance proved to be the most effective algorithm, followed closely by

the move-split-merge (MSM) and edit distance with real penalty (ERP). In determining the

optimal of clusters within a time series dataset, the silhouette method was found to be the

most effective model selection method, followed by the CH, with the DB performing signi-

ficantly worse. The silhouette method combined with the TWE and MSM was best able to

replicate the number of clusters as defined in the UCR archive. Both MSM and ERP demon-

strated the best performance in defining well-separated clusters, reaffirming the competitive

advantage of elastic distance functions in time series clustering.

1 Introduction

Clustering is the process of grouping data into distinct groups based on their patterns, such

that data with similar patterns are clustered together, whereas data with dissimilar patterns are

kept separate and is essential in various interdisciplinary research areas, including mathematics,

statistics, finance, and biology (Rokach and Maimon, 2005). Time series clustering (TSCL)

is a type of clustering, which involves the categorization of ordered time series data without

relying on a label. As the utilization of time series data continues to grow in both academic and

real-world applications, the significance of TSCL research has surged. Generally, there are two

main methods for TSCL. The first approach involves extracting features from the time series

data and the second approach uses the raw time series, employing a distance measure between

the series to execute the clustering procedure. This research focuses on the analysis of raw time

series data.

Researchers have shown significant interest in TSCL, leading to the development of several

elastic distance measures over the past decades. There have been numerous comparative studies

which use the time series databases of the University of California, Riverside (UCR) archive

(Dau et al., 2019), assessing their performance on how well they recreate class labels from the

UCR databases (Aghabozorgi et al., 2015; Javed et al., 2020). In particular, Holder et al. (2024)

conducted a comprehensive review of partitional clustering algorithms that use elastic distance

measures. However, all the algorithms they employ require the number of clusters, denoted as k,

to be known prior to clustering. A noteworthy quote from them is: ”If a clustering simply finds

what we already know, its utility is limited”. One could argue that if the number of clusters is

known prior to clustering, the value of such algorithms is equally restricted. This study builds on

their work by investigating the scenario where the cluster count is unknown prior to clustering,

which holds substantial significance in the field of time series clustering.



In their study, Holder et al. (2024) employ ten different distance measures that are commonly

used in TSCL literature. They make a detailed empirical analysis using the univariate time series

data of the UCR archive. The authors note that the k-means algorithm, also known as Lloyd’s

algorithm (Lloyd, 1982), is used predominately in TSCL literature, whereas the application of

k-medoids clustering (Rdusseeun and Kaufman, 1987) is less common. In their study, they

utilize partition based clustering algorithms for TSCL, where they set the cluster count to the

pre-determined number of classes of the UCR time series databases.

Holder et al. (2024) uncover a series of interesting findings that shed new light on the subject

of TSCL. They conclude that when applying k-means clustering, only one elastic distance meas-

ure, move-split-merge (MSM), out of the nine investigated performs significantly better than

Euclidean distance (ED). In contrast, five of the nine measures, including dynamic time warp-

ing (DTW), perform significantly worse. When the analysis is repeated using the k-medoids

algorithm an increase in clustering performance is found for all investigated distances except

ED. With k-medoids clustering, DTW is no longer significantly worse than ED. With both in-

vestigated algorithms, the move-split-merge distance function emerged as the best performing

method, closely followed by time-warp-edit (TWE) distance. Finally, they conclude that alter-

ing the tuning parameters for both distance functions and algorithms did not enhance clustering

performance.

This study commences with a replication of the study by Holder et al. (2024), to verify their

claimed advantage of elastic distance functions. Additionally, the study compares the perform-

ance of the k-means and k-medoids clustering algorithms to confirm the claimed advantage of

k-medoids clustering.

A key aim of this study is to challenge the traditional assumption in TSCL of a pre-

determined number of clusters. It is of high importance to TSCL practitioners, who often

deal with unclassified or not yet classified time series data. Therefore, this study investigates

whether the previously reported performance of the MSM and TWE distances measures remains

consistent without a pre-determined number of clusters. To achieve this, three model selection

methods are employed. The research objective is twofold: first, to evaluate the accuracy of the

cluster count against the pre-defined number in the UCR archive, and second, to identify which

elastic distance measure can best group similar data points together and separated dissimilar

data points. Hence, the primary research question is: How does the need to pre-determine the

number of clusters impact the performance of elastic distance measures in time series clustering?

This question is of high importance to future research on TSCL, as no such research has been

conducted before, and it will provide TSCL practitioners with a method for handling unclassified

time series data.

Firstly, this research confirms the earlier established superiority of the k-medoids clusterer

over the k-means clusterer, as reported by Holder et al. (2024). These findings once again

confirm that the k-medoids clusterer should be seen as the benchmark algorithm for TSCL,

despite the fact that TSCL practitioners commonly use the k-means clustering as a benchmark.

With both k-means and k-medoids clustering the TWE distance function emerged as the best

performing distance, with the MSM a close second.

For the analysis on determining the optimal number of clusters in a dataset three model
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selection methods are utilized: silhouette index (Rousseeuw, 1987), Davies-Bouldin (DB) index

(Davies and Bouldin, 1979) and Calinski-Harabasz (CH) index (Caliński and Harabasz, 1974).

The predicted number of clusters was then compared to the ”true” number of clusters in each

dataset, as declared in the UCR archive. The silhouette method combined with TWE and MSM

emerged as the best performing methods. The DB method performs worse, and as such it is not

recommended for TSCL practitioners to use this method. Silhouette and CH indices perform

well when the cluster count is low. However, with increasing cluster count, all model selection

methods perform poorly. As such, this study would advise against using these three model

selection methods when TSCL practitioners want to cluster data in a large number of cluster.

This analysis on model selection assumes that the UCR archive’s number of clusters is correct.

However, there is skepticism about whether the UCR archive accurately represents real-world

TSCL problems, as having many clusters in a dataset seems unreasonable. Therefore, clustering

analysis is performed with the predicted number of clusters by the silhouette index, therefore not

relying on the ”true” number of clusters of the UCR archive. These clusters are consequently

evaluated against each other using the Rand index and Mutual information score. MSM and

ERP emerge as the best methods for clustering the time series, indicating that they produce the

best defined clusters in which time series in different clusters are well separated, while those in

the same cluster are similar.

The remainder of this paper is structured in the following manner. An overview of relevant

literature is presented in Section 2. Section 3 describes the data used in this study. In Section

4, the notation is introduced and it provides a detailed explanation of all methods used. Finally,

the conclusion of the research is presented in Section 6, with suggestions for further research.

2 Literature Review

This study contributes to the vast literature on time series clustering. TSCL generally consists

of two approaches: using feature extraction and using raw series. Feature-based clustering works

by converting raw series into feature vectors with lower dimension and cluster the series based

on these vectors. Räsänen and Kolehmainen (2009) extract statistical feature (mean, standard

deviation, skewness etc.) from electricity usage time series and cluster the series using k-means

clustering. Also more complex unsupervised feature extraction algorithms exist, like the method

proposed by Zhang et al. (2006), where they use the orthogonal wavelet transform to perform

the dimension reduction.

This study emphasis on the raw data TSCL approach, using partition based clustering

methods that utilize elastic distances. Clustering time series based on raw data often uses

partition-based clustering algorithms, like the k-means algorithm originally proposed by Lloyd

(1982). This algorithm generates k centroids and then clusters the data around those centroids

using a distance measure. The two most widely researched and used distance measures in TSCL

are the Euclidean distance (Faloutsos et al., 1994) and the dynamic time warping distance

(Berndt and Clifford, 1994). A comprehensive review on elastic distance based clustering is

provided by Holder et al. (2024), where they compare the performance between k-means and

k-medoids clustering using ten different distance functions. Other partition-based clustering

algorithms for TSCL include the k-shape algorithm (Paparrizos and Gravano, 2015), which uses
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the cross correlation to compute the similarity between the time series.

More recent, the use of deep learning is developed for the use in TSCL, with Lafabregue

et al. (2022) providing a comprehensive review of deep learning TSCL methods.

One problem with these partition based clustering algorithms, is that they require the number

of cluster, k, to be known prior to clustering. In literature there seems to be no agreement on

a method that optimally determines the number of clusters in a dataset. Milligan and Cooper

(1985) conclude that the optimal method depends highly on the type of data used and the

context of the problem. One common method of determining the number of clusters is the

elbow method. However, this method is highly subjective and when the curve of explained

variance is smooth, it is difficult to determine the elbow’s location (Kanakarathinam, 2017).

As such, more quantitative method have been proposed. Such model selection methods include

the Silhouette method (Rousseeuw, 1987), Davies-Bouldin score (Davies and Bouldin, 1979),

Calinski-harabasz index (Caliński and Harabasz, 1974) and the Gap statistic (Tibshirani et al.,

2001). All of these methods aim to identify the value of k that results in the best-clustered data.

Even though the literature on how to determine the optimal number of clusters in a dataset

is vast, the use of these methods in TSCL remains scarce. Raihan (2023) performs a model

selection analysis, utilizing both raw data and a form of feature extraction. However, when using

raw data, the study relied solely on the silhouette method and using the Euclidean distance to

determine the optimal number of clusters. They conclude that feature extraction methods firmly

outperform raw data methods.

3 Data

In this section, the data selected for the research is discussed. The time series data in the

University of California, Riverside (UCR) archive (Dau et al., 2019) is utilized, with a focus on

the univariate time series databases of the archive1. The UCR is the golden standard in time

series clustering analysis and used often in TSCL literature (Javed et al., 2020; Ma et al., 2019).

The total univariate UCR archive consists of 128 datasets. This research excludes the same

datasets as Holder et al. (2024). This involves excluding time series of unequal lengths, series

with missing values and the exclusion of the ”Fungi” dataset, as this dataset contains only one

training observation per cluster. With these restrictions, 112 datasets remain to be used for the

research. This dataset is the same used by Holder et al. (2024).

The range of the number of cluster in the UCR archive ranges from 2 to 60 cluster. Holder

et al. (2024) divide these datasets in four groups depending on their number of clusters: Group

A: 2 clusters; Group B: 3-5 clusters; Group C: 6-10 clusters and Group D: 11 or more clusters.

These groups contain 40, 33, 19 and 13 datasets respectively. This is to provide an extensive

comparison between clustering problems of with varying cluster counts.

One important issue with clustering algorithms is that they are computationally intensive.

Given this, decisions are made about which problems to address. This research utilizes a subset

of the 112 available datasets. Clustering problems with large number of classes, series with

long series length and series with large train sets are the primary contributors to the increased

1The UCR archive can be retrieved from timeseriesclassification.com/
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computationally intensity. It is crucial to investigate datasets from of all of the mentioned

groups. Group D only contains 13 datasets, but they have long series length and large training

sets, making them computationally the most intensive problems. The computation of datasets

in Group D, however, comes at the expense of replicating all the distance functions by Holder

et al. (2024). However, this approach is necessary to allow for a comprehensive study on the

model selection methods. The full subset of datasets used in this research is listed in Table 2 in

Appendix A.

The UCR data presents several challenge for the analysis of clustering algorithms, as men-

tioned by Hu et al. (2016). Significant portion of the data sets have been subjected to pre-

processing with expert knowledge, which may give biases to certain time series or cluster. In

certain instances, the division of train/test sets was performed manually, which in turn could

also result in a clustering bias. Despite the mentioned shortcomings, the datasets contained

in the UCR archive are the state-of-the-art datasets for evaluating new TSCL methods and

comparing existing methods. Therefore, these limitations should not hinder the research.

4 Methodology

In this section the methods used in this study are discussed. The methods can be categorized

into four distinct groups. In Section 4.1, the notation for the replication of the study by Holder

et al. (2024) is given, where the underlying principles of the utilized distance functions are

discussed. Secondly, Section 4.2 presents the performance measures used to assess the clustering

performance of the various distance functions. In Section 4.3, model selection methods are

presented, followed by the evaluation of these methods in Section 4.4.

4.1 Distance functions

This section offers an extensive overview on the time series distance measures used in the study.

These measures include the Euclidean distance and five elastic distance measures. The notation

in this section mostly follows that of Holder et al. (2024). Certain elastic distance functions

contain parameters, and as advised by Holder et al., these are all assigned their default values.

4.1.1 Euclidean distance

Given two time series of equal length, A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn}, the Euc-

lidean distance (ED) is defined as

ded(A,B) =

√√√√ n∑
i=1

(ai − bi)2. (1)

The ED is arguably the simplest distance measure between two time series and its efficiency and

ease of use have made it one of the most popular distance measures in TSCL (Aghabozorgi et al.,

2015). However, the Euclidean distance suffers from a big disadvantage: it is very sensitive to

small offsets of two time series. For instance, if two identical time series are slightly shifted

relative to each other, the ED would then give an excessively large distance between the two
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series, even though they are very similar. This disadvantage of the ED can be overcome using

elastic distance measures.

4.1.2 Dynamic time warping

Dynamic time warping (DTW) is the most commonly used elastic distance measure in TSCL

literature. It was introduced to time series problems by Berndt and Clifford (1994) and is

a method which realigns time series to achieve the best match between them, making it more

robust to small offsets compared to the ED. The first step in aligning the two time series involves

constructing the cost matrix M , in which element Mi,j = (ai − bj)
2. Mi,j represents the cost

to align point ai of time series A to the point bj of time series B. Essentially, M is an m×m
matrix that captures the pointwise distances between series A and B.

0.39 0.44 0.63 0.75 1.24 2.14 4.78 7.50 9.26 10.26

2.31 1.36 0.55 0.72 0.72 0.76 1.51 2.30 2.62 2.68

4.69 2.66 0.79 0.87 0.77 0.72 1.22 1.76 1.93 1.94

6.67 3.67 0.91 0.98 0.77 0.75 1.43 1.98 2.06 1.98

9.60 5.39 1.35 1.46 0.92 0.77 1.04 1.36 1.42 1.42

14.26 8.48 2.57 2.75 1.61 1.11 0.78 0.79 0.84 1.12

15.75 9.15 2.59 2.63 1.62 1.23 1.83 1.89 1.32 1.00

17.71 10.15 2.71 2.78 1.63 1.26 1.96 2.60 1.62 1.05

19.78 11.22 2.86 2.93 1.64 1.28 1.92 2.63 1.89 1.09

20.23 11.30 3.01 2.95 2.07 2.10 3.78 4.51 3.53 2.00

(a) Cost matrix C

0 2 4 6 8

0.5

0.0

0.5

1.0

1.5

(b) DTW alignment

Figure 1: An example of the DTW distance for two simulated time series. Left figure (a) shows
cost matrix M and right figure (b) shows the two time series with optimal alignment path.

An alignment between the two time series can be thought of as a warping path through the

cost matrix M , which starts at the bottom-left corner and ends at the upper-right corner. For a

warping path to be valid, it must not track-back. The dynamic time warping distance between

two time series is determined by the optimal warping path P ∗, trough the cost matrix M that

minimizes the total cost. Figure 1 shows a practical demonstration of the DTW procedure on

two simulated time series2.

The optimal path P ∗ can be computed using an efficient dynamic programming algorithm.

This involves creating a new m×m matrix C. The algorithm is initialised at (0,0), where C0,0 is

equal toM0,0. The rest of the matrix is then filled recursively by calculating the distance between

corresponding points of the two time series and adding it to the minimum of the three adjacent

cells. Mathematically, this can be expressed as: Ci,j = Mi,j +min(Ci−1,j , Ci,j−1, Ci−1,j−1).

2Code for the simulation can be found on github.com/luckyluc99/TSCL-model-selection
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0.39 0.44 0.63 inf inf inf inf inf inf inf

2.31 1.36 0.55 0.72 inf inf inf inf inf inf

4.69 2.66 0.79 0.87 0.77 inf inf inf inf inf

inf 3.67 0.91 0.98 0.77 0.79 inf inf inf inf

inf inf 1.35 1.46 0.92 0.79 1.08 inf inf inf

inf inf inf 2.75 1.61 1.13 0.80 0.81 inf inf

inf inf inf inf 1.62 1.25 1.85 1.91 1.34 inf

inf inf inf inf inf 1.28 1.98 2.62 1.64 1.39

inf inf inf inf inf inf 1.94 2.65 1.91 1.43

inf inf inf inf inf inf inf 4.53 3.55 2.35

(a) Cost matrix C, with Sakoe and Chiba band

0 2 4 6 8

0.5

0.0

0.5

1.0

1.5

(b) Constrained DTW alignment (wsc = 0.2)

Figure 2: An example of the DTW distance with Sakoe-Chiba band (wsc = 0.2), for two
simulated time series. Left figure (a) shows cost matrix M and right figure (b) shows the two

time series with optimal alignment path.

This algorithm is however a computationally intensive task. As such, several methods have

been proposed to improve the efficiency of the algorithm (Itakura, 1975; Sakoe and Chiba,

1978). Both of these methods impose constraints on the possible alignment paths between the

time series. In this study, the slope constraint by Sakoe and Chiba is utilised. The constraint is

set up symmetrically around the diagonal of the M matrix, such that no path can occur outside

the boundaries. Added benefit of this method is that the path is not able to drift very far from

the diagonal, which could improve accuracy (Ratanamahatana and Keogh, 2004).

Practically, the Sakoe-Chiba band works by setting values of the matrix M outside of the

band to infinity. These constraining bands are applied to the simulation example of Figure 1 and

can be seen in Figure 2, where the bounding window is set to 20% (wsc = 0.2) of the time series.

The dynamic programming algorithm with Sakoe-Chiba constraint is presented in Algorithm 1

in Appendix B.

4.1.3 Weighted dynamic time warping

The weighted dynamic time warping (WDTW) distance, proposed by Jeong et al. (2011), is

a penalty-based DTW. The method was first proposed as an approach to prevent minimum

distance distortion caused by outliers.

The process of WDTW functions by adding a weight penalty w to all elements of the point-

wise distance matrix, M . This penalty depends on the warping distance |i− j|, resulting in the

formation of the weighted pointwise matrix Mw. These elements are the product of the weight

penalty and the pointwise distance, such that Mw
i,j = w(|i− j|) ·Mi,j .

Jeong et al. (2011) propose a modified logistic weight function, whereby a warping of p places
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results in a penalty weight of:

w(p) =
wmax

1 + exp(−g(p−mc))
(2)

where mc is the midpoint of the time series, and g is the parameter that controls the penalty

level for large warpings. In this study, the default value g = 0.05 is selected. Note that WDTW

uses the same full window as that of the unconstrainted DTW, which can be computationally

intensive. Algorithm 1 can be used to compute the WDTW distance between two time series,

with inputs M = Mw and wsc = 1.

4.1.4 Edit distance with real penalty

The edit distance with real penalty (ERP) (Chen and Ng, 2004), is a distance measure which

combines the L1 (Manhatten) distance and the use of edit operations (insertion, deletion and

substitution). The goal of ERP is to transform one time series into another using these edit

operations. The ERP is similar to DTW, as both describe an alignment path between the two

series. However, the ERP uses the Manhatten distance rather than the Euclidean distance. This

ensures that d(ai, bj) = |ai − bj | is the cost of substitution between two points. Additionally,

the costs of deletion/insertion are defined as d(ai, g) = |ai − g| and d(bi, g) = |bi − g|. In these

formulas, g is the penalty value, and is set to the default 0.05.

The ERP uses a cost matrix E where Ei,j denotes the minimum cost of transforming the first

i points of series A into the first j points of time series B. To do this, first the edges of the matrix

E are initialized: Ei,0 =
∑i

k=1 d(ai, g) =
∑i

k=1 |ai− g| and E0,j =
∑j

k=1 d(bi, g) =
∑j

k=1 |bj − g|
The rest of the matrix is then filled recursively by finding the minimum cost to get to that point.

This is done using the following criterion:

Ei,j = min


Ei−1,j + |ai − g|,

Ei,j−1 + |bj − g|,

Ei−1,j−1 + |ai − bj |

(3)

The ERP distance between the time series A and B is then consequently the value of En,n.

The algorithm to compute the ERP distance between two time series is presented in Algorithm

2.

4.1.5 Move-split-merge

The move-split-merge (MSM), introduced by Stefan et al. in 2012, is closely related to the ERP

distance function. Both of these elastic distances aim to transform one time series into another

time series. The metric uses three operations: Move, Split and Merge, each of which has an

associated cost. As explained in Section 4.1.4, ERP insertions and deletions cost the absolute

magnitude of the value that was inserted or deleted. In MSM, the cost for insertion and deletion

depends on both it’s value and the adjacent values. To accommodate this, two new operations

are created, Split and Merge. The Split operation duplicates a value in a time series, while the

Merge function removes a value from a time series. Furthermore, MSM also uses the substitute
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operation, which is referred to as Move.

The cost to move datapoint i by a value of v is equivalent to the absolute value of v, while

the cost for both split and merge operations c = 1.

The overall cost of transforming series A into B is calculated by adding up all the individual

costs of each transformations executed. However, there exist an infinite number of ways to

transform series A into B using the defined operations. Therefore, the move-split-merge distance

between series A and B is defined as the minimum total cost among all possible combinations

of operations.

Since the MSM distance is closely related to the ERP distance, the algorithms are similarly

related. This algorithm is presented in Algorithm 3. The cost function used in this algorithm is

defined as:

C(x, y, z, c) =

c if y ≤ x ≤ z or y ≥ x ≥ z

c+min(|x− y|, |x− z|) otherwise
(4)

4.1.6 Time warp edit

The time warp edit (TWE) distance, originally proposed by Marteau (2008), is a measure closely

related to both WDTW and ERP. The method introduces a parameter ν which controls the

stiffness of warping. The stiffness is weighted in the match operation, while for deletion and

insertion it is simply added to the cost. An L1-norm is used for matches, with a constant penalty

λ added when sequences do not match. The λ is analog to the parameter c of MSM, and as

such is set to 1, whereas the ν is related to the g parameter of WDTW and set to 0.05. The

algorithm of finding the TWE distance between two time series is presented in Algorithm 4 in

the Appendix.

4.2 Replication: Clustering performance methods

To assess the quality of the clusterers, six performance metrics are employed. These metrics

align with those used by Holder et al. (2024), to allow for comprehensive comparison between the

two studies. Clustering accuracy (CL-ACC) is the fraction of correct predictions. To determine

whether a cluster prediction is correct, it is necessary to assign each cluster to the class value that

best matches it. This can be done by taking the maximum accuracy from every permutation of

cluster and class values Sk. The formula of the CL-ACC is presented in equation 5.

CL-ACC(y, ŷ) = max
s∈Sk

1

|y|

|y|∑
i=1

1, yi = s(ŷi)

0, otherwise
(5)

This is method of computing the clustering accuracy is computationally expensive. To speed

up the process of calculating the clustering accuracy the Hungarian method is utilized. First,

the confusion matrix is created, where each row represents instances in a predicted class, and

each column represents the instances in the ground truth class. Then the linear sum assignment

problem is performed to find the best possible mapping between predicted cluster labels and

ground truth cluster labels (Kuhn, 1955). Finally, the CL-ACC is calculated by dividing the

number of correctly assigned data points by the total number of datapoints.
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Another performance measure to evaluate the clusters is the Rand index (RI), first proposed

by Rand (1971). The RI measures the similarity between two label sets. In this study, the Rand

index is measured between the ground truth labels and the labels produced by the clustering

algorithms performed and as such can be used to compare the clustering algorithms with each

other. The Rand index is then calculated by dividing the number of true positives and true

negatives by the total number of predictions made.

One of the main problems with the RI is that it can give disproportionate high scores for

clusterings that are dissimilar, especially when the number of clusters is large. This issue is

prevented by using the adjusted Rand index (ARI), proposed by Hubert and Arabie (1985). the

ARI adjusts the Rand index based on the expected scores of a purely random model.

Mutual information (MI) is a statistical method that measures the amount of information

that can be obtained about one variable by observing another variable. As such it measures the

agreement between the ground truth labels and the predicted labels. When comparing MI across

different datasets, the scores themselves are often not interpretable and as such the normalised

mutual information score (NMI) is also utilized, which scales the values of the MI between 0 and

1. The mutual information score also has the same problem of the RI in which it is inflated for

datasets with high number of cluster. As such, the adjusted mutual information score (AMI) is

used to adjust the MI by taking into account the expected value of the MI under a null reference.

In this study, the evaluation measures will be compared across multiple datasets. To do

so, the rank ordering method is utilized, explained by Demšar (2006). In his work, the post

hoc Neymeni test is consulted to identify significant differences between metrics. However, by

recommendation of Benavoli et al. (2016), this test is replaced by the pairwise Wilcoxon sign

rank test (Wilcoxon, 1992).

4.3 Extension: Model selection

A fundamental problem in cluster analysis is how to determine the optimal number of clusters

in a dataset. The terms ”model selection” and ”determining the number of clusters” are used

interchangeably in this section. The problem of model selection has big effects in the clustering

performance and is highly susceptible to changes in dataset complexity (Milligan and Cooper,

1985). As such, it is important to choose both an appropriate clustering method, as well as

a method for determining the number of clusters in a dataset for accurate results. In their

research, Holder et al. (2024) completely disregard this important characteristic in clustering

analysis, presuming the number of clusters to be known a priori. However, in a real-world setting,

the number of clusters is generally not known, underscoring the importance of this analysis for

TSCL literature.

For model selection, a common method is to start with a predefined set of k values and

consequently selecting the optimal k using some form of statistical measure. The problem of

this approach is that it is computationally demanding, especially for problems with large number

of clusters. To account for this the range of values for k is set close to the actual value. As a

result, by limiting the range of k values, the number of times the clustering algorithms need to

be executed is reduced.

According to the findings of Holder et al. (2024), the k-medoids clusterer performs signi-
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ficantly better than k-means across all elastic distance measures investigated and as such is

adopted for the purpose of model selection.

4.3.1 Silhouette index

The concept of using silhouettes to determine the optimal number of clusters was first proposed

in 1987 by Rousseeuw. This approach utilizes the silhouette statistic, which is a measure of

how similar an object is to its own cluster compared to other clusters. The silhouette method a

quantitative method that always returns a value for the number of clusters. According to a 2013

study by Arbelaitz et al., the silhouette method performs best among 30 cluster validity indices.

However, the authors also note that the performance of this method is highly susceptible to the

data used.

The silhouette coefficient for observation i is computed as si = (bi−ai)
max(ai,bi)

, where ai is the

mean distance between observation i and all other observations in its own cluster. bi is the mean

distance between observation i and all other observations in the next-nearest cluster.

the silhouette index is determined for each value of k in the range of values. This index is

the average of the silhouette coefficients for all individual observations. High silhouette scores

indicate that the observations from a cluster are far away from observations outside of their

cluster. The value of k that yields the highest silhouette index is consequently chosen as the

optimal cluster count.

4.3.2 Davies-Bouldin index

The Davies-Bouldin (DB) index is an unsupervised method for evaluating cluster methods (Dav-

ies and Bouldin, 1979). It gives higher scores to clustering where there is good separation between

the clusters. Holder et al. (2024) use the index for the study on tuning parameters, however the

DB index can also be used to determine the number of clusters if this is not pre-determined.

The DB score calculates a similarity measure between each cluster pairs, which is based on

the distance between their centroids and their sizes. The equations for computing the DB score

is presented in Appendix C Suppose an experiment is run to determine the optimal number of

clusters for the distance function d.

Firstly, the centroids ci are calculated for all clusters using equation 6, and Aij denotes that

time series j is clustered in cluster i. Thereafter, the dispersion of all the clusters is calculated

using the formula in equation 7, where Si is the dispersion of cluster i and d denotes the (elastic)

distance function utilized. The distance between centroids i and j is defined as Mij , given by

equation 8. The similarity of cluster i is defines as Ri in equation 9. Finally, the Davies-Bouldin

index is calculated as the average all similarity scores, as in equation 10.

The DB score is a measure of the similarity between clusters. If data is clustered accordingly

it should have low similarity between the clusters and as such, the value of k which leads to the

lowest Davies-Bouldin score is chosen as the optimal number of clusters.

4.3.3 Calinksi-Harabasz index

The Calinski-Harabasz (CH) index is a metric which denotes the ratio of the between-cluster

separation to the within-cluster dispersion (Caliński and Harabasz, 1974). Higher CH scores
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indicate that a clustering solution is well-seperated and compact. The Calinski-Harabasz score

is defined as CH = Bk/(k−1)
Wk/(n−k) , where Bk is the between-cluster variance. It is defined as the sum

of the squared distances between the centroids of each cluster and the overall centroid of the

data. Wk is the within-cluster variance, defined as the sum of squared distances between each

data point and centroid of its corresponding cluster.

A high CH score implies that the clusters are distinct and well-defined, making it easier to

differentiate between them. As such, the value of k that lead to the highest CH score is chosen

as the optimal number of clusters.

4.4 Extension: Evaluating the model selection

Despite the vast literature on how to determine the optimal number of clusters within a dataset,

the evaluation measures of such methods are scarce. Often these techniques are applied to data

that has not previously been clustered and are mostly evaluated using simulation studies. In

contrast, this study employs these methods with pre-classified data from the UCR archive.

Raihan (2023) focuses on determining the number of clusters in both raw time series data

and using data with extracted features from the UCR archive. He considered the ”true” cluster

count to be the the number of clusters of the UCR archive. The evaluation was based on the

frequency of correctly identifying the number of clusters, how many times the predicted results

were close (i.e. one more or less than the actual number) and how many times they were wrong.

In this research, the same metric is utilized. However, this study addresses a limitation in

his approach, which only considered datasets where the ”actual” number of clusters is less than

or equal to seven. As in this research also datasets with more than seven clusters are considered,

a prediction is considered ”close” when the prediction is either one off the actual number, or if

it is within 20% of the actual value. This revised approach allows for a more robust evaluation

of the model selection methods.

5 Results

In this section the results on the time series clustering problems are presented and discussed.

First, in Sections 5.1 and 5.2, the results for the replication of the study by Holder et al. (2024)

are given. Sections 5.3 and 5.4 present the extension on model selection methods, where the

cluster count k is not known prior to clustering. All code used can be found on the associated

GitHub repository3.

5.1 Replication: k-means clustering

The first analysis involves the comparison of the six distance functions using k-means clustering.

k-means is a widely used clustering algorithm that aims to partition a set of n observations into

k clusters. Each observation is assigned to the cluster with the nearest mean. For each of the

51 UCR datasets the number of clusters k to be formed was set to ”true” number of clusters for

each individual dataset, as defined in the UCR archive.

3github.com/luckyluc99/TSCL-model-selection

12

https://github.com/luckyluc99/TSCL-model-selection/


Holder et al. (2024) make an analysis on three initialization methods: random, Forgy and

kmeans++. They note that the all three methods perform about as well as each other and

that the difference in performance was generally not caused by the initialisation algorithm.

Consequently, random initialization is chosen, as this is the fastest of the three methods. Based

on the recommendation of Holder et al. (2024), the remaining parameters are set to the default

settings of the aeon package4 (maximum 300 iterations and 10 restarts).

In time series clustering an important decision is whether to perform the analysis on norm-

alised data or on raw data. Holder et al. (2024) treat normalisation as a parameter and perform

their analysis on both normalised data and on the raw data. They conclude that the same

performance patterns are found, irrelevant of normalisation. As such, for this research, raw data

is used.

Another question of high debate in TSCL literature is whether to merge the test and training

sets. For both the analysis on k-means and k-medoids clustering, all the training is done on the

default training sets given by the UCR archive. This is to allow for an accurate replication of

the paper by Holder et al. (2024). The results are given on both the training and test sets.
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Figure 3: Critical difference diagrams for k-means clustering using six distance functions. The
analysis involves 51 UCR datasets (raw data), evaluated using six performance measures on
the test data. A lower score means a distance function performs better. Distance functions

grouped by horizontal lines means that there is no pairwise significant difference between them.

4www.aeon-toolkit.org/en/stable/api reference/clustering.html/
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The assessment of the various distance function is done using the six metrics explained in

Section 4.2. A summary of these metrics for the k-means clustering using six distance functions

is presented for the test and training sets in Figures 3 and 6 respectively. This critical difference

diagram displays the distance functions ordered by the average rank of the metric across all

datasets. Therefore, when a distance measure is further to the right in a diagram, it means it

performs better. The horizontal lines denote the groups of distance functions between which

there is no significant difference between them. For example, in Figure 3a, ERP has the lowest

average rank of 2.8039, meaning that it performs best. However, ERP forms a group with TWE

and MSM with no pairwise significant difference between them. These results are based on the

test data of the UCR archive. The results on the training data can be found in Figure 6 in

Appendix D.

The results largely agree with the findings of Holder et al. (2024). Figure 3 shows that for

the k-means algorithm, the TWE and MSM are the top performing distance functions, with no

significant difference between them. The WDTW and ERP follow closely behind in performance.

The DTW performs poorly, despite the common believe that DTW combined with k-means

is the benchmark in TSCL. The Euclidean distance performs worse on all six measures, which

slightly contradicts the findings by Holder et al. (2024). This discrepancy can be attributed

to the different datasets used for the analysis. Holder et al. utilized 112 datasets of the UCR

archive, while in this study only 51 datasets where investigated. The reason for this discrepancy

can be found in Tables 7 and 9 of their report, in which they conclude that the Euclidean distance

performs particularly well in datasets with large number of clusters and with large number of

training cases. These are precisely the datasets that where not investigated in this study due to

time constraints.

5.2 Replication: k-medoids clustering

k-medoids is a clustering technique, which like k-means, aims to partition a set of n observations

into k clusters. However, now each observation is assigned to the cluster that has the closest

medoid. To allow for an extensive comparison between k-means and k-medoids clustering the

same parameters are used (i.e. random initialization, max 300 iterations and 10 restarts).

Figure 4 presents the ranked summary statistics for the six distance functions using k-

medoids clustering, on the test data. The results for the training data is presented in Figure 7

in Appendix D.

The general pattern for k-medoids clustering is the same as for the k-means algorithm.

The ED continues to perform poor across all evaluated metrics, although it no longer performs

significantly worse than the dynamic time warping distance. A possible explanation for the

poor performance of the ED is that it performs poorly when using data that has low number

of clusters, which is primarily the data used in this research. With k-medoids clustering, TWE,

MSM and ERP form a top performing clique, which means there is no significant difference

between the three distance measures. These top performing distance measures all apply an

explicit penalty for warping when calculating the distance between two time series. Important

to note that ERP ranks significantly higher with k-medoids clustering than with the k-means

algorithm, as is also reported by Holder et al. (2024).
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Figure 4: Critical difference diagrams for k-medoids clustering using six distance functions.
The analysis involves 51 UCR datasets (raw data), evaluated using six performance measures
on the test data. A lower score means a distance function performs better. Distance functions
grouped by horizontal lines means that there is no pairwise significant difference between them.

Table 3 in the appendix presents the average clustering accuracy for both k-means and k-

medoids clustering. An increase in performance is realized for all distance measure except the

ED. The same ordering of distances is found, with the ERP, TWE and MSM having the highest

average accuracy. Notably, the significant increase in accuracy in ERP is evident, with this

distance benefiting the most from the transition to the k-medoids clustering algorithm.

The average clustering accuracy of the various distance functions are substantially higher

than the results reported by Holder et al. (2024). This discrepancy can be largely attributed

to the different datasets employed in this research. In this study the majority of the datasets

with 2 clusters are examined, and given the definition of the clustering accuracy, these dataset

inherently possess a minimum accuracy of 50%. Consequently, the mean clustering accuracy is

higher compared to their findings, where they utilized more datasets of large cluster count.

5.3 Extension: Model selection

This section presents the results on the model selection methods for the time series datasets

of the UCR archive. This is done by first setting a range of k values and then using three

criteria to determine the optimal number of clusters in this range. The lower bound of this
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range was set to kmin = max(ktrue− 10, 2), where ktrue is defined as the pre-determined number

of clusters for the datasets, as given by the UCR archive. The upper bound of this range was set

to kmax = min(ktrue + 10, n), where n denotes the number of time series in a dataset. The final

constraint is placed to ensure that the clustering algorithm can execute properly, as a cluster

algorithm can not partition n objects into n+1 clusters, as this would result in empty clusters.

The chosen range of k values was due to the time limitations of this bachelor thesis.

For the model selection analysis, the k-medoids algorithm was employed, having demon-

strated superior performance in the analysis of the various distance functions. The optimal

number of clusters are determined using three distinct indices: the silhouette index, Davies-

Bouldin index and the Calinski-Harabasz index, as explained in Section 4.3. The scores where

calculated for all values of k in the range specified and the optimal cluster count was determined

according to the indices.

5.3.1 Silhouette method

The results for the silhouette method are presented in Table 1. The table is split in two, with

the left side displaying the results on only the training data and the right side presenting the

findings of the merged test and training sets. This combination was done to investigate whether

increasing the size of the dataset could improve model selection, but also to allow for comparison

with other comparative studies, like the one by Javed et al. (2020).

In Table 1, a green cell denotes a correct prediction. This occurs when the predicted number

of clusters agrees with the ”actual” cluster count, as provided by the UCR archive. An orange

cell indicates a ”close” prediction. This is the case when a prediction is either one off from the

true value, or if it falls within 20% of the true value. Predictions marked with an asterisk (*)

indicate that the prediction is either ktrue − 10 or kmax.

The results for determining the number of clusters using the silhouette method show uncon-

vincing results. When only using the training data for model selection, MSM emerges as the best

performing distance measure, with it having 15 correct and 16 close predictions. This is closely

followed by TWE which also has 15 correct predictions, but 15 close predictions. WDTW and

ED emerge as the worse performing distance functions. When using the merged datasets, the

TWE emerges as best performing distance measure, with the Euclidean distance a close second.

The increase in sample size does improve the prediction accuracy across all distance measure

except for MSM. This is something that is expected as for some datasets the training set is

fairly small. This phenomena can be seen in the predictions for the ”MoteStrain” dataset. This

dataset has an actual cluster count of 2 and the training set contains only 20 time series. When

combining the training and test sets this increases to 1272 observations. When only using the

training sets, only ED and MSM predict the cluster count correctly, while with the merged

datasets, all distance functions have correct predictions.

The silhouette method performs well when the actual cluster count is small. However, for

larger cluster counts, the method performs poorly. Especially for the datasets in group D (i.e.,

those with 11 or more clusters) the silhouette method fails to capture the complex clustering pat-

terns in this group. Consequently, the method fails to produce any correct predictions for these

datasets. The cause of this has to do with the definition of the silhouette index. The silhouette
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index is a measure of similarity between clusters. If the number of cluster is large, the resulting

clusters become more similar. The optimal number of clusters therefore get underestimated.

Table 1: Prediction of cluster count using silhouette method, for the six investigated distance
function. A green cell denote a correct prediction and an orange cell denotes a ”close”

prediction. An asterisk (*) denotes that the prediction is either kmin or kmax. Results are on
training set and with training and test set combined.

Training Training + test

Data name Actual ED DTW MSM TWE WDTW ERP ED DTW MSM TWE WDTW ERP

Adiac 37 27* 46 42 47* 28 28 32 31 44 47* 39 35

WordSynonyms 25 18 15* 16 19 24 15* 16 17 35* 27 21 15*

FacesUCR 14 10 4* 12 10 5 18 8 7 6 23 6 21

CricketZ 12 2 3 2 2 2 2 2 6 2 2 7 2

InsectWingbeatSound 11 4 2 4 2 2 3 4 2 2 4 2 2

MedicalImages 10 7 3 2 2 2 3 3 3 2 2 2 2

Fish 7 2 2 3 9 4 2 2 2 10 7 2 9

Lightning7 7 9 4 5 2 2 3 3 2 3 3 4 7

Plane 7 3 6 11 8 6 16 12 16 7 7 5 9

DistalPhalanxTW 6 2 2 2 2 2 2 2 2 2 2 2 2

MiddlePhalanxTW 6 2 2 2 2 2 2 3 2 2 2 2 2

OSULeaf 6 2 4 2 4 7 3 2 3 4 4 4 12

ProximalPhalanxTW 6 2 2 2 2 2 2 2 2 2 2 2 2

Symbols 6 7 2 6 12 11 7 5 4 4 4 6 3

SyntheticControl 6 2 2 2 2 2 3 2 4 2 2 2 3

Beef 5 7 4 4 2 7 2 4 6 6 2 3 2

ECG5000 5 2 2 2 2 3 2 2 2 2 2 3 2

DiatomSizeReduction 4 3 4 3 2 6 4 3 3 3 5 2 5

FaceFour 4 2 3 5 3 5 2 2 2 7 5 3 7

Trace 4 2 3 2 2 3 2 2 3 2 2 3 2

ArrowHead 3 2 2 2 2 10 2 3 2 2 2 2 2

BME 3 2 2 2 2 2 2 2 2 2 2 2 2

CBF 3 2 3 5 3 4 2 2 3 2 3 2 3

ChlorineConcentration 3 2 3 4 4 3 4 2 3 2 2 3 2

DistalPhalanxOutlineAgeGroup 3 2 2 2 2 2 2 2 2 2 2 2 2

Meat 3 2 2 2 2 2 2 2 2 2 2 2 2

MiddlePhalanxOutlineAgeGroup 3 2 2 2 2 2 2 3 2 2 2 2 2

ProximalPhalanxOutlineAgeGroup 3 2 2 2 2 2 2 2 2 2 2 2 2

SmoothSubspace 3 4 2 2 4 2 5 2 2 2 2 2 2

UMD 3 2 2 2 2 2 2 2 3 2 2 2 2

Chinatown 2 2 5 2 2 5 5 2 2 2 2 2 2

Coffee 2 2 2 2 2 2 2 2 3 4 2 3 4

ECG200 2 5 2 2 3 2 4 2 2 3 3 2 7

ECGFiveDays 2 3 4 3 3 7 3 2 11 4 2 6 3

FreezerRegularTrain 2 4 2 2 2 2 2 3 3 2 2 3 2

FreezerSmallTrain 2 2 3 2 2 2 2 3 3 2 2 3 2

GunPoint 2 5 3 2 2 2 4 2 2 2 2 2 2

GunPointAgeSpan 2 2 3 9 2 4 2 2 3 4 4 3 3

GunPointMaleVersusFemale 2 3 3 4 5 4 3 2 3 4 4 3 3

GunPointOldVersusYoung 2 2 3 3 4 3 2 2 3 4 4 3 3

Ham 2 2 3 2 2 2 2 4 3 2 2 3 2

ItalyPowerDemand 2 4 2 7 3 2 6 4 2 2 5 2 2

MoteStrain 2 2 3 2 3 3 3 2 2 2 2 2 2

PowerCons 2 3 5 2 2 10 2 3 7 2 2 3 2

ShapeletSim 2 2 2 11 11 12* 12* 2 2 2 6 2 2

SonyAIBORobotSurface1 2 4 2 2 2 3 2 2 3 4 2 2 2

SonyAIBORobotSurface2 2 2 4 2 2 12* 3 4 2 2 2 2 3

ToeSegmentation1 2 7 7 2 2 6 2 3 2 2 4 2 2

ToeSegmentation2 2 10 2 6 2 2 6 2 2 2 2 3 3

TwoLeadECG 2 3 2 2 2 2 2 2 5 4 2 2 2

Wine 2 2 2 2 2 2 2 2 3 2 2 3 4

Number of correct predictions: 10 12 15 15 11 12 16 12 14 17 12 14

Number of close predictions: 16 19 16 15 16 14 16 20 14 16 23 17
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One could also argue about what it means for a dataset to have a large number of clusters.

Clustering is used more as an exploratory tool than a predictive tool. This means that clustering

is used to analyse and interpret data to discover patterns. For clustering analysis in biology for

example, it does not make sense to group the patients in large number of clusters, because then

the data reduction aspect of the method is lost Grant et al. (2020). Such examples also occur

in other research areas where TSCL is utilized. As such, researchers often are not interested in

clustering algorithms that partition data in a large number of clusters, and there is skepticism

about whether the UCR archive is able to replicate real-life TSCL problems.

5.3.2 Davies-Bouldin index

Another method for determining the optimal number of clusters in a dataset is using the DB

index. The results on both the training set and the combined training and test set are presented

in Table 4. The DB method performs significantly worse than the silhouette method. When

only using the training set, the WDTW emerges as the best performing, however still performs

poorly. Combining the training and test set improves the accuracy, however it is still worse than

the silhouette method.

A possible explanation is that the DB score is closely related to the k-means algorithm.

k-means is designed to optimise with respect to the average distances within a cluster, which is

the same statistic that is used in the DB index. k-medoids clusters are based on the pairwise

distances between the observations. The use of the k-medoids clustering algorithm could be the

reason for the poor performance of the DB index.

5.3.3 Calinksi-Harabasz index

The third model selection method uses the CH index, as mentioned in Section 4.3.3. The results

are presented in Table 5. The CH performs good when the cluster count is small. It does,

however, suffer from the same problem as the silhouette index, where it under predicts the

cluster count when the ”true” number of clusters in a dataset is large. The reason for this is

that both of these methods are related, as they both measure an observation from its own cluster

against that of other clusters.

The number of correct predictions for silhouette, DB and CH for the six distance functions

is presented in Figure 8 in Appendix D. The silhouette method combined with either MSM or

TWE is the best performing method. The WDTW in combination with the CH shows good

performance. This method performs especially well in datasets with moderate number of clusters

(i.e. datasets in group C). The performance of the DB index is consistently poor, regardless of

the distance function utilized. Therefore, it is not advisable for TSCL practitioners to use this

method for the purpose of model selection.

5.4 Extension: Model selection clustering performance

In Sections 5.1 and 5.2, the performance of various distance functions is evaluated with a pre-

defined cluster count k. However, this scenario is not an accurate representation of real-world

TSCL applications, where often the number of clusters is not known prior to clustering. There-

fore, in Section 5.3, three methods for determining the number of clusters are presented and
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discussed. This resulted in the Silhouette method being the best of the three. However, this

accuracy is only with respect to how good each method was able to replicate the ”real” number

of clusters in the datasets of the UCR archive. An argument could be made against this evalu-

ation method, as the number of clusters in the UCR archive might not be representative of real

world TSCL applications. As such, the clusters formed by the silhouette method are evaluated

against each other using the metrics explained in Section 4.2.

To do this, the k-medoids algorithm of Section 5.2 is used. As said before, this requires the

number of cluster k to be pre-determined. Instead of the pre-determined cluster count of the

UCR archive, now the cluster count is set to the predicted number of clusters by the Silhouette

method. The training data is utilized for determining the number of clusters (i.e. the left side

of Table 1), as well as for the creation of the clusters. Thereafter, the test sets are used for

evaluation purposes.

The analysis is done for all of the six distance functions explained in Section 4.1. For each

distance function, first the number of clusters in a dataset is predicted using the Silhouette

method on the training set. Thereafter, the clusters are made using also the training set and the

labels are predicted of the test sets. The methods are compared using the (adjusted) rand index

and (adjusted) mutual information. This is to only compare the clusters against each other, and

not to the pre-determined clusters by the UCR archive.
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Figure 5: Critical difference diagrams for k-medoids clustering with prediction a full model.
This involves first determining the number of clusters using the silhouette method and

thereafter performing the clustering on this prediction.

Figure 5 denotes the critical difference diagrams for this analysis. The MSM and ERP emerge

as best performing algorithms, with no pairwise significant difference between them. The ED

and DTW perform worse among all investigated metrics. As such, the results largely resemble

with the analysis in Sections 5.1 and 5.2. This ones again confirms the excellent performance of

elastic distance functions in time series clustering.
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6 Conclusion

In this paper, a comprehensive study is performed which compares various distance measures

when used to cluster time series of the UCR archive. Six distance functions are investigated with

both k-means and k-medoids clustering algorithms. This is to allow for an extensive comparison

between the two algorithms, but also between the distance functions. Furthermore, an extensive

analysis is given in the realm of model selection methods for TSCL.

It is concluded that the k-medoids clusterer performs better than the k-means clusterer for

TSCL problems on the UCR datasets. This remark is of high importance to TSCL practitioners,

as k-means clustering is used more often as a benchmark than the k-medoids clusterer. When

using the k-medoids clusterer, an increase in performance is found for all distance measures,

except for the Euclidean distance.

In TSCL, the best approach is to use k-medoids clustering with TWE, MSM or ERP as

these elastic distance measures lead to the highest average accuracy across the investigated UCR

datasets. This finding is of high importance to TSCL practitioners as the DTW with k-means

is commonly used as the state-of-the-art time series clustering algorithm. In this research, the

DTW only outperformed the Euclidean distance and was beaten by all other elastic distance

measures. It was also concluded that k-medoids clustering outperforms k-means clustering,

regardless of the elastic distance used.

A significant challenge with k-means and k-medoids clustering is that it requires the number

of clusters k to be known prior to clustering. Therefore, an analysis is performed where the

number of clusters k is not known prior to clustering. Three methods are considered for the

model selection: silhouette index, Davies-Bouldin index and the Calinski-Harabasz index. The

results are consequently evaluated against the pre-determined number of clusters as defined by

the UCR datasets. The silhouette and CH method emerging as the best method, especially when

the cluster count was small, however with increasing number of clusters the method performs

really poorly. The Davies-Bouldin method performs worse and as such should not be used to

determine the number of clusters in time series clustering.

The evaluation of the model selection is predicated on the assumption that the number of

clusters in the UCR archive is the correct number of clusters. However, doubts exist regarding

the UCR archive’s ability to accurately represent real-world TSCL problems. When assessing

the individual cluster performance, independent of the UCR archive, using the RI and MI, the

MSM and ERP emerge as the most effective elastic distance measures. This ones again confirms

the previously found performance of elastic distance measures in time series clustering.

In light of the findings presented in this study, several avenues for future research emerge to

enhance the understanding and applicability of time series clustering. Determining the number

of clusters using raw data did not show promising results, especially for large cluster counts.

One promising direction for further research is to expand the model selection methods to include

feature extraction methods. Prior research showed good performance of a Bag of Words vector

approach and a TF-IDF vectors approach. Both of these methods are popular techniques in

Natural Language Processing studies. By first performing model selection using feature extrac-

tion and thereafter using elastic distance functions to perform the clustering, one could possibly

find a new state-of-the-art time series clustering model.
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A Appendix: Data names

Table 2: Datasets used for the final analysis, together with ground-truth number of clusters k.

Data Name k

Adiac 37

WordSynonyms 25

FacesUCR 14

CricketZ 12

InsectWingbeatSound 11

MedicalImages 10

Fish 7

Lightning7 7

Plane 7

DistalPhalanxTW 6

MiddlePhalanxTW 6

OSULeaf 6

ProximalPhalanxTW 6

Symbols 6

SyntheticControl 6

Beef 5

ECG5000 5

DiatomSizeReduction 4

FaceFour 4

Trace 4

ArrowHead 3

BME 3

CBF 3

ChlorineConcentration 3

DistalPhalanxOutlineAgeGroup 3

Meat 3

Data Name k

MiddlePhalanxOutlineAgeGroup 3

ProximalPhalanxOutlineAgeGroup 3

SmoothSubspace 3

UMD 3

Chinatown 2

Coffee 2

ECG200 2

ECGFiveDays 2

FreezerRegularTrain 2

FreezerSmallTrain 2

GunPoint 2

GunPointAgeSpan 2

GunPointMaleVersusFemale 2

GunPointOldVersusYoung 2

Ham 2

ItalyPowerDemand 2

MoteStrain 2

PowerCons 2

ShapeletSim 2

SonyAIBORobotSurface1 2

SonyAIBORobotSurface2 2

ToeSegmentation1 2

ToeSegmentation2 2

TwoLeadECG 2

Wine 2
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B Appendix: Algorithms

Algorithm 1 DTW algorithm with Sakoe-Chiba bands (A,B (both series of length m), wsc

(window proportion, default wsc ← 0.2), M (pointwise distance matrix)

1: Let C be an (m+ 1)× (m+ 1) matrix initialized to zero, indexed from zero.
2: for i← 1 to m do
3: for j ← 1 to m do
4: if |i− j| < wsc ·m then
5: Ci,j ←Mi,j +min(Ci−1,j−1, Ci−1,j , Ci,j−1)
6: end if
7: end for
8: end for
9: return Cm,m

Algorithm 2 ERP algorithm (A,B (both series of length m), g, (penalty value, default g ←
0.05))

1: Let E be an (m+ 1)× (m+ 1) matrix initialised to zero, indexed from zero.
2: for i← 1 to m do
3: for j ← 1 to m do
4: if i = 0 then
5: Ei,j ←

∑m
k=1 |bk − g|

6: else if j = 0 then
7: Ei,j ←

∑m
k=1 |ak − g|

8: else
9: match← Ei−1,j−1 + |ai − bj |

10: insert← Ei−1,j + |ai − g|
11: delete← Ei,j−1 + |bj − g|
12: Ei,j ← min(match, insert, delete)
13: end if
14: end for
15: end for
16: return Em,m
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Algorithm 3 MSM algorithm (A,B (both series of length m), c (minimum cost, default c← 1),
d (pointwise distance function), C (cost function))

1: Let D be an m×m matrix initialised to zero.
2: D1,1 = d(a1, b1)
3: for i← 2 to m do
4: Di,1 = Di−1,1 +C(ai, ai−1, b1, c)
5: end for
6: for i← 2 to m do
7: D1,i = D1,i−1 +C(bi, a1, bi−1, c)
8: end for
9: for i← 2 to m do

10: for j ← 2 to m do
11: match← Di−1,j−1 + |ai − bj |
12: insert← Di−1,j +C(ai, ai−1, bj , c)
13: delete← Di,j−1 +C(bj , bj−1, ai, c)
14: Di,j ← min(match, insert, delete)
15: end for
16: end for
17: return Dm,m

Algorithm 4 TWE algorithm (A,B (both series of length m), λ (edit cost, default λ← 0.05),
ν (warping penalty factor, default ν ← 1))

1: Let D be an (m+ 1)× (n+ 1) matrix initialised to 0
2: D0,0 = 0
3: for i← 1 to m do
4: Di,0 =∞
5: end for
6: for i← 1 to n do
7: D0,i =∞
8: end for
9: for i← 1 to m do

10: for j ← 1 to n do
11: match← Di−1,j−1 + |ai − bj |+ |ai−1 − bj−1|+ 2ν|i− j|
12: delete← Di−1,j + |ai − ai−1|+ λ+ ν
13: insert← Di,j−1 + |bj − bj−1|+ λ+ ν
14: Di,j ← min(match, insert, delete)
15: end for
16: end for
17: return D(m,n)
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C Appendix: Davies-Bouldin equations

ci =
1

ni

ni∑
j=1

Aij (6)

Si =
1

ni

ni∑
j=1

d(Aij , ci) (7)

Mij = d(ci, cj) (8)

Ri = max
i ̸=j

(
Si + Sj

Mij

)
(9)

DB =
1

k

k∑
i=1

Ri (10)

D Appendix: Additional results

123456

twe3.1078

msm3.1863

wdtw3.2059erp 3.4216
dtw 3.4608
ed 4.6176

(a) Accuracy

123456

twe2.9706

msm3.2451

wdtw3.2941dtw 3.3137
erp 3.6569
ed 4.5196

(b) Rand Index

123456

twe2.9706

dtw3.3137

wdtw3.3235msm 3.3333
erp 3.4314
ed 4.6275

(c) Adjusted RI

123456

twe2.8627

msm3.1471

erp3.3627dtw 3.4118
wdtw 3.4902

ed 4.7255

(d) Mutual information

123456

twe2.8039

msm3.0784

erp3.4314wdtw 3.4412
dtw 3.5784
ed 4.6667

(e) Adjusted MI

123456

twe2.8333

msm3.0980

erp3.3922wdtw 3.4216
dtw 3.5294
ed 4.7255

(f) Normalised MI

Figure 6: Critical difference diagrams for k-means clustering using six distance functions. The
analysis involves 51 UCR datasets (raw data), evaluated using six performance measures on
the train data. A lower score means a distance function performs better. Distance functions

grouped by horizontal lines means that there is no pairwise significant difference between them.
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123456

erp2.8431

twe2.8922

msm3.0196wdtw 3.5980
dtw 3.9902
ed 4.6569

(a) Accuracy

123456

twe2.7941

erp2.9216

msm3.1569wdtw 3.6275
dtw 3.8824
ed 4.6176

(b) Rand Index

123456

twe2.7745

erp2.9412

msm3.2647wdtw 3.5294
dtw 3.8333
ed 4.6569

(c) Adjusted RI

123456

twe2.8333

erp2.8922

msm3.1373wdtw 3.6471
dtw 3.9216
ed 4.5686

(d) Mutual information

123456

twe2.8824

erp2.9216

msm3.1961wdtw 3.4314
dtw 3.9510
ed 4.6176

(e) Adjusted MI

123456

erp2.8627

twe2.8725

msm3.1863wdtw 3.5000
dtw 3.9804
ed 4.5980

(f) Normalised MI

Figure 7: Critical difference diagrams for k-medoids clustering using six distance functions.
The analysis involves 51 UCR datasets (raw data), evaluated using six performance measures
on the train data. A lower score means a distance function performs better. Distance functions
grouped by horizontal lines means that there is no pairwise significant difference between them.

Table 3: Average clustering accuracy across the 51 UCR datasets for both k-means and
k-medoids clustering. Results are on the test dataset.

Distance k-means (%) k-medoids (%) Difference (%)

ERP 60.87 63.69 2.82

TWE 62.33 63.22 0.88

MSM 62.43 62.79 0.36

WDTW 60.33 60.69 0.36

DTW 60.24 60.45 0.21

ED 57.34 57.11 -0.23
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Table 4: Prediction of the cluster count using Davies-Bouldin score, for the six investigated
distance function. A green cell denote a correct prediction and an orange cell denotes a ”close”
prediction. An asterisk (*) denotes that the prediction is either kmin or kmax. Results are on

train set and with training and test set combined.

Train Train + test

Data name Actual ED DTW MSM TWE WDTW ERP ED DTW MSM TWE WDTW ERP

Adiac 37 43 33 41 46 44 47* 27* 27* 32 37 31 31

WordSynonyms 25 35* 29 35* 34 30 31 25 20 30 34 34 34

FacesUCR 14 24* 17 24* 21 24* 23 4* 4* 21 24* 24* 16

CricketZ 12 2 3 2 2 2 3 2 22* 7 2 3 2

InsectWingbeatSound 11 5 2 7 3 2 20 2 2 2 4 2 2

MedicalImages 10 4 3 8 2 3 4 3 3 2 3 2 3

Fish 7 2 2 15 17* 16 15 12 2 17* 8 17* 9

Lightning7 7 17* 17* 17* 16 17* 17* 17* 17* 9 3 5 4

Plane 7 4 6 6 8 6 17* 4 4 5 7 5 9

DistalPhalanxTW 6 2 2 2 2 2 2 2 2 2 2 2 2

MiddlePhalanxTW 6 2 2 2 2 2 2 2 2 2 2 2 2

OSULeaf 6 2 16* 16* 2 5 16* 3 3 2 12 3 16*

ProximalPhalanxTW 6 2 2 2 2 2 2 2 2 2 2 2 2

Symbols 6 16* 16* 16* 16* 14 15 4 3 4 4 2 5

SyntheticControl 6 2 2 2 2 2 2 2 2 2 2 2 3

Beef 5 13 13 15* 15* 4 13 8 15* 14 14 3 13

ECG5000 5 2 2 2 2 8 2 2 2 2 2 6 2

DiatomSizeReduction 4 14* 14* 13 13 14* 14* 4 4 5 5 5 3

FaceFour 4 14* 14* 12 14* 14* 12 14* 14* 9 5 14* 14*

Trace 4 5 2 2 2 2 2 2 2 2 4 2 3

ArrowHead 3 13* 2 9 11 10 10 2 3 2 2 3 2

BME 3 2 2 2 13* 2 2 2 2 2 2 2 2

CBF 3 13* 12 13* 12 11 13* 7 2 2 2 2 4

ChlorineConcentration 3 4 4 4 4 4 4 4 4 4 3 3 4

DistalPhalanxOutlineAgeGroup 3 2 2 2 2 2 2 2 2 2 2 2 2

Meat 3 2 2 2 2 2 2 2 2 2 2 2 2

MiddlePhalanxOutlineAgeGroup 3 2 2 2 2 2 2 2 2 2 2 2 2

ProximalPhalanxOutlineAgeGroup 3 2 2 2 2 2 2 2 2 2 2 2 2

SmoothSubspace 3 13* 7 13* 9 13* 5 2 2 2 2 2 2

UMD 3 2 2 2 2 2 2 2 2 2 2 2 2

Chinatown 2 12* 8 11 12* 8 12* 2 2 2 2 2 2

Coffee 2 12* 7 12* 12* 12* 12* 2 2 6 5 3 6

ECG200 2 5 2 2 11 2 4 2 2 6 5 5 5

ECGFiveDays 2 12* 10 12* 12* 10 12* 8 5 4 4 6 3

FreezerRegularTrain 2 11 3 7 6 2 6 3 3 3 3 3 3

FreezerSmallTrain 2 12* 2 9 9 7 9 3 3 3 3 3 3

GunPoint 2 5 3 7 4 2 5 2 2 2 2 2 2

GunPointAgeSpan 2 2 3 2 2 2 2 2 3 2 2 3 3

GunPointMaleVersusFemale 2 3 3 3 5 2 3 2 3 2 2 3 3

GunPointOldVersusYoung 2 2 3 3 2 3 2 2 3 2 2 3 3

Ham 2 12* 11 10 12* 12* 12* 8 9 11 11 11 12*

ItalyPowerDemand 2 20 18 4 3 2 3 7 6 2 5 2 3

MoteStrain 2 12* 12* 12* 12* 12* 10 2 2 2 2 2 2

PowerCons 2 3 5 2 2 5 2 2 9 2 2 3 2

ShapeletSim 2 12* 12* 12* 12* 12* 12* 12* 12* 12* 12* 12* 12*

SonyAIBORobotSurface1 2 12* 11 11 9 12* 12* 7 5 6 5 4 2

SonyAIBORobotSurface2 2 12* 12* 12* 12* 12* 12* 3 3 2 2 11 7

ToeSegmentation1 2 12* 11 12* 12* 10 12* 4 4 3 4 2 2

ToeSegmentation2 2 12* 12* 12* 12* 12* 12* 12* 5 2 8 3 12*

TwoLeadECG 2 11 2 12* 9 11 2 2 11 5 2 2 2

Wine 2 7 2 10 10 2 10 4 4 11 2 4 4

Number of correct predictions: 2 4 3 3 7 4 12 7 10 14 8 7

Number of close predictions: 11 16 12 8 13 9 12 16 16 14 19 22
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Table 5: Prediction of the cluster count using Calinski-Harabasz score, for the six investigated
distance function. A green cell denote a correct prediction and an orange cell denotes a ”close”
prediction. An asterisk (*) denotes that the prediction is either kmin or kmax. Results are on

train set and with training and test set combined.

Train Train + test

Data name Actual ED DTW MSM TWE WDTW ERP ED DTW MSM TWE WDTW ERP

Adiac 37 27* 27* 41 27* 28 28 28 31 32 36 39 29

WordSynonyms 25 15* 16 18 19 16 15* 16 15* 17 25 21 15*

FacesUCR 14 4* 5 9 6 5 6 4* 4* 6 4* 5 6

CricketZ 12 2* 3 2* 2* 2* 2* 2* 6 2* 2* 3 2*

InsectWingbeatSound 11 4 8 7 3 2 2 6 4 2 4 2 3

MedicalImages 10 4 3 2 3 3 2 3 3 4 3 5 3

Fish 7 2 2 7 8 15 5 2 2 5 7 6 7

Lightning7 7 6 4 5 4 2 2 3 2 2 2 2 4

Plane 7 3 6 2 9 6 3 7 7 7 4 5 7

DistalPhalanxTW 6 2 2 2 2 2 2 2 2 2 2 2 2

MiddlePhalanxTW 6 3 2 2 2 2 2 3 2 3 3 2 3

OSULeaf 6 2 4 2 2 6 3 2 3 4 6 3 9

ProximalPhalanxTW 6 2 2 2 2 2 2 2 2 2 2 2 2

Symbols 6 6 2 6 8 10 4 5 3 3 4 6 5

SyntheticControl 6 2 2 2 2 2 2 2 2 2 2 2 2

Beef 5 5 4 4 4 4 4 4 6 6 5 3 7

ECG5000 5 2 2 2 2 3 2 2 2 2 2 3 2

DiatomSizeReduction 4 3 3 5 6 5 3 3 4 3 3 3 3

FaceFour 4 2 8 5 3 5 2 2 2 2 5 3 3

Trace 4 2 2 2 2 2 2 2 2 2 2 2 2

ArrowHead 3 2 2 2 2 5 2 3 2 2 2 2 2

BME 3 2 2 2 2 2 2 2 2 2 2 2 2

CBF 3 2 4 3 3 3 3 2 3 2 2 2 2

ChlorineConcentration 3 2 4 4 2 4 4 2 2 2 2 2 2

DistalPhalanxOutlineAgeGroup 3 2 2 2 2 2 2 2 2 2 2 2 2

Meat 3 2 2 2 2 2 2 2 2 2 2 2 2

MiddlePhalanxOutlineAgeGroup 3 2 2 2 2 2 2 3 2 3 3 2 3

ProximalPhalanxOutlineAgeGroup 3 2 2 2 2 2 2 2 2 2 2 2 2

SmoothSubspace 3 3 6 2 4 6 5 2 2 2 2 2 2

UMD 3 2 2 2 2 2 2 2 2 2 2 2 2

Chinatown 2 2 4 3 2 4 4 2 2 4 2 2 2

Coffee 2 2 2 2 2 2 2 2 2 4 2 3 4

ECG200 2 5 6 2 3 2 4 2 2 3 3 2 5

ECGFiveDays 2 2 10 4 2 2 3 3 4 11 2 4 3

FreezerRegularTrain 2 4 3 7 4 2 6 3 3 3 3 3 3

FreezerSmallTrain 2 2 3 3 2 2 3 3 3 3 3 3 3

GunPoint 2 5 3 6 2 2 4 2 2 2 2 2 2

GunPointAgeSpan 2 3 3 5 2 5 3 3 3 4 4 3 3

GunPointMaleVersusFemale 2 3 3 5 4 5 3 3 3 4 4 3 3

GunPointOldVersusYoung 2 3 3 3 4 3 3 3 3 4 4 3 3

Ham 2 3 3 2 2 2 3 4 3 2 3 3 2

ItalyPowerDemand 2 4 4 3 4 4 3 4 2 2 5 2 3

MoteStrain 2 2 3 2 3 2 3 2 2 2 2 2 2

PowerCons 2 3 5 2 2 5 2 3 7 2 2 8 2

ShapeletSim 2 2 2 11 8 6 11 3 4 7 8 2 12*

SonyAIBORobotSurface1 2 4 5 2 4 3 2 2 3 4 6 2 2

SonyAIBORobotSurface2 2 2 5 2 2 5 3 3 3 2 2 5 7

ToeSegmentation1 2 3 4 3 3 2 3 3 3 2 2 2 2

ToeSegmentation2 2 10 4 6 2 2 2 2 3 3 2 2 2

TwoLeadECG 2 3 8 9 3 7 2 2 11 2 2 2 2

Wine 2 2 2 2 2 2 2 2 3 11 3 3 3

Number of correct predictions: 11 3 11 12 13 7 12 9 10 15 11 12

Number of close predictions: 18 20 18 16 13 20 21 22 16 17 23 20
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Calinksi-Harabasz

Figure 8: Comparison of the correct prediction between the three methods.

123456

twe2.9020

msm2.9118

erp3.6667dtw 3.6765
wdtw 3.8431

ed 4.0000

(a) Accuracy

123456

twe3.0980

msm3.1275

dtw3.4608erp 3.5784
wdtw 3.5784

ed 4.1569

(b) Rand Index

123456

twe3.0980

msm3.1275

dtw3.4608erp 3.5784
wdtw 3.5784

ed 4.1569

(c) Adjusted RI

123456

wdtw3.1667

msm3.2647

dtw3.5196erp 3.5588
twe 3.6863
ed 3.8039

(d) Mutual information

123456

msm3.0294

dtw3.3922

erp3.4020twe 3.4412
wdtw 3.6078

ed 4.1275

(e) Adjusted MI

123456

msm3.1471

dtw3.4020

erp3.4510wdtw 3.5000
twe 3.5490
ed 3.9510

(f) Normalised MI

Figure 9: Critical difference diagrams for k-medoids clustering with prediction a full model.
This involves first determining the number of clusters using the silhouette method and
thereafter performing the clustering on this prediction. A lower score means a distance

function performs better. Distance functions grouped by horizontal lines means that there is
no pairwise significant difference between them. Results are on the train set.
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